
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

 [August 2013]

An Approach to Detect Malware Call-
Home Activit ies

GIAC (GCIH) Gold Certification

Author: Tyler (Tianqiang) Cui, tianqiang.cui@gmail.com
Advisor: Joel Esler

Accepted: December 16th, 2013

Abstract
It is very common for active malware to call home, either to fetch updates
and instructions or to send back stolen information. In an internal
network where web access to the Internet must go through a proxy, the
traffic that doesn't pass through the proxy and by default is dropped by
the gateway firewall could be valuable to detect malware call-home
activities. This paper describes an approach to detect such malware call-
home activities by redirecting the otherwise dropped traffic to a sinkhole
server in a proxy environment.

An Approach to Detect Malware Call-Home Activities 2

Tyler Cui, tianqiang.cui@gmail.com

1. Introduction
In the internal network of a large organization, there may be a number of security

measures or products in place, such as anti-virus, security patch management, Intrusion

Prevention Systems (IPS), Firewalls, etc., and there is still some malware that goes

undetected.

One of the activities that malware will conduct is “call-home”, to either fetch

updates and instructions from the remote Command and Control (C&C) servers, or send

back stolen information. It is challenging but also may be fruitful to proactively detect

these malware call-home activities.

This paper describes an approach to detect certain malware call-home activities

by redirecting their traffic otherwise dropped by a gateway firewall to a sinkhole server

for analysis in a proxy environment.

1.1. Background
In internal networks that have relatively strict access controls, desktop computers

(workstations, laptops, etc.) always have to go through web proxies to access the Internet,

and traffic going to the Internet directly from desktops usually is not allowed.

At the same time, though increasingly more malware are becoming proxy-aware,

there are still a big percentage of malware are not proxy-aware.

What will happen is, many non proxy-aware pieces of malware will attempt to

communicate to C&C servers on the Internet directly and will then be blocked by the

gateway firewall.

An approach to detect malware call-home activities 3

Tyler Cui, tianqiang.cui@gmail.com

Figure 1-1 Desktops outgoing traffic

As illustrated in Figure 1-1, due to non proxy-aware packets (TCP SYN, or UDP)

are blocked by the gateway firewall, the attempted conversations between the desktops

and the peers on the Internet will never be established.

1.2. Opportunity for malware detection
The traffic being blocked by the firewall could be a valuable data source for

malware call-home detection. The ratio of malware call-home activities among the traffic

being blocked by the firewall could be much higher than the one among the traffic

passing through proxy.

1.1.1. Firewall log review
By reviewing the firewall logs, it should be very helpful for detecting malware

call-home activities on the internal network. For example, by checking:

· The IP addresses attempted to talk to malicious IP addresses on the Internet

An Approach to Detect Malware Call-Home Activities 4

Tyler Cui, tianqiang.cui@gmail.com

· The common ports used by malware for call-home activities, e.g. HTTP, FTP,
SMTP, and IRC.

1.1.2. Requirement for deeper insight
It may still be hard to tell whether some traffic is malicious just by reviewing

firewall logs. As illustrated in Figure 1-1, due to the traffic being blocked by the firewall

(e.g. for TCP protocol, the connections are never established), we could not know what

requests the desktops attempt to send to the Internet.

If we could go one step further (i.e. to forward the traffic otherwise dropped by

the firewall to a sinkhole server, listen on the corresponding ports, interact with the

incoming requests, and record the detail requests), it might give us deeper insight into the

traffic being blocked by firewall, and potentially it could be very helpful for security

incident monitoring and response:

· The data can be analyzed to proactively detect malware.

· The data can be used for investigation when there is a malware incident.
For this purpose, some research and test have been done for this approach.

1.3. Scope
The purpose of the test was just to verify that the approach will work as expected,

and to explore how much valuable information the approach could provide for malware

monitoring and investigation, e.g. picking up the abnormal behaviors, and giving enough

detail information of the abnormal behaviors for further analysis. Thus this paper will not

go further into the malware analysis area for the malware being tested.

2. Test Environment

1.1. List of systems
In this test, a network was set up in VMware environment, and the following

systems were used:

An approach to detect malware call-home activities 5

Tyler Cui, tianqiang.cui@gmail.com

1.2. Topology diagram
The topology of the test environment is shown as Figure 2-1:

Figure 2-1 Desktops outgoing traffic being redirected

In the scenario the malware on the desktop is not proxy-aware, when it calls home

to the malicious IP address, h.h.h.h on the Internet, the traffic will reach the firewall

directly. When the firewall receives the traffic, since it is not coming from the proxy, the

firewall will do a Destination NAT, and change the destination IP address to the log

An Approach to Detect Malware Call-Home Activities 6

Tyler Cui, tianqiang.cui@gmail.com

server, 10.0.0.100. The desktop is not aware of the translation, so the conversation will be

established successfully with the log server instead of the malicious IP address on the

Internet.

