
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Auto-Nuke It from Orbit: A Framework for Critical

Security Control Automation

GIAC (GCIH) Gold Certification

Author: Jeremiah Hainly, jhainly@gmail.com

Advisor: Adam Kliarsky

Accepted: March 13th, 2017

Abstract

Over 83% of security teams report that the use of automation in security needs to increase

within the next three years (Algosec, 2016). With automation becoming a reality for a

growing number of companies, there will also be an increased demand for open-sourced

scripts to get started. This paper will provide a framework for prioritizing and developing

security automation and will demonstrate this process by creating a script to automate a

common information security response procedure – the reimaging of an infected

endpoint. The primary function of the script will be to access the application program

interface (API) of various enterprise software solutions to speed up the manual tasks

involved in performing a reimage.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Auto-Nuke It from Orbit: Automating Response to an Infected Endpoint 2

Jeremiah Hainly, jhainly@gmail.com

1. Introduction

The Center for Internet Security Critical Security Controls (CIS Controls) are a

prioritized set of 20 recommended actions for cyber defense that provide specific and

actionable ways to counter the most critical cyber-attacks (SANS, 2017). Implementing

all 20 CIS Controls reduces a company’s risk of cyber-attack by around 94 percent

(Center, n.d.). At the core of the framework is the ability to automate these recommended

actions in order to save organizations both time and money (Cole, 2016). This is rooted in

the fact that implementing manual defenses to address each of the 20 CIS Controls would

be financially and practically unrealistic.

When deciding which of the CIS Controls an organization should initially

automate, the priority should be low-hanging fruit - or tasks that can be easily automated

with little effort and high cost savings. These tasks will vary for each organization based

on which CIS Controls have already been implemented and what the information security

team spends the highest amount of time doing manually. An example of this would be an

organization that is currently spending eight man-hours each week investigating issues

related to devices of which they were previously unaware. As a result of these

investigations, the security team commonly finds that the gap was caused because the

server team installed a new device and did not notify their security team. In this case, the

low-hanging fruit could be identified as the establishment of an automated asset

inventory collection and audit process. Doing so would satisfy the first and therefore

highest priority CIS Control: Inventory of Authorized and Unauthorized Devices (CIS,

n.d.).

Another consideration for automation is the readiness of resources available to

complete the task. For example, if a company is debating between two tasks to automate,

it could be worth conducting discovery with a goal of finding open-source code,

application programming interfaces (APIs), or human resources that have experience or

capabilities in the automation of that task. The more resources available, the easier it will

be to build, troubleshoot, and integrate automation into daily security operations. For

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Auto-Nuke It from Orbit: Automating Response to an Infected Endpoint 3

Jeremiah Hainly, jhainly@gmail.com

example, a security team with Perl scripting experience will be able to develop Perl

scripts much more quickly than Python scripts. Identifying what resources and skill sets

are available will make identification of manual tasks that can be automated simpler.

Once a process is identified as automatable, companies have the option to invest

in vendor solutions that incorporate automation. However, the hardware, licensing,

human resources, and training involved in vendor solutions makes it unrealistic to

purchase a solution for every automation use case. This leads to a high demand for

scripting skills in today’s security market. According to McAfee’s “Hacking the Skills

Shortage” survey, one of largest deficits of cyber security talent is software development

– with 74% of United States respondents indicating an industry scarcity (McAfee, 2016).

Over 83% of security teams report that the use of automation in security needs to increase

within the next three years (Algosec, 2016). With automation becoming a reality for a

growing number of companies, there will also be an increased demand for open-sourced

scripts to be developed.

This paper provides a framework for in-house discovery and development of

security automation. As an example for utilizing the framework, a script will be written

for an organization that currently has a manual process to quarantine and reimage an

infected workstation – a prime example of low-hanging fruit.

2. Discovery

When a machine is infected, it is common to wipe the device’s hard drive and

reimage the computer with the organization’s standardized image – or as a Microsoft

program manager describes it – “nuke it from orbit” (Naraine, 2006). This catchphrase

originates from a scene in the 1986 sci-fi film Aliens when the main character, Ripley,

concludes that the only way to destroy the aliens inhabiting Earth is with a nuclear

missile to destroy every bit of evidence that they existed. In this moment, Ripley

famously says, “I say we take off and nuke the entire site from orbit. It’s the only way to

be sure” (Cameron, 1986). Similarly, a reimage is the only way to be sure that any

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Auto-Nuke It from Orbit: Automating Response to an Infected Endpoint 4

Jeremiah Hainly, jhainly@gmail.com

malicious software, auto-runs, or persistence mechanisms that may have been left behind

on an infected device are eliminated from its hard drive.

The procedure for an information security team to “nuke” a hard drive has the

potential to be repetitive, manual, and often inconsistent amongst analysts. For the

company that this paper will use as an example for the proposed automation framework,

the reimage process starts with the identification of an infected machine by a security

analyst. After it is determined that a reimage is required, the analyst must correlate

information about the computer’s owner including their name and email address. The

information gathered is used to communicate to the user that their computer is going to

be quarantined from the network and that the client support team will reach out to him or

her with the next steps. After communication is sent, the analyst must quarantine the

computer using a host-based firewall solution such as Symantec Endpoint Protection

(SEP). Once the quarantine is successful, the analyst must access an incident

management ticketing system, such as ServiceNow, to request that the client support

team back up the user’s files and reimage the hard drive.

Since the process to reimage a hard drive is both common and manual for the

security team in this example, the task can be qualified as a strong candidate for

automation in order to allow the team to work on more novel problems. Additionally, CIS

Control #3 is “Secure Configurations for Hardware and Software”, making the

remediation of a compromised machine a high priority to reduce risk. However, the

assumption that the reimage process is low-hanging fruit for automation needs to be

verified by ensuring that it is feasible for the example company to automate.

The first step in verifying the capability to automate a process is to look for open-

source code from other developers who have encountered a similar issue. A few

resources that can be used to identify open-source code repositories include GitHub or

SourceForge – where anyone can share and edit software projects. There are numerous

security practitioners, researchers, and vendors that frequently release well-developed

code that can be quickly re-configured and implemented at any organization. However, if

no pre-existing projects can be identified, a resource discovery process begins.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Auto-Nuke It from Orbit: Automating Response to an Infected Endpoint 5

Jeremiah Hainly, jhainly@gmail.com

Resource discovery is the identification of two types of assets – technical

resources and human resources. Technical resource discovery ensures that the APIs or

programming modules required to automate the task are available. An API is a set of

programming tools that act as building blocks for programmers to integrate their custom

code into existing programs. For example, Twitter has an API available which allows

developers to directly read and write Twitter data. A programming module is another

building block for developers since it makes available pre-programmed functions that can

be reused for many applications. Some APIs required for development of the reimage

script include Splunk, SEP, and ServiceNow. An online search for the APIs for each of

these products quickly returns the documentation required to automate the task

(Appendix A). There is also a requirement for programming modules to support sending

emails – which are available in Python via the email package and smtplib module

(Python Software Foundation, n.d.). Once the technical resources have been identified,

human resource discovery can begin.

