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Abstract(
There(are(currently(an(estimated(4.9(billion(embedded(systems(distributed(
worldwide.((By(2020,(that(number(is(expected(to(have(grown(to(25(billion.((
Embedded(systems(can(be(found(virtually(everywhere,(ranging(from(consumer(
products(such(as(Smart(TVs,(BluLray(players,(fridges,(thermostats,(smart(phones,(
and(many(more(household(devices.((They(are(also(ubiquitous(in(businesses(where(
they(are(found(in(alarm(systems,(climate(control(systems,(and(most(networking(
equipment(such(as(routers,(managed(switches,(IP(cameras,(multiLfunction(printers,(
etc.((Unfortunately,(recent(events(have(taught(us(these(devices(can(also(be(
vulnerable(to(malware(and(hackers.((Therefore,(it(is(highly(likely(that(one(of(these(
devices(may(become(a(key(source(of(evidence(in(an(incident(investigation.((This(
paper(introduces(the(reader(to(embedded(systems(technology.((Using(a(BluLray(
player(embedded(system(as(an(example;(it(demonstrates(the(process(to(connect(to(
and(then(access(data(through(the(serial(console(to(collect(evidence(from(an(
embedded(system(nonLvolatile(memory.(
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1. Introduction 
In a world where the Internet of Things is becoming a thing, embedded devices 

have become ubiquitous.  In fact, nearly all classes of electronic devices are becoming 

embedded systems.  According to a recent Gartner analysis, there are currently 4.9 billion 

embedded systems in use worldwide, and the number is expected to grow to 25 billion by 

2020 (Gartner, 2014).  Embedded devices can be found in a growing number of 

businesses with industrial grade appliances including routers, switches, IP cameras, alarm 

systems, lighting and climate controls, multi-function printers, and a rising number of 

consumer electronic goods such as smart TVs, Blu-ray players, fridges, thermostats, 

smart phones, etc.  Even modern SCADA systems are considered embedded systems.  In 

fact, there is an increasing demand for embedded devices with greater computing power, 

better connectivity, and broader functionality while keeping implementation costs as low 

as possible.  As a result, the vast majority of manufacturers have adopted some form or 

other of embedded Linux OS because of its relatively low cost, broad community 

support, and compatibility with an extensive range of hardware. 

Most of these embedded devices come with custom made user interfaces meant to 

simplify and constrain the end-user/administrator interaction to very specific actions and 

displays.  This is helpful for preventing most accidental or intentional acts that could 

render the device irrevocably inoperable.  But, there is a lot more going on under the 

hood.  Logs are being generated, data is being saved to flash memory, changes are made 

to the device’s configuration files, and more—a lot of which remains inaccessible using 

the custom made interface. 

In addition, embedded device security has been improving over these past few 

years.  Not so long ago, it was rare to find an updated embedded system.  This resulted in 

numerous avenues of attack opening up whenever a new vulnerability with Linux was 

discovered.  Now, many devices update themselves automatically while others 

consistently remind the end user to authorize the update.  However, there always remains 

a window of opportunity open between the time a vulnerability is discovered and the time 

a patch is engineered into an embedded system then deployed (Barry & Crowley, 2012).  
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Case in point, in January 2014, a security research company by the name of Proofpoint1 

uncovered a botnet composed of more than 100,000 everyday consumer devices, such as 

home-networking routers, connected multi-media centers, televisions and at least one 

refrigerator, that had been compromised and used as a platform to distribute phishing and 

SPAM emails (British Broadcasting Corporation (BBC), 2014).  

Therefore, the embedded devices running within an environment are not 

infallible.  What if the next embedded device malware does something more nefarious 

than sending SPAM and an analysis of the device is required to assess the impact to the 

organization?  Perhaps there are clues that can be found on the embedded device?  

Unfortunately, the user interface does not provide the necessary means to easily access 

these hidden parts.  But in most cases, there is another way of getting to this data. 

2. Accessing an embedded device via the serial port 
2.1. Embedded system primer 

Embedded systems are custom purpose computers that are typically designed for 

one type of application.  Design trade-offs are made to accommodate size, power, and 

application requirements.  As a result, embedded computer systems are different, both 

from one another and from general-purpose computers by the virtue of their design trade-

off and the constraints they embody (Barry & Crowley, 2012).  But, regardless of these 

trade-offs, all systems share a common set of core features and capabilities whose 

understanding unlocks the ability to manipulate and access them in ways that are far 

beyond the means provided by the device’s standard user interface. 

2.1.1. Embedded System anatomy 
   Unlike a traditional PC that comes equipped with as much functionality and as 

many expansion ports as possible, an embedded system usually comes with the bare 

minimum required to carry out its assigned functions.  Some embedded systems have a 

powerful standalone CPU and supporting chipsets to accommodate diverse 

subcomponents while others use a System-on-Chip (SOC) approach where all 

subcomponents are directly integrated with the CPU. Regardless of the approach, 
((((((((((((((((((((((((((((((((((((((((((((((((((((((((
1(www.proofpoint.com(
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CPU/chipset combo or SOC, an embedded system, can be expected to be equipped with a 

number of standard subcomponents.  This includes volatile memory, such as SDRAM, 

where the OS and programs will be run from, non-volatile memory, such NAND Flash 

memory for data storage, and input/output (IO) controllers to allow the system to interact 

with its environment.  It is virtually impossible nowadays to find an embedded system 

without serial, USB, and networking (Ethernet and/or Wifi) comptrollers included either 

on the board or directly integrated into the SOC processor.  

 
Figure 1.  Simple Embedded System using SOC processor 

2.1.2. Universal Asynchronous Receiver/Transmitter (UART) comptroller 
Of particular interest for this paper is the serial communication comptroller, also 

referred to as the Universal Asynchronous Receiver/Transmitter (UART) comptroller.  

This is one of the most basic components that can be found on an embedded system and 

uses only 3 wires: Transmit (TX), Receive (RX), and Ground (GND).  It is used 

extensively by system engineers during the development and testing phases.  By 

connecting to this comptroller, it becomes possible to read hardware boot sequence 

messages, interact with the bootloader, and gain console access once the embedded Linux 

OS is loaded.  
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Using one of several communication standards, the UART comptroller is 

responsible for all the tasks, timing, parity checking, etc. needed for the serial 

communication to succeed.  The most commonly used standard is RS-232, which is also 

conveniently available on most PCs and laptops.  If the incident handler’s computer is not 

equipped with a serial port, a USB-to-Serial adapter can be easily procured online and 

configured to work with most Windows and/or Linux platforms as described later in this 

paper.   

Each transmission flowing through the serial comptroller must obey a set speed 

limit and adhere to specific communication parameters that consists of a start bit, data 

bits, an optional parity bit and stop bits.  To successfully communicate, both the 

embedded system and the incident handler’s computer bit speed, data length, parity, and 

stop bits must be set to the same values.  There are many different transmission speeds 

supported:  300, 600, 1800, 2400, 4800, 7200, 9600, 14400, 19200, 38400, 57600, and 

115200 bits per second (bps). However, the most commonly used speeds are 9600 bps, 

38400 bps, and 115200 bps.   The other most commonly used settings are no parity, 8 

data bits, and one stop bit usually written as 8N1 (Barry & Crowley, 2012). 