1.3. Configuration

1.1.1. Firewall configuration

There needs to be a firewall rule to forward the traffic of interest to a log server.

This can be achieved with the features like so-called “Destination NAT”, or “Port

Forwarding” on a Checkpoint firewall.

Ideally, the Port Forwarding rule should be the second to last rule, just above the

last default rule, “Deny all”.

The figure 2-2 demonstrates the rule sets that worked as expected in this test:

Figure 2-2 Firewall rules added

The rule No. 5 was added just above the last rule, “Deny All”, to forward the

otherwise dropped traffic of FTP, SMTP, HTTP, HTTPS and IRC (TCP 6667) to the

corresponding ports on the log server. If you use the default implicit “Deny All” rule and

don’t have an explicit “Deny All” rule at the end of the rule sets, then this rule should be

the last rule on the rule sets.

An approach to detect malware call-home activities 7

Tyler Cui, tianqiang.cui@gmail.com

On a Checkpoint firewall, the feature, Port Forwarding was used to do the traffic

forwarding (Destination NAT). For instance, the settings of the service, “http_mapped” is

shown as below, it forwards all the traffic with destination port 80 to port 80 of the log

server, 10.0.0.100:

Figure 2-3 Port Forwarding on Checkpoint

Similar features should also be supported by other mainstream firewalls.

1.1.2. Log server configuration
There will need to be daemons listening on the log server on each of the

corresponding ports, log the requests, and even to interact with the clients for some

protocols.

The logging functions need to log as much information as possible, at least the

ones of interest as below:

An Approach to Detect Malware Call-Home Activities 8

Tyler Cui, tianqiang.cui@gmail.com

· Time stamp

· Source IP Address

· Source Port

· Original Destination IP/Hostname (this is only available for HTTP/HTTPS
protocol)

· Original Destination Port (remain unchanged)

· The payload

The original destination IP address is changed by the firewall when being

forwarded to the log server. For HTTP/HTTPS traffic, luckily the “Original Destination

IP/Hostname” is available on their “Host” header. But for other protocols like FTP,

SMTP, IRC, etc., there is no such information available. To find out the original

destination IP address for those protocols, we might have to correlate with the firewall

NAT logs by the timestamp, source IP and source Port.

In this test Apache with the ModSecurity module was used to collect logs for port

80 and port 443, and socat (dest-unreach.org) and Bash scripts were used to collect logs

for port 21, 25 and 6777. For detailed information, refer to Section 3.

1.1.3. Scripts to parse logs collected
For a network with thousands or even tens of thousands of desktops, the volume

of the logs for just the HTTP protocol may be substantial because some legitimate

applications may not be proxy-aware. And usually it is necessary to use scripts to

automate the analysis process. In this test Bash and Perl scripts were used to check the

suspicious requests on port 80 and 443, which potentially initiated by malware. The

scripts support whitelist feature, for example, it could handle usually trusted networks

like “microsoft.com” and “google.com”.

If there is strict access control in place, i.e. only allowed to access the Internet

through a proxy, there shouldn’t be too much traffic logged for protocols like FTP, SMTP

and IRC, and it may be practical to review those requests by just reading them one by

one. So there were no scripts used for these protocols in the test.

An approach to detect malware call-home activities 9

Tyler Cui, tianqiang.cui@gmail.com

3. Test results

1.1. HTTP/HTTPS

1.1.1. Service listening
As mentioned previously, there was an Apache server running on the log server

and listening on ports 80 and 443. The open source Web Application Firewall,

“ModSecurity” was used to collect the logs, including request header and request body

(for POST request).

When visiting the Internet from the desktops through the proxy, everything

worked well.

If the web traffic was not sent through a proxy, all the requests would be

redirected to a page, index.php on the log server by URL rewriting as below:

root@log-server:/var/www# pwd
/var/www
root@log-server:/var/www# cat .htaccess
RewriteEngine on
RewriteRule ^.*$ index.php [L]

The page index.php (refer to Appendix 1.) was used to display alert information.

For instance, if a new employee was not aware of the proxy and attempted to connect to

any websites on the Internet directly, message below would be displayed on the browser

being used:

Figure 3-1 HTTP/HTTPS alert to users

Then a human user would know his browser configuration was wrong, but a

malicious piece of software would not be aware.