The human resource discovery process includes identifying whether any existing

or potential employees have the skillsets or the capability to learn the skillsets required to

automate the identified task. It is also important to plan for continued support of that

skillset into the future in order to maintain the infrastructure supporting the automated

process. For the example company, there are multiple resources on the information

security team that have Python scripting experience. Since the human and technical

resources required to automate a reimage have been identified, the discovery phase ends

and the planning phase begins.

3. Planning

 An agile approach to software development enables scripting to be performed at

the highest levels. The term agile was first coined by the Manifesto for Agile Software

Development, which was created by 17 industry professionals that agreed on a collection

of twelve principles for developing software (Beck et al., 2001). The key principles of the

manifesto that apply to security automation scripting are:

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Auto-Nuke It from Orbit: Automating Response to an Infected Endpoint 6

Jeremiah Hainly, jhainly@gmail.com

1. Customer satisfaction by early and continuous delivery of valuable software

2. Working software is the principal measure of progress

3. Working software is delivered frequently

4. Sustainable development, able to maintain a constant pace

5. Continuous attention to technical excellence and good design

6. Simplicity—the art of maximizing the amount of work not done—is essential

7. Regularly reflect on how to become more effective and adjust accordingly

Ayehu, an IT Process Automation and Orchestration company, provides a crawl,

walk, run approach to IT automation that supports these key principles of agile software

development (Ayehu, 2016). The approach is based on the following quote from Martin

Luther King, Jr.: “If you can’t fly, run; if you can’t run, walk; if you can’t walk, crawl;

but by all means keep moving” (King, 1960). While Dr. King was not automating IT and

security processes, the connotation “crawl, walk, run” provides reasonable advice for the

development of automation scripts. The phrase means that any problem can be tackled

with a slow, calculated solution as long as the primary focus is getting it operational. As

the solution is tested and proves valuable to the team, other important tasks and

workflows can be added on.

The “crawl” phase of development for the reimage script includes automating a

small subset of the workflow. Since there is a strong amount of Splunk API

documentation available (Splunk, n.d.), the subsets of development that the “crawl”

phase will focus on will be Splunk and email. The script resulting from this phase will

first request user information via a Splunk query. Using the information from Splunk, the

script will send the user an email to inform them that their computer was identified as

infected, will be quarantined within the next hour, and that their local client support team

will reach out to them soon to discuss the next steps. In the “crawl” stage, the code does

not have to be perfect, but should at least be documented well so that another developer

could continue into the “walk” stage without the original developer’s help. At this stage,

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Auto-Nuke It from Orbit: Automating Response to an Infected Endpoint 7

Jeremiah Hainly, jhainly@gmail.com

analysts will be able to save time by automatically sending communication to the owner

of the infected device.

The “walk” stage of development will add in the other important processes,

including the quarantine of the targeted computer in Symantec Endpoint Protection (SEP)

and the submission of a ticket in ServiceNow. SEP is similar to home anti-virus software,

but has more advanced heuristic detection and firewall capabilities that allow a security

team to cut off communication to the internet, or quarantine the device. ServiceNow is an

Information Technology (IT) service management solution that includes an incident

management ticketing system that can be leveraged to resolve incidents such as an

infected computer. Connecting to each of these software solutions requires programming

direct access to their respective APIs. After both features are implemented, the script will

serve the primary purpose of the automation project: to quarantine and reimage an

infected machine. However, the features implemented during the “walk” phase do not

qualify the developer to consider the script complete.

Although the script has already proven its value, it is possible to constantly

improve its usability and functionality. In terms of functionality, a key feature to improve

would be getting the script to not only create new tickets, but also to update existing

tickets in case an incident was already created. For usability, the script has the potential

to be added to a git repository so that multiple analysts can improve the scripts. In this

case, a configuration file takes passwords and proprietary data out of the script so that it

does not get published on a local, and possibly insecure, git repository.

This paper will go so far as to implement editing existing ServiceNow tickets and

uploading the scripts to a git repository, but there is also potential to continue growth.

Additional functionalities include collecting forensic data from the target endpoint and

forwarding that data to Splunk. This data could be used for insight into what trends might

contribute to the infection of an organization’s computers. Some questions that could be

answered from logging forensic data include:

• Has this workstation been reimaged before? When?

• In which geographic location are the most computers reimaged?

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Auto-Nuke It from Orbit: Automating Response to an Infected Endpoint 8

Jeremiah Hainly, jhainly@gmail.com

• What processes are running on reimaged computers that aren’t running on other

computers?

• Are there any trends in the auto-run programs for reimaged computers?

The opportunities for this data and the potential of other data from this script are

endless.

4. Crawl

The “crawl” stage of development involves initial setup of the necessary tools to

begin scripting and obtaining a fundamental level of functionality from the script. For the

reimage script, the level of functionality previously identified requires a connection to

both Splunk and email. This is in order to lookup a user’s name and email address based

on his or her organizational username, then send that person an email to notify them that

their device will be quarantined.

The first step for a developer to start writing the reimage script is getting a scripting

language, Python, installed in their work environment. The reason Python is being used

in this example is because human resources with Python skills were readily available at

the example company and the modules required to complete the task were identified as

available. To install Python, developers can navigate to the Python website and install the

latest version of Python 2.7.X (Python Software Foundation, n.d.). After installation, the

developer will need to add the program to the Windows Environment Variables as a path

as seen in Figures 1 and 2.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Auto-Nuke It from Orbit: Automating Response to an Infected Endpoint 9

Jeremiah Hainly, jhainly@gmail.com

Figure 1: Environment Variables in Windows Start Menu

Figure 2: Python PATH variable

Variable Name: PATH

Variable Value: C:\Python27

To test that installation was successful, open your command prompt, type

“Python”, hit enter, type “2 + 2”, and hit enter again. A result of 4 will be present if the

installation is successful, as seen in Figure 3:

Figure 3: Testing successful Python install

 The next recommended tool to install is a syntax editing program such as Sublime

Text (Sublime Text, n.d.). A program that understands Python will ensure the correct

syntax and formatting are used while the script is written.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Auto-Nuke It from Orbit: Automating Response to an Infected Endpoint 10

Jeremiah Hainly, jhainly@gmail.com

 After a tool space is successfully set up and running, the process of developing

the script can begin. For the reimage script, a method must be identified to correlate user

information in Splunk given only a username. Conveniently, the Active Directory

database is queried daily and written to a Splunk lookup table, providing the user’s name

and email address, which can be correlated with a provided username. The Splunk query

to generate this data from Active Directory is available in Appendix B.