On the incident handler’s computer, a terminal console application is used to 

communicate through the computer serial port with the embedded system.  Because the 

embedded system will have its serial communication settings pre-configured, the incident 

handler’s computer terminal console will need to be configured to match the embedded 

system settings in order to communicate successfully.  The easiest way to find out if the 

embedded system uses the RS-232 standard and what communication settings are pre-

configured is to lookup the embedded device specifications online.  If it is not clearly 

stated on the device specification documentation, then looking up the specifications of 

the SOC processor or chipset used by the embedded device might yield the required 

information.  As a last resort, it is possible to try various configuration settings until the 

terminal console outputs meaningful text.  Configuring the communication protocol 

through the terminal software is relatively simple and will be explained later in section 

2.4.   
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Finally, the RS-232 specification allows for voltages ranging between 5 and 25 

volts (Electronic Industries Alliance (EIA) Standards, 1969).  5 volts is the standard 

voltage found on computer serial ports.  It is also the standard voltage found on the serial 

connectors of most computing and networking gear equipped with an external serial port.  

However, some of the more recent embedded systems employ a modified UART 

comptroller operating at 3.3 volts.  Although the RS-232 specification explicitly requires 

the UART comptroller to be able to work at voltages as high as 25 volts, discussion 

forums are littered with posts of people having “fried” their embedded device UART 

comptroller running at 3.3 volts after having connected it directly to a PC serial port 

running at 5 volts.  The obvious solution to avoid such problems is for the incident handler 

to use a computer equipped with a serial connector with matching voltage.  Methods to 

measure an embedded device’s UART voltage is discussed later in section 2.3.2 while 

USB-to-Serial adapters able to supply different voltages are shown in section 2.2.1.   

2.1.3. Embedded system boot process 
When power is applied to an embedded device, the hardware begins its 

initialization sequence starting with the CPU.  The CPU fetches the hardware 

initialization code, called preloader (or BIOS), from a specific flash storage chip. The 

preloader is software stored in flash memory that provides a consistent set of OS-agnostic 

software interfaces that abstract the underlying details of the hardware (Rothman & 

Zimmer, 2013).  The preloader is also responsible for initializing the remainder of the 

embedded device hardware including volatile memory, also known as RAM, and IO 

components including the UART, PCI Bus, USB, and SATA comptrollers.  Because of 

its simplicity, UART is most often the first communication port used to communicate 

debugging information from an embedded device.  Finally, the last task of the preloader 

is to initialize the system storage, identify the boot device, and transfer control to the next 

agent in the boot process: either the bootloader or the operating system directly (Barry & 

Crowley, 2012).  

The concept of bootloaders is universal to virtually all operating systems, whether 

a full-fledged PC or the smallest embedded device (Waqas, 2010).  The bootloader’s 

main responsibility is getting the operating system from wherever it is stored, loading it 
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into RAM and launching it.  Most bootloaders can support booting from multiple storage 

locations and some even support loading OSes from the network or external storage 

temporarily attached to the embedded device.  The bootloader will generally output boot 

diagnostic data to the serial port.  It may even be possible for a short period of time to 

interrupt or at least interact with the bootloader through a terminal console connected to 

the device serial port.  This can be particularly useful to: 

a. modify the Linux boot arguments;  

b. instruct the bootloader to load a different OS;  

c. save the firmware, embedded OS, or file partitions over the network or to a 

portable device; or,  

d. replace the existing embedded OS with new one from network or removable media. 

However, functionality greatly differs amongst the various bootloaders available 

and with the exception of modifying the Linux boot arguments, interaction with the 

bootloader is beyond the scope of this paper.     

The Unified Extensible Firmware Interface (UEFI) is a more sophisticated, 2nd 

generation preloader/BIOS that has become the de-facto firmware for most PCs.  It is 

also starting to make inroads into embedded systems built around Intel SOCs.  UEFI 

brings numerous improvements over the older technology such as only loading an OS 

with signed code.  Bootloader programs that work with preloader/BIOS firmware are 

incompatible with UEFI.  That said, most bootloaders have been ported and now support 

the more advanced features provided by UEFI.   However, for the purpose of this paper, 

preloader, BIOS, and UEFI can be used interchangeably.   

In an effort to reduce costs, heat, and power use, most embedded systems are 

designed around an ARM SOC instead of using Intel technologies. Until very recently, 

there was no equivalent to the BIOS for the ARM processor.  Each instances of ARM 

Linux kernel had to be hard coded for the hardware it was meant to execute on (Rothman 

& Zimmer, 2013).  Hence, a number of ARM based embedded systems will be hardcoded 

to forego the bootloader and will be able to immediately load the OS, while other systems 

will use a very basic bootloader only responsible for loading and transferring control to 
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the OS.  In all cases, the OS kernel will take on the task of initializing the hardware.  

Newer designs based on the Open Firmware standard incorporate a more advanced 

preloader and bootloader architecture for the ARM processor that is increasingly capable 

of abstracting the underlying hardware.  From the incident handler’s point of view, being 

able to determine if a bootloader is present or if the system boots Linux directly is 

important to assess possible lines of investigations. 

2.2. Tools required 
2.2.1. Hardware 

The list of hardware components required is as follows: 

a. Incident handler’s computer or laptop; 

b. USB-to-Serial adapters capable of operating at 3.3v or 5v as required; 

c. Serial cables and/or jumper wires;  

d. Solderless header pins (optional);  

e. Magnifying glass or magnifying glass app on smart phone (optional);  

f. Soldering iron and solder (Optional); and, 

g. Digital multimeter. 

The incident handler’s computer used for accessing the embedded device must be 

equipped with a USB port.  A serial connector would also be convenient to connect to 

embedded devices with 5 volts serial interfaces but that can also be easily substituted 

with the appropriate USB-to-Serial adapter.  The incident handler must also have root 

access to be able to install the necessary drivers and applications.  For this paper, a 

VMWare version of Kali was used, allowing for full control of the OS and the ability to 

plug in the necessary USB-to-Serial adapters. 

As explained in section 2.1.2, not all embedded systems have serial connectors 

operating on 5 volts.  Furthermore, if the embedded system offers a 3.3 volts serial 

connection, instead of using the incident handler’s PC serial connector, a USB-to-Serial 
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adapter based on the PL2303HX2 or similar chip will be necessary to synchronize the 

voltage with the embedded system.  USB-to-Serial adapters supplying various voltage 

levels, including the more common 3.3 volts and 5 volts varieties, can be found online for 

less than $10 USD each. For the sake of brevity, all examples discussed in this paper will 

assume the use of a 3.3 volts USB-to-Serial adapter equipped with female connectors as 

shown on the left in figure 2 below. 

