
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC

Incident Handling and Hacker Exploits

 Certification Practical

Version 1.5c

Tamara Bowman

April 2001

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Exploit Details
Name: UDP Flood Denial of Service
Variants : fraggle, pepsi , UDP charge (spj), Rhythem (spelling not mine) Collision UDP flooder,
arnUDP
Operating System: Windows and Unix
Protocols/services: chargen(19) and echo(7)
Description: The UDP flood consists of crafting a packet with a source port of echo for target
host A and a destination port of chargen or echo for target host B. This creates an endless loop
where host A will echo a packet to host B. Host B then responds to host A’s echo port. This
continues until system or network resources are exhausted.

Protocol Description
The chargen protocol is described in RFC 864. The chargen protocol listens on port 19. The
protocol responds to connections by sending a packet containing a random number of characters
between 0 and 512. Any data in the received packet is discarded. Chargen will continue
responding as long as packets are received on port 19.

The echo protocol is described in RFC 862. The echo protocol listens on port 7. The protocol
echoes back whatever characters are sent to it. It will continue to echo responses as long as
packets are received on port 7.

These protocols were all submitted in May 1983. Both of the protocols were described in their
respective RFCs as “A useful debugging and measurement tool”. Unfortunately both protocols
share the same weakness that also make them useful in a DoS attack. They respond to received
packets regardless of the data in the packet. Two other protocols daytime and qotd share this
characteristic and could also be abused in this fashion. These protocols are among the “small
services”. Services with low port numbers that are rarely used.

The TCP versions of these protocols will not work in these attacks. The forged packets would
not negotiate a three-way handshake properly so the connection would ultimately be reset.
Since, TCP only responds to directed queries it also could not be used to amplify attacks.

Description of Variants
The original UDP flood DoS as reported in the CERT advisory
http://www.cert.org/advisories/CA-1996-01.html involved chargen and echo. There is also a
CVE entry CVE-1999-0103 - Echo and chargen, or other combinations of UDP services, can be
used in tandem to flood the server, a.k.a.UDP bomb or UDP packet storm.

There aren’t significant variants to the original flood. The attack can be distributed, using
networks that allow broadcasts as amplifiers. The attack can use different UDP ports to initiate
the attack. The fraggle attack is a variation on this theme. Fraggle is a smurf variant that relies
on the echo port rather than ICMP.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

How the Exploit works
The UDP flood exploit depends on a number of vulnerabilities in the network, the UDP transport
and the implementation of chargen and echo. We will first examine the simplest attack, a non-
distributed flood.

In this attack the NPC (networked problem child) uses one of the available tools to craft a packet
with a forged source and destination address. For this scenario the source and destination are on
two networks so there are two victims. The forged packet has a source of echo and a destination
of chargen. This packet is now released on the network. The packet must now make its way
through the following hurdles.

The router and firewall of the destination victim must permit packets to chargen. The packet has
found its first vulnerability, inadequate filtering at the border. While echo and chargen were
used in the past for debugging and primitive performance monitoring, they are rarely used for
that now. There are many more robust tools to handle performance monitoring that won’t open
your network to this type of DoS attack.

The packet continues on to the host. For the attack to continue the destination victim must have
chargen available as a service, and it does. The packet gets to exercise the second vulnerability,
failure to disable unused services. It is common for default installations to have all services in
inetd.conf enabled. Many of the services supported by inetd are not used. All of the unused
services should be disabled.

The packet now goes on to exercise vulnerabilities in the UDP transport and the chargen
implementation. UDP is a connectionless transport mechanism. It has considerably less
overhead than TCP. UDP depends on the protocols or applications using it to supply
authentication and verify communication integrity. The only verification UDP offers is a header
checksum. TCP handles the communication integrity in part with the three-way handshake. If
this were a TCP based communication the packet would be dropped because no channel had
been established between the source and destination. But this is a UDP packet so no connection
verification is required.

The forged packet is passed by UDP to chargen. Chargen does not verify the data being
received. In fact it discards whatever data is received. It does not authenticate the
communication. There is nothing within the protocol that requires a login or authentication of
the requesting host. The only thing required of chargen is to generate some random characters
and send them back to the apparent source.

