
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Advanced Incident Handling and Hacker Exploits

Practical Assignment

Submitted by Adrienne Zago-Swart

Attended: Washington, D.C. SANSFIRE

Date Submitted: November 5, 2001

GCIH Practical Assignment Version 2.0

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Table of Contents

INTRODUCTION ..1

THE EXPLOIT...2
EXPLOIT DETAILS ..2

Name..2
CVE ...2
Vulnerable Systems ..2
Protocols/Services/Applications..3
Description of Exploit ..3
Variants...3
References...4

THE ATTACK..5
DESCRIPTION OF THE NETWORK ...5
HOW THE EXPLOIT WORKS ...8
PROTOCOL DESCRIPTION...9
DESCRIPTION AND DIAGRAM OF THE ATTACK ...12
SIGNATURES OF THE ATTACK ...13
HOW TO PROTECT YOUR SYSTEMS...13

What Companies Can Do To Protect Themselves..13
How Vendors Can Prevent This Vulnerability ...14

HOW AN ATTACK AGAINST COMPANY X COULD HAVE OCCURRED ..14

THE INCIDENT HANDLING PROCESS...16
PHASE 1: PREPARATION..16
PHASE 2: IDENTIFICATION ..18
PHASE 3: CONTAINMENT ..21
PHASE 4: ERADICATION..23
PHASE 5: RECOVERY ..25
PHASE 6: LESSONS LEARNED/FOLLOW-UP ..26
FUTURE IMPROVEMENTS IN THE INCIDENT-HANDLING PROCESS..28

SUMMARY ...30
REFERENCE..31

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Adrienne Zago-Swart Page 1 of 33

Introduction

In this paper, I will describe how an exploit in the computer system of a small company
was used to gain access to two major government agencies. First, I will introduce the players in
this incident. I will summarize what was reported in a follow-up executive meeting. I will
explain the exploit that was used to gain access and control over the small company’s computer
systems, including a description of the buffer overflows and the RPC protocol. I will describe
how an attacker can exploit a system and take over multiple other systems that it connects to. I
will describe how the affected parties, mainly the small company, handled the incident. I will
describe how the small company changed its whole network and what it implemented to help in
future incidents. Lastly, I will talk about what the company learned from this experience.

Background on the parties involved. Company X is a small, struggling software
development and contracting firm that has been in business for a few years but is still faced with
many of the challenges small companies endure. This company's main challenge is manpower
and budget constraints. Many of the employees lived in different parts of the United States; the
company's main system administrators all lived in different states other than that of the main
office, which housed the network. Company X had many different contracts, including ones
with Government Agency A and Government Agency B. Both of the Government Agencies are
known for having pretty secure networks. The Attacker's location is unknown.

In the Executive follow-up meeting, it was reported that this incident cost Company X
about two weeks of down time. Even though some systems were up and running during that
time, the company was crippled. Many employees that could have performed work on their
contracts were busy helping out with the administrative work that resulted from the attack. The
Attacker gained unauthorized access to the company's systems and compromised the systems of
its contract holders. This not only put the company's systems in danger, but also its existence.
During this incident, Company X had to change its entire network from the ground up, the cost
of which was enormous.

This paper contains three major areas of focus. The first is the exploit believed to have
been used in the attack on Company X. We have inferred the exploit used against Company X is
the rpc.cmsd exploit. The timing of the attack was during a period of high hacker activity with
this exploit, and Company X utilized systems that were vulnerable to this exploit. General
information regarding the rpc.cmsd exploit will be discussed and any variants identified.

The second - area is the attack on Company X. The discussion of the attack will begin
with a discussion of buffer-overflow style exploits, the RPC protocol and how this exploit itself
works. From this, signatures of the attack will be reviewed as well as practical ways to protect
systems from this exploit. Finally, how the attack against Company X occurred will be
reviewed.

The third area is the incident-handling process, from preparation to lessons learned from
this electronic trespass, was performed by Company X and Government Agency A and B’s
systems. Future improvements will be suggested to the incident-handling process used during
the situation.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Adrienne Zago-Swart Page 2 of 33

The Exploit

 Dictionaries define an “exploit “ as a notable or heroic act. In the world of computers and
technology, an exploit is a tool or technique that takes advantage of the weaknesses and
vulnerability in the technology. Attackers have access to literally thousands of tools and codes to
help exploit today’s technology. Many of the tools are used for both good and bad. The security
professional might use some of the tools to troubleshoot the network and systems, or even to
scan for vulnerabilities they were unaware of. The attacker can use these same tools and
techniques to gain knowledge about a company’s network and computer systems and to gain
unauthorized access.

The Attacker in this specific incident could have used numerous exploits to gain access to
Company X’s systems. There were numerous vulnerabilities in the company's network and
systems. Even though there was no concrete evidence for which exploit the Attacker used, there
was a common known exploit of a Calendar Management service on some Unix operating
systems called rpc.cmsd. Company X was running one of the exploitable operating systems
(Solaris 2.4, 2.5 and 2.6) in the default configuration. For the purpose of this paper, I use the
rpc.cmsd exploit as an example, since it is likely that this was the actual exploit employed.

Exploit Details

Name

• rpc.cmsd buffer overflow exploit

CVE

• CVE-1999-0320
• CVE-1999-0696

Both CVEs ([Common Vulnerabilities and Exposures] CVE -1999-0320 and CVE-1999-
0696) seem to describe the same exploit, even though it has two different entries. CVE-1999-
0320 describes it as “SunOS rpc.cmsd allows attackers to obtain root access by overwriting
arbitrary files”. CVE-1999-0696 states it more specifically as “Buffer overflow in CDE
Calendar Manager Service Daemon (rpc.cmsd)”. The patches recommended for both exploits
are the same.

Vulnerable Systems

• Common Desktop Environment (CDE) 1.01 x86 to 1.02
• HP-UX 10.24 VOS to HP-UX 11.00
• SCO UnixWare 7.0.0 to 7.1.0
• Solaris 2.3 to Solaris 7
• SunOS 4.1.3 to SunOS 5.7
• Tru64 DIGITAL UNIX 4.D, 4.E and 4.F

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Adrienne Zago-Swart Page 3 of 33

Different sources list varying vulnerable systems. Most of them seem to point out that any
system running the Common Desktop Environment (CDE) Calendar Manager are at risk. Even
though many different flavors of Unix are listed, Solaris was the only operating system (OS) that
seemed to be exploited. Some sources suggest that even when patches are applied, systems
Calendar Manager may still be vulnerable with the second version of the exploit. Patches can be
obtained from vendor sites.

Protocols/Services/Applications

• RPC: Remote Procedure Call
• Calendar Management Service
• CDE: The Common Desktop Environment (CDE) is an integrated graphical

user interface for open systems desktop computing

Description of Exploit

The rpc.cmsd exploit allows the attacker to take advantage of the vulnerabilities in systems
using the RPC protocol and Calendar Management Service. By creating a buffer overflow,
attackers are able to overwrite arbitrary files and may gain root access. With root (also called
superuser or administrator account) access, the attacker has complete control over everything on
the machine.

Variants

There are no variants for this specific exploit. Even though there are two listings for this
exploit, they seem to be the same. The information found on the SANS website treats both
exploits as one.

• http://www.sans.org/infosecFAQ/malicious/cmsd.htm
The source code was changed and a second version was published. The second, enhanced

version is able to use the same exploit on “patched“ systems.

There are different variants for exploiting the RPC protocol to gain access to systems.
These variants exploit RPC using different services. Some of the other exploits of RPC include:
admind, ttdbserverd, rpc-statd and mountd.

• sadmind is a distributed system administration service. The service interfaces with the
Solstice Admin Suite. This allows for remote administration. A buffer overflow
exploits systems that use the RPC protocol with the admind services.

• rpc.ttdbserverd (tooltalk) is an integrated application environment. It allows
applications to communicate and exchange data. A buffer overflow exploit allows
remote users access to the systems.

• rpc-statd is a NFS file-locking status monitor. It runs as root, allowing remote
attackers to bypass access controls of other RPC services. The Ramen Worm used this
exploit.

• mountd is an RPC service that handles NFS file system mount requests. The exploit
allows the attacker to obtain information about any file that exists on the NFS server
even though the file in question is not a part of the NFS exported file system.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Adrienne Zago-Swart Page 4 of 33

The various running RPC services can be found in the /etc/inetd.conf or rc directories.