 Next, this script must accept user input to provide the user’s login ID, authenticate

to Splunk, and include the user ID within a search query that requests that person’s name

and email address. As identified in the discovery phase, there is a Splunk REST API that

can be invoked from a Python script. Implementing the functionality involves researching

example code that is available and tuning the configurations to work properly in the

current environment.

 Once those data values are returned, the smtplib module can be used to send the

user an email. Similar to the development of the Splunk module, example code can be

found online to guide the building process of sending an email with the smptlib Python

module.

 After testing has been conducted to prove that the script can successfully and

repeatedly execute the foundational services established as goals in the discovery phase,

the “crawl” phase ends and the “walk” phase begins.

5. Walk

 The goal of the “walk” phase is to finish building the core functionality of the

automation process into the script. The core functionality of the reimage script includes

sending a quarantine command to the user’s computer with Symantec Endpoint

Protection (SEP) and submitting a ticket to the client support team to complete the task of

reimaging the affected computer. These tasks will be the scope of the “walk” phase of

development.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Auto-Nuke It from Orbit: Automating Response to an Infected Endpoint 11

Jeremiah Hainly, jhainly@gmail.com

 Submitting a ticket with ServiceNow involves calling the REST API for the

application (ServiceNow, 2016). The commands for the API can be found within the

platform by searching on the sidebar for “REST” as seen in Figure 4. The interface has

the ability to quickly provide names for tables and columns in the incident database.

Figure 4: ServiceNow REST API Explorer

 Since the ServiceNow platform available is in the company’s cloud environment,

a proxy will need to be configured to access outside the internal company network.

Microsoft recommends using service accounts when a single person is not responsible for

all of the activity conducted by that account (Microsoft, 2006). Service accounts in

Active Directory are used by systems to access resources that are required to perform

their primary functionalities. It is recommended to understand the implications of using

service accounts and learn how to secure the accounts before implementing them into a

business environment. Using service accounts will help mitigate the risk of the scripts

working improperly as employees, and their account privileges with them, exit the

company.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Auto-Nuke It from Orbit: Automating Response to an Infected Endpoint 12

Jeremiah Hainly, jhainly@gmail.com

 Connecting to Symantec Endpoint Protection is largely more ambiguous since

there are not as many open-source resources available to accomplish the task. However,

there is a Software Development Kit (SDK) included as part of the Symantec Endpoint

Protection Manager (SEPM) installation package which includes example code to

authenticate to SEPM and multiple Web Service Definition Language (WSDL) files. A

WSDL is an XML document that provides specific information on which functions,

inputs, and outputs are available for developers to utilize backend information for the

software solution (W3C, n.d.).

 After SEPM is installed, example code and the Symantec WSDL are located at

the following uniform resource indicator:

\\<IPADDRESS>\d$\<SYMANTECVERSION>\Symantec_Endpoint_Protection_<SYMA

NTECVERSION>_Full_Installation_EN\Tools\Integration\SEPM_WebService_SDK

 The first step to quarantine a computer is authenticating the script to the SEPM

server. A successful authentication requires a local system account to be created on the

SEPM server, which allows a user to authenticate to the SEPM Web Services interface.

The Web Services interface is externally exposed on port 8446 and permits a user to

create an account to authenticate to the SEPM Application Programming Interface (API).

Since the API requires a password that regularly updates, a refresh token can be used in

the code to retrieve a new session token each time the script is run. Details on completing

this process can be found in Appendix C.

 Investigating the ClientService.WSDL file indicates that there are two functions

required to quarantine a computer given the input of the target machine’s hostname:

getComputersByHostName and runClientCommandQuarantine. The first command will

accept the input of a hostname that is managed by SEPM, then output the associated

Globally Unique Identifier (GUID) that Symantec uses to identify each SEP client. The

second function accepts the GUID as input as well as a command to either “Quarantine”

or “Undo” the quarantine on a target device. The Quarantine command affects the host

integrity status of the computer, giving it a firewall policy that effectively disallows any

communication between the device and the rest of the network. Running these commands

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Auto-Nuke It from Orbit: Automating Response to an Infected Endpoint 13

Jeremiah Hainly, jhainly@gmail.com

together will provide the goal functionality to input a hostname and directly quarantine

the computer.

5.1. Testing

 After completing the script, it is time to test whether it covers the scope of

functionality identified during the discovery phase. Those scope items were:

• Retrieve user information from Splunk

• Open a ticket in ServiceNow to Client Support to reimage the infected

device

• Send the user an email to notify them that their computer will be removed

from the network

• Quarantine the device in Symantec Endpoint Protection

 Figures 5 through 10 show an example of running the full reimage script, in

which there are additional features already implemented from the run phase, but the core

functionalities above have each been demonstrated.

 The interactions depicted would be performed by a human in the loop after a

detection mechanism has alerted a security analyst to a possibly infected computer. After

validating that the intrusion requires remediation by way of reimaging the endpoint, the

analyst would execute the compiled version of the Python script, as shown in Figure 5.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Auto-Nuke It from Orbit: Automating Response to an Infected Endpoint 14

Jeremiah Hainly, jhainly@gmail.com

Figure 5: Running Reimage.exe from the Windows command line

 The success statements in the output in Figure 5 indicate that the script ran as

intended, but the success of each process can be validated by looking at the result of

running the script. The first step taken by the script is to search for user information in

Splunk. The query in Figure 6 requests the search history of Splunk users. In this case,

the script successfully searched for the user information submitted by the user.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Auto-Nuke It from Orbit: Automating Response to an Infected Endpoint 15

Jeremiah Hainly, jhainly@gmail.com

Figure 6: Search command successfully running in Splunk

 The next script action that can be validated is the email that was sent to the owner

of the infected workstation. Figure 7 indicates that an email was successfully sent and

that the correct information was populated into the email. The information populated

includes the name and email address requested from Splunk, the hostname entered in the

command prompt by the security analyst, and the ServiceNow ticket number that was

generated as a result of running the script.

Figure 7: Email successfully sent to affected user

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Auto-Nuke It from Orbit: Automating Response to an Infected Endpoint 16

Jeremiah Hainly, jhainly@gmail.com

 Next, the script accesses the ServiceNow API to create an incident based on the

information provided by the analyst. Figures 8 and 9 show that the generated incident

contains the parameters defined by the script in order to open an incident.