The reply to the forged packet is now on its way to the unsuspecting source. The forged source
also has failed to secure their border and shut down unused services. The packet arrives at the
echo port with its payload of random characters. Echo operates in much the same fashion as
chargen. The data isn’t checked and there is no attempt to authenticate the communication with
the other host. Echo responds to the packet by echoing the random characters back to chargen.

The NPC has now made a successful attack. The two hosts will continue responding to each
other as fast as their CPUs and the network will allow until they impact system resources and

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

someone attempts to figure out why the network or host is slow. The attacker can accelerate the
DoS by releasing multiple forged packets on the network.

A variation on this attack would be to have the source and destination address be on the same
network. This would allow the NPC to target a single victim with the same attack. In order for
this attack to work the intended victim must permit packets with a source of their own network to
pass through the border router. If the intended victim had taken measures against IP spoofing the
attack would not work.

The distributed attack takes advantage of weaknesses in the victims network as well as in
numerous networks used as amplifiers. In this attack our NPC crafts a packet with a source of
the victim’s host and a destination of a broadcast address to use as an amplifier. The source
victim port is echo. There are databases of potential amplifiers or the NPC can discover
amplifiers by using a port scanning tool. The site being used as an amplifier must allow UDP
broadcast traffic through their border router. They don’t necessarily need to have echo or
chargen available. The ICMP unreachable responses flooding back to the victim source will
have the same impact as getting a response from chargen or echo. This takes advantage of a
second vulnerability in the UDP transport, broadcasts. Since UDP is connectionless it responds
to undirected broadcasts. This allows for amplification of the UDP flood attacks. Allowing an
attacker to more efficiently take advantage of the underlying weaknesses in UDP and the chargen
and echo protocols.

An example of what a Fraggle attack looks like when your site is being used as the amplifier is
available at http://www.robertgraham.com/pubs/firewall-seen.html#5.4.1. The identifying
features are packets received at network broadcast addresses with a destination port of echo.

The vulnerabilities exercised in this attack fall into two categories, configuration weaknesses and
protocol weaknesses. Configuration weaknesses are vulnerabilities that can be fixed or mitigated
by making configuration changes. Vulnerabilities in this category are generally easily rectified.
To protect against spoofed packets apply filters to the border router following best practices.
Implement the appropriate deny rules in the firewall to drop connections to chargen and echo. If
you don’t have a firewall these protocols can be denied at the border router. When applying
filters to the router be sure and apply egress filters as well to avoid having spoofed packets
generated from your site. To avoid being used as an amplifier, turn off broadcasts at the border
router. On servers eliminate services that aren’t being used.

Protocol weaknesses are not as easily rectified. They generally require significant effort to
rework the protocol. The effort to fix the security weaknesses in IPv4 has been ongoing for
several years and IPv6 is still in the development phase. With this category your options are
more limited. Use an application with features that counter the weaknesses in the protocol or use
an application based on a stronger protocol. If you must use the existing application, control
access by adding a layer of authentication using something like tcpwrappers or securelib or if the
service needs to be accessible via the Internet use a proxy..

Vendors cannot fix the problems with chargen and echo but they could change their default
install values to have those features disabled rather than activated by default.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Diagram of a UDP Flood

Snidely

Internet

Bullwinkle
205.xxx.3.2

DudleyD
205.xxx.3.4

The NPC snidely creates a packet with
dudleyd's source IP and a source port
of 7 (echo). The packets destination
IP is bullwinkle's with a destination
port of 19 (chargen).
The packets path is shown in red.

Packet
Source 205.xxx.3.4:7
Dest 205.xxx.3.2:19

The forged packet is sent, snidely
now appears to be an innocent
bystander.

Echo "response" to
bullwinkle

Chargen "response" to
dudleyd

dudleyd and bullwinkle ping pong echo
and chargen responses until the
network is unusable, a server crashes
or someone intervenes

The diagram above shows the original UDP flood vulnerability. The NPC snidely crafts a packet
and releases it on the Internet. The unsuspecting victims respond to the packet and ping-pong
responses until something breaks or the problem is noticed.

