
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Don't Knock Bro

GIAC (GCIH) Gold Certification

Author: Brian Nafziger, brian@nafziger.net
Advisor: David Hoelzer

Accepted: December 15, 2018

Abstract

Today's defenders often focus detections on host-level tools and techniques thereby
requiring host logging setup and management. However, network-level techniques may
provide an alternative without host changes. The Bro Network Security Monitor (NSM)
tool, now being renamed as Zeek, allows today's defenders to focus detection techniques
at the network-level. An old method for controlling a concealed backdoor on a system
using a defined sequence of packets to various ports is known as port-knocking.
Unsurprisingly, old methods still offer value and malware, defenders, and attackers still
use port-knocking. Current port-knocking detection relies on traffic data mining
techniques that only exist in academia writing without any applicable tools. Since Zeek
(Bro) is a network-level tool, it should be possible to adapt these data mining techniques
to detect port-knocking within Zeek (Bro). This research will document the process of
creating and confirming a port-knocking network-level detection with Zeek (Bro) that
will provide an immediate and accessible detection technique for organizations.

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Don't Knock Bro	 2

Brian Nafziger, brian@nafziger.net

1. Introduction
Today's defenders are using detection frameworks such as the MITRE

ATT&CK™ matrix and the Lockheed Martin Kill Chain™ (MITRE Corporation, 2018a;

Hutchins, Cloppert, & Amin, 2011). These frameworks often focus many techniques at

the host-level, thereby requiring host logging setup and management. However, network-

level techniques may provide an alternative that offers many of the same benefits without

host changes (Paxson, 1999). Subsequently, defenders interest in detection at the

network-level explains the growth of tools and techniques such as are available with the

Bro Network Security Monitor (NSM) (Paxson, 1999). Bro is being renamed as Zeek

(Paxson, 2018). Accordingly, this research will reference both these names to support the

renaming process.

Port-knocking is a well-established technique for opening hidden backdoors on

systems using a predefined sequence of packets directed to multiple ports (Krzywinski,

2003). This paper focuses on the classic implementation of sending multiple port-knocks

to differing ports. Other implementations can also use single packet knocks by varying

packet composition.

The CD00r "proof of concept" backdoor, released in 2000, was one of the first to

use port-knocking to allow hidden access to Unix systems (Hartrell, 2002). To this day,

port-knocking is still in use (Donoso, 2017; EGI CSIRT, 2017; Sengar, 2018; Mladenov,

& Zismer, 2017). Therefore, the 2018 MITRE ATT&CK framework still classifies port-

knocking as a technique (MITRE Corporation, 2018b). Current port-knocking detection

relies on traffic data mining techniques, but the author's tool remains unpublished

(Hommes, & Engel, 2012). Since Zeek (Bro) is a network-level tool, this paper

hypothesizes that it is possible to develop such a port-knocking detection technique using

Zeek (Bro).

Focusing on the network-level requires packet knowledge, and the Zeek (Bro)

NSM offers an adept framework. This paper will document the process of creating a new

Zeek (Bro) network-level port-knocking detection. This new detection will provide an

additional detective measure, of the many Zeek (Bro) detective measures, for

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Don't Knock Bro	 3

Brian Nafziger, brian@nafziger.net

organizations. The Zeek (Bro) NSM itself is an opensource network intelligence

framework meaning that its implementation and use is available cost-free for anyone.

First, this paper will document how port-knocking works, how Zeek (Bro) works,

and how data mining works. Then the paper will test data mining detection techniques

using Zeek (Bro). Finally, this paper will document data mining effectiveness by using

port-knocking backdoors such as CD00r, Knockd, and Pyknock and by cataloging the

results of the port-knocking detection using Zeek (Bro). Successful testing within Zeek

(Bro) and Security Onion will detect several variations of port-knocking. The paper will

document and publicly release all steps to reproduce and test the detection techniques.

The creation of a port-knocking detection using Zeek (Bro) and data mining

necessitates a simple understanding of each topic to begin the process.

2. The Building Blocks
2.1. Port-Knocking

Port-knocking is a stealthy means of hiding access to a system and controlling

access to a system. It holds little of the current limelight, and it cycles in and out of

popularity (Krzywinski, 2017). However, it is noteworthy that recent malware,

defenders, attackers, and purportedly at least one nation-state framework still use variants

of port-knocking (Donoso, 2017; EGI CSIRT, 2017; Sengar, 2018; Mladenov, & Zismer,

2017). Port-knocking usage continues across time, platforms, and applications. Thus,

understanding and detecting port-knocking is a worthy endeavor.

Port-knocking exists in a variety of implementations; consequently, definitions

and purposes vary (Krzywinski, 2017). A typical implementation of a port-knocking

process exists as a system process watching network communication for a defined

sequence of singular packets flowing to multiple closed ports on the server. The name

port-knocking stems from this stream of several staccato packets directed against ports.

In response to the proper sequence of packets, the process opens a port on the system

thereby allowing remote access. The process stays hidden on a network by keeping ports

in a closed state. Distinctions of port-knocking include variations of languages, operating

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Don't Knock Bro	 4

Brian Nafziger, brian@nafziger.net

systems, and types of knock patterns from multiple packets with multiple port patterns to

a single packet with multiple internal patterns (Krzywinski, 2017).

CD00r was one of the first port-knocking backdoors. CD00r supports this

research due to its previous use in data mining and its continued references over the years

(Baumgartner, 2014; FunOverIP, 2011; Guerrero-Saade, Raiu, Moore, & Rid, 2017;

Hartrell, 2002; Hommes, et al., 2012). The code functions by examining and tracking

packets for a predefined but configurable port-knock sequence (Phenoelit, 2000). A

simple demonstration shows how CD00r installs and runs. First, (1) install GCC, libpcap-

dev, netkit-inetd, and the respective dependencies via the package manager, and (2)

download CD00r.c. Next, (3) observe or configure the port-knock sequence, (4) compile

it, and (5) run it. Finally, (6) remotely port-knock the running instance and (7) observe

the results. See Figure 1.

apt-get install gcc libpcap-dev netkit-inetd

wget http://www.phenoelit.org/stuff/cD00r.c

grep "define CDR_PORTS" cD00r.c
define CDR_PORTS { 200,80,22,53,3,00 }

gcc -DDEBUG -o cD00r -I/usr/include/pcap -L/usr/include/bpf cD00r.c -lpcap -DUSE_PCAP

./cD00r noi
5 ports used as code
DEBUG: 'port 200 or port 80 or port 22 or port 53 or port 3'
Port 200 is good as code part 0
Port 80 is good as code part 1
Port 22 is good as code part 2
Port 53 is good as code part 3
Port 3 is good as code part 4

for x in 200 80 22 53 3; do nc -w 1 -z 192.168.55.179 $x; done
nc -n 192.168.55.179 5002
whoami
root

Figure 1: Old Ubuntu (inetd-based) install and run of the CD00r port-knocking backdoor

As illustrated in Figure 1, the port-knock sequence opens the port, and a

connection to it allows the user to run arbitrary commands, such as 'whoami.'