References

Exploit
• http://sunsolve.sun.com/pub-cgi/retrieve.pl?doc=secbull/166
• http://xforce.iss.net/static/818.php
• http://securityfocus.com/cgi-bin/archive.pl?id=1&mid=17975&start=1999-07-

05&end=1999-07-11
• http://sunsolve.sun.com/pub-cgi/retrieve.pl?doc=secbull/188
• http://www.cert.org/advisories/CA-99-08-cmsd.html
• http://www.ciac.org/ciac/bulletins/j-051.shtml
• http://xforce.iss.net/static/2345.php

Source Code
The first link is to the original code. The second link is to a doctored version. The last link

is to a proof of concept code for educational and informational purposes. I will later use the
proof-of-concept code in the discussion of how the attack works.

• ftp://ftp.technotronic.com/unix/rpc-exploits/cmsd.tgz
• ftp://ftp.technotronic.com/unix/solaris-exploits/sparc/2.3/rpc-cmsd.c.
• http://lsd-pl.net/files/get?SOLARIS/solsparc_rpc.cmsd

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Adrienne Zago-Swart Page 5 of 33

The Attack

There was no clear evidence on what attack was used or traces on how the attacker gained
access to the system. I speculate that the attacker used the rpc.cmsd exploit to gain access. I will
illustrate the layout of the network before the attack, discuss what a buffer overflow is and how it
works, and describe the RPC protocol. Then, I will describe measures that one could take, who
has vulnerable systems, how to prevent such an attack and what the vendors could have done to
prevent their vulnerability. Finally, I will show how the attacker could have gained access.

Description of the Network

Company X grew out of a home business. Therefore, the entire network evolved to meet
the current needs of the growing company. Most of Company X’s resources were dedicated to
external customers. Thus, no one had a chance to sit down and design a secure network that
would grow with the company to meet its future needs. Company X had several servers
connected to a central hub. The company grew from a handful of employees to over a couple of
dozen very quickly. As Company X grew, workstations were connected to other hubs chained
into the central main hub. The central hub was attached to a router, which drove a 128k ISDN
line to the Internet. Remote users could telnet directly to the servers. Two government agencies,
Government Agencies A and B, both had firewalls between their systems and the Internet.

Additionally, Company X had several employees at remote home offices in various parts
of the country. These as well as local employees could telnet directly to the servers. Company
X relied on the basic authentication (username and password) provided through basic telnet.

Company X employees would routinely telnet between the company’s servers and those of
Government Agencies A and B, which had firewalls between their systems and the Internet.
Government Agency A and B both had firewalls between their systems and the Internet. These
telnet sessions would occur in both directions, that is, from the government's servers to the
company's and the reverse.

At the time of the attack, network security was generally not as carefully considered as it is
today. Many organizations felt the risk was small and the obscurity of their little domain in the
vast Internet provided adequate cover. This philosophy deemed “security through obscurity” and
failed to take into account how quickly and easily a hacker can scan a wide range of addresses to
identify a target.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Adrienne Zago-Swart Page 6 of 33

Diagram of Company X's Network Prior to Attack

By the time the attack was recognized, the specific server at Company X that had been
compromised could not be identified. However, all the servers at Company X had one
characteristic in common — they were all using versions of the Solaris (Sun’s version of Unix)
OS between versions 2.4 and 2.6 running on Sparc servers. The servers included Sparc 5, Sparc
10 and Sparc 20 workstations being utilized at Company X. The attacker gained access to
Company X and then used the servers as a springboard to gain access to Systems in Government
Agencies A and B. Government Agencies A and B had various Unix-based machines. The
important factor to consider for the Government Agencies is their router and firewall
configurations. This is important since the government’s routers and firewalls were configured
to allow Company X direct access to the government’s servers with simple username and
password authentication.

The most relevant information about the systems in place at Company X at the time of the
attack was the use of Solaris across all servers. Each system was configured to utilize the CDE
and default configuration. The systems were configured to execute the standard fare of services
for a system supporting application development. The rpcinfo command displays all the RPC
services running on the system. Running the rpcinfo –p command on one of the attacked

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Adrienne Zago-Swart Page 7 of 33

systems shows the cmsd service running. Numerous other RPC-based services were also
running; however, cmsd was chosen as the most likely exploited service.

A sample output of the rpcinfo –p command:

Company X did not have a firewall installed; therefore, no firewall rules are available. The
router in use at Company X was configured to allow all network traffic to enter and exit. The
router had a firewall option that could have been configured, but this was not implemented.

Applications and services running at Company X revolved around application development
work and basic network services (telnet / ftp). Most of the servers had a relational database
installed, which was configured for TCP client access. As mentioned, the servers were using the
CDE, though the development was only using text-based tools, e.g., vi, emacs, gcc.

All workstations and servers at Company X were using static IP addresses. One of the
servers was running Sendmail (the specific version of Sendmail is unknown at this time).

 program vers proto port service
 100000 4 tcp 111 rpcbind
…
 100300 3 udp 789 nisd
…
 100024 1 udp 32795 status
 100024 1 tcp 32775 status
 100021 1 udp 4045 nlockmgr
…
 100005 1 udp 32831 mountd
…
 100003 2 udp 2049 nfs
…
 100008 1 udp 33720 walld
…
 100068 2 udp 32779 cmsd

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Adrienne Zago-Swart Page 8 of 33

How the Exploit Works

Based on the timing of the attack and the services in place on Company X's servers, it is
believed that the attacker exploited the Calendar Manager application. This service provides
scheduling services CDE users and provides a remote interface via RPC. Through this interface,
a common calendar can be shared among multiple users. Unfortunately, the Calendar Manager
application is vulnerable to buffer overflow exploits. The exploit used against Company X,
rpc.cmsd, is a buffer overflow exploit.

Buffer overflows are one of the easiest, most common, attacks on the Internet today.
Overflowing a buffer is a method of exploiting an application to gain access to a machine. The
technique is well understood by the elite of the hacking community who often write such
exploits and publish their work on the Internet. Hackers have written several detailed
descriptions of how buffer overflow exploits operate and how they are created. This information
ensures the technique will be used until software developers learn to defend their code from this
type of attack. The technique begins with a simple but very important programming construct—
a buffer.

 A buffer, in a software application, is a programming construct often used for the
temporary storage of data. Many different types of buffers are utilized in a single software
application, including buffers that support input / output (IO) operations, video and a myriad of
other operations. Buffers can be specifically allocated from the application's regular data
memory or local to a single function. If a buffer is allocated as a local variable in a function, the
memory used is allocated from the stack. Buffers allocated on the stack are the type exploited by
a buffer overflow.

 In terms of execution, a software application is the result of many procedures, called
functions, coordinated to perform some, hopefully, useful action. The application is broken into
functions for many practical reasons. In the course of executing a software application, these
functions perform specific tasks. Because only one function can execute at a given time, a great
deal of coordination is required. Critically important information must be stored when one
function calls another function to ensure a function can continue its task when the called function
is complete. This critical information is stored in a mechanism called a "call stack."

 The stack used by an executing software application is not unlike a stack of books on a
coffee table or a stack of clothes in the laundry room. The last item placed on the stack will be
the first item taken off the stack. This feature of a stack is termed LIFO, for Last In First Out.
This characteristic of a stack is important in the coordination of functions calling each other in an
executable software application. When a function needs to call another function, it first pushes a
set of values, called a "frame," onto the call stack to ensure it can continue when the called
function returns. A stack frame consists of many values, including the memory location to return
to when the called function is complete.

 In a buffer overflow exploit, it is the value of the return pointer on the stack that the
attacker is primarily focused on subverting. Since this value sits on the stack below the local
variable storage for the current frame, it can be subverted by overflowing the data in the local
variable on top of this return pointer. The exploit will modify this return pointer to point to code
inserted into the buffer that caused the overflow. An application programmer would not

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Adrienne Zago-Swart Page 9 of 33

purposely overwrite this; however, there are several standard c language functions that, if used
without great care, can maliciously produce this end result.

 When a function writes data into memory they should check the bounds of the memory
allocated; this is called bounds checking. There are many functions that do not perform this
bounds check and can be used to perform a buffer overflow exploit. Many of these non-
checking functions utilize some kind of indicator to tell them where the end of the data they are
processing is. Some of the functions often exploited include: strcpy, strcat, sprintf, fgets, and
many others. All of these functions write data into a buffer until a terminating indicator is given.
If the buffer is a local variable and the data written into it is larger than that which was allocated
on the stack; we have a buffer overflow. Exploiting this is the purpose of the exploit program.

