
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

RapidTriage: Automated System Intrusion
Discovery with Python

GIAC (GCIH) Gold Certification

Author: Trenton Bond, trent.bond@gmail.com

Advisor: Hamed Khiabani, Ph.D.

Abstract

Incident handlers may find themselves in situations where they need to validate a potential

compromise but do not have administrative access to the systems in question or in

situations where many systems need to be triaged quickly. This may leave the incident

handler trying to relay commands to a system administrator or taking valuable time to

triage each system individually. This communication and initial triage can be time sensitive

and may be inaccurate if the data collection commands are not run as directed. This paper

introduces the RapidTriage Python tool which can be used to automate intrusion discovery,

speeding up the initial triage and ensuring consistency in the collected results across

multiple systems and different platforms.

 RapidTriage: Automated System Intrusion Discovery with Python 2

Trenton Bond, trent.bond@gmail.com

1. Introduction
There are six major incident handling phases typically used to manage information

security incidents: preparation, identification, containment, eradication, recovery, and lessons

learned. The identification phase of the process is critical as this is where all available

information is collected and triaged. “The goal of the identification phase is to gather events,

analyze them, and determine whether we have an incident” (Skoudis, 2008). According to the

2013 Verizon Breach Report, some 70% of all breaches in 2012 were discovered and reported by

external parties who notified the victim (Verizon, 2013). It seems reasonable based on these

statistics to assume that information security practitioners and system administrators will need to

be prepared to respond quickly, often with little evidence beyond what is reported. In these

situations incident handlers may focus initially on indicators of compromise (IOCs) identified

from network firewalls, heuristic netflow data, and network intrusion detection events, but the

chain of evidence will usually lead to a system (or set of systems) that must be carefully

examined to confidently determine that an incident has occurred. Collecting and analyzing

system evidence and mining available event data from suspect systems is an effective technique

used to identify IOCs that strengthen the management of the remaining incident handling phases

such as containment and eradication.

1.1. The Problem

There are existing tools that can assist a handler with system intrusion discovery such as

rootkit identifiers “chrootkit” (Murilo, 2014) and “rkhunter” (Boelen, 2014). Tools like these are

specifically designed to examine operating system binaries and configurations for known rootkit

residue or modifications. However, they are not designed to collect system state information or

system events for contextual analysis by the handler. For example, while investigating a

potentially compromised Linux system, incident handlers will likely want to review active

network connections to identify any anomalous traffic flows. Another example is the collection

and review of command histories like system bash histories for suspicious commands executed

by the root account. Rootkit discovery tools will not analyze network connections or report the

contents of the bash history files for review.

Although tools like these rootkit discovery tools have a place, a critical component in any

incident handler’s arsenal is a set of system intrusion discovery commands that can be used to

 RapidTriage: Automated System Intrusion Discovery with Python 3

Trenton Bond, trent.bond@gmail.com

harvest events and potential system IOCs. The SANS Institute publishes several cheat sheets

with commands that can be used to help with initial system triage including the “Intrusion

Discovery Cheat Sheet for Windows” and the “Intrusion Discovery Cheat Sheet for Linux”

(SANS, 2014). While these guides (or even a custom discovery cheat sheet) are an invaluable

resource for anyone responsible for handling an incident, in practice, there are often logistical

issues that may arise. For example, how much time will it take to manually run and collect

results for each system command? If triage is required across several systems, will the system

sources examined be consistent? What if the incident handler doesn’t have administrative access

to run the commands? What if the system administrator or incident handler is not as familiar with

a particular operating system platform? What is normal when reviewing systems state and

sources?

1.2. A Possible Solution

RapidTriage was developed as one possible solution to the potential system intrusion

discovery difficulties handlers face. This Python script automates the collection of critical system

information from the following key operating system areas:

 General System Information

 Network State

 Process, Service, and Module State

 Unusual Files, Directories, and Registry Keys

 Scheduled Task Information

 Account and User State

 Histories and Log Data

Organizations “should be prepared beforehand to properly respond to incidents and

investigate them in the shortest time possible (Vacca, 2013).” Attackers may be establishing a

greater foothold in the environment or may be actively exfiltrating sensitive data while the

system administrators and incident handlers try to identify the source of the breach. Often the

process of collecting system information is manual and can be time intensive, particularly when

multiple systems are suspect. However, the RapidTriage tool may be deployed quickly by a

system administrator to many systems at once. The results can then be analyzed relative to other

systems to help provide context or to prioritize containment phase efforts and eradication.

