
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

© 2016 The SANS Institute Author retains full rights.

Incident Handling Preparation
Learning Normal with the Kansa PowerShell Incident Response

Framework

GIAC (GCIH) Gold Certification

Author: Jason Simsay, jason.simsay@gmail.com
Advisor: Mohammed Haron
Accepted: August 11, 2016

Final

Abstract

Preparation is a critical step in establishing an effective incident response program.
Information Security professionals that will be called upon to handle an incident must
prepare ahead of time. Kansa is a PowerShell Incident Response Framework developed
by Dave Hull. The PowerShell Remoting feature is leveraged to establish a highly
scalable and extensible system state collection platform. Once data is collected from
across the Microsoft environment, an extensive set of frequency analysis scripts may be
executed to enable incident handlers to turn unknowns into knowns and to discover
anomalies and indicators of compromise.

Learning and deploying the Kansa framework before an incident occurs is invaluable
preparatory work. Security analysts can leverage Kansa to baseline systems and establish
familiarity with the normal state. Being familiar with normal makes us much more adept
at identifying the abnormal, getting a jump on incident identification, and ideally,
containing a security incident with minimal damage. This paper will explore leveraging
the Kansa framework to facilitate documentation of normal state baselines. We will build
upon the frequency analysis capabilities to support profiling homogenous endpoint
profiles deployed across the organization.

© 2016 The SANS Institute Author retains full rights.

Incident Handling Prep: Learning Normal With Kansa	 2
	

Jason	Simsay,	jason.simsay@gmail.com	

1. Introduction
Your organization is compromised. Go! Is your team caught up in routine event

log reviews? Even if you may have narrowly avoided a resume generating event, there

remains the lingering data breach issue. External breach notification in the absence of an

anomalous event leaves the incident response team and security analysts searching for a

needle of compromise in a haystack of event logs and network activity. The 2016

Verizon Data Breach report stated that the detection deficit, the time to compromise

versus time to discover, is getting worse (Verizon, 2016). Hackers are getting in faster

and organizations are taking longer to discover the attack. If an intrusion is undetected

when it first occurs how will we discover it afterward?

Skilled adversaries can blend their activities into what appears to be normal user

and administrator activity, making rapid detection even more challenging. Security

operations teams must look for known indicators of compromise and also look for the

unknown. Both are formidable tasks. Publicly known indicators of compromise are

extensive and searching for what you do not know in a modern operating system will

most likely be futile. “Live Response Using PowerShell” by Sajeev Nair presents a

compiled list of over 30 Windows system artifacts to be searched for potential indicators

(Sajeev 2013). Fortunately, on our side is a large dataset comprised of the configuration

state of all the hosts on our networks. Extracting the pertinent information across the

dataset can provide some semblance of what is normal and what is abnormal. A SANS

Digital Forensics and Incident Response (DFIR) blog entry by Chad Tilbury describes

Mandiant’s Peter Silberman’s Least Frequency of Occurrence principal as simple but

powerful: “malware artifacts tend to be relatively unique across a file system or an

enterprise. By focusing on those outliers, you can often quickly identify a malicious DLL

or registry key” (Tilbury, 2010).

Frequency analysis then is the analysis of the frequency of occurrence of a

particular indicator or data point across a dataset. Dave Hull has provided “Kansa: A

PowerShell-based incident response framework” to the information security community

(Hull, 18 July 2014). Kansa is a framework that leverages the PowerShell Remoting

feature to execute extensible data collection modules across many hosts. Dave informs

© 2016 The SANS Institute Author retains full rights.

Incident Handling Prep: Learning Normal With Kansa	 3
	

Jason	Simsay,	jason.simsay@gmail.com	

us that the data must be analyzed and has provided sample scripts which he says “for the

most part” perform frequency analysis. Dave described how he was able to leverage

Silberman’s Least Frequency of Occurrence Principle to reduce the size of a data set in a

2011 SANS DFIR blog post (Hull, 2011). Some describe its usefulness as an awesome

method to detect anomalous indicators dropped by polymorphic or metamorphic malware

(Hosmer, 2008).

Organizations can leverage those remarkable ideas and the works of these experts

to prepare to handle security incidents. SANS Incident Handling Step-by-Step describes

preparation as imperative, “to make sure we have the skills and the resources that we

need ready to go at a moment’s notice” (SANS, p 18). This paper will summarize key

incident response strategies, consider the value and risk of an enterprise roll out of

PowerShell Remoting capabilities, and guide a secure deployment. With the

infrastructure in place, an organization can implement Kansa and leverage the data

collection capabilities to become familiar with the normal state of the environment so that

the abnormal state can be more readily identified. Kansa’s primary use case is during an

active incident response engagement. The use case herein is one of preparation,

specifically, learning what normal looks like. We will extend the Kansa data collection

and analysis functions with mechanisms to group and filter systems and establish

baselines for the various system profiles in the environment. Along the way, we will

develop familiarity with the tool and learn to customize it. This preparatory process is

also a hunt team exercise. There is a chance we might discover the adversary in our

midst.

2. Incident Handling Preparation
The National Institute of Standards and Technology Special Publication 800-61,

Computer Security Incident Handling Guide, states that establishing a strong incident

response capability requires substantial planning and resources (NIST, Abstract). There

are some significant organizational considerations. We are going to touch on just a few

of those most relevant to knowing what is normal and discovering abnormal.

© 2016 The SANS Institute Author retains full rights.