 Once the malicious programmer has identified an exploitable function and has
determined exactly how to overwrite the return pointer, they can define the specifics of the code
that will give them access to the machine. The programmer will often write three separate
programs in a buffer overflow exploit, including the code (called an egg), that will execute in the
buffer the program (called an attack program) that will insert the egg into the buffer and a script
to simplify or augment the attack program.

The malicious programmer has several hurdles to overcome to create the egg program.
First, they must understand assembly language and the architecture of the machine they intend to
exploit well enough to write such code. Most would, if they had gotten this far. The egg will
ensure it has root or administrator privileges and then give the attacker some form of access to
the machine. Some eggs will load larger pieces of malicious code from another machine because
the initial egg must be rather small.

The attack program will use whatever means necessary to insert the egg into the buffer. If
the application to be exploited is to be accessed over a network, the attack program will use
whatever protocol the application being exploited normally uses to communicate with client
programs. In these cases, the application being exploited will be a service. Typically in buffer
overflow exploits with the purpose of breaking into a system, the exploit program is some form
of service.

The shell program will simply wrap the exploit into an easy-to-use package. If the exploit
will initiate a shell on the attackers system, the shell program will often initiate something that
will listen for the returning shell. The shell program will also make the exploit more accessible.
Often, exploit programmers want the notoriety of having their exploit widely used. One path to
such notoriety is to have hundreds or thousands of “script kiddies” using the exploit. Since the
exploit has no commercial value, the programmer will usually release the source code to their
exploit. This further bolsters their fame and allows for other malicious programmers to make
modifications to the exploit if necessary.

Protocol Description

The rpc.cmsd exploit takes advantage of the vulnerability in the Calendar Manager Service
based on its use of the RPC (Remote Procedure Call) protocol. Protocols are the rules that
govern how systems communicate over the network. To understand the cmsd exploit, it is useful
to understand the purpose and function of Remote Procedure Calls (RPC).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Adrienne Zago-Swart Page 10 of 33

 RPC is a protocol developed by Sun Microsystems to provide for the remote invocation
of procedures to allow for distributed programming. With RPC, a programmer can call a remote
procedure as if it were a local procedure. This provides a major advantage because the
programmer does not have to deal with the complexities of the remote communications. The
complexities of the remote communications are encapsulated in code that is generated during the
compilation of the RPC code. This encapsulated code is called a "stub." A stub performs the
network functions necessary to make the call remotely.

 With an RPC call, we have a client and a server. The client is the code that is making the
RPC call and the server is the code that is responding to that call. The call itself consists of
identifying information about the call and any parameters being passed as part of the call.

 Synchronizing the efforts of the two distributed programs requires a well-defined process.
RPC follows a specific procedure for setting up a server procedure (RPC server) to receive a call,
as well as a specific procedure for making the call itself. When a call is made from a client, the
request is delivered and the client waits. The server processes the request and returns a result to
the client. When the client receives the result, it continues its processing. Each RPC server has a
unique identifying number through which it can be identified. This identifying number is used
by a RPC dispatch routine that forwards the request to the appropriate service.

 RPC servers register themselves with Portmap, a cooperating service that provides client
programs a look-up service to determine which port is associated with a named or numbered
service. Once the client identifies the appropriate port, the client will communicate directly to
the service through that port. The following table shows the program number assigned to each of
the many RPC services in common use. The program number is used to represent the service
when an RPC call is made.

Sun assigned program numbers:

Number Program

100000 Port_Mapper
100002 RemoteUser
100003 NFS
100005 MountDaemon
100068 Rpc.cmsd
100083 Tool Talk
100232 rpc.sadmind
300019 rpc.amd

Since the two processes are interacting over a network, a standard for the encoding of their
data was developed. This standard is called XDR for External Data Representation. XDR is key
to RPC functioning because the data for parameters return results and other information passed
between the two processes must be encoded into a mutually understandable form. XDR was
developed as a machine-independent language to encode data for this very purpose. XDR
provides for all the standard data types necessary for two 'C' language programs to interact over a
network.

The Calendar Manager program exploited by the rpc.cmsd exploit provides a RPC

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Adrienne Zago-Swart Page 11 of 33

interface to insert new entries into a workgroup calendar. This interface is accessible through a
command line tool called dtcm_insert. This command utilizes the previously described RPC
protocol to allow remote users access to a calendar on a central machine. dtcm_insert’s interface
allows for several calendar-related pieces of information to be passed to the central calendar.
Through this interface, the remote user can pass the starting time of an appointment, the ending
time of an appointment, and the appointment description text. The appointment description text
can be up to five lines of text according to the man page for dtcm_insert.

It is the appointment description text value that is being overflown with the rpc.cmsd
exploit. While writing this paper, several rpc.cmsd exploits were reviewed. Each exploit took a
slightly different approach to the coding of the exploit. There were two primary differences
when the code is considered at a high level.
 The first difference is in whether the exploit leverages the rpcgen tool to generate the
RPC code necessary for the remote invocation. One exploit reviewed was largely the generated
code from this tool. This simplified the development of the exploit, as the developer did not
have to understand the intricacies of the RPC and XDR. Alternatively, an rpc.cmsd exploit from
“Last Stage of Delirium” hand coded the calls to RPC. This code is more interesting in that a
little more can be learned about the inner workings of RPC from it.
 The second difference between the exploit code reviewed is the level of functionality
provided to users of the code. In one version of the exploit, the developer hard-coded the shell-
code that was to be executed. This makes the exploit less useful for practical use because the
code would likely need to be changed in order to be used. Another exploit reviewed allows the
user to define the specific shell command to be executed once the buffer is overflown. This code
is considerably more useful but also more dangerous, as it can be actually used against a non-
patched victim system. It is likely the first version was stripped down so it could illustrate an
example of the exploit without being tremendously useful.

 Each version of the code followed a pattern, described in pseudo-code here:

• Check parameters and configure exploit based on parameters

• Create a UDP client transport handle clnt_udpcreate. This is called passing the IP
address of the remote system, the program number for the calendar manager, the
version number for the calendar manager, the timeout period, and a pointer to a
socket to use.

• Create an authentication handle. This is called passing the IP address of the remote
system, the effective user and group ids, the length of an array of groups to which
the user belongs, an array of groups to which the user belongs.

• Call the create function defined by the Calendar Manager. It is postulated that this
function is used to prepare the calendar manager for inserting a new entry. It could
not be determined the exact reason for calling this function.

• Prepare the buffer that is the payload for the buffer overflow. This is accomplished
by loading the buffer with the appropriate pad to over write the return pointer and
the egg code itself.

• Call the insert function defined by the Calendar Manager. This function receives
the data necessary to insert a new calendar entry. It is this function that is

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Adrienne Zago-Swart Page 12 of 33

overflown. Specifically the calendar description entry is overflown.

• Check to make sure the RPC did not return. If it did return the exploit failed.
At this point, the egg code is being executed. The egg code pseudocode is as follows:

• Set the uid and effective uid of the process the egg code is executing in to zero.

• Use SYS_execve to execute a shell command.

• Shell command executes usually calling back to the attackers machine with a shell.
Many tools are available to an attacker to determine if a system is potentially vulnerable

to a cmsd exploit. The simplest method is through the use of the numerous scripts available for
this exploit. Scripts make using the rpc.cmsd exploit easier. The scripts wrap the various stages
of the attack in a single command to make it easier for the attacker. Scripts will often scan the
system to determine it is exploitable, determine the port that is running the Calendar Manager, it
will then call the attack program to implement the exploit, and finally, the script will prepare the
attacker system to receive the shell back from the victim system.

After using the exploit successfully, an xterm window would appear on the attacker’s
terminal that is running as root on the victim.companyx.com. An example of how the exploit
might be called is as follows:

rpc.cmsd vicitm.companyx.com “/usr/x11r6/bin/xterm –display attacker:0”
If the source code would not exist; one would have to write it in order to use this exploit.

This would require great and detailed knowledge and understanding both of the assembly
language and the OS used. Once it is coded, compiled and published then anyone can run it.