Figure 8: ServiceNow ticket successfully opened

Figure 9: ServiceNow ticket details successfully submitted

 Lastly, the reimage script contacts the SEP SOAP API using the system account

designated in the script and invokes a quarantine command. The results from running the

command can be viewed in SEP Management console which shows that the host’s

integrity status failed was quarantined by the administrator (Figure 10).

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Auto-Nuke It from Orbit: Automating Response to an Infected Endpoint 17

Jeremiah Hainly, jhainly@gmail.com

Figure 10: Symantec Endpoint Protection quarantine successfully imposed

 After testing and successfully implementing the core functionalities, the “walk”

phase completes and the “run” phase can begin.

6. Run

 According to Ayehu’s “crawl, walk run” development methodology, the “run”

phase of automation development is the time to extend automation to new initiatives and

applications (2016). In the context of security automation, there are many opportunities

contained in the CIS Controls themselves.

 CIS Control #3 is “Secure Configurations for Hardware and Software on Mobile

Devices, Laptops, Workstations, and Servers” (SANS, 2017). Since automation

development is creating software that will run on company-owned devices, it is critical to

ensure that the software is protected against an attack. A common mistake by software

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Auto-Nuke It from Orbit: Automating Response to an Infected Endpoint 18

Jeremiah Hainly, jhainly@gmail.com

developers, even at large security companies like Cisco, is hard-coding passwords

(Chirgwin, 2016). A hard-coded password is one that is written in plain text rather than

encrypted or stored in a separate, secure location. Not only does this allow project

developers to view the password, it is also difficult to change the password without

patching the software. This forces developers and system owners to choose between

confidentiality of system passwords and the availability of the automation script

(OWASP, 2016).

 While there are multiple solutions to removing hard-coded passwords, one of the

simplest methods is to create a configuration file for the script to reference. ConfigParser

is a Python class that implements a basic configuration file parser language, which allows

the script to reference an external file for sensitive data like passwords and sensitive

company information (Python, 2017).

 The requirement for a configuration file can be illustrated in the context of the

reimage script, especially if the code is stored in both a public and private git repository.

The purpose of sharing the code is so that additional developers, both inside and outside

of the company, can make changes to improve the automation scripts. However, making

code publically available also exposes any system account passwords that may have been

hard-coded previously. A configuration file combined with the Python ConfigParser class

provides an opportunity to remove those passwords. Since the code is stored in a git

repository, it is simple to add the configuration file to the .gitignore file so that sensitive

information is not published to the repository.

 There are a few other features included in the publically available version of the

reimage script. The first is the ability to request that a computer is reimaged by editing a

ServiceNow ticket that has already been opened. The only difference is that instead of

using an HTTP POST method, the script uses an HTTP PUT method. According to

ServiceNow’s REST API documentation, this provides an update to a ticket instead of

creating a new ticket (ServiceNow, 2015).

 Next, there is a feature to remove a Symantec Endpoint Protection quarantine

from a computer. This is useful in a situation where a quarantine was originally placed on

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Auto-Nuke It from Orbit: Automating Response to an Infected Endpoint 19

Jeremiah Hainly, jhainly@gmail.com

an incorrect computer or the issue was resolved without ultimately requiring a reimage.

As a note, a computer that is reimaged will automatically remove the quarantine because

SEP registers the device with a new GUID and eventually removes the old device from

its database.

 Lastly, the script has the ability to quarantine a device in Symantec Endpoint

Protection without sending an email or opening a ServiceNow ticket. This feature can be

useful in the case that the script originally failed to quarantine the device or there is no

need to open a ticket for reimaging the infected machine. The full code for the reimage

script can be found in Appendix D and is also available online on GitHub (Hainly, 2017).

 Additional improvement opportunities in the context of the reimage script are

endless and not necessarily demonstrated in the publically available code or in this paper.

For example, reimaging a computer may only be a small part of the reimage process for

many organizations. Other steps may include a forensic investigation to identify a root

cause for the infection of the device. Following the discovery phase of searching for

open-source scripts, an online search returns multiple instances of automated forensics

tools such as Brian Moran’s Live Response Collection scripts. These batch files trigger a

series of forensics tools that collect data from target endpoints. Running the tools on

every reimaged endpoint could provide security analysts with a large data set which

could be logged into Splunk or Hadoop so that a security data analytics team could

understand the commonalities between infected machines.

7. Conclusion

 The goal of this research is to propose a framework by which manual processes

performed by information security teams could be automated using the Critical Security

Controls for prioritization of tasks that can be automated with little effort and high cost

savings – or low-hanging fruit. Several practical lessons may be drawn from the research

through the demonstration of the framework’s application in creating a Python script to

reimage a computer that was identified as infected. The research contributes to the

incident response body of knowledge by applying the “crawl, walk, run” approach to

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Auto-Nuke It from Orbit: Automating Response to an Infected Endpoint 20

Jeremiah Hainly, jhainly@gmail.com

software development and by providing an open-source tool to reimage infected

endpoints – or “nuke it from orbit.”

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Auto-Nuke It from Orbit: Automating Response to an Infected Endpoint 21

Jeremiah Hainly, jhainly@gmail.com

References

Algosec. (2016). The State of Automation in Security (Rep.). doi:

https://www.algosec.com/wp-content/uploads/2016/03/The-State-of-Automation-

in-Security-Survey-Final.pdf

Ayehu. (2016, July 04). The Crawl, Walk, Run Approach Making IT Process Automation

Work for You. Retrieved February 12, 2017, from http://ayehu.com/the-crawl-

walk-run-approach-to-making-it-process-automation-work-for-you/

Beck, K., Grenning, J., Martin, R., Beedle, M., Highsmith, J., Mellor, S., . . . Marick, B.

(2001). Principles behind the Agile Manifesto. Retrieved February 12, 2017, from

http://agilemanifesto.org/principles.html

Cameron, J. (Director). (1986). Aliens [Motion picture on DVD]. United States: 20th

Century Fox.

Center for Internet Security. (n.d.). CIS Controls. Retrieved March 05, 2017, from

https://www.cisecurity.org/critical-controls.cfm

Chirgwin, R. (2016, January 13). Cisco admins gear up for a late night – hardcoded

password in wireless points nuked. Retrieved February 12, 2017, from

https://www.theregister.co.uk/2016/01/13/cisco_admins_gear_up_for_a_late_nigh

t/

Cole, E. (2016, August 18). SANS 401 Security Essentials. Lecture presented at SANS

OnDemand.