 
Figure 2.  USB-to-Serial Adapters 

Cables are obviously required to connect the computer and the embedded device 

together.  If the device has an external serial port, then a standard null-modem DB9 serial 

cable or an RJ-45 to DB9 null-modem serial cable will be required.  Null-modem means 

that the cable will connect the transmit line at one end of the connection to the receive 

line at the other end and vice versa.  However, it is far more likely there will be no 

connectors present on the embedded device.  In this case, it will be necessary to open the 

embedded device enclosure and scrutinize the Printed Circuit Board (PCB) with a 

magnifying glass for the transmit (TX), receive (RX), and ground (GND) port headers.  

Then, a set of either male-male, female-female, or male-female jumper wires will be 

required to connect the incident handler’s computer directly to the port headers on the 

PCB.  It is even possible for the circuit board to have holes for the serial connector but no 

header pins soldered on.  In this particular case, solderless header pins can be used to act 

as an impromptu connector.  Finally, if all that is available on the PCB are contact pads, 

then a soldering iron, solder, and a pair of steady hands will be required to affix jumper 

((((((((((((((((((((((((((((((((((((((((((((((((((((((((
2(http://www.amazon.com/niceeshopLPL2303HXLRS232LModuleLConverter/dp/B00F167PWE(
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wires and run them back to the USB-to-Serial adapter.  The process to find the 

RX/TX/GND port headers is explained in details in section 2.3.   

 
Figure 3. Cables and wires 

Finally, a digital multimeter will be necessary to measure the voltage on the 

embedded system serial connector to prevent damage to the UART comptroller as 

described in section 2.1.2.  The multimeter is also necessary for finding the UART TX, 

RX and ground (GND) port headers on any embedded system PCB lacking a serial 

connector.  At last, the multimeter will be used to conduct continuity tests to ensure all 

cables and connections are adequate.  A suitable digital multimeter can be found online 

for less than $10 USD. 

2.2.2. Software 
This paper was developed using Linux Kali 3.18.0 64-bit.  Linux was selected 

over Microsoft Windows because the PL2303HX drivers came pre-installed and they are 

loaded automatically when the adapter in plugged-in.  

minicom is a text-based control and terminal emulation program for Unix-like 

operating systems capable of serial communication (Lackorzynski & Godisch, n.d.).  It is 

free and can be found on most Linux distributions.  minicom interfaces directly with the 

serial ports available on the computer and enables 2-way communications with the 

embedded device through the serial cable.   

minicom is relatively easy to operate.  The command menu can be summoned at 

any time using the sequence CTRL-A followed by Z.  There are numerous options 
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available.  However, the most important are the ability to select the desired serial port and 

the ability to change the communication parameters (speed, parity, stop bit(s), etc).  

Configuration and utilization of minicom will be demonstrated later in section 2.4. 

2.3. Connecting the serial port to the incident handler’s 
computer 

The procedure to locate and connect to an embedded device serial port is quite 

simple.  However, precautions must be taken to eliminate the risks of causing irreparable 

damage to the device or the USB-to-Serial adapter.  Furthermore, it is important to take 

additional precautions, such as using an anti-static mat and bracelet, when manipulating a 

PCB to prevent damage caused by accidental static electricity discharges. 

Under the best of circumstances, the embedded device will be equipped with an 

external serial connector, and the incident handler will only have to run a null-modem 

cable between the computer and the device.  This is often the case for networking 

equipment such as enterprise grade routers and switches.  However, for other types of 

embedded devices, it is more likely that the incident handler will need to open the device 

and search the PCB for the port headers. 

2.3.1. Finding the port headers 
In most cases, the serial port headers are labeled and easy to recognize.  They will 

take one of three forms:  A set of pins, a set of pads or a set of holes as shown in figure 4 

below.  It is most often composed of four individual port headers and the vast majority of the 

time, they are arranged in a single row close to each other (Ganssle, et al., 2008).  The first 

header is the ground (GND).  The next header is the Transmit (TX) port.  The last header is 

the Receive (RX) port.  Note that a fourth header is also usually present.  It is the Vcc header 

and it provides a steady voltage, usually 3.3 or 5 volts.  While useful to help identify a set of 

serial port headers, it will otherwise not be required for the purpose of this paper. 

 
Figure 4. Serial Port Headers 
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The easiest method to find the serial header ports is to do a quick google search 

for the embedded device model number and the words “UART” and “Serial”.  If the 

device is widely popular, such as a Kindle Fire3, a Raspberry Pi4, or a NEST thermostat5, 

it is very likely that someone else has done the research, located the headers; and most 

importantly, documented the communication parameters and voltage required. 

The next best approach is to open the embedded device and conduct a visual 

search.  It is very likely that the words “GND, TX, RX, and 3.3(or 5v or VCC)” will be 

printed on the PCB right next or very near their respective headers as shown in figure 4 

above. 

The location, size, and shape of the header ports will vary from system to system.  

As a result, some critical thinking and testing may be required.  For example, some 

systems only have the TX and RX headers labeled.  In such cases, the USB-to-Serial 

ground wire can be connected to any shielding or other parts of the PCB identifiable as a 

ground. And, in some rare instances, the UART port may simply not be labeled at all.  

Finding the port headers under this circumstance is beyond the scope of this paper.  

However, help is available online for the interested reader. 

2.3.2. Confirming the serial port headers 
Regardless of the method used to locate the serial port headers, it is strongly 

recommended to verify each port header individually using a multimeter to avoid causing 

irreparable damage to the embedded device or the serial adapter on the incident handler’s 

computer.   The most important characteristic to verify is the voltage between the ground 

port header and each of the other port headers, none of which should exceed by more 

than 10% the voltage rated for the serial connector used on the incident handler’s 

computer. 

The ground pin can be easily confirmed by carrying out a continuity test.  Simply 

set the multimeter to the lowest Homs (Ω) setting available.  The multimeter readout 

((((((((((((((((((((((((((((((((((((((((((((((((((((((((
3(http://forum.xdaLdevelopers.com/showthread.php?t=1471813(
4(http://elinux.org/RPi_Serial_Connection(
5(https://www.blackhat.com/docs/usL14/materials/usL14LJinLSmartLNestLThermostatLALSmartLSpyL
InLYourLHome.pdf(
(
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should be displaying “1”.  Touching both ends of the probes together should display 

“0.01” or a number very close to it.  Next, connect one of the probes to the suspected 

ground port header and connect the other one to any shield casing on the device.  Again, 

the multimeter readout should display “0.01” or a number very close to it if the port 

header is the ground. 

For the remainder of this section, testing will need to be conducted with the 

device powered on.  The next test is for the Vcc pin.  Although it will have no further 

uses after this test, it is important to ascertain the embedded device operating voltage.  

With the multimeter set to 20 volts - direct current, connect one probe to the ground port 

header and the other to the suspected Vcc port header.  The readout should be a steady 

3.3 or 5 volts ±10%. 