To perform a buffer overflow manually, the attacker would have to use the dtcm_insert
command and include an appointment description text that is at least {XXX} bytes long. To
overflow the buffer and take control of the victim system manually, the attacker would need to
use the –a, file, option and include a file with an appointment description text that overflows the
buffer and includes the encoded egg program. If this was possible, the attacker could break into
the system without an attack program.

You can obtain the source code for this exploit from the Technotronic website. Once
obtained, the source code would have to be compiled with a C Compiler and named. Then, it is
ready to use against a vulnerable system.

The CMSD exploit is considered a top threat by In June 2000, GSA Federal Chief
Information Officers Council listed the "The Ten Most Critical Internet Security Threats".

Description and Diagram of the Attack

The flow of the attack used against Company X is illustrated in the diagram below. The
attack begins with the attacker identifying the port for the rpc.cmsd service through portmapper.
The attack program is then deployed against the victim system and the buffer is overflown. The
code inserted into the buffer then takes over and makes a xterm request back to the attackers
system. The attacker now has control over the system.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Adrienne Zago-Swart Page 13 of 33

Attack Flow

Signatures of the Attack

Snort, an intrusion detection system, can be configured to identify the rpc.cmsd exploit
with the following signature.

rpc.cmsd (Calendar Manager), portmap-request-cmsd”; content:”|01 86 E4 00
00|”;offset:”40”;depth:”8”;)
The above Snort signature, the name of the service, the Snort filter name, and bytes to

search for this exploit.

How to Protect Your Systems

What Companies Can Do To Protect Themselves

There are certain steps one can take to protect a system with vulnerable software. One of
the first things is controlling access to sensitive systems. Regular updates, fixes and patches for
software should be installed. On a Solaris system, you can configure for a non-executable stack.
This is accomplished by adding “set noexec_user_stack=1” and “set noexec_user_stack_log=1”

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Adrienne Zago-Swart Page 14 of 33

in /etc/system. A non-executable stack makes the stack portion of a user process's virtual
address space non-executable. This prevents the egg code from being executed when it is
injected into the system through a buffer overflow.

Controlling both directions of network traffic could help protect against this attack. By
assuming that outgoing traffic is friendly, a company facilitates this type of attack occurring.
Companies should control both directions of network traffic to help prevent this type of attack.

Companies could remove unnecessary services, such as tftp client, and x windows from
servers connected to the Internet. Of course, companies could disable RPC service if it is not
absolutely necessary. Secure RPC uses public key encryption for an extra level of
authentication; using secure RPC would prevent this attack. Regularly examining access
services by examining firewall or filtering router logs for suspicious activity. Securing the
system can help prevent or deter as well as help identify and investigate an attack. Tripwire can
be used to compare system binaries, and showing if any changes were made to the system
binaries.

Specifically, preventing the rpc.cmsd exploit would require configuring the rpc.cmsd
service with privileges less than super-user or administrator. Most organizations avoid the
service altogether, as there currently are alternatives, including Lotus Notes, Intranets and other
more robust solutions to group calendaring.

How Vendors Can Prevent This Vulnerability

Vendors could prevent these exploits. Often, software developers are working to meet
stringent deadlines. Under time constraints, they are often forced to take short cuts. Many times,
vendors release software that has not been adequately tested. Buffer overflows are due to
programming errors. Good programming practices could prevent this from happening. The
vendor could implement awareness and training for developers. Developers themselves could
perform code reviews and error-checking on their application code. They could run automated
code checking tools, which look for known weak functions. These tools also perform heuristic
checks to see if the buffer usage is good. Other tools can alter the way that the stack works at
compiling. This makes it more difficult to create buffer overflows. Below are two links to tools
that can help with code checking.

• StackShield: http://www.angelfire.com/sk/stackshield
• StackGuard: http://immunix.org

Venders are increasingly developing their software with programming languages that
consist of built-in mechanisms to prevent buffer-overflow type attacks, such as Sun’s Java™
language. Java and other languages like it were written to exist in a more secure network
environment.

How an Attack Against Company X Could Have Occurred

Attackers go through five phases during attack on a system — reconnaissance, scanning,
exploit system, keeping access and covering tracks.

In the reconnaissance phase, the attacker gathers information about the target organization
and their system. Both the Government Agencies and Company X ‘s websites had information

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Adrienne Zago-Swart Page 15 of 33

about projects that they were working on together. The attacker could have used this
information. The attacker could have gotten further information from other public sources,
social engineering and websites like Arin. If the government agencies were the main target, than
the attacker could have used Company X, simply because of their business relationship with the
government.

In the scanning phase, the attacker looks for a way to possibly penetrate the system. The
attacker could easily gather information about the infrastructure of the systems by using scanning
tools like nmap or Queso. With port scanning, the attacker could find out what ports are
listening. With OS fingerprinting, the attacker could find out what OS the computer was
running.

In the exploit phase, the attacker gains access to the target system by using an exploit.
Since they could gather information about the OS in the previous phase, they could easily look
on a websites like Technotronic for exploits with regards to that specific OS. Then, they would
need to try to run the exploits seeing if it would get them into the machines.

In the keeping access phase, the attacker uses tools and techniques to keep access and
control over the target system. Once in the system, the attacker could have put on a rootkit, a
utility that helps the attacker maintain access to the system and also cover his tracks. They
typically include password sniffers, log cleaners, backdoor programs, and also replace common
binaries and programs.

In the last phase, covering tracks, the attacker tries to hide traces from his or her access or
actions on the system. Replaced binaries and programs by the rootkit, will help cover the tracks.
Log cleaners will remove entries of the attack from the log files. The replaced binaries will give
system administrators false information regarding their system, e.g., processes running shown by
ps or disk space shown by df will exclude incriminating information.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Adrienne Zago-Swart Page 16 of 33

The Incident Handling Process

The incident-handling process includes the following six phases—preparation,
identification, containment, eradication, recovery, and lessons learned/follow-up.

Phase 1: Preparation

The preparation phase is used to ensure that the organization has the resources and skills
necessary to respond to an incident. This phase includes countermeasures to deter or detect an
attack, creating an incident handling team, establishing procedures, defining policies, disaster
recovery and communication plans, and a stock of necessary supplies.

There were no real countermeasures in place for Company X. Government Agencies A
and B both had firewalls with access control lists that allow control of access systems and the
resources within the government system. Firewalls can be configured to allow access to
different portions of the network for different users. Both agencies allowed Company X
employees to log on with root privileges to their systems through telnet sessions with just a
username and password, even though Government Agencies A and B did not allow complete
access to their entire network. Company X only had access to certain machines, directories and
files.

Company X never expected to be attacked. They had trouble with the workload they
already had with contracts. Due to a lack of resources, both manpower and budgetary, they did
not devote much time to securing their systems. Management was supportive with moving
technology forward, but had kept postponing doing so.

Company X did have some deterrents in place. A warning banner was on all their systems,
visible to all users trying to log on. It stated that the system was property of Company X, subject
to monitoring, with no expectation for privacy, and that unauthorized use or access was
prohibited. On some of the systems, the warning banner included information about the OS and
the purpose of the machine. Government Agencies A and B also had warning banners on their
systems, with the same information as that of Company X, also providing OS and system
purpose information.

There were some policies in place to explain and clarify procedures and stances at the
organization. Company X did have a Policy of Presumed Privacy in its Employee Manual. It
stated that everything on company-owned computers (local and offsite) was Company X's
property and subject to monitoring and, if needed, search and seizure. The company tried to be
tolerant of small things, like personal e-mail use and some personal Internet use, since some of
the computers were in employee’s homes. They did, however, enforce the policy on some
occasions when it was severely abused. All systems were tracked. Any outside individuals who
accessed the systems or information on the systems were recorded. Encryption was used as
needed, but there was no real policy on when, or how an employee could use it.

The organizational approach to incident handling before the hacker incident was to try to
monitor and gather information. This way, they could notify law enforcement and attempt
prosecuting the attacker. At the time, Company X was under the impression that they would
never get attacked, and if they did, that it would be easy to catch the attacker and prosecute them.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Adrienne Zago-Swart Page 17 of 33

Even though they do not have a policy for outside peer notification, the company has
always taken the stance that they will notify their peers if they are or think they might be
affected. They did not add security guidelines into their contracts. This did not allow them to
monitor or disconnect organizations who where connected to their network. Government
Agencies A and B both had security guidelines stated in the contracts with any outside
organization connecting to their networks. They reserved the right to monitor the systems and
disconnect them if needed.