Incident Handling Prep: Learning Normal With Kansa	 4
	

Jason	Simsay,	jason.simsay@gmail.com	

2.1. Active and Passive Response
Organizations should determine ahead of time the criteria for determining whether

to initiate an active response that will tip off the adversary or to remain passive and

merely observe. NIST advises that any plans to observe should include enough

containment to sandbox the adversary to avoid potential liabilities (NIST, p. 36). "The

goal of live response is to identify incidents as quickly as possible. To do that you want to

collect the right information that helps you make the decision" (Nair 2013). If we don’t

have the necessary information on hand to make a determination of how to handle an

active adversary, we want the option and need the capability to find that information

quickly.

2.2. What is Normal?
Dave Hull states that incident response teams are regularly called to action with

very limited knowledge about the incident. Furthermore, the scope of the investigation

often expands quickly (Hull, 18 Jul 2014). Incident response teams must strive to

familiarize themselves with the normal state of their environment. NIST guidance

suggests we study systems and networks to understand normal to more readily identify

abnormal (NIST 3.6). Data filtering, or reduction, to ensure time is spent on that which is

likely to be most interesting, is also an important concept (NIST, 3.2.4). The Kansa

framework and Least Frequency of Occurrence principal are ideally suited to

accommodate these preparations.

2.3. Know Your Resources
Having the right tools and knowing how to use them is critical to turning the tide

on the detection deficit metric defined by Verizon. A study by McAfee found 33% of

organizations reported the lack of good tools to baseline normal behavior as a contributor

to inadequate security visibility. Thirty-seven percent sought better integration between

security intelligence and operational tools (McAfee, 2015). NIST tells us to “Acquire

tools and resources that may be of value during incident handling” (NIST 3.6). We will

become familiar with PowerShell Remoting and Kansa. Acquiring human resources and

establishing relationships with the extended incident response team could be one of the

© 2016 The SANS Institute Author retains full rights.

Incident Handling Prep: Learning Normal With Kansa	 5
	

Jason	Simsay,	jason.simsay@gmail.com	

most important preparations and should not be overlooked. Know the system experts

within IT and within the various business units.

2.4. Event Detection/Incident Identification
“There is a very pronounced tendency to wait until we are sure something is

wrong before we alert” (SANS, p. 51). The paper “Live Response with PowerShell” asks

“Do you have the right information available to determine if a security incident has

occurred” (Nair, 2013). By collecting the right information before we are in response

mode, we can be more certain something is wrong and provide an alert sooner when an

incident has occurred. This is assuming that we are fortunate enough to detect the

incident before an external party reports it to us. Ultimately, we need to reduce the

detection deficit.

3. Kansa PowerShell IR Framework
Kansa is available from Dave Hull on GitHub. His description: “It uses

PowerShell Remoting to run user contributed, ahem, user contributed modules across

hosts in an enterprise to collect data for use during incident response, breach hunts, or for

building an environmental baseline” (Hull). He goes into more detail about Kansa, the

value of its many modules to incident response, and the analysis scripts in a July 2014

article in PowerShell Magazine. What follows in the next two sections is a brief recap of

that article.

3.1. Collect Data
Kansa can collect data using PowerShell, standard Windows command line tools,

or third party executables. The data collection is defined within a module, and you can

run one or many modules against one or tens of thousands of targets. Kansa has been

designed to collect the most volatile artifacts first. The order that modules are specified

in the modules configuration file is the order in which they will be invoked. An output

directory is created for each Kansa run and includes a subdirectory for each module

which contains an output file for each target. As of this writing, Kansa includes more

than 50 modules to retrieve data from Windows system artifacts known to be altered by

the presence of malware or adversaries. PowerShell Remoting provides Kansa with

© 2016 The SANS Institute Author retains full rights.

Incident Handling Prep: Learning Normal With Kansa	 6
	

Jason	Simsay,	jason.simsay@gmail.com	

massively scalable capabilities and is covered below. You can acquire a lot of pertinent

data very quickly!

3.2. Analyze Data
Frequency analysis is also known as data stacking. The objective is to find an

attribute which would be expected to have a common or consistent value across the data

set. Group the data on this attribute and determine whether you have 100 or 1

occurrence(s) of that particular value. If you pick something that is unique to every

system, you will end up with a grouping that means nothing (Fireeye). The Kansa

framework provides us with more than 40 analysis scripts to perform these interesting

groupings for us. You may find that you execute a given module and then run multiple

analysis scripts against the same data set. Get-LogParserStack.ps1 has been recently

added to the GitHub repository and enables interactive flexibility when analyzing the

data. The Microsoft LogParser utility is a required prerequisite for running these analysis

scripts.

3.3. Getting Up and Running
First, ensure you have obtained the appropriate authorization to install new and

target organizational assets with new tools. Download the Kansa archive from GitHub,

extract it, run the PowerShell Unblock-Files cmdlet, and you are ready to begin collecting

data. Start the exercise with an analysis of your local fully qualified domain name or any

available Windows 2012 or later servers. The default configuration for more recent

server operating systems has Windows Remote Management and the PowerShell

Remoting feature enabled by default unless disabled by your organization. Earlier

Windows releases will require PowerShell Remoting to be enabled. Verify accessibility

of the remote listening service using the Invoke-Command cmdlet. Kansa’s modulePath

parameter will allow you to specify an individual collection module. As with anything

new, it is best to start small and build up as you gain experience. Running Kansa.ps1

with no arguments on a system with Remote Server Administration Tools available will

discover all computers in Active Directory and execute many modules against all of

them. This is not recommended practice for just getting started. Rather, test each module

on a few computers and observe the results.