1.1.2. Samples tested
For testing purpose, a few malware samples were downloaded from the Internet

(Inside Your Botnet & Malwr) and run on the Windows XP workstation.

An Approach to Detect Malware Call-Home Activities 10

Tyler Cui, tianqiang.cui@gmail.com

1.1.3. Test result

1.1.1.1. Log entry example
A typical entry of the logs captured is below, it includes useful information such

as timestamp, source IP, source Port, requested URL, Host, User-Agent, Cookie, and

POST data body.

Figure 3-2 Detail HTTP log entry

In the example above, the client attempted to talk to google.com, which is trusted

and could be whitelisted.

1.1.1.2. Host header analysis
The Host request-header field specifies the Internet host and port number of the

resource being requested, as obtained from the original URI given by the user or referring

resource (rfc2616). After extracting the Host header from the logs and sorting by number

of hits, we could see some of the hosts requested were very suspicious:

· Hosts with high number of hits, which could be malware behavior

· Hosts use IP addresses instead of a domain names

· Hosts with very long and meaningless domain names
In the example below, the hosts highlighted could be identified as suspicious

quickly, and identified as traffic generated by malware.

An approach to detect malware call-home activities 11

Tyler Cui, tianqiang.cui@gmail.com

Figure 3-3 Host names sorted by number of hits

1.1.1.3. User-Agent header analysis
The User-Agent request-header field contains information about the user agent

originating the request. This is for statistical purposes, the tracing of protocol violations,

and automated recognition of user agents for the sake of tailoring responses to avoid

particular user agent limitations (rfc2616). User-Agent header could also be very helpful

to detect malware. In the example below, after extracting the “User-Agent” header from

the logs and sorting by number of hits, we could see some of the User-Agents as

highlighted were apparently suspicious:

· There were User-Agents for 64-bit Linux, or Opera, which didn’t exist in the
test environment.

· There was User-Agent “Mozilla/4.0”.

By examining the detail logs further, it’s confirmed they were all generated by

malware.

An Approach to Detect Malware Call-Home Activities 12

Tyler Cui, tianqiang.cui@gmail.com

Figure 3-4 User agents sorted by number of hits

Further work could be done to detect suspicious User-Agents that may indicate

malware behavior, for example, the User-Agent shown on the logs could be further

compared with:

· All known User-Agents. (In this example, “Mozilla/4.0” could be detected)

· All User-Agents showed up on the proxy logs of an organization. (Then in this
example, the malware could be detected if the corporate didn't have 64-bit
Linux as end user desktops.)

1.1.1.4. Requested URL analysis
Reviewing the URL requested could also be very helpful, especially the ones that:

· With high number of hits

· With sensitive names, such as gate.php, cfg.bin (always used by Zeus)

Figure 3-5 URLs sorted by number of hits

In the example above, all the URLs highlighted were suspicious. If we take the

URL “gate.php” as an example and look into the detail HTTP logs, we can see the

request was suspicious because it attempted to talk to a suspicious domain,

acu.rhetoricalpoems.asia.

An approach to detect malware call-home activities 13

Tyler Cui, tianqiang.cui@gmail.com

Figure 3-6 Detail log of suspicious URL gate.php

1.1.1.5. Abnormal request analysis
Some malware attempts to go through the firewall by changing their destination

port to 80 or 443, but they don’t actually use HTTP protocol that is normally found on

those ports. This can be detected by checking if the traffic follows the convention of the

normal HTTP protocol. A script abnormal_scan.pl (refer to Appendix 9.) has been

written for this purpose.

Figure 3-7 Abnormal requests sorted by number of hits

In the example above, the source IP, 192.168.0.142 attempted to send some traffic

through port 80 and 443, but the traffic wasn’t HTTP. The following information could

be found in the detail logs, which was highly suspicious:

Figure 3-8 Detail log of an abnormal request

An Approach to Detect Malware Call-Home Activities 14

Tyler Cui, tianqiang.cui@gmail.com

In this case the original destination IP address was unknown in the log. However,

it could be find out by correlating the firewall logs with fields including timestamp,

source IP, and source Port.

Figure 3-9 Correlation with firewall NAT logs

Then we could investigate the original destination IP address further by other

measures (such as Google search, Whois lookup, passive DNS, etc.) to identify if it was

malicious.

1.2. FTP
In an internal network, machines with wrong FTP servers configured or users

unaware of the firewall policies may attempt to talk to FTP servers on the Internet

directly. Some malware or key loggers may upload stolen information to the Internet

through FTP protocol. So in this test FTP traffic to TCP port 21 was captured.