 RapidTriage: Automated System Intrusion Discovery with Python 4

Trenton Bond, trent.bond@gmail.com

Occasionally, incident handlers may not have immediate access to the systems in

question and establishing it can cost valuable time. RapidTriage can be given to an authorized

system administrator to collect the critical information on their behalf, then provide the results

for analysis.

Besides being faster to deploy and providing a way to deal with access barriers, the other

benefits of RapidTriage include:

 Ability to add/modify collection commands or event sources as necessary

 Consistent results and output format

 Ability to choose specific operating system areas from which to collect

 Single collection script to maintain for multiple operating systems

2. RapidTriage – A Python Intrusion Discovery Tool

The Python RapidTriage discovery tool architecture consists of the following four major

components (Figure 1):

 The User Interface

 Platform Detection

 The Collection Engine

 Reporting

Figure 1
Why Python? While almost any programming language including Java, Visual Basic,

 RapidTriage: Automated System Intrusion Discovery with Python 5

Trenton Bond, trent.bond@gmail.com

Python, PHP, or Perl could have been used to script the collection of system information. Python

was chosen because it is freely available, open source, easy to learn, flexible, and works across

Linux, FreeBSD, Windows, and Mac OS X systems. Most of the more popular distributions of

Linux come with Python in the default installation. Starting in version 10.2, Mac OS X also has

Python installed by default. Python is not installed by default with FreeBSD; though, the package

can be easily added using the “pkg_add –r python” command (Python – Using on Unix

Platforms, 2014). Windows also does not install Python by default; however, there are tools such

as the py2exe “Distutils” extension that can convert Python scripts into a Windows executable

(Heller, 2014).

2.1. The User Interface

The only RapidTriage interface available to the user is from the command-line. There are

several system collection commands that require administrator rights to execute. Thus,

RapidTriage must be executed with administrator rights or root privileges. In Linux, FreeBSD,

and OS X this can be done with the root account or with “sudo” privileges. In Windows this can

be done by opening a command terminal as “administrator” and running the RapidTriage script

from there.

The “optparse” module from the Python standard library is used to handle and parse all

command-line options. “optparse‘s ability to generate help and usage text automatically is useful

for creating user-friendly command-line interfaces. All you have to do is supply a help value for

each option, and optionally a short usage message for your whole program” (Python – optparse,

2014). RapidTriage runtime options and arguments can be viewed by simply not including any

arguments or by issuing “ -h, - -help” (Figure 2).

 RapidTriage: Automated System Intrusion Discovery with Python 6

Trenton Bond, trent.bond@gmail.com

Figure 2

There are two required arguments to run the script. The first is a user defined output

filename that is required at execution using the “-o <filename>” parameter. The second is one or

more systems areas to collect information from using the “ -aflnptu” arguments. When the “ -a “

option is chosen, all system areas will be collected regardless of other system areas selected. The

“ -m ” option is not required, but when chosen at execution the results file will be hashed using

md5. The md5 hash will then be stored in a file based on the output filename given with the “ -o

“ parameter. Below are a few examples of how these arguments and options can be used.

1. Collect “all” available Linux system information and store the results in a file named

“all_results.txt” (Figure 3).

Figure 3

2. Collect just network and process state information from OS X and store the results in a

file named “server1.txt” (Figure 4).

 RapidTriage: Automated System Intrusion Discovery with Python 7

Trenton Bond, trent.bond@gmail.com

Figure 4

3. Collect only user state and log events from a Windows system via a command terminal

running as “administrator”. Store the results in a file named “test1.txt”. Hash the results

file “test1.txt” and store the hash value in “test1.txt-hash” (Figure 5).