 Next, the TX port header can be tested.  For this test, it is best to power off the 

device and power it back on as the serial port is more likely to be transmitting data via the 

serial connection during the boot up process.  For the purpose of binary serial 

communication, 1’s are represented as 3.3/5 volts and 0’s as 0 volts (Jimb0, 2010).   

Therefore, the voltage in the TX header should be fluctuating rapidly between 3.3v and 0 

volts.  Given the speed of transmission, which is at least 300 bits per second and more 

likely several thousand bits per seconds, the multimeter will quickly resolve to displaying 

the average: ~1.6/2.5 volts. 

The last remaining port header will be the RX port header.  Unlike the Vcc and 

TX port headers, there are no specific voltage levels to anticipate.  While it would be 

logical to assume the voltage on the RX header to be 0 volts, each device tested during 

the research phase of this paper produced different voltage readings on the RX port 

header.  Therefore, it is not possible to confirm if a port header is the RX port by simply 

using a multimeter.  In the best circumstances, the port headers will be clearly marked.  

Otherwise, the incident handler will have to rely on the process of elimination to make an 

educated guess on which header is the RX port.  In either case, it is highly unlikely that 

any damage will result from connecting the wrong port header to the incident handler’s 

TX port as long as the voltages on both devices match within 10%. 
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2.3.3. Making the physical connection 
When connecting two serial devices together, the transmit (TX) port on the first 

device must be connected to the receive (RX) port of the second, and vice-versa.  This 

type of connection is known as a null modem (Hallinan, 2010).  If both the embedded 

system and the incident handler’s computer are equipped with external serial connectors, 

then a null modem cables as shown in figure 3 on page 10 can be used.  However, if 

either or both devices only have port headers located on the PCB, then jumper cables will 

be required.   

 
Figure 5.  DB 9 Serial Connector Pinout. 

If the embedded device is equipped with header pins, then a set of three male-

female jumper wires can be used to connect to the USB-to-Serial adapter as shown in 

figure 6.   If the device is equipped with header holes, then solderless pins can be used to 

create a temporary set of pins and the connection can be configured as per the previous 

example. 

In cases where the embedded device has header pads, then some soldering work 

may be required. Soldering is not that difficult and instruction videos abound on 

YouTube.com.  But first, it would be a good idea to check out the blog titled “A solder-

free UART connection6”, which offers an imaginative alternative using spare pin headers 

and a cloth pin.  Regardless of the approach used to attach the jumper wires to the header 

pads, it is highly recommended to conduct a continuity test between each adjacent jumper 

wires to ensure that a short was not unintentionally created while securing the jumper 

wires to the PCB.  Also, repeating the validation tests at the other extremity of the jumper 

wires for the GND and TX ports as described in section 2.3.2 will eliminate the 

probability of communication failure due to an imperfect connection between the jumper 

wire and the header pad. 

((((((((((((((((((((((((((((((((((((((((((((((((((((((((
6(https://hackingecibfocusv2fubirevb.wordpress.com/2012/08/13/aLsolderLfreeLuartLconnection/(
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Figure 6.  Physical connections to serial port headers 

2.4. Configuring the terminal console and connecting to the 
embedded device 

2.4.1. Configuring minicom 
Now that the devices are physically connected, it is time to configure minicom to 

be able to read the data being transmitted by the embedded device. The very first step is 

to enumerate the serial ports available on the incident handler’s computer using the 

command dmesg | grep tty.  In the example below, we can see the computer has both a 

standard serial port (ttyS0) and a USB-to-Serial Adapter (ttyUSB0) available.   

root@kali:~# dmesg | grep tty 
[0.000000] console [tty0] enabled 
[1.218697] 00:06: ttyS0 at I/O 0x3f8 (irq = 4, base_baud = 115200) is a 16550A 
[9.672478] usb 3-2: pl2303 converter now attached to ttyUSB0 

Figure 7.  Kali Terminal Window: Command to list available serial connectors 

Next, we are ready to execute minicom and configure it to use the desired serial 

port.  To do this, enter the command “minicom -s“ in the terminal window to start the 

application and follow these steps once the minicom application is running:  

1. Scroll down to the “Serial port setup” sub-menu item and press ENTER; 
2. When the “Serial port setup” menu is displayed, press B to edit the Serial 

device; 
3. Replace the serial device name with the one desired (/dev/ttyS0, 

/dev/ttyUSB0, etc…); and, 
4. Turn off all Flow Control features using the letters F and G. 

The next step is to configure the communication parameters.  Ideally, the 

parameters will have been discovered while researching the device hardware 

specifications as suggested in section 2.1.2.  Otherwise, try 115,200 bps with 8N1 to 



Accessing(the(inaccessible:((Incident(investigation(in(a(world(of(embedded(devices! 16 
(

Eric(Jodoin((ejodoin@hotmail.com)( ( (

begin with.  While still in the “Serial port setup window”, press E to access the 

communication parameter menu.  Enter the desired parameters and exit the menus by 

pressing ENTER until you return to the “configuration menu”.  Then, it is highly 

recommended to save the configuration using the menu item “Save setup as dfl”.  This 

will ensure that any changes made will persist across application restarts and system 

reboots.  Finally, exit the configuration menu and return to the minicom console. 

2.4.2. Establishing and troubleshooting the connection 
The incident handler’s system is now ready and listening to the selected serial 

port. Powering up the embedded device will initiate the boot process, and soon after, data 

should be pushed on the screen in the minicom terminal console. If there is no data, it is 

likely due to one of the following issues listed in decreasing order of likelihood: 

Problem( Troubleshooting(approach(
Wrong serial device (ttyS0, 
ttyUSB0) selected in minicom 

1. Reconfirm serial port name and availability 
using dmesg | grep tty command. 

2. Verify minicom “serial port setup”. 
 

Incorrect communication 
parameters 

1. Research device on the Internet. 
2. Sequentially try different parameters as 

described in section 2.4.3. 
 

Faulty wire or connection 
between the devices (i.e. cold 
solder) 

1. Verify all wires are securely fastened.  
2. Conduct connectivity test on all cables and 

wires. 
3. Revalidate the TX and GND wires as described 

in section 2.3.2 at the far end of the cable 
connected to the embedded device. 
 

Port headers on embedded 
device not a serial connection 

1. Redo the steps used to locate serial port headers. 
2. Research device on Internet for information on 

locating device’s serial port headers. 
 

Serial port on embedded device 
disabled at the hardware level 
(practically unheard of as of 
this writing) 
 

1. Accessing the device through this approach will 
not work. Investigate other methods of accessing 
the OS and data such as telnet or ssh. 

Figure 8.  Serial connection troubleshooting scenarios. 

If there is data displayed but it is garbled, then the embedded device is 

transmitting data that is being successfully received by the incident handler’s computer.  
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However, either the communication parameters are set incorrectly or one of the jumper 

wire connections is faulty, resulting in intermittent communications.  Following the 

relevant troubleshooting scenario laid out in Figure 8 will help resolve the issue. 