1.1.1. Services listening
Socat, a more complex variant of netcat was running on the log server and

listening on port 21, and a Shell script, ftp.sh (customized based on Maik Ellinger’s FTP

script for Honeyd project, refer to Appendix 2) was used to simulate FTP services and to

log the incoming traffic.

socat TCP-L:21,reuseaddr,pktinfo,fork EXEC:"ftp.sh"

1.1.2. Samples tested
To gain deeper insight into the outgoing FTP traffic otherwise dropped by

firewall, in this test, the Relytec Key Logger software was tested, which can send stolen

information at specified intervals.

An approach to detect malware call-home activities 15

Tyler Cui, tianqiang.cui@gmail.com

Figure 3-10 Relytec Key Logger FTP Configuration

1.1.3. Test result
The script ftp.sh working with socat successfully intercepted the FTP

communication initiated from the key logger, and collected useful information as below:

· Time stamp

· Username to login

· Password to login

· Source IP (the compromised machine)

· Source Port

· Name of the file the key logger attempted to upload

Figure 3-11 FTP logs

The original destination IP address of the FTP server was not available in the log,

because it was changed by the NAT. However, this could be found by correlating with

firewall logs by time stamp, source IP, and source Port.

An Approach to Detect Malware Call-Home Activities 16

Tyler Cui, tianqiang.cui@gmail.com

1.3. SMTP
In an internal network, machines with wrong SMTP servers configured may

attempt to talk to SMTP servers on the Internet directly. While some malware and key

logger may also use SMTP to either spread SPAM or send stolen information to specified

mailbox. So in this test SMTP traffic to TCP port 25 was captured.

1.1.1. Services listening
Socat was also running on the log server and listening on port 25, and a Shell

script, smtp.sh (customized based on Maik Ellinger’s SMTP script for Honeyd project,

refer to Appendix 3) was used to simulate the SMTP service and to log the incoming

traffic.

socat TCP-L:25,reuseaddr,pktinfo,fork EXEC:"smtp.sh"

1.1.2. Samples tested
In this test, again, the Relytec Key Logger software was tested, which would send

stolen information at specified intervals.

Figure 3-12 Relytec Key Logger SMTP Configuration

An approach to detect malware call-home activities 17

Tyler Cui, tianqiang.cui@gmail.com

1.1.3. Test result
The script smtp.sh working with socat successfully intercepted the SMTP

communication initiated from the key logger, and collected useful information as below:

· Time stamp

· Source IP (the compromised machine)

· Source Port

· Sender of the email (Could be fake)

· Recipient of the email

· CC, BCC list of the email

· Subject of the email

Figure 3-13 SMTP logs

The information above should be helpful to identify if the email was suspicious or

not. The original destination IP address of the SMTP server was not available in the log,

because it was changed by the NAT. However, if necessary this could be found out by

correlating with firewall logs by time stamp, source IP, and source Port.

1.4. IRC
In an internal network that doesn’t allow outgoing IRC traffic, machines with IRC

clients installed may still attempt to talk to IRC servers on the Internet directly. At the

same time, it is still common for some malware to contact C&C servers on the Internet

through IRC protocol. So in this test IRC traffic to TCP port 6667 was captured.

1.1.1. Listening service
Socat was also set up on the log server to listen on port 6667, and a Shell script,

irc.sh (refer to Appendix 4) was used to log the incoming traffic.

socat TCP-L:6667,reuseaddr,pktinfo,fork EXEC:"irc.sh"

An Approach to Detect Malware Call-Home Activities 18

Tyler Cui, tianqiang.cui@gmail.com

1.1.2. Sample tested
For testing purposes, a few malware samples were downloaded from the Internet

and ran on the Windows XP workstation.

1.1.3. Test result

Figure 3-14 IRC logs

The information above was collected from the logs for common IRC ports, and

was helpful to try and identify if the traffic was suspicious or not.

The original destination IP address of the IRC server was not available in the log,

because it was changed by the NAT. However, if necessary, this could be found by

correlating with firewall logs by time stamp, source IP, and source Port.

4. Challenges
The test worked as expected and demonstrated potentially a new approach to

detect malware call-home activities. However, there are some challenges to be either

solved or considered for this approach.

1.1. Security consideration
The approach itself might introduce new security risk to the network, and they

should be considered and addressed before implementation.

1.1.1. Log server security
The scripts such as ftp.sh and smtp.sh that interact with the clients might have

potential vulnerabilities, e.g., shell injection vulnerabilities. So they should be carefully

reviewed to make sure they are secure.