Knockd is a more recently supported and a widely distributed port-knocking

backdoor. Knockd also supports this research because of its continued wide distribution

(Cowsay, 2017; Netlovers, 2018; Rapid7, 2017; Vinet, 2014). The package also functions

by examining and tracking a predefined but configurable port-knock sequence.

Additionally, it offers many control and response options. Knockd installs and runs as

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Don't Knock Bro	 5

Brian Nafziger, brian@nafziger.net

follows: (1) install it via an appropriate package manager, (2) observe or configure the

port-knock sequence, (3) and run. Finally, (4) remotely port-knock the running instance

and (5) observe the results. See Figure 2 and Figure 3.

yum install libpcap
rpm -ivh http://li.nux.ro/download/nux/dextop/el7Server/x86_64/knock-server-0.7-
1.el7.nux.x86_64.rpm

grep "sequence" /etc/knockd.conf
sequence = 2222:udp,3333:tcp,4444:udp

knockd -v -i ens33
listening on ens33...
192.168.55.1: SSH: Stage 1
192.168.55.1: SSH: Stage 2
192.168.55.1: SSH: Stage 3
192.168.55.1: SSH: OPEN SESAME
SSH: running command: rm /tmp/f;mkfifo /tmp/f;nc -lk 5002 0</tmp/f | /bin/bash 1>/tmp/f

knock -d 1 192.168.55.181 2222:udp 3333:tcp 4444:udp
nc 192.168.55.181 5002
whoami
root

Figure 2: New CentOS install and run of the Knockd port-knocking backdoor

apt-get install knockd

grep "sequence" /etc/knockd.conf
sequence = 7000,8000,9000

knockd -v -i ens33
listening on ens33...
192.168.55.1: SSH: Stage 1
192.168.55.1: SSH: Stage 2
192.168.55.1: SSH: Stage 3
192.168.55.1: SSH: OPEN SESAME
SSH: running command: rm /tmp/f;mkfifo /tmp/f;nc -lk 5002 0</tmp/f | /bin/bash 1>/tmp/f

knock -d 1 192.168.55.168 7000 8000 9000
nc 192.168.55.168 5002
whoami
root

Figure 3: New Ubuntu install and run of the Knockd port-knocking backdoor

As illustrated in Figure 2 and Figure 3, the port-knock sequence opens the port,

and a connection to it allows the user to run arbitrary commands, such as 'whoami.'

Pyknock is a very recent, script-based Python port-knocking backdoor based on

the popular Pypacker Python network manipulation library (Stahn, 2017). Pyknock

supports this research due to its very recent origin and its python backend which offers

ease of portability and configurability. The script functions by examining and tracking

packets for a configurable port-knock sequence. Additionally, it is entirely scriptable

allowing for the flexibility of triggering on any pattern of packet values. A simple

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Don't Knock Bro	 6

Brian Nafziger, brian@nafziger.net

demonstration shows how Pyknock installs and runs. First (1) install epel-release,

Python36, and Git via the package manager, (2) clone the Pypacker and Pyknock

repositories, and (3) install Pypacker. Then (4) observe or configure the Pyknock port-

knock sequence, and (5) run. Finally, (6) remotely port-knock the running instance and

(7) observe the results. See Figure 4.

yum install epel-release
yum install python36
yum install git

git clone https://github.com/mike01/pypacker
git clone https://github.com/mike01/pyknock

cd pypacker
python36 setup.py install

cd ../pyknock
cat config.py | grep -B1 dport
def condition1(pkt):
 return pkt[tcp.TCP].dport == 1337
def condition2(pkt):
 return pkt[tcp.TCP].dport == 1338
def condition3(pkt):
 return pkt[tcp.TCP].dport == 1339

python36 pyknock.py
2018-11-03 21:04:07,284: INFO: starting to listen, press enter to exit
2018-11-03 21:05:01,770: INFO: found initial matching condition at strategy index 0
2018-11-03 21:05:02,780: INFO: state 2/3 matched
2018-11-03 21:05:03,789: INFO: state 3/3 matched
2018-11-03 21:05:03,789: INFO: triggering action!
action to open port!
Chain INPUT (policy ACCEPT)
target prot opt source destination
Chain FORWARD (policy ACCEPT)
target prot opt source destination
Chain OUTPUT (policy ACCEPT)
target prot opt source destination

for x in 1337 1338 1339; do nc -w 1 -z 192.168.55.181 $x; done

Figure 4: New CentOS install and run of the Pyknock port-knocking backdoor

As illustrated in Figure 4, the port-knock sequence runs an action, which is by

default only the listing of the firewall rules.

2.2. Zeek (Bro)
Port-knocking is a stealthy means of hiding access and controlling access to a

system. Port-knocking traffic hides within network traffic. Port-knocking usage continues

across time, across a variety of platforms, and by a variety of applications. To find port-

knocking traffic this research seeks to answer the questions: what tool exists to view

network traffic and what technique exists to discover port patterns in traffic?

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Don't Knock Bro	 7

Brian Nafziger, brian@nafziger.net

Zeek (Bro) offers a network data analysis framework. It is known for its signature

and anomaly-based capabilities. Furthermore, due to the power and flexibility of its

exposed scripting language, it has a growing movement among today's security

professionals (Bro IDS Jobs, 2018). These features offer value in examining traffic and

potentially finding hidden port-knocking traffic and so understanding and exploring Zeek

(Bro) is of significance for this research.

The Zeek (Bro) architecture accepts packets which flow into an event engine.

Within the event engine, event creation occurs in response to network communication.