© 2016 The SANS Institute Author retains full rights.

Incident Handling Prep: Learning Normal With Kansa	 7
	

Jason	Simsay,	jason.simsay@gmail.com	

To be most useful it is necessary to be knowledgeable of the various artifacts the

modules will collect. You should be well into Dave’s PowerShell Magazine article by

now. The article goes well beyond running Kansa and explains the data targeted by the

various modules in terms of its value to incident response. Pick and choose those

modules which have familiar data and get them working. Decide which third party

executables you want to leverage and push them to your targets. Use the analysis

parameter to automatically analyze the collected data. You must be sure that your

modules and analysis configuration files are aligned. You cannot analyze what you do

not collect. If you do not use the analysis parameter, you will have to analyze manually.

You can use the provided analysis scripts, the Get-LogParserStack.ps1 scripts, Microsoft

LogParser.exe, Excel, or whatever method is comfortable.

Once familiar with the modules, determine what additional information would be

useful. Creating module and analysis scripts is a great way to further your familiarity

with Kansa. If you put time and effort into developing something the community can

benefit from, please contribute.

3.4. A GitHub Fork to Get You Up and Running Faster
Determining which modules to use and getting the modules and analysis

configuration files in sync takes some effort. Some of the analysis scripts are expecting

tab-separated values files whereas the modules return comma-separated values files,

necessitating two minor changes to the analysis scripts.

1. The SQL query passed to the Microsoft LogParser tool must select CSV

files rather than TSV files

2. The parameters used for the LogParser command must be revised to

reflect the CSV input format and drop the fixedsep parameter as it is only

valid for the TSV input format

Modified scripts that address these issues are available at https://github.com/dry-

fly/Kansa-Profiler. These scripts will get you up and running quicker. The repository

also includes additional modules and scripts used for profiling systems as described

herein.

© 2016 The SANS Institute Author retains full rights.

Incident Handling Prep: Learning Normal With Kansa	 8
	

Jason	Simsay,	jason.simsay@gmail.com	

4. PowerShell Remoting
Chris Hallenbeck’s post to the Tanium Blog singles out the “flexibility to run ad-

hoc searches across the enterprise for any scope of data – current, at-rest, or historical,

and get immediate responses” as a key capability that reduces the time and effort required

for a successful response. He elaborates, saying that without rapid responses the team’s

“ability to innovate” is impeded, thus “forcing reliance on stale, limited sets of data."

The result is that investigations take longer to complete and remediate (Hallenbeck,

2016). Kansa provides the framework for this capability and PowerShell Remoting the

supporting infrastructure.

What is PowerShell Remoting? It’s a feature of PowerShell that is built on the

Windows Remote Management (WinRM) framework and enables you to invoke

commands that process remotely on one or many hosts. It is highly scalable. The chart

below shows the time to run invoke-command to execute get-process and Kansa.ps1 for

1, 10, 100, and 861 remote targets. By default, Kansa throttles to a maximum of 32

simultaneous jobs. The result is a linear relationship. See appendix for additional detail.

	

4.1. Deployment Considerations
PowerShell Remoting creates significant trace activity on the target system and is

most definitely an active response (Adams, p 11). Establishing a remote session creates

0

20

40

60

80

100

120

140

0 200 400 600 800 1000

Collection	Time
(minutes)

#	Target	Hosts

Remote	Job	Execution	Time

Get-Process

Kansa

© 2016 The SANS Institute Author retains full rights.

Incident Handling Prep: Learning Normal With Kansa	 9
	

Jason	Simsay,	jason.simsay@gmail.com	

log entries, runs processes, and modifies user files and registry hives, all of which

effectively alter the state of the disk, potentially compromising integrity. This raises

concerns with attribution if an organization desires to take legal action against an

intruder. Furthermore, it may tip off the intruder. (Adams, 2015)

Robert Adams interviewed Microsoft's Senior Security Analyst Brian Hooper

regarding passive versus active response strategies. Hooper states that the decision is

made based on the sophistication of your adversary. He suggests that when dealing with

a sophisticated adversary, you would want to take the affected system(s) offline (Adams,

2015). When routine PowerShell Remoting processes are established and are running

remote commands, the organization is less likely to tip off the adversary. As the incident

becomes more understood, additional data collections could certainly help define the

exact level of adversarial sophistication. An incident response team must execute

actions by the organization's established plans and make risk-based decisions as needed

(Adams, 2015).

The use case described herein is that of collecting system state configurations to

baseline normal. This is also, at the same time, a hunt team exercise. A few data

collection cycles before the adversary appears and the remote PowerShell modifications

are now a part of the normal operations on the box. Regardless, ensure that your incident

response program supports the use of PowerShell Remoting in both a preparatory and

active response capacity.

Dave Hull points out that some critics argue that Kansa and more generally,

Windows application programming interfaces, could be “subverted” by malware (Hull,

14 April 2014). The results returned by tools that leverage Windows APIs may be

falsified. Dave makes no arguments. It is admittedly something to be aware of but does

not detract from the value of using said tools.