Hainly, J. (2017, January 11). Reimage. Retrieved February 17, 2017, from

https://github.com/jhainly/Reimage

King, M. L., Jr. (1960, April 10). Keep Moving from This Mountain. Speech presented at

Founder's Day Address in Spelman College. Retrieved February 12, 2017, from

https://swap.stanford.edu/20141218225553/http:/mlk-

kpp01.stanford.edu/primarydocuments/Vol5/10Apr1960_KeepMovingfromThisM

ountain,AddressatSpelmanCollege.pdf

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Auto-Nuke It from Orbit: Automating Response to an Infected Endpoint 22

Jeremiah Hainly, jhainly@gmail.com

McAfee. (2016). Hacking the Skills Shortage (p. 21, Tech.). Santa Clara, CA: McAfee.

doi: https://www.mcafee.com/us/resources/reports/rp-hacking-skills-shortage.pdf

Microsoft. (2006, September 26). Securing Critical and Service Accounts. Retrieved

February 23, 2017, from https://msdn.microsoft.com/en-us/library/cc875826.aspx

Naraine, R. (2006, April 4). Microsoft Says Recovery from Malware Becoming

Impossible. Retrieved March 05, 2017, from

http://www.eweek.com/c/a/Security/Microsoft-Says-Recovery-from-Malware-

Becoming-Impossible

OWASP. (2016, February 14). Password Management: Hardcoded Password. Retrieved

February 12, 2017, from

https://www.owasp.org/index.php/Password_Management:_Hardcoded_Password

Python Software Foundation. (n.d.). Download Python. Retrieved February 12, 2017,

from https://www.Python.org/downloads/

Python Software Foundation. (n.d.). ConfigParser — Configuration file parser. Retrieved

February 12, 2017, from https://docs.Python.org/2/library/configparser.html

Python Software Foundation. (2017). Smtplib — SMTP protocol client. Retrieved

February 12, 2017, from https://docs.Python.org/2/library/smtplib.html

ServiceNow. (2016, February 08). REST API. Retrieved February 12, 2017, from

http://wiki.servicenow.com/index.php?title=REST_API#gsc.tab=0

ServiceNow. (2015, October 06). Getting Started with REST. Retrieved February 17,

2017, from

http://wiki.servicenow.com/index.php?title=Getting_Started_with_REST#gsc.tab

=0

SANS. (n.d.). CIS Critical Security Controls. Retrieved February 12, 2017, from

https://www.sans.org/critical-security-controls

SANS. (n.d.). CIS Critical Security Controls: A Brief History. Retrieved from SANS:

https://www.sans.org/critical-security-controls/history

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Auto-Nuke It from Orbit: Automating Response to an Infected Endpoint 23

Jeremiah Hainly, jhainly@gmail.com

Splunk. (2017). REST API Reference Manual. Retrieved February 12, 2017, from

http://docs.splunk.com/Documentation/Splunk/6.5.1/RESTREF/RESTprolog

Sublime Text. (n.d.). Sublime Text. Retrieved February 12, 2017, from

https://www.sublimetext.com/

W3C. (n.d.). Web Services Description Language (WSDL). Retrieved February 12, 2017,

from https://www.w3.org/TR/wsdl

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Auto-Nuke It from Orbit: Automating Response to an Infected Endpoint 24

Jeremiah Hainly, jhainly@gmail.com

 Appendix A

 The following are examples of searching for the appropriate API resources to

complete the reimage script. Usually, a search of the technology name followed by “API”

is sufficient to find the appropriate resource. When using a specific scripting language,

such as Python, it can be useful to add the name of the language to the search engine

query.

Splunk

Figure 11: Google Search for Splunk API

Figure 12: Quick look into the results from the search

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Auto-Nuke It from Orbit: Automating Response to an Infected Endpoint 25

Jeremiah Hainly, jhainly@gmail.com

Symantec Endpoint Protection

Note: There is very little documentation available directly online for SEP. It is

recommended to access the files included in the installation package for SEP to have

detailed information. To reiterate from the main content of the paper, the link to access

documentation is:

\\<IPADDRESS>\d$\<SYMANTECVERSION>\Symantec_Endpoint_Protection_<SYMA

NTECVERSION>_Full_Installation_EN\Tools\Integration\SEPM_WebService_SDK

Figure 13: Contents of the path provided above

Figure 14: Contents of the WSDL folder

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Auto-Nuke It from Orbit: Automating Response to an Infected Endpoint 26

Jeremiah Hainly, jhainly@gmail.com

ServiceNow

There is strong documentation available online for the ServiceNow API, but the REST

API tool within each ServiceNow deployment will provide the exact database schema for

the incident table. Every deployment of ServiceNow is different, so it is important to

follow the appropriate schema.

Figure 15: Google search for ServiceNow API bring back results including REST API Explorer

Figure 16: Searching for the REST API Explorer

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Auto-Nuke It from Orbit: Automating Response to an Infected Endpoint 27

Jeremiah Hainly, jhainly@gmail.com

Figure 17: Searching for the incident table

Figure 18: Building a POST query with the API explorer

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Auto-Nuke It from Orbit: Automating Response to an Infected Endpoint 28

Jeremiah Hainly, jhainly@gmail.com

Appendix B

Splunk Query to Active Directory Database

 The following query uses the LDAP protocol to access Active Directory

information. The requested fields are over-written to a lookup table on a daily basis in

order to maintain its integrity.

| ldapsearch domain=<DOMAIN NAME> search =

"(&(objectclass=user)(!(objectClass=computer)))" | search userAccountControl =

"*NORMAL_ACCOUNT*" |eval suffix=""|eval priority="medium"|eval

category="normal"|eval watchlist="false"|eval endDate="" |table sAMAccountName ,

personalTitle , displayName , givenName , sn , suffix , mail , telephoneNumber , mobile ,

title , manager , priority , department , category , watchlist , whenCreated , endDate ,

memberOf , lastLogonTimestamp , pwdLastSet , sAMAccountName , dn ,

userAccountControl , description , company , accountExpires , extensionAttribute9 ,

countryCode , userAccountControl , c |rename sAMAccountName as identity,

personalTitle as prefix, displayName as nick, givenName as first, sn as last, mail as

email, telephoneNumber as phone, mobile as phone2, manager as managedBy,

department as bunit, whenCreated as startDate, extensionAttribute9 as workStatus,

countryCode as country, userAccountControl as enabled | outputlookup <SPLUNK

LOOKUP NAME>.csv

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Auto-Nuke It from Orbit: Automating Response to an Infected Endpoint 29

Jeremiah Hainly, jhainly@gmail.com

Appendix C

 This could easily be the most difficult part of this scripting exercise. The process

below indicates how to access Symantec’s Web Services API without the need to

manually get a refresh token when the previous token expires. This is very important in

order to maintain reasonable usability on an information security team.