Examples of this include when a new connection is detected, or when a new protocol is

detected. Events then flow into a policy engine that allows scripting actions. Examples of

this include tracking the source and destination ports upon detecting a connection

(Paxson, 1999). The scripting language also supports time-based events, protocol

analysis, logging, notification, and execution of system commands. The default behavior

of Zeek (Bro) is to load a standard set of analysis scripts that generate a connection log

and a variety of protocol logs. The connection log aggregates all packets describing a

connection onto a single line. The connection content consists of IP addresses, ports,

protocols, states, number of packets, etc. (Sommer, 2011).

Zeek (Bro) is valuable not only because of its intrinsic value but because of its

packaging in Security Onion. Security Onion is an open source distribution for security

monitoring. Many useful security tools integrate into a common front end within Security

Onion thereby simplifying security analysis in enterprise environments (Burks, 2012).

A simple demonstration shows how port knocking appears when using Zeek

(Bro). First (1) install Zeek (Bro) with a respective package manager. Then (2) initiate a

port-knocking script (ports 200,80,22,53,3) while packet-capturing. Then (3) process the

packet-capture using Zeek (Bro). Finally, (4) observe the connection results. See Figure

5.

cd /etc/yum.repos.d/
wget http://download.opensuse.org/repositories/network:bro/CentOS_7/network:bro.repo
yum install bro

sh -c "echo 'deb http://download.opensuse.org/repositories/network:/bro/xUbuntu_16.04/
/' > /etc/apt/sources.list.d/bro.list"
apt-get update
apt-get install bro

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Don't Knock Bro	 8

Brian Nafziger, brian@nafziger.net

cat << "EOF" > portknock_test_harness.sh
tcpdump -n -k NP -Q "proc=nc" -w out.pcap &
tcpdump_PID=$!
sleep 5
for p in {200,80,22,53,3}; do nc -z portquiz.net $p; done &
sleep 5
kill $tcpdump_PID
EOF
./portknock_test_harness.sh

bro -r out.pcap

cat conn.log | bro-cut -d ts id.orig_h id.orig_p id.resp_h id.resp_p proto
2018-10-16T08:34:52-0400 172.18.50.83 59124 5.196.70.86 53 tcp
2018-10-16T08:34:52-0400 172.18.50.83 59123 5.196.70.86 22 tcp
2018-10-16T08:34:52-0400 5.196.70.86 3 172.18.50.83 59125 tcp
2018-10-16T08:34:52-0400 172.18.50.83 59122 5.196.70.86 80 tcp
2018-10-16T08:34:52-0400 5.196.70.86 200 172.18.50.83 59121 tcp

Figure 5: New CentOS or Ubuntu install and run of Zeek (Bro)

In Figure 5 above, the Zeek (Bro) connection log displays an aggregation of the

packet attributes per connection, including but not limited to:

• ts = timestamp,

• id.orig_h = source IP,

• id.orig_p = source port,

• id.resp_h = destination IP,

• id.resp_p = destination port.

Essentially exhibited, Zeek (Bro) is the ideal tool for the task of examining

network traffic. However, this research still seeks to answer the question: what technique

exists to discover port patterns in traffic?

2.3. Data Mining
Data mining is the process of finding patterns in data. It is extremely popular with

no signs of abating because it offers many successful methodologies for finding patterns,

and it is thus useful across a variety of industries (Data Science Jobs, 2018; Fayyad,

Piatetsky-Shapiro, & Smyth, 1996). Since port-knocking uses patterns within network

traffic, understanding and exploring data mining methods are of significance for this

research.

Definitions vary, but, the de facto data mining article states: “… KDD

[Knowledge Discovery in Databases] refers to the overall process of discovering useful

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Don't Knock Bro	 9

Brian Nafziger, brian@nafziger.net

knowledge from data, and data mining refers to a particular step in this process. Data

mining is the application of specific algorithms for extracting patterns from data.”

(Fayyad et al., 1996). The article defines and illustrates the process as understanding the

domain, preprocessing the data, transforming the data, performing the data mining, and

finally, interpreting the patterns (Fayyad et al., 1996). It also suggests wide-ranging

methodologies such as anomaly detection, dependency modeling (association rule

learning), clustering, classification, regression, and summarization (Fayyad et al., 1996).

Due to its range of methods for finding patterns and its known success in finding

patterns, data mining should be a reliable means of finding port-knocking sequence

patterns hidden within network traffic. Several data mining toolkits exist for research

purposes such as SPMF (Sequential Pattern Mining Framework) (Fournier-Viger, Lin,

Gomariz, Gueniche, Soltani, Deng, & Lam, 2016). A simple demonstration shows how

SPMF installs and runs. First (1) download the latest version of Java with a respective

package manager, and (2) download the data mining Java jar file. Using the first example

in the SPMF documentation, (3) create the specific input data file, and finally, (4) run the

apriori algorithm against the data with the documentation default settings, and (5)

observe the output results. See Figure 6.

yum install java-1.8.0-openjdk

apt-get install default-jre

wget http://www.philippe-fournier-viger.com/spmf/spmf.jar

cat << "EOF" > input.txt
1 3 4
2 3 5
1 2 3 5
2 5
1 2 3 5
EOF

java -jar spmf.jar run Apriori input.txt output.txt 40%

cat output.txt
1 #SUP: 3
2 #SUP: 4
3 #SUP: 4
5 #SUP: 4
1 2 #SUP: 2
1 3 #SUP: 3
1 5 #SUP: 2
2 3 #SUP: 3
2 5 #SUP: 4
3 5 #SUP: 3
1 2 3 #SUP: 2
1 2 5 #SUP: 2
1 3 5 #SUP: 2

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Don't Knock Bro	 1
0

Brian Nafziger, brian@nafziger.net

2 3 5 #SUP: 3
1 2 3 5 #SUP: 2

Figure 6: New CentOS or Ubuntu install and run of SPMF

In Figure 6 above, the specified apriori algorithm (a specific computing process)

finds frequently occurring itemsets (sets of items) in a transaction database. The

transaction database (input.txt) is a set of transactions where each transaction is

comprised of a set of items. Additionally, the support value (40%) indicates a minimum

threshold percentage of how often the itemset appears in all transactions. The output

(output.txt) shows the number of times the pattern (itemset) occurs in the data

(transaction data). As seen above, the 1 pattern appears three times SUP:3 in the

transaction data, the 2 pattern appears four times SUP:4 in the data, and the 1 2 3 5

pattern appears twice SUP:2 in the data (Fournier-Viger et al., 2016). In Figure 6 above,

the patterns and the transaction data in the example are undefined, yet, it is possible to

perceive where the data could indicate ports in the network traffic and the patterns could

indicate a port-knocking sequence.