While you might notice your host was sluggish there wouldn’t be any error messages to indicate
a problem. Executing netstat on one of the hosts involved might show you the chargen or echo
port was active rather than idle. But the command would need to be executed right at the time a
packet was being processed by echo or chargen. In the absence of an IDS the only clues would
be on the network. A tcpdump of this attack, limiting the output to these two hosts, shows:

11:36:14.235711 192.168.4.96.7 > 192.168.4.67.19: UDP 10 (DF)
11:36:14.236294 192.168.4.67.19 > 192.168.4.96.7: UDP 74
11:36:14.236321 192.168.4.96.7 > 192.168.4.67.19: UDP 74
11:36:14.236344 192.168.4.67.19 > 192.168.4.96.7: UDP 74
11:36:14.236368 192.168.4.96.7 > 192.168.4.67.19: UDP 74

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

11:36:14.236391 192.168.4.67.19 > 192.168.4.96.7: UDP 74
11:36:14.236469 192.168.4.96.7 > 192.168.4.67.19: UDP 74
11:36:14.236496 192.168.4.67.19 > 192.168.4.96.7: UDP 74
11:36:14.236519 192.168.4.96.7 > 192.168.4.67.19: UDP 74

The tcpdump output shows that in the space of a few seconds 9 packets are ping ponged between
the target hosts. The tcpdump output has the following fields timestamp, source host and port,
destination host and port, identifier that the communication is UDP and the number of bytes of
user data. The very first packet also as the do not fragment flag set.

The following output is from tcpdump with hex and ascii of the packet. This is one of the
responses from chargen. The ascii output shows the characters being sent back.

08:13:59.735363 192.168.4.58.19 > 192.168.4.174.7: udp 74
0x0000 4500 0066 f25a 0000 1e11 1ff4 c0a8 043a E..f.Z.........:
0x0010 c0a8 04ae 0013 0007 0052 61c3 2425 2627 Ra.$%&'
0x0020 2829 2a2b 2c2d 2e2f 3031 3233 3435 3637 ()*+,-./01234567
0x0030 3839 3a3b 3c3d 89:;<=

Without an IDS to alert on packets destined to port 7 or port 19 this traffic wouldn’t be noticed
until it impacted network or server performance.

The same attack can be made using the broadcast address. This would amplify the impact on the
network but still wouldn’t be apparent early in the attack without an IDS. The tcpdump of the
broadcast attack on a small network shows:

11:33:07.013217 192.168.4.96.7 > 192.168.4.255.19: UDP 10 (DF) [ttl 1]
11:33:07.014305 192.168.4.108.19 > 192.168.4.96.7: UDP 74
11:33:07.014543 192.168.4.67.19 > 192.168.4.96.7: UDP 74
11:33:07.014651 192.168.4.122.19 > 192.168.4.96.7: UDP 74
11:33:07.015573 192.168.4.90.19 > 192.168.4.96.7: UDP 74
11:33:07.021666 192.168.4.63.19 > 192.168.4.96.7: UDP 74
11:33:07.022595 192.168.4.52.19 > 192.168.4.96.7: UDP 74
11:33:07.024449 192.168.4.58.19 > 192.168.4.96.7: UDP 74
11:33:07.026729 192.168.4.77.19 > 192.168.4.96.7: UDP 74
11:33:07.029037 192.168.4.59.19 > 192.168.4.96.7: UDP 74
11:33:07.030734 192.168.4.45.19 > 192.168.4.96.7: UDP 74
11:33:07.038487 192.168.4.193.19 > 192.168.4.96.7: UDP 74

This tcpdump output shows the initial packet sent with a source address of 192.168.4.96 and
source port of 7 to the broadcast address 192.168.4.255 and destination port of 19. Eleven hosts
on the network respond back to port 7 on host 192.168.4.96.

This illustrates how easily the attack can be amplified using the broadcast address. Using this
same method with the spoofed broadcast address of an Internet network that responds to directed
broadcasts could result in hundreds of responses to a single forged packet. Sending multiple
forged packets would just accelerate the impact.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

How to use the exploit
There are numerous tools available to exploit this vulnerability. Since the vulnerability requires
forging an ip packet header there isn’t a manual exploit. In the absence of available code you
would need to write your own code to create the forged packet.

In order for any of these tools to work the attacker must have root (or administrator if using
Windows) access. A standard user cannot forge ip headers. A Windows user would also need
additional network libraries to support creating IP headers.