4.2. Securing WS-Man/Windows Remote Management
Web Services-Management is a standard management protocol and Microsoft’s

implementation is Windows Remote Management (WinRM) (Wikipedia). The National

Security Agency/Central Security Service Information Assurance Directorate paper,

Spotting the Adversary with Windows Event Log Monitoring, is an excellent resource for

© 2016 The SANS Institute Author retains full rights.

Incident Handling Prep: Learning Normal With Kansa	 10
	

Jason	Simsay,	jason.simsay@gmail.com	

establishing a Windows Event Log collection infrastructure using the native Windows

event collection capabilities (IAD, 2013). Like PowerShell Remoting, Windows Event

Logging leverages WinRM services. The paper covers the secure configuration of

WinRM in excellent detail with recommendations to harden the service. Read it and use

it as you consider deploying WinRM within your environment. A few bullets summarize

the considerable value of the document:

• Protect the SVCHOST process with Microsoft’s Enhanced Mitigation

Experience Toolkit

• Disable all authentication methods except Kerberos, except, leave

Negotiate enabled until after you have completed configuration

• Specific requirements are given for environments that have non-domain

machines.

• Leverage the Windows Firewall to restrict access to authorized

management systems

A few years have elapsed since publication. Robert Adams describes a host of

new security features available in recent versions of WinRM and PowerShell (Adams,

2015). These come as organizational red and blue teams and adversarial entities continue

to leverage and expand upon the power of these technologies. Monitoring routines for

PowerShell transactional logging will identify unauthorized use of the tool.

5. Slicing and Dicing the Data collected with Kansa
Frequency analysis of data collected from across an environment is an effective

means of discovering unusual artifacts. During incident response preparation, the system

baselining use case will require the ability to group systems based on their role in the

environment. Servers and desktops and front line and back shop user endpoints have

significantly different system configuration states. Varying hardware and operating

systems will present different system states. By grouping and filtering based on the

variables that define the system profile, and then analyzing the subset, we can get a more

concise baseline for systems of that profile.

© 2016 The SANS Institute Author retains full rights.

Incident Handling Prep: Learning Normal With Kansa	 11
	

Jason	Simsay,	jason.simsay@gmail.com	

Is it worth the effort to slice and dice the data? The answer is it depends on what

you are looking for. Anomalous artifacts or indicators of compromise might stand out

when looking at the entire data set. A rogue end user system with a connection to a

backend SQL server, to which a web server farm is connected, might not jump out in an

analysis of the entire data set. However, an analysis of only those end user systems

would be likely to identify the backend connection to the SQL server.

Do we run multiple Kansa data collections targeting each system profile or do we

run a single data collection? A single collection offers the option to analyze the entire

data set to identify only far outliers or break it down and analyze each profile to identify

more subtle outliers. Kansa, as delivered from Dave Hull's GitHub site, has the analysis

of the entire data set covered. To become familiar with the normal state and baseline

systems based on profile, we must develop a way to break down the data set.

5.1. Breaking it Down: Profile Identification and Isolation
Assets can be grouped on system properties or properties defined by the

organization. System properties would include the operating system, architecture,

hardware manufacturer, and model. Active Directory (AD) organizational units are

likely present in your environment and may serve to group systems of similar functions.

The relevant analysis buckets probably already exist in some form within most

organizations to support existing reporting processes. Regardless, you will need to

determine what properties delineate your target system profiles. The following steps will

enable us to identify the normal baseline for each profile.

1. Build additional Kansa modules to collect system properties

2. Enumerate the Kansa target list file and retrieve information from AD and

the data collection to create a database of system properties

3. Read the database into a PowerShell object to group and filter and isolate

the systems based on profile

4. Establish a profile directory containing links to the Kansa data files

At this point, without duplicating or reacquiring data, we have isolated the system

profile of interest from the larger data collection. The isolated profile directory mirrors

© 2016 The SANS Institute Author retains full rights.

Incident Handling Prep: Learning Normal With Kansa	 12
	

Jason	Simsay,	jason.simsay@gmail.com	

the layout of the typical Kansa output directory such that the same analysis processes will

apply.

5.2. Breaking it Down: Profile Analysis
Kansa has an analysis parameter that will execute the analysis scripts specified in

the analysis configuration file. Can we quickly perform this analysis for the isolated

profile data directory? The Kansa PowerShell script function Get-Analysis executes

when the analysis parameter is specified. We can reuse Get-Analysis and incorporate it

into the profiling scripts.

We will accomplish system profiling by running two scripts. First,

createProfilingDatabase.ps1 will create the system properties database for our target

hosts. Second, createProfileDirectory.ps1 will establish the directory of links to the

collected data and enable integration of the Get-Analysis function. Once the systems are

profiled, a third script, kansaGet-Analysis.ps1 enables us to reuse the Get-Analysis

function and contains the function code from Kansa.ps1 as well as its dependent function

Get-Directives. This new PowerShell script does not create any output enabling it to be

“dot sourced” in the createProfileDirectory.ps1 script. We must also establish a log file

and the parameter variables required by the Get-Analysis function.

5.3. Breaking it Down: System Profiling Step by Step
Once you have Kansa working in your environment, you are ready to use the

guidance herein to isolate and baseline system profiles of interest. The Get-

WMIComputerSystem.ps1 and Get-WMIOperatingSystem.ps1 modules are available on

GitHub. Add these to your modules configuration file and conduct another Kansa run.