2.4.3. Communication parameters discovery 
If incorrect communication parameters is the suspected cause as to why minicom 

is not receiving the embedded device data output, then the only definitive way to find the 

correct parameters is to try each of them one after the other until meaningful data appears 

or all possible permutations have been exhausted.  Although this will be a time 

consuming task, it is possible to increase the odds of finding the correct communication 

parameters quickly by following a few simple guidelines. 

First of all, always start by using “8N1” for the data length, parity bits and stop 

bits parameters.  Only change one of these at the time and only after having exhausted all 

possible speeds first.  Second, begin with 115200 bps and then try 9600 bps and 38400 

bps as these are by far the most common speed parameters.  If unsuccessful, try all other 

possible speed starting with the fastest:  57600, 19200, 14400, 7200, 4800, 2400, 1800, 

600, and finally 300 bps. 

Also, it is best to power off the embedded device between each attempt as it is 

much more likely to transmit large bursts of data while it goes through its boot-up 

sequence.  Finally, it is best to exit minicom after each attempt and start is back up with 

the command: minicom –s.  This will bring up the configuration menu and allow 

immediate access the “Serial port setup” sub-menu to alter the communication 

parameters following the steps described earlier in section 2.4.1.  

2.5. Terminal console interaction 
Eventually, the embedded device will boot and the forensic analyst’s computer 

will begin receiving data that it will display on the minicom terminal console.  This is 

where a creative and resourceful incident handler will shine.  Although there will be 

similarities between embedded systems, not all systems will immediately provide a 

terminal console with root access.  Some research and analysis of the embedded device 

data output, along with a fair amount of trial and error, will likely be required to coax the 

device into relinquishing its secrets.   
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At this point, it is best to power off the embedded device, record the 

communication parameters and exit minicom.  During the boot up process, a lot of 

information will quickly scroll through the terminal console; too much data in fact for 

anyone to comprehend in a single passing glance.  To ensure that no invaluable piece of 

information goes unnoticed, it is best to restart minicom with the command line switch “-

C” followed by a file name.  This will ensure that all input and output are immediately 

saved to file for later analysis. 

For the purpose of this paper, a refurbished Samsung Blu-ray Player, model BD-

F5700, was procured online for $40 USD and used as the test system.  All examples are 

drawn from the capture of this Blu-ray player boot-up output and responses to commands 

entered from the incident handler’s computer. 

2.5.1. Initial data analysis 
Once minicom is running and is adequately configured to accept incoming data, it 

is time to turn on the embedded device.  It will initialize and begin the boot process as 

explained earlier in section 2.1.3.  After a quick pre-boot hardware initialization, the 

bootloader is loaded into memory and shortly after, the embedded Linux OS begins 

loading.   This is evident by the data strings typical of most of Linux’s boot sequence 

screens.  The data will continue flowing for up to a minute.  But eventually, it will either 

stop or as is the case with the test system, the same five lines will repeat at regular 

intervals.  This is a sure sign that the boot cycle has completed, and it is now time to dive 

into the capture file to tease out valuable nuggets of information.  Below is a sample 

output of the capture file from the test system. The notation “…” represents one or more 

lines of data that have been removed to declutter the example. 

preloader v.9773 
CFG = 0x1 
[0x00092000] [0x703fc000] 
... 
U-Boot 2009.08 (Jul 02 2014 - 10:57:04) 
 
NXP B.V. - MT85XX SoC with ARM1176JZF-S 
DRAM:  384 MB 
... 
Bootloader version 3847 
 
Hit any key to stop autoboot:  0  
## Booting kernel from Legacy Image at 0d9fffc0 ... 
... 
Starting kernel ... 
... 
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Linux version 2.6.35 (yoseph@BD-Server-2) (gcc version 4.5.1 (GCC) ) #1 PREEMPT Wed Jul 
2 10:56:36 WIT 2014 
... 
Kernel command line: root=/dev/ram0 rw initrd=0x16700000,0x001c50c5 console=ttyMT0 
kgdboc=ttyMT0 mem=384M mt85xx_reserve=367M,17M drvmem=227M,73M BL_Ver=3847  
... 
=== mt8551_init ===  
... 
<scrn_svr> app: home send msg =2...       <--- Start of repeating sequence, Boot process is over 
{IOM} key value: 0xbf000 
home_send_msg :i4_ret 0 
... 

Figure 9.  Test system boot process output summary 

By looking at this output, it is immediately evident that there are key pieces of 

information displayed.  First of all, the SoC Model number and ARM processor model 

number are clearly noticeable: “MT85XX SoC with ARM1176JZF-S”.  A quick google 

search reveals that the SoC is manufactured by MediaTek7, and the ARM processor 

technical reference manual8 is available online.  These two sources of information can 

reveal much regarding the internal workings of the embedded system, including which 

distributions of Linux are compatible.  Looking further down in the output, the exact 

model number of the SoC is revealed: “mt8551_init”. This information is invaluable to 

understand the various subcomponents that may be accessible. 

The test system also uses the “U-Boot 2009.08” bootloader.  Furthermore, it appears 

that it is possible to stop the bootloader before the OS is loaded into memory and 

executed (“Hit any key to stop autoboot:  0”).  This is obviously a very 

promising opportunity as it may allow the incident handler to interact with the system 

before the OS is booted.  This particular line of investigation will be explored further in 

the next section. 

Finally, the Linux version is displayed as the OS begins its boot process.  The Kernel 

command line is also displayed, hinting that it may be possible to alter it from the bootloader 

menu.  This possibility will be discussed in the next section.  The OS Boot process and 

terminal console interaction with the OS will be discussed in further detail in section 2.5.3. 

((((((((((((((((((((((((((((((((((((((((((((((((((((((((
7(http://www.mediatek.com/en/products/homeLentertainment/consumerLdvdLbluLray/mt8520/(
8(http://infocenter.arm.com/help/topic/com.arm.doc.ddi0301h/DDI0301H_arm1176jzfs_r0p7_trm.pdf(
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2.5.2. Bootloader analysis 
It is now time to take a closer look at the bootloader output.  As noted in the 

previous section, the test system bootloader is U-Boot 2009.08 version 3847. Das U-

Boot, as it is officially named, is a very versatile bootloader distributed under an open 

source license and that has become very popular in the embedded Linux community 

(Hallinan, 2010).  Das U-Boot has a very well documented online presence9, and a wise 

incident handler will quickly review the online documentation to get a sense of U-Boot’s 

capabilities. Of particular note is U-Boot’s ability to initialize and use the Ethernet port 

for IPv4 communications.  U-Boot is also able to read and write to a USB drive. 