Simply shown, data mining as a technique appears ideal for the task of finding

patterns in network traffic. The defender can begin to understand that the building blocks

demonstrate the potential of Zeek (Bro) for data mining port-knocking. The defender

may, however, be unsure of the practical next steps. Accordingly, this research seeks to

answer the question: how does this data mining process realistically continue with Zeek

(Bro)? This research will demonstrate these next practical steps to move the defender

from theory to practice.

3. Data Mining Port-Knocking with Zeek (Bro)
In practice, data mining or the knowledge discovery process best unfolds as

follows:

1. First, define the problem: what is the problem, why should the problem be

solved, and how could the problem be solved.

2. Second, prepare the data: select, format, and transform the data.

3. Third, select and check the algorithm.

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Don't Knock Bro	 1
1

Brian Nafziger, brian@nafziger.net

4. Forth, improve the results.

5. Fifth, and finally, present the results: the input, the problem, the solution,

and the conclusion (Brownlee, 2016).

The knowledge discovery process starts with defining the problem.

3.1. The Problem
Port-knocking is the action of controlling concealed communications to a system.

It triggers the action by sending a series of knocks across a network ⎯ each knock to a

single differing port on the target system. Detecting port-knocking is of interest because

malware, defenders, and attackers use it. Using Zeek (Bro) to extract network data (the IP

addresses and the ports) and then data mining to find the relationship of the knocking

ports (the pattern) within the regular network data might offer a solution.

The problem is defined, and the potential solution is proposed. The knowledge

discovery process continues with preparing the network port data.

3.2. Prepare the Data
Zeek (Bro) generates traffic connection log data which includes IP addresses,

ports, protocols, etc. The defender can simulate the real-world by continuing to increase

the data for the preparation process. Modify the earlier script with more port-knocking

data and with randomly selected port data. The script below (1) starts and captures the

port-knocking packets for an interval of time. Upon completion, (2) Zeek (Bro) analyzes

the capture and (3) displays the connection results. See Figure 7.

cat << "EOF" > portknock_test_harness.sh
tcpdump -n -k NP -Q "proc=nc" -w out.pcap &
tcpdump_PID=$!
sleep 5
for p in {200,80,22,53,3}; do nc -z portquiz.net $p; done &
for p in {443,25,135}; do nc -z google.com $p; done &
sleep 60
for p in {3389,20,21}; do nc -z google.com $p; done &
for p in {200,80,22,53,3}; do nc -z portquiz.net $p; done &
sleep 5
kill $tcpdump_PID
EOF
sudo ./portknock_test_harness.sh

sudo bro -r out.pcap

cat conn.log | bro-cut -d ts id.orig_h id.orig_p id.resp_h id.resp_p proto
2018-10-16T21:16:28-0400 192.168.1.101 49550 172.217.15.110 25 tcp
2018-10-16T21:16:28-0400 5.196.70.86 200 192.168.1.101 49548 tcp

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Don't Knock Bro	 1
2

Brian Nafziger, brian@nafziger.net

2018-10-16T21:16:29-0400 5.196.70.86 3 192.168.1.101 49555 tcp
2018-10-16T21:16:33-0400 192.168.1.101 49550 172.217.15.110 25 tcp
2018-10-16T21:16:39-0400 192.168.1.101 49550 172.217.15.110 25 tcp
2018-10-16T21:16:47-0400 192.168.1.101 49550 172.217.15.110 25 tcp
2018-10-16T21:17:04-0400 192.168.1.101 49550 172.217.15.110 25 tcp
2018-10-16T21:17:28-0400 192.168.1.101 49578 172.217.15.110 3389 tcp
2018-10-16T21:17:29-0400 5.196.70.86 3 192.168.1.101 49584 tcp
2018-10-16T21:17:28-0400 192.168.1.101 49579 5.196.70.86 200 tcp
2018-10-16T21:17:29-0400 192.168.1.101 49582 5.196.70.86 22 tcp
2018-10-16T21:16:28-0400 192.168.1.101 49549 172.217.15.110 443 tcp
2018-10-16T21:17:28-0400 192.168.1.101 49580 5.196.70.86 80 tcp
2018-10-16T21:16:28-0400 192.168.1.101 49551 5.196.70.86 80 tcp
2018-10-16T21:16:29-0400 192.168.1.101 49554 5.196.70.86 53 tcp
2018-10-16T21:17:29-0400 192.168.1.101 49583 5.196.70.86 53 tcp
2018-10-16T21:16:29-0400 192.168.1.101 49552 5.196.70.86 22 tcp

Figure 7: Generate, capture, and display cD00r port-knock data for preparation

As seen in Figure 7 above, the Zeek (Bro) connection log data displays an

aggregation of the packets per connection per line. The desired data mining input, as

seen in the earlier building block, Section 2.3, is lines of transactions where each

transaction is comprised of ports over time. The requirement is to transform the port data

to per line port data by using a transaction time-based window. Additionally, many data

mining algorithms need ordering and de-duplication of the data which adds to the

complexity of the task (Fournier-Viger et al., 2016). Thus, the suggested preparation of

the data is to aggregate the ports per line based on time, sort the ports per line, and then

deduplicate the ports per line.

Preparing the data is a common task for the AWK language. It is a common Unix

scripting language designed for text processing. The script below (1) loops through the

Zeek (Bro) connection log (2) creates a hash (a data storage variable) using a minute-

based timestamp with IP address, and (3) appends every port to the hash. After looping

through the connection log, the script (4) loops through the hash (5) splits and sorts the

ports, and then (6) deduplicates the ports. Finally, (7) for data mining, the script trims the

unnecessary timestamp and IP data. See Figure 8.

cat conn.log | gawk '{ if (NR < 9) next ;
time=strftime("%Y%m%d%H%M", $1);
tsip = time" "$3 ; ipports[tsip] = ipports[tsip]" "$4;
tdip = time" "$5 ; ipports[tdip] = ipports[tdip]" "$6 }
END { for(ip in ipports)
{ printf ("%s",ip); delete ports; delete dedupports;
split(ipports[ip], ports, " "); asort(ports) ;
for (i in ports) dedupports[ports[i]] ; out="" ;
for (i in dedupports) out=out" "i ; print out } }' \
| sort -V | cut -d" " -f3- > input.txt

cat input.txt # pre-trim
201810162116 5.196.70.86 3 22 53 80 200
201810162116 172.217.15.110 25 443

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Don't Knock Bro	 1
3

Brian Nafziger, brian@nafziger.net

201810162116 192.168.1.101 49548 49549 49550 49551 49552 49554 49555
201810162117 5.196.70.86 3 22 53 80 200
201810162117 172.217.15.110 25 3389
201810162117 192.168.1.101 49550 49578 49579 49580 49582 49583 49584

cat input.txt # post-trim
3 22 53 80 200
25 443
49548 49549 49550 49551 49552 49554 49555
3 22 53 80 200
25 3389
49550 49578 49579 49580 49582 49583 49584

Figure 8: Select, format, and transform the data

As seen in Figure 8 above, the data preparation shows aggregated, ordered, and

de-duplicated ports per host and within a per-minute timeframe.