Creating a SEP System Account for API Access

1. Navigate to https://<SEPMHOSTNAME>:8443/console/apps/sepm

2. Login

3. Admin > Add an administrator

4. Username: <accountname>-local

5. Full Name: Quarantine Account

6. Email Address: Security distribution list

Figure 19: Example of administrator configurations

7. Authentication tab: Symantec Endpoint Protection Manager Authentication

Figure 20: Local Authentication Options of SEPM

8. OK

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Auto-Nuke It from Orbit: Automating Response to an Infected Endpoint 30

Jeremiah Hainly, jhainly@gmail.com

9. Navigate to https://<SEPMHOSTNAME>:8446/sepm/oauth/viewClientApps.do

10. Login with the local account previously created

11. Add an application

12. Provide a name

• <DOMAIN>/<USER ID OF PERSON CREATING THIS>:web

13. Navigate to

https://<SEPMHOSTNAME>:8446/sepm/oauth/authorize?response_type=code&

client_id=<CLIENT_ID_FROM_LAST_STEP>&redirect_uri=https://<SEPMHO

STNAME>:8443/sepm

14. Click Authorize

Figure 21: Authorizing access to SEPM web services on port 8443

15. Check the URL. The format will be

https://<SEPMHOSTNAME>:8443/sepm?code=<COPYTHISCODE>

16. Copy that code

Figure 22: Example of SEPM code

17. Navigate to

https://<SEPMHOSTNAME>:8446/sepm/oauth/token?grant_type=authorization_

code&client_id=<CLIENTID>&client_secret=<CLIENTSECRET>&redirect_uri

=https://<SEPMHOSTNAME>:8443/sepm&code=<CODEFROMBEFORE>

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Auto-Nuke It from Orbit: Automating Response to an Infected Endpoint 31

Jeremiah Hainly, jhainly@gmail.com

18. The page should return a dictionary of key value pairs, including the value of the

refreshToken

• {"value":"<VALUE>","expiration":1487419737468,"tokenType":"bearer"

,"refreshToken":{"value":"<COPYTHISVALUE>","expiration":1518912

537437},"scope":[],"additionalInformation":{},"expired":false,"expiresIn"

:43199}

19. Copy the value of the refresh token and save it somewhere for later in your code.

If lost, return to step 13 and repeat

20. The final string to put into your script will be

https://<SEPMHOSTNAME>:8446/sepm/oauth/token?grant_type=refresh_token

&client_id=<CLIENTID>&client_secret=<CLIENTSECRET>&redirect_uri=http

s://<SEPMHOSTNAME>:8443/sepm&refresh_token=<REFRESHTOKEN>

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Auto-Nuke It from Orbit: Automating Response to an Infected Endpoint 32

Jeremiah Hainly, jhainly@gmail.com

Appendix D

The full script can be found online here: https://github.com/jhainly/Reimage

README.md

1.1. Synopsis

Reimage is a Python script that provides information technologists with a

template for automating a task between Splunk, ServiceNow, Symantec

Endpoint Protection (SEP), and email.

1.2. Getting Started

Change the configs.template file contents to match your environment. Then,

rename the file to configs.ini.

Either run the raw Python or use pyinstaller on the provided spec file to compile

into an executable.

pyinstaller.exe --onefile Reimage.spec

1.3. Code Example

C:\Users\Me\Downloads>Reimage.exe
Welcome to the Reimage Script! What would you like to do?

1) Quarantine, Open Ticket, Send Email
2) Quarantine, UPDATE Ticket, Send Email
3) Quarantine ONLY
4) Remove Quarantine ONLY
5) Reformat Flash Drive

Pick a number:

1.4. Motivation

The use case in this script is an information security team that identifies a

computer that requires a reimage. This script automates the normally manual

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Auto-Nuke It from Orbit: Automating Response to an Infected Endpoint 33

Jeremiah Hainly, jhainly@gmail.com

process to lookup user information in Splunk, quarantine the affected computer

in SEP, submit a ticket to their client support to request a reimage

in ServiceNow, and send an email to the owner of the computer.

1.5. About the Author

Jeremiah Hainly: https://www.linkedin.com/in/jeremiahhainly

1.6. Special Thanks

Brian Nafziger: https://www.linkedin.com/in/bnafziger

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Auto-Nuke It from Orbit: Automating Response to an Infected Endpoint 34

Jeremiah Hainly, jhainly@gmail.com

Reimage.py

This is the primary Python file that invokes the rest of the files contained in this package.

It begins by asking the user for input, then references the appropriate scripts to complete

the requested task(s).

Purpose: Submit host for reimage via ServiceNow, send them an email, and quarantine

the host in SEPM

import sys

import time

import splunkReimage

import servicenowReimage

import emailReimage

import sepReimage

def main():

 userOption = input("Welcome to the Reimage Script! What would you like to

do?\n\n1) Quarantine, Open Ticket, Send Email\n2) Quarantine, UPDATE Ticket, Send

Email\n3) Quarantine ONLY\n4) Remove Quarantine ONLY\n5) Reformat Flash Drive\n\nPick a

number: ")

 if userOption == 1:

 sepCommand = "Quarantine"

 hostname = raw_input("Target hostname?: ")

 reimageUser = raw_input("Target user ID?: ")

 mssTicket = raw_input("MSS Ticket Number?: ")

 userID, userEmail, firstName, lastName =

splunkReimage.search(reimageUser)

 snTicket = servicenowReimage.submit(hostname, reimageUser)

 emailReimage.reimage(hostname, firstName, userEmail, mssTicket,

snTicket)

 sepReimage.reimage(hostname, sepCommand)

 elif userOption == 2:

 sepCommand = "Quarantine"

 snTicket = raw_input("ServiceNow Ticket Number? (Number only): ")

 hostname = raw_input("Target hostname?: ")

 reimageUser = raw_input("Target user ID?: ")

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Auto-Nuke It from Orbit: Automating Response to an Infected Endpoint 35

Jeremiah Hainly, jhainly@gmail.com

 mssTicket = raw_input("MSS Ticket Number?: ")

 userID, userEmail, firstName, lastName =

splunkReimage.search(reimageUser)

 sysID = servicenowReimage.request(snTicket)

 servicenowReimage.update(sysID, hostname, reimageUser)

 emailReimage.reimage(hostname, firstName, userEmail, mssTicket,

snTicket)

 sepReimage.reimage(hostname, sepCommand)

 elif userOption == 3:

 sepCommand = "Quarantine"

 hostname = raw_input("Target hostname?: ")

 sepReimage.reimage(hostname, sepCommand)

 elif userOption == 4:

 sepCommand = "Undo"

 hostname = raw_input("Target hostname?: ")

 sepReimage.reimage(hostname, sepCommand)

 elif userOption == 5:

 hostname = raw_input("Target hostname?: ")

 reimageUser = raw_input("Target user ID?: ")

 mssTicket = raw_input("MSS Ticket Number?: ")

 userID, userEmail, firstName, lastName =

splunkReimage.search(reimageUser)

 emailReimage.reformat(hostname, firstName, userEmail, mssTicket)

 else:

 print "Invalid input."