The tools that are available for UDP flood attacks share one common characteristic. They are
very user friendly. At least if you don’t take some of the error messages personally. All of the
tools give usage syntax if they are issued with no arguments or with incorrect arguments. Most
have rudimentary checking to make sure the command line arguments given are valid. I am not
a C programmer so my debugging skills with C programs are limited, however, I was able to
compile two of these programs with minimal effort. Generally, I was not able to resolve library
issues on the programs I was unable to compile. Overall, the lack of expertise required to build
and the ease of use with these tools was frightening.

The pepsi tool crafts a packet with a source of echo for the first target host and a destination of
chargen on the second host. They continue to ping-pong data until resources are exhausted. The
source and destination ports can be overridden on the command line. The pepsi tool quite
possible offers the greatest flexibility for crafting udp packets. In addition to specifying source
and destination hosts and ports it also takes several other command line arguments. Flags are
available to override defaults for packet size, time between packets and number of packets
generated.

Pepsi was included in Trin00 as part of the rape utility. There is also a DOS and Windows
variant. I was not able to compile this code in my environment. The program takes a minimum
of destination IP address as input. It appears that if no source host is given one is chosen at
random.

The Rhythem (sp?) Collision code is a variation on pepsi without the flexibility. It also uses the
echo and chargen ports but only allows the user to specify source and destination host and the
number of forged packets to send. I was able to compile Rhythem (sp?) Collision. The
executable was compiled as rc8. Executed without arguments the command will output the
syntax.

./rc8
Rythem Collision [v0.8] -- Coded, Nso
usage: rc <from host> <to host> <how many>

Once you have chosen your victim(s) execute the command with the source and destination host
and the number of packets you wish to send. The command gives positive feedback that the
packets are on their way.

#./rc8 192.168.4.174 192.168.4.96 10
Rythem Collision [v0.8] -- Coded, Nso

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

IP_HDRINCL: found!
..........
number of packets sent: 10

Fraggle is a rewrite of smurf. Smurf used the ICMP echo/echo-reply instead of the UDP echo.
The fraggle variant crafts a packet with a source and destination port of echo. Like smurf the
fraggle attack uses broadcast destination addresses to amplify the attack. There is a fraggle
fragment available from http://www.attrition.org/security/denial/w/fraggle.dos.html. From the
comments it would take a target and broadcast amplifier as input.

UDP charge (spj) has comments in the code that it is a variant of fraggle but it seems to be
mutation of fraggle and pepsi. UDP charge uses the echo and chargen ports, like pepsi but uses
broadcast addresses to distribute the attack like fraggle. Thus, depending on your outlook,
getting the best or worst of both worlds. I could not compile this program in my environment.
The program does take a target and broadcast amplifier as arguments.

The arnupd code allows the user to set a source and destination port as well as the IP address.
The ports are set as UDP. It can effectively be used as a tool for any of the UDP floods already
mentioned. This tool was also included in Trin00 as part of the rape utility. This program did
compile in my environment. When executed without arguments arnupd gives the appropriate
syntax.

./arnupd
usage: ./arnupd sourcename sourceport destinationname destinationport

After executing arnupd with source IP and port and destination IP and port the program creates
the packet, sends it on and lets you know its on its way.

./arnupd 192.168.4.96 7 192.168.4.67 19
we have IP_HDRINCL :-)

datagram sent without error:

The arnupd program offers more flexibility than most of the other programs. Without modifying
the source code arnupd can be used to launch attacks using echo, chargen or any other
combination of UDP ports.

Why are these programs checking for IP_HDRINCL? IP_HDRINCL is the socket interface to
the raw IP layer. This allows the program to create and prepend IP headers without the
intervening transport layer. IP_HDRINCL allows the programs to create their own IP header.

This socket does have legitimate uses. The traceroute program uses the same feature to build its
datagrams. The arnupd code contains comments that it was modeled on the code for traceroute.
IP_HDRINCL also supplies a method for an application to create IP headers when a protocol is
not yet supported in the kernel. Once the protocol matures and stabilizes it should be integrated
with the kernel. In the Solaris implementation of IPv6 there is not an analog to IP_HDRINCL.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Signature of the Attack
The UDP flood attack is virtually invisible if you aren’t running an intrusion detection system or
sniffing the target network at the time of the attack.