Company X performed regular backups for the servers. The company would use tar to
archive all necessary files onto another hard disk drive in a different server dedicated to hold
backups.

Company X did not have any existing incident-handling processes in place before the
hacker incident. Government Agencies A and B had incident-handling teams and processes in
place.

Company X did not have an incident-handling team in place before the attack. The system
administrators were all in different states than the primary company network. System
administrators performed their work on the machines remotely. When something had to be
preformed locally, one of the employees assisted them over the phone. They encouraged local
handling on minor incidents and system administration. Once the attack occurred, all the system
administrators were also members of the core incident-handling team. As soon as they realized
that the incident could not be solved remotely, they flew to the main office to deal with it locally.
The system administrators had the most experience with system administration and security.
Two of the team members had prior experience with security work on computers in the Military
and had attended a conference on security. The rest were trained on-the-job. The senior network
engineer was deemed the leader, coordinating team activities and making decisions on how to
handle the incident. A larger team was built around them. A lawyer assisted with any legal
issues that might come in to play. The contracts program managers all dealt with any public
affairs issues. Upper management dealt as best they could with any other issues that arose,
mainly regarding resources and continuing operations. After the identification phase, other
employees stayed out of the way or helped with little things, making sure that the team had other
resources like food sustenance and necessary computer supplies.

Since it was a small company and everyone more or less knew each other, communication
and cooperation was not a problem. Everyone had contact information for all of the employees.
Lists of contacts were kept offsite. Most of the employees worked very closely with one another,
even when they were not in the same geographical area. They had a non-written emergency
communication plan and an unofficial calling tree. In an emergency, upper management would
contact each other. They would in turn contact the managers of their departments. Then, those
managers would call the people in their groups. In case of a network emergency, the people who
were local and helped with the network administration were to come to the office. Then, they
would get on a conference call with the system administrators who were out of state. Due to the
close communication between employees, they did not need to set up a specific way for
employees to alert the system administrators of suspicious or unusual activity. Employees would
just call the system administrator any questions and reports. This provided employees with a
simple reporting facility. Since the system administrators later became the incident-handling
team, they had all the information about the systems, including the passwords and any encryption
keys that were used.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Adrienne Zago-Swart Page 18 of 33

During the incident, their main forms of communication were out of band. They used
phones and fax machines. When and if it was necessary to use e-mail, they encrypted it using
PGP (pretty-good-privacy). During the incident, other employees were warned about their e-
mails being compromised.

Company X was stocked with hard drives and other supplies. They kept all critical
software (operating systems, software in use) that would be needed to reinstall or rebuild a
system in a cabinet. At times, employees would borrow software and not return it in time for
others to use. Documentation about the systems and software were easily accessible. They had a
designated workroom that could be used to rebuild systems. All the critical systems were in a
room with temperature control and back-up power.

Company X did not have a written disaster recovery plan. They had a plan in mind on
what they could do in case of a disaster, but never considered anything would happen. The
system administrators monitored services running on the servers as well as log on records. Many
times logs were deleted after a short time.

Phase 2: Identification

In this phase, the organization determines if an event is actually an incident. An event is an
observable occurrence, such as a system boot sequence, system crash, or console message to the
screen. An incident is a harmful event or threat of occurrence of a harmful event. Often times,
an event and incident look like something else. It is important to make sure that there was no
oversight and identify the cause for the event. This is done through careful assessment.

One day, two of the senior system administrators were on the phone working on a project.
Both of them were located in different states. They used telnet to log onto the systems located at
Government Agency A. One of them was searching for a file with some code that could be used
in their work. While going through his directory, he noticed some files with strange names and
odd times of creation. He was always pretty organized and was sure that these were not his files.
At first, he thought that someone had misplaced some files, but it still seemed too odd to him.
He thought it was best to investigate further. The owner was listed as root and himself. His
colleague confirmed that these files were not his files. They became very suspicious and decided
that this event might be an incident. They wanted to check for simple mistakes and other
possibilities or causes for the files.

They called other employees who had access to the system and confirmed that these files
did not belong to any of the authorized users of the system. They wanted to assess evidence in
detail and started by looking at log files and neighboring systems. Other servers and machines
also came up with unfamiliar file names. The logs showed that valid users were logging onto
different systems at all hours of the night. Just to make sure, they asked the users if for some
reason they were working at those hours. None of the users had logged in outside of normal
business hours. The logins also seemed to be happening from unfamiliar remote machines.
After double-checking with the users, they knew that someone other then them was logging in to
the system. The senior system administrators had enough information to call it an incident.

They alerted upper management as quickly as they could to inform them about what they
had found. Unfamiliar files were on numerous systems and users and root were logged as being
on the system at hours that they were not working. Since some of the machines were owned by
Government Agencies A and B, upper management contacted them as soon as possible. The

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Adrienne Zago-Swart Page 19 of 33

security teams of Government Agencies A and B were called in and confirmed what Company
X’s system administrators reported. The system administrators and the security teams for the
Government Agencies exchanged as much information with each other that they had. Both kept
monitoring the system and verifying log files and information that they obtained. Company X’s
system administrators monitored their systems at night. The who and finger commands showed
that there was another person logged on as root.

Any and all communication was kept and recorded, so nothing would be overlooked.
Since the senior system administrators were both out of state, junior level system administrators
were called to the office to help. They would take directions over the phone and were able to
perform tasks locally.

One of the senior system administrators, who was the second person hired at the company,
took the lead as the primary incident handler. He was one of the people who identified and
assessed the incident. Upper management gave him the authority and power to do whatever he
thought was necessary to contain and eradicate the incident. He kept in close contact with upper
management. The incident-handling team members included the primary incident handler, two
other senior network administrators (who were also out of state), and two junior administrators at
the main office. They worked with a larger team that included upper management, a lawyer and
the contract leaders.

There were no real countermeasures at Company X. The only countermeasure preventing
people from getting into their systems was the username and password. They did log services
running, but that did not help. Government Agencies A and B had numerous countermeasures.
They had firewalls and Intrusion detections systems. Their system administrators monitored
logging files on a regular basis. However, none of these countermeasures worked against
someone using a valid user account to access their systems. The logs showed odd log-on times,
but no one thought anything about it since some of the users were in different time zones and
programmers usually keep odd work hours.
 The following is representative of some of the commands used during the identification
of the attack:

$ who -uH
USER LINE LOGIN-TIME IDLE FROM
john pts/2 Oct 30 08:08
jenny :0 Oct 30 01:35 (attacker.com)
alex pts/0 Aug 21 16:27
root pts/1 Oct 30 01:31 (attacker.com)

$ finger
Login Name Tty Idle Login Time Office Office Phone
jenny Jenny Smith *pts/0 Oct 31 01:35
john John Doe *:0 Jul 20 15:31
alex Alex Roberts pts/2 69d Aug 21 16:27
root Root pts/1 Oct 30 01:31

$ ls -al
drwxr-xr-x 9 root root 1536 Jan 4 2001 .
dr-xr-xr-x 3 root root 3 Nov 4 17:18 ..
-rw-r--r-- 1 root root 0 Jan 4 2001 .Maillock
-rw------- 1 root root 297 Apr 17 1999 .Xauthority
drwxr-xr-x 11 root root 512 May 7 1999 .dt
-rwxr-xr-x 1 root root 5111 Jan 4 1999 .dtprofile
drwx------ 2 root root 512 Feb 19 1998 .elm
-rw-r--r-- 1 root root 412 Feb 17 1998 .emacs
-rw-r--r-- 1 root root 384 Feb 17 1998 .emacs~
drwxr-xr-x 2 root root 512 May 7 1999 .hotjava
-rw-r--r-- 1 root root 343 Dec 1 1998 .profile
-rwxr-xr-x 2 root root 512 Oct 7 2000 .xxx

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Adrienne Zago-Swart Page 20 of 33

Company X did not know who was attacking them or where the attack came from.

Company X traced the attack as far back as they could. They were only able to trace it to an ISP.
Several e-mails were sent to the ISP in hopes that they would be able to assist further.
Unfortunately, it did not produce the desired results. The ISP said that they would investigate
the attack and were looking into a similar attack on someone else. They never got back to
Company X on the results of the investigation.