1.1.2. Sensitive information disclosure
The log server will log some sensitive information if legitimate users connect to

the listening services due to misconfiguration, such as:

An approach to detect malware call-home activities 19

Tyler Cui, tianqiang.cui@gmail.com

· Sensitive information in POST data body

· FTP, SMTP, IRC credentials
The countermeasures below could be used to address the concern:

· Hardening the log server to restrict the access to the logs

· Replacing passwords captured with ******** on the logs

1.1.3. Reminder to users
This approach is intended to detect bot activities, especially bot activities that are

malicious. However, sometimes a human may also connect to the ports that the log

servers are listening on for some reason. It is necessary to pop up an alert stating that

his/her machine’s configuration may be wrong and it is advised to contact your

organization’s helpdesk.

1.2. Malware evolvement
Malware is evolving, and in the past a few years, some malware authors are

making it harder to tell if a request is legitimate or malicious by using similar

technologies like sinkhole. Malware authors may use a mechanism to bypass such an

approach as described above, for example:

· Make the malware be proxy-aware

· Don’t send useful information until the Command & Control server send
some identification information that the bot trusts

1.3. Limitations

1.1.1. Strict access control environment
There are also limitations for this approach. It is only useful in a network

environment with a strict access control via proxy. In a loose access control environment,

there is no proxy, and the end users can access any services on the Internet, this approach

is then useless.

Ideally, the approach is best used in a network environment with a proxy, as all or

most of the traffic from end users to the Internet must go through the proxy. And the

proxy cannot be a transparent proxy, otherwise the network devices responsible for port

An Approach to Detect Malware Call-Home Activities 20

Tyler Cui, tianqiang.cui@gmail.com

forwarding will forward all the outgoing web traffic to proxy, including the ones initiated

by malware, no matter it is proxy-aware or not.

1.1.2. Support for other protocols
The test didn’t consider other protocols such as UDP, or TCP ports other than 21,

25, 80, 443 and 6667. Those techniques could also be used by malware to call home and

were not included in the test. Further research should be done to detect malware call-

home activities using those techniques.

5. Conclusion
This approach forwards otherwise dropped traffic to a sinkhole server to detect

malware call-home activity in a proxy environment. It takes advantage of the fact that the

ratio of malicious traffic among the traffic dropped by the gateway firewall is usually

much higher than the one through proxy. Just like in a complex building an intruder has

much higher possibility to hit some prohibited area than an internal employee who are

familiar with the environment.

The test confirmed this approach worked as expected, and it could provide many

pieces of useful information to identify the traffic as suspicious or not. The test gives

more information and insight into the attempted outgoing requests for security incident

detection and response purpose. However there are still some challenges and limitations,

e.g. sometimes it is still hard to tell if a request is legitimate even if we could see it.

Though “modern malware is slowly becoming proxy aware” (Tom, 2011), there

are still a big percentage of malware that is not. If implemented appropriately, this

approach could be very helpful for an organization to catch malware call-home activities

on the network.

6. References
Ellinger, Maik. FTP (WU-FTPD) Honeypot-Script simulates a few functions of a old

WU-FTPD 2.6.0 Retrieved June 12, 2013, from Honeyd Web site:

http://www.honeyd.org/contrib.php

An approach to detect malware call-home activities 21

Tyler Cui, tianqiang.cui@gmail.com

Ellinger, Maik. SMTP (Sendmail) Honeypot-Script simulates a few functions of a

Sendmail 8.12.2 Server Retrieved June 12, 2013, from Honeyd Web site:

http://www.honeyd.org/contrib.php

ModSecurity. Logging. Retrieved from

http://www.modsecurity.org/documentation/modsecurity-apache/1.9.3/html-

multipage/07-logging.html

Dest-unreach.org. Socat: Multipurpose relay. Retrieved from http://www.dest-

unreach.org/socat/

Inside Your Botnet. Malware samples. Retrieved from http://www.exposedbotnets.com/

Malwr. Malware samples. Retrieved from https://malwr.com/

Tom, B (2011). Proxy Authentication. Retrieved from

http://www.digitalboundary.net/wp/?p=347

Greg, L. Bassett & Jeff, Boerio (2009). Getting Ahead of Malware. Retrieved from

http://www.intel.com.au/content/dam/doc/white-paper/intel-it-enterprise-security-

malware-paper.pdf

RFC2616. Hypertext Transfer Protocol -- HTTP/1.1. Retrieved from

http://www.w3.org/Protocols/rfc2616/rfc2616.html

Appendix: relevant scripts and files
1. index.php - The page that all requests will be redirected to and displays alert information:

<?php
echo "<h1>Sorry</h1>";
echo date("Y-m-d H:i:s") . " : ";
echo "Your browser config is not correct, please contact your system admin";
?>