These modules retrieve hardware and operating system properties directly from the target

hosts. These properties are required to build the profiling database. This data is collected

and stored the same as all other Kansa modules. Optionally, you could just run Kansa

with a modules configuration that specifies only these two modules and then copy the

output directories into a previous data collection output directory.

© 2016 The SANS Institute Author retains full rights.

Incident Handling Prep: Learning Normal With Kansa	 13
	

Jason	Simsay,	jason.simsay@gmail.com	

5.3.1. createProfilingDatabase.ps1

The script references an existing Kansa target list file to build a database of

system properties from data collected by Kansa and from Active Directory. We import

any Kansa collected system property data into a PowerShell object and also search AD to

retrieve attributes from the target computers to include in the database.

 Set the kansaPath and kansaHosts variables to reflect your configuration. Run

the script run with the Kansa output directory of interest as your current working

directory. The script will create a "_Profiles" subdirectory and output is written to the

profilingDatabase.CSV file. Pseudo code for the createProfilingDatabase.ps1 script is as

follows:

Get contents of Kansa targetList file
Populate PowerShell objects with CSV data collected by property modules
For each target from targetList {

get-adcomputer properties from Active Directory
populate PSCustomObject with system properties
add PSCustomObject to an array

}
Export array to profilingDatabase.csv

The system properties included in the database are easily extensible and should be

tailored to suit the collection of any necessary data points to support your profiling needs.

Any data to be included must have a common key field that identifies the simple

hostname and be loaded into a PowerShell object. The provided script loops through the

hosts in the targetList input file, gets properties for the computer from AD, and then uses

the IndexOf method to get the property data from the modules. You can collect

additional attributes from AD or import additional CSV data into objects to include in the

profiling database.

5.3.2. createProfileDirectory.ps1

createProfileDirectory.ps1 is an interactive script that allows the user to group

hosts based on system properties, filter to isolate hosts of the desired profile, and display

the resulting systems. The user can then elect to proceed with establishing the profile

directory. Optionally, the analysis parameter can be used to execute the analysis scripts

specified in the Kansa analysis configuration file for the profile directory.

© 2016 The SANS Institute Author retains full rights.

Incident Handling Prep: Learning Normal With Kansa	 14
	

Jason	Simsay,	jason.simsay@gmail.com	

Execute the script from the Kansa output directory. During script execution, if

the user elects to proceed, they are prompted for a subdirectory name for the profile

directory. A directory for the profile is created in the profiles subdirectory, and symbolic

links to the Kansa data collected for the hosts of the profile are created. Pseudo code for

the createProfileDirectory.ps1 script is as follows:

Source the kansaGet-Analysis.ps1 function
Import records from profilingDatabase.csv
Display properties available for profile grouping/acquire user input
Display groups available for filtering/acquire user input
Get filtered hosts from group property
Display matching hosts/acquire user election to proceed
If elected to proceed {

Create user specified subdirectory
Identify Kansa module data directories
For each directory {
 Enumerate files
 If filename exists in filtered hosts {
 Create symbolic link to Kansa data file for host
 }
}
If Analysis parameter specified {
 Set function parameter variables
 Call Get-Analysis function
}

 }

 The script leaves behind a data set that filtered to hosts matching the profile criteria. We

can use any analysis methods we use with the larger Kansa data collection. The analysis

option can be used just as we would during Kansa execution.

Theoretically, because we have isolated hosts that are expected to exhibit a

common configuration state we expect a higher percentage of occurrences for specific

data items and fewer outliers. To analyze the theory, we have to modify the Get-Analysis

function to output the LogParser results to CSV format rather than TSV, making it easier

to import the results to PowerShell objects. The CSV output will also be useful for

discovering new unknowns relative to the baseline. We use the Get-Tasklistv.ps1

analysis script to explore the theory. The methodology for the analysis is available in the

appendix. We can draw the following conclusions from the table below:

© 2016 The SANS Institute Author retains full rights.

Incident Handling Prep: Learning Normal With Kansa	 15
	

Jason	Simsay,	jason.simsay@gmail.com	

• Profiling systems based on model and organizational groupings yield more

concise baselines than grouping on architecture or Windows version

• The more concise baselines have a greater number of tasks common to all hosts

of the same profile

• The more concise baselines also have a greater percentage of tasks common to

the group compared to total count of unique tasks

Grouping	Property	 Profile	Group	

Ho
st
s	

U
ni
qu

e	
Ta
sk
s	

In
te
rs
ec
tio

n	

Gr
ou

p	
U
ni
qu

e	

Co
m
m
on

	T
as
ks
	

Co
m
m
on

/U
ni
qu

e	

All	Hosts	 		 823	 459	 		 		 10	 2.2%	
Architecture	 32-bit	 337	 217	 180	 37	 14	 6.5%	
		 64-bit	 486	 422	 180	 242	 10	 2.4%	
Manufacturer	 Dell	 735	 390	 42	 242	 12	 3.1%	
		 Microsoft	 72	 192	 42	 41	 16	 8.3%	
		 OEMC	 6	 84	 42	 0	 47	 56.0%	
		 VMWare	 10	 69	 42	 16	 25	 36.2%	
Windows	Version	 Windows	7	 740	 407	 95	 254	 11	 2.7%	
		 Windows	8.1	 68	 150	 95	 13	 17	 11.3%	
		 Windows	10	 15	 160	 95	 29	 13	 8.1%	
All	Dell	Systems	 		 733	 385	 		 		 13	 		
Model	 Latitude	 61	 254	 170	 80	 29	 11.4%	
		 OptiPlex	 672	 308	 170	 135	 18	 5.8%	
All	Dell	Optiplex7010	Win7	 		 219	 232	 		 		 17	 		
Model/Win7/Org	Unit	 BackOffice	 117	 217	 91	 105	 18	 8.3%	
		 Platforms	 46	 119	 91	 9	 24	 20.2%	
		 Tellers	 55	 100	 91	 5	 17	 17.0%	

We could have chosen a different module and analysis output to test the theory. A

data set from a different module may reflect greater continuity across operating system

versions rather than hardware model. This justifies establishing a known baseline for the

data of each module independently, which does complicate the job for the analyst

interested in baselining systems. It is important to be fluent in the use of the tools and

have the flexibility to analyze as each specific situation dictates.