 sys.quit()

main()

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Auto-Nuke It from Orbit: Automating Response to an Infected Endpoint 36

Jeremiah Hainly, jhainly@gmail.com

Reimage.spec

The spec file is used to compile the scripts into an executable version of the code. This

can be done using pyinstaller via the command line:

pyinstaller --onefile Reimage.spec

block_cipher = None

a = Analysis(['Reimage.py'],

 pathex=['.\\'],

 binaries=None,

 datas=None,

 hiddenimports=[],

 hookspath=[],

 runtime_hooks=[],

 excludes=[],

 win_no_prefer_redirects=False,

 win_private_assemblies=False,

 cipher=block_cipher)

a.datas += [('smallCD.png','smallCD.png','DATA'),('configs.ini','configs.ini','DATA')]

pyz = PYZ(a.pure, a.zipped_data,

 cipher=block_cipher)

exe = EXE(pyz,

 a.scripts,

 a.binaries,

 a.zipfiles,

 a.datas,

 name='Reimage',

 debug=False,

 strip=False,

 upx=True,

 console=True)

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Auto-Nuke It from Orbit: Automating Response to an Infected Endpoint 37

Jeremiah Hainly, jhainly@gmail.com

Configs.template

This file provides a template for a company to employ the same script in their

environment. These variables are what will change for every organization. Once the data

is populated, rename the file to “configs.ini”.

proxytype = # HTTPS or HTTP proxy? [https|http]

proxyurl = https://<proxy username>:<proxy password>@<proxy hostname/IP>:<proxy port>

[production_servicenow]

url = https://<hostname>.service-now.com/api/now/table/incident

user = # ServiceNow production username

pwd = # ServiceNow production password

[development_servicenow]

url = https://<hostname>.service-now.com/api/now/table/incident

user = # ServiceNow dev username

pwd = # ServiceNow dev password

[snOptions]

teamName = # Name of security team (Hershey Information Security)

assignment_group = # Incident assignment group value

impact = # Incident impact value

urgency = # Incident urgency value

priority = # Incident priority value

incident_state = # Incident state value

state = # Incident state value

category = # ServiceNow category

subcategory = # ServiceNow sub-category

[splunk]

host= # Splunk hostname or IP address

port= # Splunk port (default is 8089)

username= # Splunk system account username

password= # Splunk system account password

lookupFile = # Splunk active directory lookup file

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Auto-Nuke It from Orbit: Automating Response to an Infected Endpoint 38

Jeremiah Hainly, jhainly@gmail.com

[sep]

authurl =

https://<hostname>:<port>/sepm/oauth/token?grant_type=refresh_token&client_id=<your-

client-id>&client_secret=<your-client-

secret>&redirect_uri=https://localhost/sepm&refresh_token=<your-refresh-token>

wsdl = https://<hostname>:<port>/sepm/ws/v1/ClientService?wsdl

[email]

testEmail = # Email address for person testing scripts

groupEmail = # Name of distribution email address for team

smtp = # Name of SMTP mail server

trainingSite = # Name of training website

teamName = # Name of security team (Hershey Information Security)

teamLogo = # filename of image to include in signature of emails

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Auto-Nuke It from Orbit: Automating Response to an Infected Endpoint 39

Jeremiah Hainly, jhainly@gmail.com

emailReimage.py

Purpose: Send emails to users to notify them of a reimage. This is part of a larger

script

that verifies the user's identity in Splunk and sends the user an email

to notify of a reimage ticket being created.

######## Imports ##########

Import required modules #

###########################

import smtplib

import sys

import os

from email.MIMEMultipart import MIMEMultipart

from email.MIMEText import MIMEText

from email.MIMEImage import MIMEImage

import ConfigParser

#################### RESOURCE PATH #######################

Changes the resource path so that the image in the #####

email can be referenced when compiled with pyinstaller #

but also referenced when running in Python #############

def resource_path(relative_path):

 # Get absolute path to resource, works for dev and for PyInstaller

 try:

 # PyInstaller creates a temp folder and stores path in _MEIPASS

 base_path = sys._MEIPASS

 except Exception:

 base_path = os.path.abspath(".")

 return os.path.join(base_path, relative_path)

Define parser for configuration file

parser = ConfigParser.RawConfigParser()

parser.read(resource_path('configs.ini'))

################ METHOD 1 ################################

Send email to user to reformat an infected flash drive #

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Auto-Nuke It from Orbit: Automating Response to an Infected Endpoint 40

Jeremiah Hainly, jhainly@gmail.com

def reformat(targetHost, targetFirst, targetEmail, mssNumber):

 print "\nConnecting to " + parser.get('email', 'smtp')

 try:

 # Set email from, to, cc

 strFrom = parser.get('email', 'groupEmail')

 strTo = targetEmail

 #strCc = parser.get('email', 'testEmail') # TEST

 strCc = parser.get('email', 'groupEmail') # PRODUCTION

 # Create the root message and fill in the from, to, and subject headers

 msgRoot = MIMEMultipart('related')

 msgRoot['Subject'] = 'Flash Drive Reformat'

 msgRoot['From'] = strFrom

 msgRoot['To'] = strTo

 msgRoot['Cc'] = strCc

 msgRoot.preamble = 'This is a multi-part message in MIME format.'

 # Encapsulate the plain and HTML versions of the message body in an

 # 'alternative' part, so message agents can decide which they want to

display.

 msgAlternative = MIMEMultipart('alternative')

 msgRoot.attach(msgAlternative)

 msgText = MIMEText('This is the alternative plain text message. Error

with HTML version')

 msgAlternative.attach(msgText)

 # Reference the image in the IMG SRC attribute by the ID we give it

below

 msgText = MIMEText("""\

 <!doctype html5>

 <html>

 <body>

 <p>Hi """ + targetFirst + """,</p>

 <p>""" + parser.get('email','teamName') + """ has

identified that a flash drive with malicious files was plugged into your Hershey

computer with the hostname: """ + targetHost + """. Symantec blocked the files from

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Auto-Nuke It from Orbit: Automating Response to an Infected Endpoint 41

Jeremiah Hainly, jhainly@gmail.com

copying to your computer, but did not clean the flash drive.</p>

 <p>We recommend formatting your flash drive, which will

erase ALL files (including hidden files) from the drive. You can format your flash

drive by following these steps:</p>

 Click "Start" > "Computer"

 Right click on flash drive

 Click "Format..."