At this point, preparation of the data is complete. The knowledge discovery

process continues with selecting and testing of an algorithm.

3.3. Select and Check the Algorithm
Finding the relationship of the knocking ports (the pattern) within the network

traffic (the data) needs a data mining algorithm. Several methods are available to find the

proper algorithm (Brownlee, 2014). One method is searching respected sources such as

academic books or peer-reviewed articles. However, these books and articles can be math

heavy, difficult, and dense. A second method is searching investigative sources such as

machine learning competitions and blogs. These sources can offer practical perspectives

on usage (Brownlee, 2013). A third method is searching application sources such as

toolkit documentation. Data mining toolkits, such as SPMF, supply ample documentation

to start the learning process.

As seen in the earlier building block, Section 2.3, the apriori algorithm for itemset

mining finds frequent patterns. Nonetheless, the desired pattern of port-knocking in

network traffic is not a frequent pattern, but a rare pattern. Consequently, the defender

should consider conducting further research to determine the best algorithm.

Accordingly, reading the SPMF documentation leads to the apriori inverse algorithm for

itemset mining which is best for rare patterns. The test below (1) confirms the existence

of the earlier port data from Section 3.2, (2) runs the apriori inverse algorithm against the

data using the documentation default settings, and (3) displays the results. See Figure 9.

cat input.txt # post-trim
3 22 53 80 200

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Don't Knock Bro	 1
4

Brian Nafziger, brian@nafziger.net

25 443
49548 49549 49550 49551 49552 49554 49555
3 22 53 80 200
25 3389
49550 49578 49579 49580 49582 49583 49584

java -jar spmf.jar run AprioriInverse input.txt output.txt 10% 60%

wc -l output.txt
225
cat output.txt | grep -v "SUP: 1" | tail -3
3 53 80 200 #SUP: 2
22 53 80 200 #SUP: 2
3 22 53 80 200 #SUP: 2

Figure 9: Select and check an algorithm with the data

As seen above in Figure 9, the apriori inverse algorithm finds variants of the 3 22

53 80 200 port-knocking patterns within the data. Overall the output contains 225 found

patterns; however, the desire is only for patterns with multiple matches thus the negation

of single matches. The SPMF documentation command line options are minimum

support and maximum support. The SPMF documentation example support values are

10% and 60% respectively. These example support values find the pattern however future

support value revision using trial and error will tighten the output in the upcoming

section. The support values provide the algorithm with the means to drop itemsets below

the minimum support and above the maximum support. (Fournier-Viger et al., 2016).

Selection of the algorithm is complete. The knowledge discovery process

continues with tuning the algorithm or improving the results.

3.4. Improve the Results
To start the step of improving the results requires multiple algorithm attempts

with varying support values until the port pattern emerges. Proper detection begins by

creating a representation of real-world traffic for the preparation process. To do so, the

defender can augment the prior script to generate more data.

Using the script below requires (1) installing Lynx a command line web browser

using the respective package manager and (2) installing the SPMF data mining toolkit.

Within the script, (3) start Tcpdump capturing packets and wait for a moment while it

starts. (4) In the background, start Lynx, randomly select a website from the defined list,

find a random link on the website, browse it, and wait. (5) In the background, start

Netcat, randomly select a port from the defined list, use that port against a site on the

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Don't Knock Bro	 1
5

Brian Nafziger, brian@nafziger.net

internet, and wait. (6) In the background, port-knock against the CD00r backdoor, check

that it opened, and wait. (7) After a run-time of 5 minutes (300 seconds), (8) stop all

background process, (9) run Zeek (Bro), and (10) perform the data preparation. Outside

of the script, (11) execute multiple data mining "tuning" runs. In general, tuning is the

process of lowering the support bands until the port-knocking pattern appears. See Figure

10.

apt-get install lynx

yum install httpd-tools #contains lynx

wget http://www.philippe-fournier-viger.com/spmf/spmf.jar

cat << "EOF" > portknock_test_harness.sh
#!/bin/bash

tcpdump -n -k NP -Q "proc=lynx||proc=nc||if=vmnet8" -w out.pcap &
tPID=$!
sleep 5

(while true; do
w=("https://drudgereport.com" " https://foxnews.com" " https://cnn.com")
lynx -dump -nolist \
`lynx -dump -listonly -nonumbers ${w[$RANDOM % ${#w[@]}]} \
| sort -R | head -n1` > /dev/null 2>&1;
sleep $[($RANDOM % 2)+1]s ;
done) &
wPID=$!

(while true; do
p=(21 22 23 25 53 110 137 139 143 389 443 445 2483 3306 3389 4333)
nc -z portquiz.net ${p[$RANDOM % ${#p[@]}]} > /dev/null 2>&1;
sleep $[($RANDOM % 3)+1]s ;
done) &
pPID=$!