© 2016 The SANS Institute Author retains full rights.

Incident Handling Prep: Learning Normal With Kansa	 16
	

Jason	Simsay,	jason.simsay@gmail.com	

5.4. Breaking it Down: Finding New Unknowns
Learning the unknown through data analysis using the provided scripts will

undoubtedly take time and commitment. Not all views of the data will be useful and

identifying those that are will take experimentation and experience. The process will

provide a better understanding of what is normal. As with any IT/Information Security

foray, beware of rabbit holes.

Once familiar with the frequency of occurrence of items from each module’s data,

you are ready to set the baseline. This is as simple as ensuring that the Kansa output

directory is maintained for reference. Additional data collections retrieved from the

environment can be compared to the baseline to identify changes within the environment.

This comparison transitions our efforts from one of incident response preparation to

detection. Baselines will require maintenance as the environment changes over time.

However, operationalizing continuous monitoring of the current state of the environment

to the known baseline is certain to yield investigations of the unknown and is an

opportunity to detect an intrusion.

Security analysts comparing a current data set to a known baseline will want to

acquire two pieces of intelligence. What data points are now present that were absent in

the baseline? Does the new data point have a high or low frequency of occurrence? If it

is high, we may have to adapt our baseline. If it is low, the next logical piece of

intelligence is the identification of the host(s) that contributed the low-frequency data

point.

5.4.1. findUnknown.ps1

Security operations teams can integrate this interactive script into routine

operations to find unknown data items. The script will identify items unique to either the

current or baseline collection and not present in both. The user specifies the location of

the current and previously collected baseline data set. The script will look for matching

profile directories within the datasets. These will have been created previously by

running the createProfileDirectories.ps1 script to isolate the same profile, for each data

collection. The user identifies the profile directory to analyze, and the script will locate

matching analysis results files. Lastly, the user identifies the analysis results files to

© 2016 The SANS Institute Author retains full rights.

Incident Handling Prep: Learning Normal With Kansa	 17
	

Jason	Simsay,	jason.simsay@gmail.com	

compare. The compare-object cmdlet is used to identify data items unique to either the

baseline or current analysis result file.

The findUnknown.ps1 script acts on multiple output directories. Execute from

the Kansa directory. Unknown items or items no longer present are identified. Pseudo

code is as follows:

List output directories, prompt user for baseline and comparison directories
Identify matching profile directories, prompt user for profile to be analyzed
Identify matching analysis results files, prompt user to pick module analysis to
compare
Import the analysis result of interest for each data set to a PowerShell object
Compare-object on the NoteProperty property of the PowerShell object that is not
named ‘CNT’ and output those not equal

Afterward, it is up to the analyst to conduct additional analysis to review the

systems of interest generating the outlying data item. The flexibility and capability of

PowerShell make it the perfect tool for conducting further queries of the data. These

queries can be constructed on the fly and are excellent for honing your skills. Example

PowerShell commands for doing so are available in the appendix.

6. Conclusion
Establishing a rapid data collection infrastructure and knowing how to leverage it

when needed is critical to efficient incident response efforts. The scalability of

PowerShell Remoting makes it well suited to incident response activities, and the Kansa

framework brings it home. Incidents are unique. You are not likely to be certain what to

look for until it is time. Utilizing Kansa for baselining systems ahead of time and

learning what is normal is akin to practice for the big game. To best handle an incident, it

is important that organizations commit time and resources to establishing the necessary

technology infrastructure and developing the skills of the team. You will not come away

with the win when all you can do is practice, so baselining might not immediately lead

you to discover anything of significance. On the other hand, it may. When something

anomalous does show up in your environment, knowing what is normal will go a long

way to understanding the unknown anomaly.

© 2016 The SANS Institute Author retains full rights.

Incident Handling Prep: Learning Normal With Kansa	 18
	

Jason	Simsay,	jason.simsay@gmail.com	

Incident response programs are well documented, and your organization does not

need to start from scratch. The NIST documentation is a fantastic resource. Establishing

a secure PowerShell Remoting configuration in your environment will take some effort.

The NSA document is the go-to source for securely enabling the powerful capabilities of

Windows Remote Management (WinRM). Adversaries will be sure to find it and exploit

it. Thus, it is critical to implement securely with adequate logging to detect unauthorized

usage. Fortunately, PowerShell Remoting and Windows Event Log Forwarding both

leverage the WS-Management protocol, specifically Microsoft’s WinRM

implementation. A secure implementation can support both your data collection and

logging requirements. Kansa is an extensible framework developed by experts for use in

live incident response scenarios. Your team must gain management support to commit

the necessary resources to prepare for any incident response. Then your team must

develop the needed skill to use the tools effectively when under the pressure of a real

incident.