The attacks generated no log messages on the Solaris hosts in my test group. The syslog
configuration on the test hosts logged all kern facility messages at debug and above, all daemon
facility messages at notice and above and all other facilities at err and above. No error messages
were generated at the hosts. The only visible negative impact on the host being attacked was the
load tripled from 1 to 3.2. This isn’t useful for determining that the host is a victim of UDP
flood since a higher than average load on a host can point to any number of potential problems.
The output from netstat could not be relied on to give any information about the attack. Netstat
would only show the echo or chargen port in use if you happened to enter the command at just
the right time. It could be possible to see sustained activity if the attack continued, but at that
point the response from the host would likely be hampered.

On the network the attack was more visible. Snort was used for intrusion detection. Two snort
rules were created to log potential fraggle or UDP flood attempts. In the first rule all UDP
packets from any source with a source port of 7 and a destination within our network of port 7
are logged with the message Possible Fraggle.

In the second rule all UDP packets from any source with a source of 7 and a destination within
our network of port 19 are logged with the message Possible UDP Flood. These can also be
alerts, just change the log keyword to alert.

log UDP any 7 -> $HOME_NET 7 (msg: "Possible Fraggle";)
log UDP any 7 -> $HOME_NET 19 (msg: "Possible UDP Flood";)

Snort log output
[**] Possible Fraggle [**]
05/01-13:16:14.956240 192.168.4.67:7 -> 192.168.4.96:7
UDP TTL:255 TOS:0x0 ID:23015 DF
Len: 18

Snort logged several hundred of these errors, one is sufficient for an example. In the log
message snort provides the message text provided. The message text is optional but if you have
a monitoring system that can be configured to act upon keywords the message is very useful.
Snort gives the date and time the packet was received, source and destination address, protocol
type, ttl, packet ID, fragment info and length. Ordinarily, this information would be very useful
in determining where the packet originated. If this were a real fraggle attack the source would be
a legitimate address being used as an amplifier.

How to Protect Against it
For this attack you need to protect against becoming a victim or a potential amplifier. To avoid
becoming a victim, first control your borders. Create incoming (ingress) filters for your router.
Certain networks should never appear as the source IP in packets coming into your border router.
Networks to filter would include your own network, any of the private networks defined in RFC
1918 and any other networks reserved by IANA.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Before applying the filter to your router be sure you understand the full impact on your network.
On a Cisco router filters are evaluated in the order written, first match wins. All filters also have
an implicit deny at the end of the filter. So if you apply a filter denying access from packets with
a source of your network or the private networks the filter must contain an explicit allow
statement at the end. This will allow all the denied networks to be dropped while still permitting
legitimate traffic. Without the explicit allow you’ll cut off all communication to the net. An
example standard ingress access list:

access-list 99 deny ip 127.0.0.0 0.255.255.255 log
access-list 99 deny ip 224.0.0.0 31.255.255.255 log
access-list 99 deny ip MY.NET.58.0 0.0.0.255 log
access-list 99 deny ip MY.NET.149.0 0.0.0.255 log
access-list 99 deny ip 169.254.0.0 0.0.255.255 log
access-list 99 deny ip 192.168.0.0 0.0.255.255 log
access-list 99 deny ip 172.16.0.0 0.15.255.255 log
access-list 99 deny ip 10.0.0.0 0.255.255.255 log
access-list 99 permit ip any

The above access-list is a standard access list for a Cisco router. The fields in a standard access
list are the command access-list, a number between 1 – 99 identifying access-list number, action
to take (deny or permit), protocol impacted (ip, tcp , udp, icmp), network, wildcard mask and log
keyword. The Cisco wildcard mask is not equivalent to a netmask. It is essentially a mirror
image of the netmask that identifies the significant bits in an address. The log keyword in the
access list statement is optional. In this example all denied traffic is logged. The explicit deny
statement is added to capture log data. If the statement is omitted the traffic will still be denied
but there will be no log record. This list could be improved by using an extended access list. The
extended access list would allow a more precise permit statement that would only allow packets
with a destination of MY.net.