An Approach to Detect Malware Call-Home Activities 22

Tyler Cui, tianqiang.cui@gmail.com

2. ftp.sh - The script that simulates FTP service to interact with clients and logs request

details:

#!/bin/bash

DATE=`date`
log=./ftp-$1.log
AUTH="no"
PASS="no"

echo "220 FTP server ready."
while read incmd parm1 parm2 parm3 parm4 parm5
do
 # remove control-characters
 incmd=`echo $incmd | sed s/[[:cntrl:]]//g`
 parm1=`echo $parm1 | sed s/[[:cntrl:]]//g`
 parm2=`echo $parm2 | sed s/[[:cntrl:]]//g`
 parm3=`echo $parm3 | sed s/[[:cntrl:]]//g`
 parm4=`echo $parm4 | sed s/[[:cntrl:]]//g`
 parm5=`echo $parm5 | sed s/[[:cntrl:]]//g`

 # convert to upper-case
 incmd_nocase=`echo $incmd | gawk '{print toupper($0);}'`

 if [$AUTH = "no"]
 then
 if ["$incmd_nocase" != "USER"]
 then
 if ["$incmd_nocase" != "QUIT"]
 then
 echo "530 Please login with USER and PASS."
 continue
 fi
 fi
 fi

 case $incmd_nocase in
 QUIT*)
 echo "221 Goodbye."
 exit 0;;
 SYST*)
 echo "215 UNIX Type: L8"
 ;;
 HELP*)
 echo "214-The following commands are recognized (* =>'s unimplemented)."
 echo " USER PORT STOR MSAM* RNTO NLST MKD CDUP"
 echo " PASS PASV APPE MRSQ* ABOR SITE XMKD XCUP"
 echo " ACCT* TYPE MLFL* MRCP* DELE SYST RMD STOU"
 echo " SMNT* STRU MAIL* ALLO CWD STAT XRMD SIZE"
 echo " REIN* MODE MSND* REST XCWD HELP PWD MDTM"
 echo " QUIT RETR MSOM* RNFR LIST NOOP XPWD"
 echo "214 Direct comments to ftp@$domain."
 ;;
 USER*)
 parm1_nocase=`echo $parm1 | gawk '{print toupper($0);}'`
 if ["$parm1_nocase" = "ANONYMOUS"]
 then

An approach to detect malware call-home activities 23

Tyler Cui, tianqiang.cui@gmail.com

 echo "331 Guest login ok, send your complete e-mail address as a password."
 AUTH="ANONYMOUS"
 else
 echo "331 Password required for $parm1"
 AUTH=$parm1
 fi
 ;;
 PASS*)
 PASS=$parm1
 if ["$AUTH" = "ANONYMOUS"]
 then
 echo "230-Hello User at $1"
 echo "230 Guest login ok, access restrictions apply."
 else
 if [! -z "$PASS"]

 then

 echo "230 Login successful."

 else

 echo "530 Login incorrect."
 fi
 fi
 ;;
 MKD*)
 # choose :
 echo "257 \"$parm1\" new directory created."
 #echo "550 $parm1: Permission denied."
 ;;
 CWD*)
 # choose :
 echo "250 CWD command successful."
 # echo "550 $parm1: No such file or directory."
 ;;
 NOOP*)
 echo "200 NOOP command successful."
 ;;
 PORT*)
 echo "200 PORT command successful."
 ;;
 TYPE*)
 echo "200 Type set to I/A."
 ;;
 PASV*)
 echo "227 Entering Passive Mode (10,0,0,100,100,53)"
 ;;
 ACCT*)
 echo "502 $incmd command not implemented."
 ;;
 SITE*)
 echo "200 command successful."
 ;;
 *)
 echo "500 '$incmd': command not understood."
 ;;
 esac
 thedate=`date +"%Y-%m-%d %H:%M:%S"`
 echo "$thedate $SOCAT_PEERADDR $SOCAT_PEERPORT $incmd $parm1 $parm2 $parm3 $parm4

$parm5" >> $log
done

An Approach to Detect Malware Call-Home Activities 24

Tyler Cui, tianqiang.cui@gmail.com

3. smtp.sh - The script that simulates SMTP service to interact with clients and logs request

details:

#!/bin/bash

DATE=`date`
host=`hostname`
domain=`dnsdomainname`
log=./smtp-$1.log
MAILFROM="err"
EHELO="no"
RCPTTO="err"
echo "220 ESMTP Sendmail"
while read incmd parm1 parm2 parm3 parm4 parm5
do