The profile baselining methods described herein are expected to help prepare your

team to serve your organization. The infrastructure and tools are deployed and

operational. The knowns are confirmed, and the innocuous unknowns have become

familiar. Debrief your operational teams and helpdesk so they have a reference for what

is normal and can better spot what is not. Operationalize the use of Kansa, analyze the

data, and maintain the baselines. Discover your adversaries before someone else does.

	

© 2016 The SANS Institute Author retains full rights.

Incident Handling Prep: Learning Normal With Kansa	 19
	

Jason	Simsay,	jason.simsay@gmail.com	

References

Adams, Robert. (2015, December 7). The power and implications of enterprise incident
response with PowerShell. Retrieved from https://www.sans.org/reading-
room/whitepapers/incident/power-implications-enabling-powershell-remoting-enterprise-
36542

Cichonski, P., Millar, T., Grance, T., & Scarfone, K. (2012, August). National Institute
of Standards and Technology. Special Publication 800-61 Revision 2. Computer
security incident handling guide. Retrieved from
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-61r2.pdf

Hosmer, Chet. (2008). WetStone Technologies, Inc. Polymorphic & metamorphic
malware. Presentation at Black Hat Conference. Retrieved from
https://www.blackhat.com/presentations/bh-usa-
08/Hosmer/BH_US_08_Hosmer_Polymorphic_Malware.pdf

Hallenbeck, Chris. (2016, March 29). Avoiding incident response groundhog day.
Retrieved from https://blog.tanium.com/avoiding-incident-response-groundhog-day/

Hull, Dave. (2014, April 14). [Web blog comment]. Retrieved from
http://trustedsignal.blogspot.com/search/label/Kansa

Hull, Dave. (n.d.) Kansa. Readme.MD Retrieved from
https://GitHub.com/davehull/Kansa

Hull, Dave. (2014, July 18). Kansa: A PowerShell-based incident response framework.
Retrieved from http://www.powershellmagazine.com/2014/07/18/kansa-a-powershell-
based-incident-response-framework/

Hull, Dave. (2011, April 23). [Web blog comment]. Retrieved from
http://digital-forensics.sans.org/blog/2011/04/23/digital-forensics-least-freq-strings

M-Labs. (2012, November 7). An in-depth look into data stacking. Retrieved from
https://www.fireeye.com/blog/threat-research/2012/11/indepth-data-stacking.html

Nair, Sajeev. (2013, August 7). Live response using PowerShell. Retrieved from
https://www.sans.org/reading-room/whitepapers/forensics/live-response-powershell-
34302

National Security Agency. (2013, December 16). Spotting the adversary with Windows
event log monitoring. Retrieved from
https://www.iad.gov/iad/customcf/openAttachment.cfm?FilePath=/iad/library/ia-
guidance/security-configuration/applications/assets/public/upload/Spotting-the-

© 2016 The SANS Institute Author retains full rights.

Incident Handling Prep: Learning Normal With Kansa	 20
	

Jason	Simsay,	jason.simsay@gmail.com	

Adversary-with-Windows-Event-Log-
Monitoring.pdf&WpKes=aF6woL7fQp3dJiwesfNwhEgT5nbAuQVRBwKBfN

Oltsik, Jon. (2015, April). Tackling attack detection and incident response. Retrieved
from http://www.mcafee.com/us/resources/reports/rp-esg-tackling-attack-detection-
incident-response.pdf

Skoudis, E., Strand, J., & SANS. (2015). SANS hacker tools, techniques, exploits &

incident handling. (Vol. 1).

Tilbury, Chad. (2010, November 08). Digital forensics how-to: memory analysis with
Mandiant Memoryze. Retrieved from https://digital-
forensics.sans.org/blog/2010/11/08/digital-forensics-howto-memory-analysis-mandiant-
memoryze/

Verizon. (2016). 2016 Data breach investigations report. Retrieved from
http://www.verizonenterprise.com/resources/reports/rp_DBIR_2016_Report_en_xg.pdf
	 	

© 2016 The SANS Institute Author retains full rights.

Incident Handling Prep: Learning Normal With Kansa	 21
	

Jason	Simsay,	jason.simsay@gmail.com	

Appendix
Measuring Command Execution Time

The screenshot below identifies the methods and commands used to measure the

invoke-command run time. We start by validating the number of hosts in each of the

variables holding the target number of systems. The measure-command cmdlet is used to

time the execution time for invoke-command in seconds. Finally, the output for each

invoke-command is presented, depicting the expected results.

	

	
	
	
	
	
	
	

© 2016 The SANS Institute Author retains full rights.

Incident Handling Prep: Learning Normal With Kansa	 22
	

Jason	Simsay,	jason.simsay@gmail.com	

Below we do the same as described above, except we use Kansa in place of

invoke-command. Remember, we are executing 17 Kansa modules and conducting

analysis whereas with invoke-command we executed a single cmdlet.

	

	
	

Both invoke-command and Kansa.ps1 were additionally measured when running

for 861 target systems. Because there were some errors encountered, screenshots are not

included here, but the data is presented in the chart. The Kansa run for 861 hosts

returned upwards of 500 MB of data in about 123 minutes.

	

© 2016 The SANS Institute Author retains full rights.