Figure 5

2.2 Platform Detection

To execute the appropriate system collection commands, RapidTriage must know what

the underlying platform is. The Python “sys” library and “platform” module are used in the script

to identify the operating system. The following are the supported systems values that Python can

test for and the specific values that RapidTriage uses to evaluate whether the system is Windows,

OS X, FreeBSD, or Linux (Table 1 and Figure 6):

 RapidTriage: Automated System Intrusion Discovery with Python 8

Trenton Bond, trent.bond@gmail.com

System “platform” value
Linux (2.x and 3.x) linux<major version>
Windows win32
Mac OS X darwin
FreeBSD freebsd<major version>

Table 1

Figure 6

Note the “startswith()” function when evaluating Linux. “Since lots of code check for

sys.platform == 'linux2', and there is no essential change between Linux 2.x and 3.x,

sys.platform is always set to 'linux2', even on Linux 3.x. In Python 3.3 and later, the value will

always be set to 'linux', so it is recommended to always use the startswith idiom…” (Python –

sys.platform, 2014). When evaluating for FreeBSD, the “startswith()” function is also used

because the major release version is always appended. In the case of Windows, a value of

“win32” is evaluated, but what about base64 installations? A “sys” patch was introduced in May

2000 so that the platform function would always return “win32” even for 64 bitwise Windows

systems (Mick, 2000).

2.3 The Collection Engine

The main objective of RapidTraige is to collect information from key operating system

sources that help incident handlers identify IOCs. The collection portion of the script is broken

up into major source areas such as General System Information, Network State, User Account

State, etc. Within each area are four specific command lists for each Linux, OS X, FreeBSD, and

Windows such as those shown for the “Network State” area in figure 7 below.

 RapidTriage: Automated System Intrusion Discovery with Python 9

Trenton Bond, trent.bond@gmail.com

Figure 7

Each command in the Python lists is specifically formatted as follows:

 <description>::<command>

 RapidTriage: Automated System Intrusion Discovery with Python 10

Trenton Bond, trent.bond@gmail.com

Additional system commands can easily be added to any of the lists or modified by the

user if they have a preferred caommand. For example, the following description and command

could be added to the “Network State” section in the Linux commands list to get a count of the

number of network connections in “closed” state.

 Count of Closed Connections::netstat -ant |grep -i “closed” |wc -l

The Python “subprocess” module and “Popen” class are integral to processing the system

command lists. “The subprocess module allows you to spawn new processes, connect to their

input/output/error pipes, and obtain their return codes”. “The underlying process creation and

management in this module is handled by the Popen class” (Python – subprocess, 2014). A

single script function called “run_cmds” was developed to handle the processing of each system

command. The description is split from the actual command so it can be run and the results

written to the user provided filename in a standard output format (Figure 8).

Figure 8

Another important RapidTriage script function is the “timestamp”. This function is used

to add a timestamp to the results file right before the execution of each system command. This

can be helpful when troubleshooting the script; for instance, when the script is taking a

significant amount of time to run. In such cases, the suspect command can be modified and

removed, or the entire area can be skipped using the command-line arguments (Figure 9).

Figure 9

The following section is a closer look at each system area in RapidTriage and some of the

 RapidTriage: Automated System Intrusion Discovery with Python 11

Trenton Bond, trent.bond@gmail.com

highlights from the collection engine portion of the script.

2.3.1 General System Information

The General System area is unique in that the system commands included here are

executed regardless of the command-line arguments issued. If the script successfully runs it will

always return the results of this system area. It also cannot be selected independently of other

system area arguments. At least one other system area must be selected at run time. At a

minimum the system hostname, effective user (whoami), and system type (uname -a) are all

collected (Figure10). This information is important for the incident handler to have during an

investigation (or as a reminder later) to document what system(s) the information was collected

from, by what user, and the associated operating system. This data is of particular importance to

collect when the incident handler is not the user running the scrip.

Figure 10

Besides the standard information collected above, there are several more system-specific

commands that have been included to seed the General System section (Figure 11). For example,

file system disk space, memory usage, and environment variables are also collected by default.

These kinds of commands are useful from an overall system health perspective and may also

yield evidence indicative of a compromise. A file system with no disk space should be further

investigated for an operational problem or possibly an IOC as attackers may be using the system

to store significant amounts data.

 RapidTriage: Automated System Intrusion Discovery with Python 12

Trenton Bond, trent.bond@gmail.com

Figure 11

It is also important to note that while there is a standard function for processing the

command lists that could have been used, we actually handle the command processing directly in

this section. This was done because of the unique output format that was desired just for this

system area.

2.3.2 Network State

When collecting network related system information there are several important system

commands. This section was, of course, seeded with many of the example commands found from

the SANS Intrusion Discovery reference cheat sheets. As with the other sections, commands here

can be modified or added as desired by the user by simply changing the command list for the

appropriate system type. For the RapidTriage script, a number of additional network state

commands were included. Below are a few examples of commands that were added beyond the

SANS guides.