 # default to log commands
 log_cmd='yes'

 # remove control-characters
 incmd=`echo $incmd | sed s/[[:cntrl:]]//g`
 parm1=`echo $parm1 | sed s/[[:cntrl:]]//g`
 parm2=`echo $parm2 | sed s/[[:cntrl:]]//g`
 parm3=`echo $parm3 | sed s/[[:cntrl:]]//g`
 parm4=`echo $parm4 | sed s/[[:cntrl:]]//g`
 parm5=`echo $parm5 | sed s/[[:cntrl:]]//g`

 # convert to upper-case
 incmd_nocase=`echo $incmd | gawk '{print toupper($0);}'`
 #echo $incmd_nocase
 case $incmd_nocase in
 QUIT*)
 echo "220 2.0.0 closing connection"
 exit 0;;
 RSET*)
 echo "250 2.0.0 Reset state"
 ;;
 HELP*)
 echo "214-2.0.0 This is sendmail"
 echo "214-2.0.0 Topics:"
 echo "214-2.0.0 HELO EHLO MAIL RCPT DATA"
 echo "214-2.0.0 RSET NOOP QUIT HELP VRFY"
 echo "214-2.0.0 EXPN VERB ETRN DSN AUTH"
 echo "214-2.0.0 STARTTLS"
 echo "214-2.0.0 For more info use \"HELP <topic>\"."
 echo "214-2.0.0 To report bugs in the implementation send email to"
 echo "214-2.0.0 sendmail-bugs@sendmail.org."
 echo "214-2.0.0 For local information send email to Postmaster at your site."
 echo "214 2.0.0 End of HELP info"
 ;;
 HELO*)
 if [-n "$parm1"]
 then
 EHELO="ok"
 echo "250 Hello, pleased to meet you"
 else
 echo "501 5.0.0 HELO requires domain address"
 fi
 ;;

An approach to detect malware call-home activities 25

Tyler Cui, tianqiang.cui@gmail.com

 EHLO*)
 if [-n "$parm1"]
 then
 EHELO="ok"
 echo "250-excellent"
 echo "250-AUTH PLAIN LOGIN"
 echo "250 HELP"
 else
 echo "501 5.0.0 EHLO requires domain address"
 fi
 ;;
 MAIL*)
 haveFROM=`echo $parm1 | gawk '{print toupper($0);}'`
 if ["$haveFROM" == "FROM:"]
 then
 if [-n "$parm2"]
 then
 MAILFROM="ok"
 echo "250 2.1.0 $parm2 $parm3 $parm4... Sender ok"
 else
 echo "501 5.5.2 Syntax error in parameters scanning \"$parm2\""
 MAILFROM="err"
 fi
 else
 echo "501 5.5.2 Syntax error in parameters scanning \"\""
 fi
 ;;
 RCPT*)
 #echo $MAILFROM
 if ["$MAILFROM" == "ok"]
 then
 haveTO=`echo $parm1 | gawk '{print toupper($0);}'`
 if ["$haveTO" == "TO:"]
 then
 if [-n "$parm2"]
 then
 RCPTTO="ok"
 # echo "553 sorry, that domain isn't in my list of allowed rcpthosts (#6.7.1)"
 echo "250 2.1.0 $parm2 $parm3 $parm4... Recipient ok"
 else
 echo "501 5.5.2 Syntax error in parameters scanning \"\""
 RCPTTO="err"
 fi
 fi
 else
 echo "503 5.0.0 Need MAIL before RCPT"
 fi
 ;;
 STARTTLS*)
 echo "454 4.3.3 TLS not available after start"
 ;;
 NOOP*)
 echo "250 2.0.0 OK"
 ;;
 STARTTLS*)
 echo "454 4.3.3 TLS not available after start"
 ;;
 NOOP*)
 echo "250 2.0.0 OK"
 ;;
 DATA*)
 echo "354 OK"

An Approach to Detect Malware Call-Home Activities 26

Tyler Cui, tianqiang.cui@gmail.com

 ;;
 FROM*)
 ;;
 TO*)
 ;;
 SUBJECT*)
 ;;
 CC*)
 ;;
 BCC*)
 ;;
 AUTH*)
 echo "503 AUTH mechanism not available"
 ;;
 *)
 echo "500 5.5.1 Command unrecognized: \"$incmd\""
 log_cmd='no'
 ;;
 esac
 if [$log_cmd == 'yes']
 then
 thedate=`date +"%Y-%m-%d %H:%M:%S"`
 echo "$thedate $SOCAT_PEERADDR $SOCAT_PEERPORT $incmd $parm1 $parm2 $parm3

$parm4 $parm5" >> $log
 fi
done

4. irc.sh - The script that listens for IRC traffic and log request details:

#!/bin/bash

firstdate=`date +"%Y-%m-%d %H:%M:%S"`
printf "%s %s %s %s\n" "$firstdate" "$SOCAT_PEERADDR" "$SOCAT_PEERPORT" "TCP connection established"

>> irc.txt

while read line; do
 thedate=`date +"%Y-%m-%d %H:%M:%S"`
 printf "%s %s %s %s\n" "$thedate" "$SOCAT_PEERADDR" "$SOCAT_PEERPORT" "$line" >> irc.txt
done

5. audit.sh - The script to count and sort the fields of interest (Host, User-Agent, URL) of

HTTP/S logs:

#!/bin/bash
DIR='/var/log/apache2'

echo "Checking Host name..."
gawk '$1 ~ /^Host:/ {print $2}' $DIR/modsec_audit.log|sort|uniq -c|sort -rn > hostname.txt
./f.pl hostname.txt
echo "done"
echo ""

echo "Checking User Agent..."
gawk -F ': ' '$1 ~ /^User-Agent/ {print $2}' $DIR/modsec_audit.log|sort|uniq -c|sort -rn > useragent.txt
./f.pl useragent.txt
echo "done"
echo ""

An approach to detect malware call-home activities 27

Tyler Cui, tianqiang.cui@gmail.com

echo "Checking URL requested..."
gawk '$1 ~ /^GET|^POST/ {print $2}' $DIR/modsec_audit.log|sort|uniq -c|sort -rn > url.txt
./f.pl url.txt
echo "done"

6. f.pl - The script to filter out the items listed in the whitelist files:

#!/usr/bin/perl

use strict;

my $file = $ARGV[0];

open R, "< $file" or die $!;
my @result;
while (my $e = <R>) {
 if($e !~ /^#/ && length $e > 1) {
 push @result, $e;
 }
}
close R;

open(FIL, "< fil_${file}") or die $!;
while (my $f = <FIL>) {
 chomp $f;
 @result = grep (!/^\s+\d+\s+$f/, @result);
}
print "@result\n";
close(FIL);

7. fil_hostname.txt - The filter file that lists hostnames which could be whitelisted (Host

header):

syntax for hostname filter:
it’s strongly recommended to use “$” at the end of each entry..
*\.windowsupdate\.com$
.*\.ibm\.com$
.*\.google\.com$
.*\.msftncsi\.com$
.*\.hotmail\.com$
.*\.dell\.com$

8. fil_url.txt - The filter file that lists URLs which could be whitelisted (URL requested):

syntax for url filter:
the lines can not start with "^"; but if it is the end of line, "$" should be used.
\/msdownload\/update\/v3\/static\/trustedr\/en\/
\/favicon\.ico$
\/$
\/ncsi\.txt$

9. abnormal_scan.pl - The script to check if the request doesn’t follow HTTP protocol

#!/usr/bin/perl

An Approach to Detect Malware Call-Home Activities 28

Tyler Cui, tianqiang.cui@gmail.com

use strict;
use Switch;

my $dir = '/var/log/apache2';
my $sn;
my $flag_a;
my $flag_b;
my $flag_c;
my $client_ip;
my $remote_host;

open(AB, "> request_abnormal.txt") or die($!);
open(FILE, "< $dir/modsec_audit.log") or die($!);
foreach my $line (<FILE>) {
 chomp $line;
 if($line =~ /--(\w{8})-(\w)--/) {
 $sn = $1;
 switch($2) {
 case "A" { $flag_a = 'y'; $flag_b = ''; $flag_c = ''; }
 case "B" { $flag_a = ''; $flag_b = 'y'; $flag_c = ''; }
 case "C" { $flag_a = ''; $flag_b = ''; $flag_c = 'y'; }
 case "Z" { $flag_a = ''; $flag_b = ''; $flag_c = ''; $sn = ''; $client_ip = ''; $remote_host = '';

}
 else { print "error!\n"; exit; }
 }
 } else {
 if(length $flag_b && length $sn) {
 if(length $line && $line =~ /^Host:\s+(.*)$/) {
 $remote_host = $1;
 }
 if(length $line && $line !~ /GET|POST|\w+:\s/) {
 if(length $remote_host == 0) {
 $remote_host = 'unknown';
 }
 print AB "$client_ip -> $remote_host $line\n";
 }
 } elsif(length $flag_a && length $sn) {
 if($line =~ /\].*?(\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})\s+/) {
 $client_ip = $1;
 }
 }
 }
}
close(FILE);
close(AB);
print "\n\n----Abnormal Request----\n\n";
system("cat request_abnormal.txt|sort|uniq -c|sort -rn");