Armed with some knowledge regarding the bootloader, it is time to reboot the 

embedded device.  But this time, the incident handler should hit the “ENTER” key 

repetitively in an attempt to halt the bootloader before it starts loading the OS.   This may 

take a few tries to succeed.  The resulting output will look something like this: 
preloader v.9773 
... 
U-Boot 2009.08 (Jul 02 2014 - 10:57:04) 
 

NXP B.V. - MT85XX SoC with ARM1176JZF-S 
DRAM:  384 MB 
NAND:  ARM2 00:00:02.057 [FAST_LOGO] read flash 
... 
u-boot adaptive mtd mechanism applied. 
[_i_find_part_tbl]Part tbl info passed from preloader 
[_i_find_part_tbl] version is 1!! 
[NAND][Read_NoSkipBad]u4DevId = 0, u8Offset = 0x680000, u4MemPtr = 0x1efdf53, u4MemLen = 0x1  
Bad block table found at page 131008, version 0x01 
[NAND][read_awm_flag]uart_flag=0xff 
... 
Using default environment 
 

In:    serial 
Out:   serial 
Err:   serial 
args_to_uboot: 
 head sig : 0xa0b0ead1 
 version : 1 
 boot type : 0 
 dram ch1 : 0x10000000 
 dram ch2 : 0x08000000 
 kern addr : 0x0d9fffc0 
 initrd addr : 0x16700000 
 initrd size : 0x001c50d0 
enable bim two way write. 
boot type:[0] 
Bootloader version 3847 
... 
 

Hit any key to stop autoboot:  0  
<<MTK:8551>> 
mt8551_base # 

Figure 10.  Interrupted U-Boot sequence leading to bootloader console prompt 

((((((((((((((((((((((((((((((((((((((((((((((((((((((((
9(http://www.denx.de/wiki/ULBoot/(
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The prompt “mt8551_base #” is the indicator that U-boot autoboot has been 

interrupted and it is now possible to interact through the terminal console with the 

bootloader.  There are several important pieces of information displayed, including the 

memory address of the embedded Linux OS and the fact that both normal and error 

output is being sent to the serial console.  Entering the command “help” will display a list 

of commands available to the incident handler. 

mt8551_base # help 
bdinfo  - print Board Info structure 
bootm   - boot application image from memory 
bootp   - boot image via network using BOOTP/TFTP protocol 
chpart  - change active partition 
fatinfo - print information about filesystem 
fatload - load binary file from a dos filesystem 
fatls   - list files in a directory (default /) 
mt85xx_boot- mt85xx_boot   - boot command for mt85xx platform 
nboot   - boot from NAND device 
ping    - send ICMP ECHO_REQUEST to network host 
printenv- print environment variables 
rarpboot- boot image via network using RARP/TFTP protocol 
setenv  - set environment variables 
tftpboot- boot image via network using TFTP protocol 
usbboot - usbboot - boot from USB device 

Figure 11.  Sample output from “help” command 

The actual output contains far more commands.  However, this paper will quickly 

highlight only a few of the most important ones.  First of all, U-Boot provides several 

mechanisms to load and execute a Linux OS image from a number of sources including 

the NAND non-volatile memory, a USB thumb drive, and even across the network.  This 

particular capability could be invaluable if a forensic investigator would wish to access 

the NAND memory using a custom built embedded Linux OS and then subsequently load 

the resident OS as a read-only partition for analysis.  Other alternatives can include 

uploading the embedded Linux OS to another location for analysis.  This can even be 

used to replace the existing embedded OS with a different or modified OS.  

The bootloader also provides commands to display more valuable information 

about the embedded Linux OS.  For example, the command “bdinfo” will display the 

boot parameters to be used as well as the device assigned IP address.  Whereas the 

commands “printenv” and “setenv” can be used to view and modify the embedded OS 

boot arguments. 
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mt8551_base # printenv 
bootcmd=mt85xx_boot nand 
autostart=yes 
verify=no 
bootdelay=0 
baudrate=115200 
ethaddr=00:0C:E7:00:00:00 
ipaddr=192.168.0.124 
gatewayip=192.168.0.1 
netmask=255.255.255.0 
loadaddr=0x2000000 
... 
stdin=serial 
stdout=serial 
stderr=serial 

mt8551_base # bdinfo 
arch_number = 0x000007D0 
env_t       = 0x00000000 
boot_params = 0x00000100 
DRAM bank   = 0x00000000 
-> start    = 0x00000000 
-> size     = 0x18000000 
ethaddr     = 00:0C:E7:00:00:00 
ip_addr     = 192.168.0.124 
baudrate    = 115200 bps 

 

bootargs=root=/dev/ram0 rw initrd=0x16700000,0x001c50c5 console=ttyMT0 kgdboc=ttyMT0 
mem=384M mt85xx_reserve=367M,17M drvmem=227M,73M BL_Ver=3847 

Figure 12.  U-Boot “printenv” and “bdinfo” outputs 

In this particular case, the boot command “mt85xx_boot nand” is easily 

identified.  As a result, it is possible to modify the Linux boot arguments to alter the 

behavior of the Embedded Linux at boot and then initiate the boot sequence.  U-Boot's 

capability to easily define, store, and use environment variables makes it a very powerful 

tool in this area (Schocher , 2011).   

This is but a quick overview of what can be done to the test system through the U-

Boot console.  An entire Gold paper could be written on the ways with which an incident 

handler could interact with an embedded system using only a bootloader such as U-Boot. 

2.5.3. Embedded Linux OS analysis 
Continuing on with the boot sequence, the OS begins to send line after line to the 

minicom terminal console.  This is where a good comprehension of the Linux 

environment will help the incident handler pick out invaluable data. 

## Booting kernel from Legacy Image at 0d9fffc0 ... 
   Image Name:    
   Image Type:   ARM Linux Kernel Image (uncompressed) 
   Data Size:    1528968 Bytes =  1.5 MB 
   Load Address: 0da00000 
   Entry Point:  0da00000 
   Loading Kernel Image ... OK 
OK 
 
Starting kernel ... 
 
Uncompressing Linux... done, booting the kernel. 
Linux version 2.6.35 (yoseph@BD-Server-2) (gcc version 4.5.1 (GCC) ) #1 PREEMPT Wed Jul 
2 10:56:36 WIT 2014 
... 
[kernel zone size]DMA: 61440KB, NORMAL: 304128KB, MOVABLE: 27648KB 
... 
Kernel command line: root=/dev/ram0 rw initrd=0x16700000,0x001c50c5 console=ttyMT0 
kgdboc=ttyMT0 mem=384M mt85xx_reserve=367M,17M drvmem=227M,73M BL_Ver=3847  
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... 
Memory: 384MB = 384MB total 
Memory: 291896k/291896k available, 101320k reserved, 0K highmem 
... 
NAND device: Manufacturer ID: 0x2c, Chip ID: 0xda (Micron NAND 256MiB 3,3V 8-bit) 
Creating 23 MTD partitions on "NAND 256MiB 3,3V 8-bit": 
0x000000000000-0x000000200000 : "boot_1" 
0x000000200000-0x000000400000 : "part_info_1" 
0x000000400000-0x000000600000 : "part_info_2" 
... 
x000001400000-0x000001600000 : "initrd_1" 
0x000001600000-0x00000aa00000 : "rootfs_normal_1" 
... 
0x00000c400000-0x00000f620000 : "ubi0" 
... 
hard sector size is 512 
devblksize is 4096 
... 
INIT: version 2.88 booting 
star: rx descriptor idx:10 forINIT: Entering runlevel: 5 
=rc5 Start= 
... 