The following command added to the RapidTriage script will pull the firewall

configuration for a Linux system. This information could be useful during initial triage to

understand what kind of network access would be allowed into or out of the system. Is a system

firewall enabled in the first place? Did the attacker add a rule to exfiltrate data or to allow an

outbound call home?

 RapidTriage: Automated System Intrusion Discovery with Python 13

Trenton Bond, trent.bond@gmail.com

 Firewall Configuration::iptables -L

This Windows command is used to collect the contents of the system /etc/hosts file. The

results of which can be reviewed for suspicious entries or interesting mappings that may be used

to help identify a compromise. “For instance, some malware spreads to computers with shared

accounts or targets systems that are listed in the ‘/etc/hosts’ file on the compromised system”

(Malin, 2008).

 /etc/hosts Contents::type %SystemRoot%\System32\Drivers\etc\hosts

Often looking at established network connections to suspicious IP addresses can produce

IOCs; but what if they all look like random foreign IP addresses? If a typical number of

established connections happen to be known before an investigation, the count of established

connections can be an interesting barometer. The following OS X command grabs the total

number of established connections and writes it to the results file.

 Count of Open Connections::netstat -ant |grep -i "established" |wc -l

2.3.3 Process, Services, and Module State

This section of the collection script is for handling the harvest of process and service

information. It’s also for the collection of information about loaded kernel modules in the case of

Linux, FreeBSD, and OS X as well as the collection of installed packages and patches. Why

kernel modules? “Kernel rootkits usually utilize loadable kernel modules to modify kernel

functionality without requiring a kernel recompilation” (Mookhey, 2005). A review of the loaded

kernel modules (LKMs) may provide clues of a compromise based on the sizes or other

attributes retrieved. Below is an example of how RapidTriage extracts a list of loaded kernel

extensions from OS X.

 Loaded Kernel Extensions::kextstat

To collect all of the open files associated with each process ID in Linux the following

command has been included in the default RapidTriage command list. These open files could

help lead an incident handler to backdoors or other malicious files.

Open Files Associated with each PID::ps aux |awk \'NR!=1 {print $2}\' |while

IFS= read pid; do echo ""; ps $pid; lsof -p $pid; done

2.3.4 Unusual Files, Directories, and Registry Keys

 RapidTriage: Automated System Intrusion Discovery with Python 14

Trenton Bond, trent.bond@gmail.com

The next section of RapidTriage is meant to be a collection of unusual files, unusual

directories, and key Windows registry keys used to assist the handler or system administrator

with intrusion discovery. The EC-Council suggests in their book “Computer Forensics:

Investigating Data and Image Files” that one effective method for detecting stenography is

looking for large files. “The investigator should look for large files in the system, as they can be

used as carrier files for steganography. If the investigator finds a number of large duplicate files,

then it is possible that are used as carrier files” (EC-Council, 2009). Below is a Windows “for

loop” that identifies files greater than 50M. The user can adjust the target size as necessary by

simply adjusting the value in the command.

 Large Files >50M::for /R c:\ %i in (*) do @if %~zi gtr 50000000 echo %i %~zi

One of the favorite tactics of attackers is to take advantage of SUID and GUID root files.

These types of system files are allowed to function with root (user or group) rights instead of the

privileges of the user who executed the program. Incident handlers will often want to know what

system files have these bits set. The following Linux SUID find command introduced in the

SANS Linux Intrusion Discovery guide was modified in RapidTriage to include files with the

GUID bit also set.

Files with SUID/GUID bits set::find / -type f \(-perm +4000 -o -perm +2000 \)

-exec ls -l {} \; 2>/dev/null

2.3.5 Scheduled Task Information

As is suggested in the SANS intrusion discovery guides, system scheduled tasks are a

vital system area from which to collect information and to triage. “Intruders may create a cron

job on a compromised system to periodically launch a backdoor or beacon to enable them to

regain entry. This is an old but extremely popular and effective way to maintain access” (Casey,

2009). For Windows systems, scheduled tasks and startup items are included in the tool and

collected with the following commands.