(while true; do
for p in 200 80 22 53 3; do nc -w 2 -z 192.168.55.180 $p; done
echo "whoami" | nc -n 192.168.55.180 5002;
sleep $[($RANDOM % 60)+60]s ;
done) &
pkPID=$!

sleep 300s

kill $pkPID
kill $pPID
kill $wPID
kill $tPID

sleep 5
bro -r out.pcap

cat conn.log | gawk '{ if (NR < 9) next ; time=strftime("%Y%m%d%H%M", $1); tsip = time"
"$3 ; ipports[tsip] = ipports[tsip]" "$4; tdip = time" "$5 ; ipports[tdip] =
ipports[tdip]" "$6 } END { for(ip in ipports) { printf ("%s",ip); delete ports; delete
dedupports; split(ipports[ip], ports, " "); asort(ports) ; for (i in ports)
dedupports[ports[i]] ; out="" ; for (i in dedupports) out=out" "i ; print out } }' |
sort -V | cut -d" " -f3- > input.txt
EOF
./portknock_test_harness.sh

java -jar spmf.jar run AprioriInverse input.txt output.txt 10% 60% && tail -n1
output.txt

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Don't Knock Bro	 1
6

Brian Nafziger, brian@nafziger.net

80 #SUP: 26

java -jar spmf.jar run AprioriInverse input.txt output.txt 4% 20% && tail -n1
output.txt
137 #SUP: 6

java -jar spmf.jar run AprioriInverse input.txt output.txt 2% 20% && tail -n1
output.txt
3 22 53 200 5002 #SUP: 4

Figure 10: Generate, capture, select, format, transform, and mine CD00r port-knock data

As seen above in Figure 10, determining the port-knock needed several attempts

of running the algorithm and lowering the support values on each successive run. The

support values lowered from the prior run to decisively find 3 22 53 80 200 which were

ports in the port-knocking pattern. Once again, the run was successful.

Improving the results needs additional runs of the algorithm with other port-

knocking backdoors. To do so, revise the script at step (6) and port-knock against the

respective Knockd and Pyknock backdoors and respective Ubuntu and CentOS systems.

Outside of the script, redo step (11) and execute the data mining to confirm the prior

algorithm support values. See Figure 11, 12, and 13.

(while true; do
knock -d 1 192.168.55.181 2222:udp 3333:tcp 4444:udp
echo "whoami" | nc -n 192.168.55.181 5002;
sleep $[($RANDOM % 60)+60]s ;
done) &
pkPID=$!

./portknock_test_harness.sh

java -jar spmf.jar run AprioriInverse input.txt output.txt 2% 20% && tail -n1
output.txt
3 2222 3333 4444 5002 #SUP: 4

Figure 11: Generate, capture, select, format, transform, and mine Knockd port-knock data

(while true; do
knock -d 2 192.168.55.168 7000 8000 9000;
echo "whoami" | nc -n 192.168.55.168 5002;
sleep $[($RANDOM % 60)+60]s ;
done) &
pkPID=$!

$./portknock_test_harness.sh

$ java -jar spmf.jar run AprioriInverse input.txt output.txt 2% 20% && tail -n1
output.txt
5002 7000 8000 9000 #SUP: 4

Figure 12: Generate, capture, select, format, transform, and mine Knockd port-knock data

(while true; do
for x in 1337 1338 1339; do nc -w 1 -z 192.168.55.181 $x; done
sleep $[($RANDOM % 60)+60]s ;
done) &
pkPID=$!

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Don't Knock Bro	 1
7

Brian Nafziger, brian@nafziger.net

$./portknock_test_harness.sh

$ java -jar spmf.jar run AprioriInverse input.txt output.txt 2% 20% && tail -n1
output.txt
1337 1338 1339 #SUP: 3

Figure 13: Generate, capture, select, format, transform, and mine Pyknock port-knock data

As seen above in Figure 11, 12, and 13, the prior algorithm and prior support

settings find the ports in the port-knocking patterns. Once again, the runs are successful,

and the tuning of the algorithm is complete. However, further improvement of the data

mining process should be achievable using Zeek (Bro) within Security Onion.

3.5. Improve the Process
As seen in the earlier building block, Section 2.2, Zeek (Bro) scripting offers the

ability to respond to network-based events, time-based events, and with the system which

includes files and executables. These features supply enough functionality to enable real-

time data mining.

Using the Zeek (Bro) script requires (1) installing Java and (2) downloading the

data mining toolkit. The script functions as follows. (3) Upon detection of a new

connection, store the ports. (4) Upon detection of a select time interval, sort, deduplicate,

and write ports to file. (5) Upon detection of a select time interval, data mine the ports

and notify on the results. (6) Schedule the time-based functions. Finally, (7) run the script

using Zeek (Bro) with pseudo-realtime enabled and (8) display the results in the

notice.log. See Figure 14.

apt-get install default-jre

wget http://www.philippe-fournier-viger.com/spmf/spmf.jar -O /tmp/spmf.jar

cat << "EOF" > datamine-ports.bro

module datamine;

@load base/utils/exec

global ports = "";
global port_s: set[port] = {};
global port_v: vector of count = {};

global data: bool = F;
global ipport: table[addr] of set[port] = {};

event new_connection(c: connection) {
 if (cidresp_h !in ipport) ipport[cidresp_h]=set();
 if (cidresp_p !in ipport[cidresp_h]) add ipport[cidresp_h][cidresp_p];
}

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Don't Knock Bro	 1
8

Brian Nafziger, brian@nafziger.net

event prep () {
 for (i in ipport) {
 for (ps in ipport[i]) port_v[|port_v|]= port_to_count(ps);
 sort(port_v);
 for (pv in port_v) ports += cat(port_v[pv])+" ";

 local c = open_for_append("/tmp/input.txt");
 print c, ports;
 close(c);

 ports = "";
 port_s = set();
 port_v = vector();
 data=T;
 }

 clear_table (ipport);
 schedule 60sec { prep () };
}

event mine () {
 if (data) {
 local jcmd="java -jar /tmp/spmf.jar run AprioriInverse /tmp/input.txt /tmp/output.txt
2% 20% >/dev/null ; tail -n1 /tmp/output.txt";
 local cmd=Exec::Command($cmd=jcmd);
 when (local result = Exec::run(cmd)) {
 if (result?$stdout)
 if (strstr(result$stdout[0], "SUP: 1") == 0)
 NOTICE([$note=Weird::Activity,$msg=" AprioriInverse Port Knock Detection
"+result$stdout[0]]);
 }
 }

 schedule 240sec { mine () };
}

event bro_init() {
 local c = unlink("/tmp/input.txt");
 local o = unlink("/tmp/output.txt");

 schedule 60sec { prep () };
 schedule 240sec { mine () };
}
EOF

bro --pseudo-realtime=10 -r out.pcap datamine-ports.bro

cat notice.log | bro-cut -d ts msg
2018-10-24T00:22:11-0400 AprioriInverse Port Knock Detection 3 22 53 200 5002 #SUP: 3

Figure 14: Zeek (Bro) script to generate, capture, select, format, transform, and mine data

As seen above in Figure 14, the script captures the ports, writes the ports, data

mines the ports, and finds 3 22 53 80 200 which were ports in the port-knocking pattern.