If you do not have a firewall consider filtering out UDP services between 1 – 19. Be aware of
the current load on your router when considering adding this filter. The ingress filter for
networks can be handled with a standard filter. All the filter examines is the source IP address.
To implement a filter to drop UDP traffic with destination ports between 1 – 19 requires an
extended access list. An extended access list requires the router to look deeper into the header at
destination IP and port. This increases the load on the router and depending on the current load
may negatively impact network performance. The following is an example of an extended
access list.

access-list 101 deny ip 127.0.0.0 0.255.255.255 any log
access-list 101 deny ip 224.0.0.0 31.255.255.255 any log
access-list 101 deny ip MY.NET.58.0 0.0.0.255 any log
access-list 101 deny ip MY.NET.149.0 0.0.0.255 any log
access-list 101 deny ip 169.254.0.0 0.0.255.255 any log
access-list 101 deny ip 192.168.0.0 0.0.255.255 any log
access-list 101 deny ip 172.16.0.0 0.15.255.255 any log
access-list 10 deny ip 10.0.0.0 0.255.255.255 any log
access-list 101 deny udp any any lt 20 log
access-list 101 permit ip any MY.NET.58.0 0.0.0.255
access-list 101 deny ip any any log

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

These commands accomplish the same thing as the standard access list with some additional
benefits. The deny statement in bold denies any udp packets with a port number less than 20.
This encompasses ports 1 – 19. The lt is a keyword for less than. The permit statement following
this statement can be more specific and allow only traffic with a destination of our network. The
final deny statement logs packets that would fall through to the implicit deny statement.

To avoid being used as an amplifier, apply an outbound (egress) filter to prevent IP spoofing.
The egress filter should specifically permit packets with a source address of your network. You
have the option of leaving the implicit deny or adding an explicit deny with logging. In this case,
its recommended to include the explicit deny statement.

Packets with a different source address than your network are a sign of a problem. Either you’ve
been cracked or NATed addresses are leaking. The implicit deny does not log matches. With an
explicit deny statement there’s at least a trail to investigate. To get meaningful log information
for these packets you need to use an extended access list. The extended access list allows the use
of the keyword log-input. This logs not only the message but the MAC of the system generating
the message. The MAC address will be your only method of tracking down what host is
generating the bogus packets.

To stop broadcast traffic from propagating through your border router turn off ip directed
broadcast on each interface. On version 12 of Cisco IOS this is the default. Check your router to
confirm that broadcasts are disabled.

If you have a firewall, block inbound access to ports not being used. Also, as a second measure
to prevent being an amplifier, block outbound access to chargen, echo and the similar services
daytime and qotd. Blocking broadcasts at the router should take care of this, however, defense in
depth is about not relying on any one countermeasure. On a PIX firewall it is necessary to put an
explicit deny to block these services outbound. The PIXs default is to have all inbound
connections denied and all outbound connections permitted. Other firewalls (Raptor and
Checkpoint) default with all connections inbound or outbound denied. Use nmap or some other
port scanning utility to verify that you’re only allowing access to services you intend to allow
access to. Regularly schedule an nmap scan to audit how the access rules are changing and to
verify your access policy.

On the servers turn off services that aren’t being used. In Windows systems go to the Network
Control Panel and turn off “Simple TCP Services”. This will turn off echo and chargen as well
as other services like daytime, discard and qotd.

To disable the services on Unix systems edit the inetd.conf file. Comment out the echo and
chargen services and any other unused services such as daytime, discard and qotd. After
commenting out the services send a HUP to the inetd daemon so the inetd.conf file will be re-
read. Use netstat to check to make sure the changes are active. The services that were
commented out should not appear in the netstat output.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

On a Solaris server you can also disable forwarding of ip broadcast traffic using the ndd
command. On a Solaris system to make the changes survive a reboot edit the /etc/system file.
Other Unix versions should have similar configuration options.

If for some reason your site needs to use echo or chargen add some authentication by using
tcpwrappers to control access to the services. With tcpwrapper installed you can specify who is
permitted to access those services and deny anyone else. There are some limitations with using
tcpwrappers with UDP services. One of these limitations is that UDP services frequently wait
around to service another request after finishing with an initial request. The tcpwrapper will only
see the initial request.