 Scheduled Tasks::schtasks

 Startup Items::wmic startup list full

2.3.6 Account and User State

Usually system intrusion discovery would not be complete without a thorough review of

 RapidTriage: Automated System Intrusion Discovery with Python 15

Trenton Bond, trent.bond@gmail.com

the current state of user accounts and logins. This section of the RapidTriage script will, with the

seeded system commands, collect information about who is currently logged into the systems,

local system accounts, the last login attempts (successful and failed), and group membership. In

OS X the following two commands are seeded in the script and result in the retrieval of all local

user accounts and groups.

 User Accounts::dscacheutil -q user

 Groups:: dscacheutil -q group

Unsuccessful Linux login attempts are typically logged to the (“/var/log/btmp”) log file.

Where this binary file exists, it can be read with the “lastb” system command and is collected by

RapidTriage by default.

 Unsuccessful Login Attempts::lastb

2.3.7 Histories and Log Data

The last section of the collection engine is responsible for extracting history file data and

log data. Because Windows, FreeBSD, OS X, and Linux all have unique log data sources and

history files, they are handled individually in the script based on the operating system type.

Similar to the General System Information collection, some of the command execution is

processed here rather than with the general “run_cmds” function due to the unique output format

that was desired.

System history files are always interesting places for incident handlers to look for IOCs.

“A savvy criminal may open a terminal and use UNIX commands in the commission of a crime.

This is most likely where an examiner will find evidence of a network intrusion. The bash shell

… is the command line to a file named .bash_history” (Olivier, 2006). In RapidTriage the script

collects this information from FreeBSD systems with the following history commands.

 Bash History::bash -i -c "history -r;; history”

C Shell History::csh -i -c "history -r;; history”

Besides bash histories, the script also looks for other system history files and writes the

contents of the files to the output file. Below is the Python code used for history file collection in

OS X (Figure 12).

 RapidTriage: Automated System Intrusion Discovery with Python 16

Trenton Bond, trent.bond@gmail.com

Figure 12

Log files and event tables can also be of tremendous benefit while hunting system IOCs.

In Windows there are many different event repositories and the “wevtutil el” command can be

used to enumerate a list of available sources. The traditional Windows event sources like System,

Application, and Security are by default used in the RapidTriage script. Like the system

command lists throughout the script, the log file sources for any operating system type can be

modified in this section. Because of the enormous number of system events generated by

Windows, only the last 100 are collected and written to the output file using this Python logic

and code, but that can also be modified as necessary (Figure 13).

Figure 13

2.4 Reporting

The reporting component of Rapid Triage is straightforward. The results of the collection

engine are written to the user-specified output file as they are collected. The user-specified file is

opened for writing with the “open” function before collection begins and the “close” function

after collection. To write to the specified output file, the “write” function is used. Below are

examples of how opening, writing, and closing are done in the script.

 RapidTriage: Automated System Intrusion Discovery with Python 17

Trenton Bond, trent.bond@gmail.com

Open

Figure 14

Close

Figure 15

Write

Figure 16

The outputfile is organized the same way that the script is organized. The “General

System” is at the beginning of the report followed by the collected information from the other

system areas selected at runtime.

When the md5 hash command line option is selected at runtime, a new hash file is

opened after all of the results are collected. The outputfile is reopened, read and then hashed

using the Python “hashlib” module and the “md5” construct. The hash is saved in the new hash

file and then closed.

 RapidTriage: Automated System Intrusion Discovery with Python 18

Trenton Bond, trent.bond@gmail.com

Figure 17

3. Use and Support

The real value of an intrusion discovery tool like RapidTriage is when it’s used in

comparison with a known “normal” state. Concerning the intrusion discovery cheat sheets, Ed

Skoudis suggests, “they require the System Administrators to know the ‘normal’ state of their

systems. The Cheat Sheets identify common areas of deviation from normal that a

knowledgeable Sys Admin can spot. However, without a good gut feel of the normal state, these

techniques won’t work” (Skoudis, 2008). This “normal” state can be established with even a

single archived RapidTriage result file or by scheduling a task to constantly run the script. The

review and comparison of the results can then be operationalized to highlight anomalies and

IOCs much more quickly.

RapidTriage code has been posted to Google Code as a project for the benefit and use of

the community (Figure 18). The latest code revisions and documentation for the project can be

found at the following location.

 https://code.google.com/p/rapidtriage/wiki/RapidTriage

 RapidTriage: Automated System Intrusion Discovery with Python 19

Trenton Bond, trent.bond@gmail.com

Figure 18

Currently RapidTriage supports Python version 2.7 and is known to work with the

following versions of Windows, FreeBSD, Linux, and OS X. As already discussed, the Python

script command lists and log locations can be easily modified to support other versions or even

additional operating systems.