Company X did not know what the attack was. They only knew that somehow, someone
got into their systems, had root privileges and was using their systems as a jump board to attack
Government Agencies A and B.

They did not know how quickly they identified the incident. The attacker could have been
on the system for a long time. Log-on files were only kept for a short period of time. Since the
attacker logged on as legitimate users, it was hard to tell when it was the attacker logging on or
the actual user. The access time of the attacker was off hours, but sometimes legitimate users
worked at odd times due to personal preference, travel and overtime.

$ ps –A
 PID TTY TIME CMD
 0 ? 0:01 sched
 1 ? 1:11 init
 2 ? 0:01 pageout
 3 ? 595:23 fsflush
 453 ? 0:00 sac
 316 ? 0:38 xntpd
 218 ? 0:27 in.rwhod
 225 ? 0:02 statd
 249 ? 6:04 syslogd
 179 ? 0:16 rpcbind
 181 ? 0:01 keyserv
 220 ? 10:48 inetd
 189 ? 1:46 rpc.nisd
 227 ? 0:00 lockd
 207 ? 19:07 in.named
 244 ? 18:09 automoun
 371 ? 4:05 sendmail
 271 ? 3:33 sshd1
 355 ? 0:04 lmgrd.st
 268 ? 2:08 nscd
 262 ? 0:49 cron
 277 ? 13:54 arpwatch
 281 ? 0:03 identd
 290 ? 0:00 lpsched
22560 console 0:00 ttymon
 392 ? 0:01 vold
 368 ? 0:01 utmpd
 25376 ? 0:00 uxwdog
 424 ? 0:20 mountd
 427 ? 0:01 nfsd
 433 ? 0:18 in.dhcpd
 436 ? 0:02 snmpdx
 446 ? 0:00 dmispd
 447 ? 0:00 snmpXdmi
 1274 ? 0:00 in.telne

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Adrienne Zago-Swart Page 21 of 33

With much information missing on who and where the attacker was, when the incident
started and what actually happened, Company X could not even begin to answer the question of
how or why the attack occurred.

Company X was worried about their critical files on the affected systems. They decided to
use the cpio command. Cpio copies files to and from cpio or tar archives. Since Company X did
not gather pieces of evidence, there was not chain of custody in this incident.

Phase 3: Containment

In the containment phase, incident handlers try to prevent the incident from spreading or
getting worse. Incident-handling teams make backups of the affected systems. This way the
original can be store for evidence, while work can be done on a copy. It is important to keep a
low profile during this phase and not tip of the attacker. Companies have to determine the risk of
continuing operations.

Company X tried to contain the incident immediately. After detecting the unfamiliar files,
Company X assembled an incident-handling team. The senior network engineer at Company X
took the lead from a remote location. Two other senior level network administrators helped over
the phone. Two junior network administrators, who were local, arrived on site. They again
checked for unfamiliar files and odd log-on times. They surveyed the area for physical security
of the systems. They took inventory of all systems affected. With the survey, it was discovered
that all their main servers were compromised. Since it was a small company, many employees
jumped in right away to help. At first, many things were out of control because the leaders of the
incident-handling team were not local. Some employees began trying to do more research on the
perpetrator and also tried to fix the attack. The first official order that came from the team leader
was to keep people from getting in the way. They began to secure the immediate area to gain
better control. Other employees who had access to the server room were asked to stay away
from the area.

Company X backed up all critical files before more damage might destroy them. They
usually use tar to back up their files but decided to back them up with cpio. The following
command creates a full backup from the current directory if backing up to a tape device:

find . -print|cpio -oacvB > /dev/rmt/1
Company X backs up the files to another server that usually held back up archives. To

make sure that they would have at least one working copy, they backed it up on to two different
hard drives. Since it was not a backup onto separate media, it was not stored offsite. They did
analyze the files that they were backing up and declared them to be safe.

The systems were not kept pristine. Too many employees tried to help in the initial phase.
They were trying to look for the intruder using a variety of different methods. Some of the
methods used were obvious methods that could have tipped of the attacker. The methods used
included: finger, who, and ps. They also used traceroute to trace a path between the company
and the attacker. The lsof tool was used to show all open file handles, sockets and who owned
them.

Company X did try to maintain standard procedures initially, in hopes that the attacker
would not find out that he or she was discovered.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Adrienne Zago-Swart Page 22 of 33

The administrators changed all the passwords on the servers. This might keep the intruder
out for a while, unless they had installed a rootkit or other tools that would still allow them
access. The incident-handling team used the Legion tool to track all the shares to their systems.
All servers and systems trusted by them had their passwords changed.

The incident-handling team did not have an official jump bag, but had most of the tools
used were easily accessible to them. These tools included:

• Documenting supplies – Pen and paper, not kept
• CD's with binaries of organizations OS
• Laptop with dual OS
• Call lists and phone book
• Cell and home phone

The lead incident handler used his own workstation laptop for the jump kit. It was a dual
boot machine and was used for all his work and network administrative tasks. The problem with
using this machine was that it might already have been contaminated as well.

The incident-handling team reviewed all information from the identifications phase. They
looked at all the logs of the affected systems and those of neighboring systems. They did not
find anything new. The logs were only kept for a short time.

They documented some of their actions on paper. Notes were made on conversations of
each of the people they talked to and the time. The documentation and notes were also not kept
long. Too many people were working on things and initially things were not well coordinated.

The incident-handling team members kept in close contact with each other. The lead
incident handler made regular reports to the system owner and the upper management. They
used out-of-band communication with cell phones and fax. When it was necessary to send
information by e-mail, they used PGP to encrypt the messages.

The lead incident handler recommended taking they affected systems and other possibly
compromised systems off the network. He thought it was too risky to continue operations. The
systems were taken of the Internet and the internal network. To be able to work on them better
and also test them in a network environment, they were attached to a separate hub.

They wanted to rid the system's compromised code. They downloaded and gathered new
binaries, compiled them, and replaced the old binaries on the systems with the new ones. They
also placed some patches.

When they thought they had done everything to clean the system, they put it back on-line.
The lead incident handler kept a close eye on the systems. He regularly checked for
unauthorized log-ins or log-ins at odd times. A few days went by with out any obvious presence
of the intruder.

The senior network administrator was working on the systems on Super Bowl Sunday
during the game. While checking the logs, some users showed up that did not make sense to
him. He knew that these people were die-hard fans and would either be out at a party or
watching the game. He initiated a talk session with the user asking them who they were. The
user responded by confirming that they were the attacker and that if they wanted them to leave
their systems alone they would have to pay them a lot of money.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Adrienne Zago-Swart Page 23 of 33

It was clear that they did not contain the problem 100%. The system owner and upper
management were called immediately and it was back to the drawing board. It was discussed
that they would have to rebuild the systems completely. The lead incident handler, also the
senior systems administrator, responded that this would be the time to implement a new network
with some of the technology that they had been looking for but never gotten around to using.

Phase 4: Eradication

The goal of the eradication phase is to eliminate the cause of the incident. In this phase,
the incident handlers fix vulnerabilities and remove any malicious code that might reside on the
systems. This might include restoring or rebuilding a system.

Company X noticed that they were not able to sufficiently contain the problem. They
knew that they did not have the network set up correctly. In their mind, this was the reason they
could not contain the incident. They decided to stop trying to contain the attack and eradicate it
by completely rebuilding the network. This way, they could clean their systems and also try to
prevent future incidents. All three senior network engineers flew to the main office to deal with
the incident at Company X’s headquarters.

Company X tried to replace critical files on the server in hope of stopping the attacker and
gaining control back. This failed. They looked at all the steps they could take to contain and
concluded that it would be faster and more effective to rebuild the network from the ground up.

Their new network setup was vastly different than the one prior to the attack. They still
connected to Government Agencies A and B through the Internet. Government Agencies A and
B had set up new servers to connect to. The government set up new servers where Company X
did not have root access and could not compromise other government systems. Company X set
up a DMZ (Demilitarized Zone), an area of the network that is most public to the Internet. In the
DMZ, there was a Web server, a Mail Server, a DNS server and a FTP server for the developers.
They set up a Split DNS that provides one server for the internal network and one for the
external network. The DNS Server in the DMZ was just for external use. The router from the
Internet to the DMZ was configured to allow all access. If someone was logged as consistently
trying to gain access to an unauthorized area, they were blocked.