Figure 13.  Embedded Linux boot sequence summary. 

First of all, the output displays the kernel command line arguments used.  It is 

particularly useful if the U-Boot “setenv” command was used as described in the 

previous section to verify that the modified argument(s) were successfully passed to the 

OS.  Afterward, the OS begins initializing the non-volatile memory and creates “MTD” 

partitions.   The Memory Technology Device (MTD) subsystem for Linux provides 

access to non-volatile memory storage, typically Flash devices (Woodhouse, n.d.). MTD 

provides the mechanisms for putting fully functional file systems into Flash, which can 

be read from as well as written to.  In addition to indicating the various partitions loaded, 

this data output also provides mapping to the flash memory address, in effect providing 

the information necessary to mount these partitions from an OS of the incident handler’s 

choice as suggested in the previous section.  

Finally, the output reveals the OS is entering “runlevel 5”.   This is a standard 

runlevel of a Linux system and by the looks of the follow-on output, it starts the 

initialization of the test system’s multimedia functionality as well as the on-screen 

display user interface.  This generates more output to the terminal console, which also 

yields interesting information.  

=rc5 Start= 
... 
_home_network_app_update 1 US 
Opera TV Store is enable 
Netflix is enable 
... 
flickr is enable 
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Facebook is enable 
... 
>>>>>>>>>>>>>>>a_network_init >>>>>>>>> 
COMM_FUNC_NETWORK>>>a_network_wlan_task_reg_cbk >>> 
[WIFI_MW][WPA] Default [Enter]c_net_wlan_wpa_reg_cbk :  
 
ap_scan=1 
<get wifi> Bssid is : ff:ff:ff:ff:ff:ff 
SSID:HOME-A4A7-2.4, SsidLen:13, eAssocCase:2, eAuthMode:17, e_AuthCipher:24 Priority:0  
wlan_favorite_AP is found  
KeyIsAscii:1 
KEY:ThisismySecretPassword! 
[WIFI_MW][WPA] Default [Enter]c_net_wlan_associate :  
... 
> GET /openapi/conf/version HTTP/1.1 
Host: www.samsungotn.net 
Accept: */* 
AppKey: bdf9c5fc-cd9d-11d3-95b9-100000040004-08b30ecb-f578-4ebe-b020-07dc6acaf82f 
IPAddr: 10.0.0.176 
Token: 85dd4d2b+_F5700_WW_664c7452149e+5e316cb3fde6b74e909ded320bb6b2791496d821 
... 
< HTTP/1.1 200 OK 
< Cache-Control: private 
< Content-Type: text/xml; charset=utf-8 
< Date: Wed, 01 Apr 2015 00:59:36 GMT 
< Connection: close 
<  
<UPG> upg_get_configuration_xml_file_cb 
 
======http notify status : 0 
=========== 
<UPG> upg_parse_configuration_xml_file 
<UPG> rsp ok 
upg_str_replace() before replace---str_src:P8HNDV:${SecKey} 
upg_str_replace() after replace---str_src:P8HNDV:ccc935ce-81b7-40b3-94e3-8f1bc65e315b-

4659c7ab-3861-4055-a7dc-ed6b4fa5d0cf 
<UPG> g_str_murl: http://www.samsungotn.net/openapi/tv/F5700_WW/BSP-F5700WWB-/m_notice 
<UPG> g_str_passwd: P8HNDV:ccc935ce-81b7-40b3-94e3-8f1bc65e315b-4659c7ab-3861-4055-a7dc-ed6b4fa5d0cf 
<UPG> upg_get_pdl_xml_file 
> GET /openapi/tv/F5700_WW/BSP-F5700WWB-/m_notice HTTP/1.1 
Host: www.samsungotn.net 
Accept: */* 
DUID: BDCL6GDVRUQMM 

Figure 14.  Sample Embedded Linux runlevel 5 console output 

Of particular interest is the fact that there are 13 applications installed and 

running.  This includes the likes of Netflix, Pandora and Twitter.  Any one of which 

could be a likely vector of infection if the incident handler is investigating the suspected 

presence of malware.  Even more interesting is the fact that the output lists all previously 

associated wireless access point including the password keys in the clear!  Finally, the 

output begins displaying HTTP traffic with Samsung servers for the purpose of verifying 

if the firmware is up to date.  This appears to require the use of password strings that are 

again, displayed in the clear.  This is interesting because an attacker, if successful with 

DNS redirection, may be able to replace the embedded device firmware with code of his 

choosing.  This is definitively something the incident handler will want to investigate.  Or 

use himself as an alternate method to inject a firmware of his own. 
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At some point, the outpouring of data to the terminal console will stop.  In many 

instances, this is where the incident handler finds himself face to face with a Linux shell 

with root privileges. If this is the case, then he can immediately begin gathering 

information in the same way he would with any Linux PC.  However, as is the case with 

the current test system, the developers may have programmed in a custom shell to 

facilitate their needs but also constrains access to some degree.  In such cases, the 

incident handler will have to experiment and see what can be done to elevate his access 

privileges.  Or at least, he would have to collect the information he needs through the 

custom shell.  With the test system, it was possible to invoke a password prompt by 

sending a CTRL-C command to the system.  Simply pressing ENTER returned what 

appeared to be a list of available commands with a short description. 

Command> [CTRL-C] 
 
01/01/2010 00:16:00 * 
Password:  
 
Access denied! 
 
Oops! you are having a trouble, try again... 
 
Command> [ENTER] 
 
[Help] 
basic(b):               Basic 
mw:                     Middleware 
mmw:                    Multimedia Middleware 
mtktool(0):             MTK tool 
setbaudrate(setbr):     Set uart baudrate 
 
Command>mw 
[Help] 
mkfs:                   FAT16 Format 
mount:                  Mount a filesystem 
umount:                 Unmount a filesystem 
dir:                    List files on specified directory 
... 

Figure 15.  Embedded Linux custom shell sample 

It may be possible to get past the password prompt though simple password 

guessing.  Also, a dictionary attack against the password prompt using minicom’s 

“runscript” script interpreter could be attempted. On the other hand, the commands 

available through the custom shell may be able to yield most if not all of the information 

sought by the incident handler.  The best approach to investigate such a custom shell is to 

build a mind map as shown in Appendix A.  Then, the incident handler could develop a 

meticulous plan to investigate the most promising commands. 



Accessing(the(inaccessible:((Incident(investigation(in(a(world(of(embedded(devices! 26 
(

Eric(Jodoin((ejodoin@hotmail.com)( ( (

A thorough analysis of the test system custom shell is beyond the scope of this 

paper.  However, two lines of investigations will be briefly discussed to demonstrate the 

potential of this approach.  First off, a close look at the “ave_tcp” sub-command reveals 

numerous networking tools.  This includes tools to display the device IP address 

(dhcpc_get_info(ip_info).  It also includes tools to resolve IPs and ping hosts on the 

network (hostname(hn), dns_lookup(dns_lk), ping(p), pinghostbyname(p_host)).  