 Operating Systems:

 Linux (2.6.x)

 Mac (OSX 10.2.x)

 Windows 7

 FreeBSD 9.2

 RapidTriage: Automated System Intrusion Discovery with Python 20

Trenton Bond, trent.bond@gmail.com

This tool will not collect all the information an incident handler will need to identify an

incident. If there are other system security tools installed such as rootkit hunters, consider using

this tool to execute them and then extract information from them at the same time.

4. Conclusion
System intrusion discovery and the identification of IOCs is a critical component of the

identification phase of incident handling. These time sensitive efforts can be impeded by access

restrictions, expertise, no understanding of normalcy, and inconsistency.

The RapidTriage Python tool detects the operating system platform then automates the

retrieval of information from key system areas. This automation allows the script to be handed to

less skilled administrators or others who already have administrative system access to quickly

collect data on behalf of the incident handler. Additionally, it can be deployed consistently to

many systems at once and with a common output format that can be used for comparison

purposes. The script was designed to be modified by the incident handler with preferred

commands or event source locations. If used to establish a normal state before an incident, the

output results can be compared by an incident handler to more quickly highlight system

indicators of compromise.

 RapidTriage: Automated System Intrusion Discovery with Python 21

Trenton Bond, trent.bond@gmail.com

5. References

Boelen, Michael (2014). rkhunter – rootkit scanner. Retrieved from website:

http://www.rootkit.nl

Casey, Eoghan (2009). Handbook of Digital Forensics and Investigation. Burlington, MA:

Elsvier Academic Press

EC-Council (2009). Computer Forensics: Investigating Data and Image Files. Clifton Park, NY:

Cengage Learning

Heller, Thomas & Retzlaff, Jimmy & Hammond, Mark (2014). py2exe – distutils extensions

which convert Python scripts in executable Windows programs. Retrieved from website:

http://www.py2exe.org

Malin, Cameron H. & Casey, Eoghan & Aquilina, James M. (2008). Malware Forensics:

 Investigating and Analyzing Malicious . Burlington, MA:Syngress

Mick, Trent (2000). [Patches] use “win32” for sys.platform on Win64. Retrieved from website:

https://mail.python.org/pipermail/patches/2000-May/000648.html

Mookhey, K.K. & Burghate, Nilesh (2005). Linux Security, Audit and Control Features. Rolling

Meadows, IL:ISACA

Murilo, Nelson & Steding-Jessen, Klaus (2014). chkrootkit – locally checks for signs of a rootkit.

Retrieved from website: http://www.chkrootkit.org

Olivier, Martin S. & Shenoi, Sujeet (2006). Advances in Digital Forensics II. New York, New

York: Springer

Python Software Foundation (2014). optparse – Parser for command line options. Retrieved

from Python website: http://docs.python.org/2/library/optparse.html

Python Software Foundation (2014). Python – Using on Unix Platforms. Retrieved from Python

website: http://docs.python.org/2/using/unix.html

Python Software Foundation (2014). sys.platform – Function to determine platform. Retrieved

from Python website: http://docs.python.org/2/library/sys.html

Python Software Foundation (2014). subprocess – Interprocess Communication and Networking.

Retrieved from Python website: http://docs.python.org/2/library/subprocess.html

SANS Institute (2014). Windows - Intrusion Discovery Cheat Sheet v2.0. Retrieved from SANS

website: http://pen-testing.sans.org/retrieve/windows-cheat-sheet.pdf

 RapidTriage: Automated System Intrusion Discovery with Python 22

Trenton Bond, trent.bond@gmail.com

SANS Institute (2014). Linux - Intrusion Discovery Cheat Sheet v2.0. Retrieved from SANS

website: http://pen-testing.sans.org/retrieve/linux-cheat-sheet.pdf

Skoudis, Ed (2008). SANS Security 504: Hacker Techniques, Exploits and Incident Handling.

SANS course

Vacca, John R. (2013). Managing Information Security. Waltham, MA:Elsevier

Verizon (2013). 2013 Data Breach Investigation Report. Retrieved from Verizon website:

http://www.verizonenterprise.com/DBIR/2013/