The Zeek (Bro) script offers more than manual manipulation of Zeek (Bro) logs. Zeek

(Bro) scripting offers successful data mining.

Security Onion requires a series of steps to install and configure (Burks, 2012).

To operationalize the prior Zeek (Bro) script, (1) create a data mining directory, (2) copy

the script into the directory, (3) create a load script, and (4) append the load script

reference to the local load script. Finally, (5) enable pseudo-realtime within the Security

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Don't Knock Bro	 1
9

Brian Nafziger, brian@nafziger.net

Onion import feature and (6) import the PCAP. To check if the Zeek (Bro) data mining

script has fired, (7) examine the entries in the notice log. Alternatively, (8) go to Kibana,

Dashboard, Zeek (Bro) Notices, and then scroll down to "Notices - Logs." See Figure 15.

mkdir /opt/bro/share/bro/policy/datamining

mv datamine-ports.bro /opt/bro/share/bro/policy/datamining

cat << "EOF" > /opt/bro/share/bro/policy/datamining/__load__.bro
@load ./datamine-ports.bro
EOF

cat << "EOF" >> /opt/bro/share/bro/site/local.bro
experimental data mining scripts
@load datamining
EOF

sed -i.bak 's/bro -r $PCAP/bro --pseudo-realtime -r $PCAP/g' /usr/sbin/so-import-pcap

so-import-pcap out.pcap

cat /nsm/import/bro/notice.log
{"ts":"2018-10-25T01:44:23.357123Z","note":"Weird::Activity","msg":" AprioriInverse Port
Knock Detection 3 22 53 200 5002 #SUP: 3"

Figure 15: Bro script, install and run within Security Onion

As seen above in Figure 15, this script functions by using the Zeek (Bro) script

within Security Onion. Again, this test shows successful data mining using Zeek (Bro)

within Security Onion. With the algorithm tuned and running operationally, the

knowledge discovery process can now finally finish with the results: the input, the

problem, the solution, and the conclusion

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Don't Knock Bro	 2
0

Brian Nafziger, brian@nafziger.net

4. Conclusion
Port-knocking is a stealthy means of hiding access and controlling access to a

system. Finding backdoors, used by malware and attackers, is important for today's

defenders to detect and respond to intrusions. The problem is finding the port-knocking

within network traffic. The research shows that Zeek (Bro) offers the ability to examine

network traffic and data mining offers the ability to find port patterns within the network

traffic. In particular, the defender can use Zeek (Bro) data mining for processing network

data, selecting an algorithm, and tuning the algorithm. Precisely, the apriori inverse

algorithm shows success at finding port-knocking within random network traffic using

multiple test runs against multiple port-knocking applications on multiple operating

systems. In total, the cooperation of Zeek (Bro) and data mining conclusively offers the

ability to find port-knocking within network traffic.

The research process of data preparation was time-consuming but selecting well-

supported tools offers specific documentation and knowledge online. The research

process of data mining, on the other hand, needs a diverse set of knowledge to determine

the best algorithm. The preponderance of time was spent researching algorithms before

having a broad knowledge of the topic, and before having SPMF. SPMF and associated

documentation made the process easier to understand and informally attempt algorithms.

These processes took a considerable amount of time, but in the end, the data preparation

and data mining process achieved the desired result.

This research also has limitations that future research could resolve. Newer port-

knocking techniques can use single packet port-knocking with patterns in the packet. In

theory, if a pattern exists, data mining can find it, but this would require data mining

using other packet features. Additionally, tracing the patterns to the original packets is a

limitation. The data preparation process obscures the exact origination (though limited

time-based origination does exist). With added scripting, it appears achievable to store

and select the proper ports from the prior timeframe.

In conclusion, intruders may hide, but the defenders use of network-level data

mining will find evidence of the patterns they leave behind. The synergistic combination

of Zeek (Bro) and data mining unquestionably offers a working solution to finding port-

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Don't Knock Bro	 2
1

Brian Nafziger, brian@nafziger.net

knocking patterns. For the defender, this research documents the process of creating and

confirming a Zeek (Bro) network-level port-knocking detection using data mining.

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Don't Knock Bro	 2
2

Brian Nafziger, brian@nafziger.net

References

Bro IDS Jobs. (2018). Indeed.com. Retrieved from

https://www.indeed.com/jobs?q=%22bro+ids%22

Baumgartner, K. (2014). The ‘Penquin’ Turla (2014). Retrieved from

https://securelist.com/the-penquin-turla-2/67962/

Burks, D. (2012). Security Onion. Retrieved from

https://resources.sei.cmu.edu/asset_files/Presentation/2014_017_001_90218.pdf

Brownlee, J. (2013). A tour of machine learning algorithms. Retrieved from

https://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/

Brownlee, J. (2014) How to research a machine learning algorithm. Retrieved from

https://machinelearningmastery.com/how-to-research-a-machine-learning-

algorithm/

Brownlee, J. (2016). Applied Machine Learning Process. Retrieved from

https://machinelearningmastery.com/process-for-working-through-machine-

learning-problems/

Cowsay. (2017). Raspberry Pi – Portknocking with knockd. Retrieved from

https://cowsayroot.com/raspberry-pi-portknocking-with-knockd/

Data Science Jobs. (2018). Indeed.com. Retrieved from

https://www.indeed.com/jobs?q=%22data+science%22

Donoso, F. (2017, September). The Equation Group's post-exploitation tools

(DanderSpritz and more) Part 1. Retrieved from

https://medium.com/francisck/the-equation-groups-post-exploitation-tools-

danderspritz-and-more-part-1-a1a6372435cd

EGI CSIRT. (2017, January). Analysis of the VENOM Linux rootkit. EGI Computer

Security Incident Response Team (CSIRT). Retrieved from

http://csirt.egi.eu/files/2017/05/Report-venom.pdf

Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge

discovery in databases. AI magazine, 17(3), 37. Retreived from

https://www.kdnuggets.com/gpspubs/aimag-kdd-overview-1996-Fayyad.pdf

Fournier-Viger, P., Lin, C.W., Gomariz, A., Gueniche, T., Soltani, A., Deng, Z., Lam, H.