And most interestingly, it also provides the mean of enabling a telnet daemon on the 

embedded device using the command invoke_telnetd(td).   Having executed this 

command, the test system indeed had a telnet daemon listening and it was possible to 

connect to it from the incident handler PC using PuTTY.  Unfortunately, the console 

demanded a login name and password before allowing any further access. 

The custom shell also provided a very elaborate set of file management features 

including the ability to format a partition, mount and unmount partitions, copy and compare 

files, and much more.  But perhaps the most interesting features are the abilities to list 

directory contents and read files.  These two commands alone enable the incident handler to 

conduct a complete reconnaissance of the file system looking for data of interest.  Figure 16 

and figure 17 provides directory listings of some of the more interesting folders. 

Command>mw.fm.dir / 
 
. 
.. 
(null) 
var 
usr 
tmp 
sys 
sbin 
res 
proc 
plugins 
mnt 
misc 
lib 
init 
etc 
cust_part_1 
cpsm 
bin 
acfg 
root 
dev 
 

Command>mw.fm.dir /etc 
 
. 
.. 
hosts 
resolv.conf 
init.d 
Wireless 
wifi.script 
nsswitch.conf 
fstab 
inittab 
protocols 
host.conf 
passwd 
hostname 
group 
mtab 
services 
DfbkeyMapToQtkey 
inetd.conf 

 

Figure 16.  Directory listings using the command “dir” 

(
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Command>mw.fm.dir /etc/init.d 
 
. 
.. 
upg_micro_be.sh 
upg_2.sh 
upg_1.sh 
rc.fast_shutdown 
upg_prog 
mtd_init.sh 
upg_prog.sh 
usb_init.sh 
rc0 
rc.shutdown 
mtd_ubi1_init.sh 
rc.standby 
rc5 
rc.fast_reboot 
rcSinit 
rc6 
rcS 
rc.reboot 

(

Command>mw.fm.dir /mnt 
 
. 
.. 
nand_06_0 
nand_03_0 
log 
ubi_boot 
rootfs_enc 
rootfs_normal 
rootfs_it 
rootfs_enc_it 

 
Command>mw.fm.dir /tmp 
 
. 
.. 
P2P_DEV_CONF 
WPA_CONF 
browser 
mtkcfg 
mtkpbmisc 
mtkpbsnd 
mtkpbctrl 
 

Figure 17.  More directory listings using the command “dir” 

First off, it is possible to gather more information on the system and the OS using 

the “read” command to access the various data elements in the “/proc” directory such as 

cpuinfo, version and mounts.  However, the output is in hexadecimal.  Therefore, some 

conversion will be required to read the output.  Thankfully, this can be easily remedied 

using RapidTables.com Hex to ASCII converter10.  It is also possible to read and even 

modify runlevel scripts.  Although there is no built-in text editor, it is still possible to edit or 

even replace the script using the “cp” command to overwrite the file.  Finally, Figure 17 

shows that the file “/etc/passwd” is listed but unfortunately, the file “/etc/shadow” is 

missing.  This could be a sign that the custom console is running with restricted privileges.  

Nevertheless, it is worthwhile to look at the “/etc/passwd” file to see what user accounts are 

available. Figure 18 below demonstrates the command to display the “/etc/passwd” file and 

the resulting output conversion into ASCII. 

 

 
 

((((((((((((((((((((((((((((((((((((((((((((((((((((((((
10(http://www.rapidtables.com/convert/number/hexLtoLascii.htm(
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Command>mw.fm.read /etc/passwd 0 0 1000 0 
 
read file</etc/passwd>, from: 0, offset: 0, cnt: 1000, w/wo cache: 0 
/etc/passwd size is 66 bytes 
/etc/passwd blk size is 4096  
/etc/passwd blk cnt is 8  
ui4_read_cnt: 66 
00000000h : 72 6F 6F 74 3A 24 31 24 42 4A 4C 51 39 6E 34 4E 
00000010h : 24 32 63 43 6C 47 2E 7A 54 78 78 53 5A 33 54 6D 
00000020h : 4A 72 45 70 48 4C 2E 3A 30 3A 30 3A 72 6F 6F 74 
00000030h : 2C 2C 2C 3A 2F 72 6F 6F 74 3A 2F 62 69 6E 2F 73 
00000040h : 68 0A 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

 
Figure 18.  /etc/passwd read from custom shell and converted into ASCII 

The result is a pleasant surprise.  The file not only contains a single username.  

Which suggests the custom shell is indeed running with root privileges.  But it also contains 

the hashed password.  Yet another avenue of analysis where the incident handler may 

choose to run a password cracking tool such as hashcat11 to conduct a dictionary attack or 

bruteforce the password and gain root console access via the “CTRL-C” input directly at 

the serial console or thought the telnet console discovered a few paragraphs earlier. 

 

 

 

((((((((((((((((((((((((((((((((((((((((((((((((((((((((
11(http://hashcat.net/oclhashcat/(
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3. Conclusion 
With the rapidly growing number of embedded devices found virtually everywhere, 

and recent indications of such devices having been compromised and some even used in 

botnets, it is only a matter of time before one of them becomes a key link in your incident 

investigation.  However, an embedded device does not need to be thought of as an 

insurmountable obstacle from which evidence collection is impossible.  With a basic 

appreciation of embedded systems architecture, a decent understanding of the boot process, 

and a good grasp of Linux, it is possible to access key files located on embedded systems 

that can potentially hold invaluable evidence for the investigation. 

The serial port is one of the oldest technologies available in embedded systems today.  

Because of its simplicity and ease of use, it is the interface of choice for system developers, 

allowing them to easily read messages from and interact with the system during boot and normal 

operations.  As a result, they can also be used by an incident handler to access the inner workings 

of an embedded system.  But, serial ports have gone through some improvements over the years 

to better suit the needs of embedded systems.  Therefore,  not only is it important to correctly 

identify the serial port headers on a PCB, but the incident handler must also be able to determine 

the voltage used to avoid damaging the embedded device or the PC used to connect to it. 

Once physically connected, it becomes possible to interact with the system bootloader 

to image, copy, replace, or alter the embedded Linux OS and/or non-volatile file storage.  At 

the very least, access to the bootloader permits the alteration of the boot parameters in a 

manner favorable to the incident handler.  Also, many embedded devices serial console will 

immediately present a root shell.  Others will offer a shell with limited capabilities.  However, 

as demonstrated in this paper, even with a limited shell it is still possible to access the most 

critical areas of the file systems up to and including the “passwd” file. 

In conclusion, this research project demonstrates an overview of the potential actions 

an incident handler may take when investigating an embedded system OS.  In practice, the 

extent of the investigation is really limited by the breath of the handler’s experience and his 

imagination.  All it really takes to succeed is a determined incident handler with a sound 

understanding of the technologies involved, patience, an ability to think critically, and a 

structured approach for the door to the inner workings of embedded systems to be opened.  
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