The Administrative branch of the company had been separated from the Research and
Development group. Both branches have their own firewall. The operating requirements for the
Research and Development group were different from that of the Administrative and
Engineering branches of the company. The Research and Development group required more
flexibility in terms of outgoing and incoming ports open to do their development work.

Both firewalls handle the network address translations. This way, they use private IP
addresses internally. They set up schemes to identify machines by their IP addresses.

The firewalls are set up to allow access based on service, domain and static IP. Log-in and
passwords are required, allowing access to telnet, SMTP, POP, FTP, HTTP, and SSH. They do
not allow any ICMP. TCPWrappers are used to protect against IP spoofing, which monitors and
controls incoming network traffic.

The Administrative branch has a backbone switch that branches out into three sub-
networks and also goes to the second, internal DNS. The three sub-networks are Engineering,
Corporate and Classroom. The Engineering group has its own server and multiple workstations,

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Adrienne Zago-Swart Page 24 of 33

designed for the tasks on ongoing contracts. The second sub-network is the Classroom, where
they held training for other corporations. The third sub-network is for the Corporate group, for
their corporate records and multiple workstations.

The Research and Development group had their own firewall. They had two servers, one
for development and one for production. Multiple workstations were connected to the switch.

A VPN (virtual private network) was set up for remote users. This allows remote users to
connect to a company over the Internet with a secure connection that makes it appear as if the
machine is on the same LAN.

They set up static routing from the desktop machines to the servers and from server to
server.

Diagram of New Network Setup

To rebuild the systems, they reformatted the hard drives and rebuilt the operating systems.
This would eradicate any malicious code left behind by the attacker. Then, they loaded all
applications, the files and data.

Passwords were already changed in the containment phase. For the rebuild of the network,
they designed a whole new username and password scheme. They renamed all administrative

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Adrienne Zago-Swart Page 25 of 33

accounts. All users got new user names and passwords. The passwords were longer (at least
eight characters) and had a combination of letters, numbers and special characters. Every single
password and username was changed. Any systems that the original network connected to were
given the new passwords as well. They used shadow passwords, thereby adding layer of
security. The passwords are encrypted and kept in the /etc/shadow file, instead of the
/etc/passwd file. The shadow file is only readable by the Superuser.

All possible patches and updates were added to the system. They went to the websites for
all operating systems, applications and programs that they were running to get the latest updates.
They also searched on security websites for the any vulnerability warnings. They were
determined to do everything possible to avoid being attacked again.

The r-utilities and xwindows were removed from all servers.

They set up DHCP with permanent leases. This way, they can add new machines easily
and still track systems by their permanent IP address. They added the Arpwatch program, which
alerts them when the arp table is changed or new entries are made.

They implemented Tripwire, a tool that detects when files have been altered by regularly
recalculating hashes of the files and storing these hashes on secure locations. By comparing the
cryptographic hashes, tripwire can detected any small changes. Hashes were made once the
network was ready to be put back online.

When the incident-handling team finished rebuilding the network, the system owner was
contacted for the final decision to put the network back online. The incident-handling team
monitored the systems closely. Since more logging function were enabled, it was easier to see
what was happening on the system. They especially monitored who was logging in and what
services were accessed and running. Employees tested their Internet applications and the
connections to outside systems. Everything was functioning correctly. The incident-handling
teams from Government Agencies A and B also tested their systems and connections to
Company X.

Phase 5: Recovery

In the Recovery phase, systems are put back into production. To make sure that the
vulnerability has been eradicated, the system is tested and monitored.

In failing to initially contain the problem, the incident-handling team decided to completely
rebuild Company X’s network and implement appropriate security measures. In this way, the
incident-handling team returned the system to a good state. Even though it was new and
untested in their environment, it was found to be much safer than the network they had before.

Company X made many changes in the eradication phase that were improvements that
many companies might plan for in the future or implement after a full recovery of the system.
They had looked at all the changes that they needed to implement to eradicate the incident, as
well as all the possible modifications that they wanted to implement in the future. They took all
the money from the emergency budget that was allocated for the attack and worked on getting all
they changes implemented. They changed the function of some old machines and rearranged
things. They were able to squeeze a few more machines out for their new server room. With a
lot of work, they were able to implement almost all of their changes. They had to sacrifice and
get some smaller priced items, but overall it seemed to work out.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Adrienne Zago-Swart Page 26 of 33

The incident-handling team made sure that the systems functioned properly. It would not
have made any sense to have a secure system online, unless everyone could properly do his
work. They connected the internal network together and had people log on. Employees tested to
make sure that all their applications worked. Applications that required the Internet would be
tested after the systems were back online. Periodically, system files were compared with
tripwire to ensure that the attacker did not re-enter the system unnoticed. Nothing more was
found nor anything more heard from the attacker.

Some future changes that were made after this recovery phase were that both Company X
and the Government Agencies removed OS and system purpose information from their warning
banners. Company X also bought new Antivirus software, which would make it easier to get
virus definition updates and push them out to the machines from the server. Company X did
change a few more things, which are discussed in the next section.

Phase 6: Lessons Learned/Follow-up

In this last phase, the company goes over the lessons they learned during the incident. This
illustrates what they handled correctly, what counter measures worked and areas that they need
to improve on.

Shortly after the incident, the incident response team met with upper management for a
follow-up meeting. In this meeting, they briefly discussed what transpired and what was done to
intervene. All members of the group agreed on what was handled well and what needed to be
improved on. They handled some things well, for instance, they were able to remain calm and
focused throughout the attack and incident-handling phases; the team worked well together; as
soon as they noticed something was going on, they reported it to upper management; they
created backups on a regular basis. On the other hand, the back ups might have been from an
already compromised system; having a longer history of backups would have helped; they
encountered difficulties containing the attack; the network was not properly set up and some
logging features were not enabled.

They were able to eradicate the intrusion by completely redesigning and rebuilding the
network from the ground up. By doing this, they were able to prevent re-infection. Since they
never expected to be attacked, they were not sufficiently prepared for the situation. They were
able to pull together resources they needed rather quickly. It would have been easier if all things
would have been in one place and ready to use for only incident handling. They created a sign-
out sheet for employees to use if anything was borrowed. They took the time to apply necessary
security measures and precautions. Some of the policies were implied but not in writing, so that
was changed over time. Since Company X is small and the employees all know each other,
communication was very good. The cost due to the incident could not be calculated. There were
costs involved in dealing with the incident, and also in building a whole new network. Luckily,
there were no data that was irrecoverable and no damage to the hardware.

It was for a period of almost two weeks that Company X was either down completely or
ran crippled. In these two weeks, the incident-handling team worked about 16 hours per day to
fix the problem. Other personnel also spent much of their time dealing with the consequences of
being attacked. The disruption on operations was tremendous.

Through this incident, Company X learned a great deal and changed many of its
operations. The biggest lesson learned was that they could indeed be hacked. After that

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Adrienne Zago-Swart Page 27 of 33

realization, the incident-handling team turned to many books and web pages on security for
advice. They quickly learned as much as they could and changed their entire outlook and their
whole network from ground up.

The organizational approach to incident handling changed during and after the incident.
Company X believes it is best to not notify law enforcement unless other systems that are not
owned by the company are affected. The incident-handling team was pre-authorized to contain
the system as necessary. Their main goal is to contain, clean, fix the exploit and get back online
as quickly as possible.

Management was very supportive in the effort to keep their system secure. They have
given the incident-handling team pre-authorization to take whatever measures they see fit to
keeping it secure. They have set up a separate budget that the team can quickly access in time of
need. Training is highly encouraged. Due to budgetary and time constraints, most of the
training is on-the-job, using books and web sites as resources.

They have taken more proactive measures in order to prevent attacks before they occur
and/or help with incident handling when it occurs. The company's Administrative and the
Research and Development branches handle their backups differently. For the Administrative
branch, the servers perform a full nightly backup to other backup drives. The individual officers
of the company perform weekly backups of critical files on recordable CD-ROM. The Research
and Development team perform full backups nightly on tapes, which are kept offsite. Systems
that are located in at the Government Agencies follow their backup procedures. The security
policy has been kept up to-date. Some adjustments had been made, mostly dealing with changes
by company growth. Employees are given new copies of the security policy to sign after major
modifications are made.