T. (2016). The SPMF Open-Source Data Mining Library Version 2. Proc. 19th

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Don't Knock Bro	 2
3

Brian Nafziger, brian@nafziger.net

European Conference on Principles of Data Mining and Knowledge Discovery

(PKDD 2016) Part III, Springer LNCS 9853, pp. 36-40. Retrieved from

http://www.philippe-fournier-viger.com/2016_PKDD_SPMF_VERSION2.pdf

FunOverIP. (2011). CD00r Knocking Backdoor, improved. Retrieved from

http://funoverip.net/2011/03/cd00r-knocking-backdoor-improved/

Guerrero-Saade, J. A., Raiu, C., Moore, D., & Rid, T. (2017). PENQUIN’S MOONLIT

MAZE. Retrieved from https://ridt.co/d/jags-moore-raiu-rid.pdf

Hartrell, G. (2002). Get a Handle on CD00r. The Invisible Backdoor. Retrieved from

https://www.giac.org/paper/gcih/342/handle-cD00r-invisible-backdoor/103631

Hommes, S., & Engel, T. (2012, May). Detecting stealthy backdoors with association

rule mining. In International Conference on Research in Networking (pp. 161-

171). Springer, Berlin, Heidelberg. Retrieved from

https://link.springer.com/content/pdf/10.1007/978-3-642-30054-7_13.pdf

Kaytoue, M., Marcuola, F., Napoli, A., Szathmary, L., & Villerd, J. (2011). The coron

system. arXiv preprint arXiv:1111.5690. Retrieved from

https://arxiv.org/pdf/1111.5690.pdf

Krzywinski, M. (2003). Port Knocking: Network Authentication Across Closed Ports.

SysAdmin Magazine. Retrieved from http://www.portknocking.org/view/about

Krzywinski, M. (2017). Port Knocking Implementations. Retrieved from

http://www.portknocking.org/view/implementations

Hutchins, E. M., Cloppert, M. J., & Amin, R. M. (2011). Intelligence-driven computer

network defense informed by analysis of adversary campaigns and intrusion kill

chains. Leading Issues in Information Warfare & Security Research, 1(1), 80.

Retrieved from

https://pdfs.semanticscholar.org/ca18/aa98d4d1d434802eec54c2ba6ea8cf493b88.

pdf#page=123

MITRE Corporation. (2018a). ATT&CK Matrix for Enterprise. Retrieved from

https://attack.mitre.org/

MITRE Corporation. (2018b). ATT&CK, Techniques, Port Knocking. Retrieved from

https://attack.mitre.org/wiki/Technique/T1205

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Don't Knock Bro	 2
4

Brian Nafziger, brian@nafziger.net

Mladenov, K., & Zismer, A. (2017). Repurposing defensive technologies for offensive

Red Team operations. Retrieved from http://www.delaat.net/rp/2016-

2017/p33/report.pdf

Netlovers. (2018). Port Knocking Server and Securing SSH connection for CentOS 7.

Retrieved from https://netslovers.com/2018/02/28/port-knocking-server-securing-

ssh-connection-centos-7/

Paxson, V. (1999). Bro: a system for detecting network intruders in real-time. Computer

networks, 31(23-24), 2435-2463. Retrieved from

http://static.usenix.org/publications/library/proceedings/sec98/full_papers/paxson/

paxson.pdf

Paxson, V. (2018). Zeek (Bro) Blog: Renaming the Bro Project. Retrieved from

https://blog.zeek.org/2018/10/renaming-bro-project_11.html

Phenoelit. (2000). cD00r.c - packet coded backdoor. Retrieved from

http://www.phenoelit-us.org/stuff/cD00r.c

Rapid7. (2017). How to Secure SSH Server using Port Knocking on Ubuntu Linux.

Retrieved from https://blog.rapid7.com/2017/10/04/how-to-secure-ssh-server-

using-port-knocking-on-ubuntu-linux/

Sengar, S. S. (2018, March 12). How To Hide Your Ports With Port Knocking –

secjuice™ – Medium. Retrieved from https://medium.com/secjuice/how-to-hide-

your-ports-with-port-knocking-cb7f244849e7

Sommer, R. (2011). The Open Source Bro IDS Overview. At the 2011 CACR Higher

Education Cybersecurity Summit Indiana University. Retrieved from

http://www.icir.org/robin/slides/Bro-CACR-Indianapolis.pdf

Stahn, M. (2017, November). Pyknock: Ultra flexible port knocking daemon. Retrieved

from https://github.com/mike01/pyknock

Vinet, J. (2014). Knockd: A Simple Port-Knocking Daemon. Retrieved from

http://www.zeroflux.org/knock/

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Don't Knock Bro	 2
5

Brian Nafziger, brian@nafziger.net

Appendix

See https://github.com/bnafziger/BroMine

module datamine;

@load base/utils/exec

global ports = "";
global port_s: set[port] = {};
global port_v: vector of count = {};

global data: bool = F;
global ipport: table[addr] of set[port] = {};

event new_connection(c: connection) {
 if (cidresp_h !in ipport) ipport[cidresp_h]=set();
 if (cidresp_p !in ipport[cidresp_h]) add ipport[cidresp_h][cidresp_p];
}

event prep () {
 for (i in ipport) {
 for (ps in ipport[i]) port_v[|port_v|]= port_to_count(ps);
 sort(port_v);
 for (pv in port_v) ports += cat(port_v[pv])+" ";

 local c = open_for_append("/tmp/input.txt");
 print c, ports;
 close(c);

 ports = "";
 port_s = set();
 port_v = vector();
 data=T;
 }

 clear_table (ipport);
 schedule 60sec { prep () };
}

event mine () {
 if (data) {
 local jcmd="java -jar /tmp/spmf.jar run AprioriInverse /tmp/input.txt /tmp/output.txt
2% 20% >/dev/null ; tail -n1 /tmp/output.txt";
 local cmd=Exec::Command($cmd=jcmd);
 when (local result = Exec::run(cmd)) {
 if (result?$stdout)
 if (strstr(result$stdout[0], "SUP: 1") == 0)
 NOTICE([$note=Weird::Activity,$msg=" AprioriInverse Port Knock Detection
"+result$stdout[0]]);
 }
 }

 schedule 240sec { mine () };
}

event bro_init() {
 local c = unlink("/tmp/input.txt");
 local o = unlink("/tmp/output.txt");

 schedule 60sec { prep () };
 schedule 240sec { mine () };
}