Incident Handling Prep: Learning Normal With Kansa	 23
	

Jason	Simsay,	jason.simsay@gmail.com	

Appendix
Profile Analysis Methodology

The scripts that accompany this paper are available on GitHub and facilitate

slicing a Kansa data collection up based on target system profile. Not all system profiles

are expected to be the same in an environment and having a known baseline for the

various profiles deployed in our environments is expected to be more concise and more

consistent than an analysis of disparate systems. The following methodology was used to

evaluate this theory.

1. Build the profile database and create profile directories for the system profiles

to be analyzed. The following were chosen:

a. Population = entire data set. Profiles include:

i. OS Architecture

ii. Hardware Manufacturer

iii. Operating System

b. Population = all Dell computers. Profiles include:

i. Latitude

ii. OptiPlex

c. Population = all Dell OptiPlex computers running Windows 7.

Profiles include:

i. Back Office workstations

ii. Platform workstations

iii. Teller workstations

2. Record the total number of systems for each population and profile. This

command, when run from the Kansa Output directory, will count the number

of Tasklist data files returned by Kansa for each AnalysisResults folder,

including those that have been profiled:

© 2016 The SANS Institute Author retains full rights.

Incident Handling Prep: Learning Normal With Kansa	 24
	

Jason	Simsay,	jason.simsay@gmail.com	

get-childitem -directory -filter Tasklistv -recurse | foreach {

$_.fullname; get-childitem $_.fullname | measure-object | select count

 }

3. Record the total number of unique tasklist image names for each population

and profile. This command, when run from the Kansa Output directory, will

count the number of unique image names found in the TaskListStack.csv

analysis result:

get-childitem -directory -filter AnalysisReports -recurse |

get-childitem -filter TasklistStack.csv | foreach {

$_.fullname ; $items = import-csv $_.fullname;

$items.imagename.toupper() |

sort | unique | measure-object | select count

}

4. Identify the intersection of Tasklist image names amongst the profiles.

5. Identify the Tasklist image names unique to each profile.

6. Although the above two steps were straight forward when the number of

profiles was only 2, with more than 2, the various combinations of unions

present complicated matters and I resorted to a spreadsheet analysis rather

than script. When there are only two profiles, such as with architecture or Dell

model, you can arrive at the total number of unique Tasklist images names for

the population by adding the count of intersecting tasks for the profiles to the

profile group unique count for each profile. For example, for the OS

architecture based profiles, 180 intersecting tasks plus the 37 unique to 32-bit

and the 242 unique to 64-bit yields the 459 unique tasks present in the

population. The three data items below validate the accuracy of the data

represented on the chart for the manufacturer, operating system, and

organizational profiles.

© 2016 The SANS Institute Author retains full rights.

Incident Handling Prep: Learning Normal With Kansa	 25
	

Jason	Simsay,	jason.simsay@gmail.com	

All	Count	 42	
Dell_MS_VM	Count	 2	
Dell_MS_OEM	
Count	 8	
Dell_MS_VM	Count	 1	
Dell_MS_OEM	
Count	 14	
Dell_MS_VM	Count	 1	
Dell_MS_OEM	
Count	 6	
MS_VM	Count	 1	
MS_OEM	Count	 11	
DELL_VM	Count	 4	
DELL_OEM	Count	 2	
DELL_MS	Count	 55	
DELL_VM	Count	 2	
DELL_OEM	Count	 1	
DELL_MS	Count	 10	
Uniq	to	VM	Count	 16	
Uniq	to	MS	Count	 41	
Uniq	to	DELL	Count	 242	
Grand	Count	 459	

All	Count	 95	
Win10	Count	 29	
Win7	Count	 254	
Win7_Win10	Count	 26	
Win7_Win8	Count	 32	
Win81	Count	 13	
Win81_Win10	Count	 10	

==	 91	
Overlap	BackOffice/Platform	 19	
Uniq	to	BackOffice	 105	
Overlap	BackOffice/Teller	 3	
Uniq	to	Platform	 9	
Uniq	To	Teller	 5	

7. Identify the Tasklist image names common to the entire population and

common to all hosts of the given profile.

© 2016 The SANS Institute Author retains full rights.

Incident Handling Prep: Learning Normal With Kansa	 26
	

Jason	Simsay,	jason.simsay@gmail.com	

8. The ratio of common tasks to unique tasks is a measurement of the

conciseness of the baseline. A higher percentage indicates a more consistent

baseline across all hosts of the profile.

	

© 2016 The SANS Institute Author retains full rights.

Incident Handling Prep: Learning Normal With Kansa	 27
	

Jason	Simsay,	jason.simsay@gmail.com	

Appendix
Next Step for the Analyst

Having executed a Kansa data collection with the analysis parameter, the analyst

is left with a set of tab separated values (TSV) analysis result files. While looking at the

TSV in a text editor, you discover a DNS cache entry for zpierwszegotloczenia.pl. What

is the analyst’s next step?

Many of the analysis scripts perform frequency analysis, and the resulting output

does not identify which target host contributed this suspicious entry. To identify the host,

you must return to the module data. In this case, the Get-DNSCache module outputs to

the DNSCache subdirectory of the Output_ folder. From within the DNSCache directory,

we can search the text of all the CSV files with this command: get-content *.csv | select-

string "zpierwszegotloczenia.pl"

We have now identified the offending target host to be P27A. Next step might be to

review the P27A-DNSCache.csv file to see what else is in the cache. Perhaps we must

move to our web proxy logs. The analyst will need to determine the appropriate course

of action based on the context of the situation.