The system security officer carefully monitors the systems and analyzes network traffic.
To assess current vulnerabilities, different people outside of the company run scans and
vulnerability checks. They keep up with different security groups and security advisory lists.
Systems are updated with service packs, patches and hot fixes as soon as they are available. The
antivirus software in place has been configured to search for new virus definitions nightly and
distribute them to all the workstations and servers.

With time, the senior network engineer developed interfaces to law enforcement and other
computer-incident response teams. This will help if they need to involve law enforcement in
future incidents. The contact with computer-incident response teams help with information
about exploits and how to deal with them.

The company did not have forms in place when the incident occurred. They realized that
having certain information already collected beforehand would have been helpful. They also
wanted forms to help guide them in the incident-handling and documentation processes. To help
with future possible incidents, they decided to develop and use the following forms:

• The Contact List contains the following information: current name, phone numbers,
pager, fax numbers and other relevant information for Local Law Enforcement officials
for computer crime, the local FBI, outside CIRT and FIRST teams, onsite team members,
system administrators, company managers and owners.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Adrienne Zago-Swart Page 28 of 33

• The Incident Identification form identifies the person filling out the following
information: the type of incident it is; the location that the incident took place (including
address and room); and how, who and when the incident was detected (listing any
signatures of the incident).

• The Incident Survey form lists the location of the affected system; the date and time the
people handling the incident showed up; the names of the incident handlers; and a
description of the affected systems (including the system name, IP address, MAC
address; location on the network, system function, hardware manufactures, property
identification number, operating system version and patch level, hardware inventory of
the system and disk capacity, if a modem is present and what phone number connects to
it); also a description of the current physical security when the team arrived.

• To document and guide in the containment phase, they developed a form that describes
how they isolated the affected system; if they took the system off the network or if not
why? If there were any prior backups that were not affected; if they performed backups
(including who did them, how and when the backup started and completed); where they
store their backups (with signatures).

• The last form they developed is to help with the clean up phase. It again lists all
members involved at the time; what vulnerability or exploits they found; how they
eradicated the problem; and how they tested the system to make sure that the exploit was
fixed.

Future Improvements in the Incident-Handling Process

Company X could still implement some procedures to improve their incident-handling
process. They did improve many things after the attack.

Some members of the incident-handling team kept notes on what they did on the systems.
They should have kept notes throughout the whole incident. The best way to do this is to get a
bound notebook that has numbered pages.

Company X did not keep any evidence. They did not keep the servers pristine before
making backups. They did not immediately control access to evidence. Log files were erased.
If the case ever went to court, they would have no evidence or proof of what occurred.
Mishandling or destroying evidence was a big mistake.

They could use a better backup strategy for the company. The Research and Development
team has devised their own backup scheme to minimize down time in case of an incident and
also to protect loss of data. The Administrative branch only backs up files. Their stance is that
they can always rebuild the servers and then transfer files back onto the systems. They backup
the files onto another server’s hard drive. This does not seem safe, since the server is on the
same network and in the same physical location. It would be safer to create regular backup tapes
and store them offsite. Since they overwrite their files daily, they also only have yesterday’s
versions of files. It would be better to keep a longer history of files. Before restoring files from
a backup, it is crucial to analyze the backup to ensure it is not contaminated. It is a good idea to
backup systems as a baseline. This way, they have something with which to compare their
systems.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Adrienne Zago-Swart Page 29 of 33

In case of an incident, they should change their backup strategy as well. They should have
multiple methods and tools for backups (binary backup such as dd (safe back or ghost) or a drive
duplicator). To use dd on Unix, the command would look like the following:

dd if=/dev/hdb of=/dev/nrst0
With multiple methods, if one fails, they can use another one. They should do a full binary

back up of the machines. This way, they do not only have a backup of files, but also the deleted
files, slack space and file fragmentation. They should backup onto new, unused media. If
possible, they should make two backups. Keeping the original for evidence, one for the system
and one for alterations.

Company X did not keep any evidence of the incident. It is good to identify every piece of
evidence, number and date it. This would include any notes, correspondence, original disks, and
unaltered and complete logs. These items can be kept in containers and locked up. There should
be a chain of custody for all evidence. Anyone who has access to it or is in possession of it
should sign and date it.

Company X did not keep a low profile while investigating the attack. They used obvious
methods in trying to find out who was attacking them, and doing so tipped off the attacker. The
attacker could have done immense damage to their systems. Luckily, the company was able to
gain control over its systems before anything worse happened. It would be better to use less
obvious investigational methods in the future.

During the containment phase, Company X reloaded the binaries onto the affected systems.
It would have been beneficial to run them from the CD and just reset the path. That way, the
attacker could not compromise their newly loaded binaries as soon as they were loaded.

Even though Company X was able to acquire most of the tools they needed in a timely
manner, it would have been even better to have a jump kit ready to go. The following is a list of
tools that they could have used in addition to their supplies:

• Tape recorder for gathering quick information.
• Documenting supplies: notebook (bound with numbered pages, ink pens….)
• Binary backup (safe or ghost) or a drive duplicator
• Fresh backup media (a few for each server)
• Forensic software
• CD's with binaries of organizations OS – not reload run from cd
• Windows resource kit for workstation
• Small hub
• Laptop with dual OS – just for incident handling

The company had a follow-up and executive summary meeting. It would be better if they
wrote a follow-up report and executive summary, have all affected parties review the draft and
keep these reports as evidence and for future reference.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Adrienne Zago-Swart Page 30 of 33

Summary

Company X survived a very serious hacker incident where two government agencies they
were contracted to were also hacked into through Company X’s resources. This incident
occurred when Company X was building its internal resources and its security posture was
nominal. Company X felt they were safe from attack because of their size that led them to
believe they were sufficiently obscure to the possibility of attack. This proved to be incorrect, as
Company X was attacked with what is believed to be a rpc.cmsd exploit that allowed the
infiltration of all the server machines at Company X as well as several servers at the two
government agencies.

The exploit used against Company X is believed to be the rpc.cmsd exploit, which uses a
buffer overflow attack against the Calendar Manager service found in the CDE. This exploit was
widely used during the period of time in which the attack occurred. A buffer overflow takes
advantage of certain functions that allow critical memory structures to be overwritten and
ultimately redirect the path of execution of an application to code inserted by an attacker.

The Calendar Manager is a service that runs on RPC, which provides distributed access for
workgroup calendars. RPC allows a client program to call a server program over a network.
The rpc.cmsd exploit takes advantage of the remoteness of the Calendar Manager and allows an
attacker to take control of a system over a network.

The attack was realized when several of the system administrators at Company X noticed
unfamiliar files in their directories. These files had inappropriate permissions, and further
investigation showed other hidden files also existed. The attack occurred over a holiday period,
and most accesses were during the late evening when most employees were not working.

Company X marshaled all its resources to handle the incident. Thousands of dollars were
spent on travel and other resources necessary to ensure the company could remove the attacker
from their systems. Company X called upon a team of its best system administrators to totally
rebuild the network infrastructure and all the servers in use at Company X. The resulting
network after the attack utilizes routers, firewalls and numerous operating system security
mechanisms to prevent a future attack.

Since this incident, Company X is happy to report that they have had only minor incidents.
A few months after the first incident, someone put a DNS server on their external DNS server.
As soon as it was discovered, they took the system off the network. They put on a new DNS
server with an upgraded version of BIND and watched it carefully. Even though they feel pretty
secure with their new network, they are on the lookout for attackers.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Adrienne Zago-Swart Page 31 of 33

Reference

Joel Scambray, Stuart McClure, George Kurtz; “Hacking Exposed: Second Edition,” Osborne and McGraw Hill,
2001

Steven Northcutt, Judy Novak; “Network Intrusion Detection: An Analyst’s Handbook,” New Riders, September
2000

http://lsd-pl.net/files/get?SOLARIS/solsparc_rpc.cmsd

http://securityfocus.com/cgi-bin/archive.pl?id=1&mid=17975&start=1999-07-05&end=1999-07-11

http://sunsolve.sun.com/pub-cgi/retrieve.pl?doc=secbull/166

http://sunsolve.sun.com/pub-cgi/retrieve.pl?doc=secbull/188

http://www.cert.org/advisories/CA-99-08-cmsd.html

http://www.ciac.org/ciac/bulletins/j-051.shtml

http://www.faqs.org/rfcs/rfc1057.html

http://www.sans.org/infosecFAQ/malicious/cmsd.htm

http://xforce.iss.net/static/818.php

http://xforce.iss.net/static/2345.php