Other options to control access would be securelib if you were running a Sun system. Securelib
is a drop in replacement library that replaces the system calls accept, recvfrom, and recvmsg.
These calls then reference a configuration file that determines if the source host is permitted to
access the services. Another option would be running xinetd in place of inetd. Xinetd is
essentially inetd implemented with logging and access control.

Source code/ Pseudo code:

The source code, for the exploits discussed, is available at www.technotronic.com. I was not
able to locate the complete source for fraggle. There is a fraggle fragment available at
http://www.attrition.org/security/denial/w/fraggle.dos.html

Arnupd source is available at ftp://ftp.technotronic.com/unix/UDP-exploits/UDPdata.c

Arnupd Pseudo code
1. Check for correct syntax, if not correct echo correct syntax
2. Collect command line arguments
3. Attempt to resolve hostnames, err if hostnames cannot be resolved
4. Check for IP_ HDRINCL so we can create the forged packet, err if not present
5. Create UDP IPv 4 packet with source and destination hosts and ports given at

command line
6. Echo datagram sent without error

Pepsi source is available at ftp://ftp.technotronic.com/unix/UDP-exploits/pepsi.c. There is also
an executable for Windows available as well in the same directory.

Pepsi Pseudo code
1. Check for correct syntax and print usage if not correct
2. Collect command line arguments
3. Options that can be set with this command are:

• -s <src> : source where packets are coming from
• -n <num> : number of UDP packets to send
• -p <size> : Packet Size [Default is 1024]
• -d <port> : Destination Port [Default is 7]
• -o <port> : Source Port [Default is 19]

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

• -w <time> : Wait time between packets [Default is 1]
• <dest> : destination

4. Attempt to resolve hostnames, err if hostnames cannot be resolved
5. Create UDP IPv4 packet using command line arguments or defaults
6. Send crafted packet out.

Rhythem Collision source code is available at ftp://ftp.technotronic.com/unix/UDP-
exploits/rc8.c.

Rhythem Collision pseudo code:
1. Check for correct syntax and print usage if not correct
2. Collect command line arguments (source IP and port, destination IP and port and

number of packets to generate) Rhythem Collision does not have defaults.
3. Attempt to resolve hostnames, err if hostnames cannot be resolved
4. Check for IP_ HDRINCL so we can create the forged packet, err if not present
5. Create UDP IPv4 packet using command line arguments
6. Echo number of packets sent

UDP Charge source code is available at ftp://ftp.technotronic.com/unix/chargen-exploits/spj-
003.c.

UDP Charge pseudo code:
1. Check for correct syntax and print usage if not correct
2. Collect command line arguments. Specify target, ports default to dest 19 and src 7
3. Check to make sure haven’t set my host as target, err if my host is target
4. Check for IP_ HDRINCL so we can create the forged packet, err if not present.
5. Create UDP IPv4 packet using command line arguments and defaults.

Additional Information
For information on how UDP works and all the basics
Stevens, W. Richard, 1995. “TCP/IP Illustrated, Volume 1 The Protocols” Addison-Wesley
Profession Computing Series

For information on programming with UDP
Stevens, W. Richard; Wright, Gary R., 1995. “TCP/IP Illustrated, Volume 2 The
Implementation” Addison-Wesley Profession Computing Series

Resource for exploit code, among other things. All code, with the exception of fraggle, was
retrieved from this site
http://www.technotronic.com

Port Knowledge Data Base
http://advice.networkice.com/advice/Exploits/Ports/

Site with information on various exploits and an example of a site being used as a Fraggle
amplifier

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

http://www.robertgraham.com/pubs/firewall-seen.html

Database of DoS contained fraggle code fragment
http://www.attrition.org/security/denial/

Whitepaper on Fraggle & Smurf
http://www.codetalker.com/whitepapers/dos-smurf.html

Analysis of trin00 DDoS tool by Dave Dittrich posted to Bugtraq
http://www.securityfocus.com/archive/1/37706

February 8, 1996 CERT Advisory UDP Denial of Service (chargen and echo)
http://www.cert.org/advisories/CA-1996-01.html

September 19, 1996 CERT Advisory TCP SYN Flooding and IP Spoofing Attacks
http://www.cert.org/advisories/CA-1996-21.html