 File system: NTFS

 Click "Start"

 <p>Thank you for your cooperation and understanding as we

work to keep yours and the company's information private and secure. If you have any

questions, please reach out to """ + parser.get('email', 'groupEmail') + """. Please

reference MSS Incident ID #""" + mssNumber + """.</p>

 <p>Thank you,</p>

 </body>

 </html>

 """, 'html')

 msgAlternative.attach(msgText)

 # This example assumes the image is in the current directory

 fp = open(resource_path('smallCD.png'), 'rb')

 msgImage = MIMEImage(fp.read())

 fp.close()

 # Define the image's ID as referenced above

 msgImage.add_header('Content-ID', '<image1>')

 msgRoot.attach(msgImage)

 # Send the email (assumes SMTP authentication is not required)

 import smtplib

 smtp = smtplib.SMTP()

 smtp.connect(parser.get('email', 'smtp'))

 smtp.sendmail(strFrom, [strTo,strCc], msgRoot.as_string())

 smtp.quit()

 except:

 print " Error sending mail"

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Auto-Nuke It from Orbit: Automating Response to an Infected Endpoint 42

Jeremiah Hainly, jhainly@gmail.com

 print sys.exc_info()[0]

 sys.exit()

 print "Connected!"

 print " Sent email to " + targetEmail

################ METHOD 2 ###################

Send email to user to notify of a reimage #

def reimage(targetHost, targetFirst, targetEmail, mssNumber, snNumber):

 print "\nConnecting to " + parser.get('email', 'smtp')

 try:

 # Set email from, to, cc

 strFrom = parser.get('email', 'groupEmail')

 strTo = targetEmail

 #strCc = parser.get('email', 'testEmail') # TEST

 strCc = parser.get('email', 'groupEmail') # PRODUCTION

 # Create the root message and fill in the from, to, and subject headers

 msgRoot = MIMEMultipart('related')

 msgRoot['Subject'] = 'Workstation Quarantined: '+ targetHost

 msgRoot['From'] = strFrom

 msgRoot['To'] = strTo

 msgRoot['Cc'] = strCc

 msgRoot.preamble = 'This is a multi-part message in MIME format.'

 # Encapsulate the plain and HTML versions of the message body in an

 # 'alternative' part, so message agents can decide which they want to

display.

 msgAlternative = MIMEMultipart('alternative')

 msgRoot.attach(msgAlternative)

 # If the script can't send the HTML, it will send this

 msgText = MIMEText('This is the alternative plain text message. Error

with HTML version')

 msgAlternative.attach(msgText)

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Auto-Nuke It from Orbit: Automating Response to an Infected Endpoint 43

Jeremiah Hainly, jhainly@gmail.com

 # Email text

 # Reference the image in the IMG SRC attribute by the ID we give it

below

 msgText = MIMEText("""\

 <!doctype html5>

 <html>

 <body>

 <p>Hi """ + targetFirst + """,</p>

 <p>""" + parser.get('email','teamName') + """ has

identified your workstation with the hostname, """ + targetHost + """, as an infected

workstation. A ticket (INC"""+snNumber+""") has been generated to your local client

support team to reimage the infected workstation. The workstation will be quarantined

from the Hershey internal network within the next hour and will not be allowed back on

the network until the system has been verified as reimaged.</p>

 <p>Please review the security awareness training available

at """ + parser.get('email', 'trainingSite') + """. Thank you for your cooperation and

understanding as we work to keep yours and the company's information private and

secure.</p>

 <p>If you have any questions, please reach out to """ +

parser.get('email', 'groupEmail') + """. Please reference incident number """ +

mssNumber + """.</p>

 <p>Thank you,</p>

 </body>

 </html>

 """, 'html')

 msgAlternative.attach(msgText)

 # This example assumes the image is in the current directory

 fp = open(resource_path(parser.get('email', 'teamLogo')), 'rb')

 msgImage = MIMEImage(fp.read())

 fp.close()

 # Define the image's ID as referenced above

 msgImage.add_header('Content-ID', '<image1>')

 msgRoot.attach(msgImage)

 # Send the email (assumes SMTP authentication is not required)

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Auto-Nuke It from Orbit: Automating Response to an Infected Endpoint 44

Jeremiah Hainly, jhainly@gmail.com

 import smtplib

 smtp = smtplib.SMTP()

 smtp.connect(parser.get('email','smtp'))

 smtp.sendmail(strFrom, [strTo,strCc], msgRoot.as_string())

 smtp.quit()

 except:

 print " Error sending mail"

 print sys.exc_info()[0]

 sys.exit()

 print "Connected!"

 print " Sent email to " + targetEmail

#sendmail(hostname, firstName, userEmail, mssTicket, snTicket)

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Auto-Nuke It from Orbit: Automating Response to an Infected Endpoint 45

Jeremiah Hainly, jhainly@gmail.com

sepReimage.py

Purpose: Quarantine or remove quarantine from Hershey endpoint. This is part of a

larger script

that verifies the user's identity in Splunk and sends the user an email

to notify of a reimage ticket being created.

import warnings

warnings.filterwarnings("ignore")

import requests

import requests.auth

import sys

import os

import ConfigParser

#################### RESOURCE PATH #######################

Changes the resource path so that the image in the #####

email can be referenced when compiled with pyinstaller #

but also referenced when running in Python #############

def resource_path(relative_path):

 # Get absolute path to resource, works for dev and for PyInstaller

 try:

 # PyInstaller creates a temp folder and stores path in _MEIPASS

 base_path = sys._MEIPASS

 except Exception:

 base_path = os.path.abspath(".")

 return os.path.join(base_path, relative_path)

parser = ConfigParser.RawConfigParser()

parser.read(resource_path('configs.ini'))

########## METHOD 1 ##############

Submit host to SEP for Reimage #

##################################

def reimage(targetHost, targetCommand):

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Auto-Nuke It from Orbit: Automating Response to an Infected Endpoint 46

Jeremiah Hainly, jhainly@gmail.com

 print "\nConnecting to SEPM"

 # Connect to SEPM's web app port using quarantine user and refresh the access

token.

 try:

 # Client ID = User Name. Client Secret = Password. Account was created

via https://vmsepp01:8446/

 # Refresh token instructions at bottom of code

 response = requests.post(parser.get('sep', 'authurl'), verify=False)

#remote auth=client_auth

 data = response.json()

 access_token = data['value']

 headers = {"Authorization": "bearer " + access_token}

 response = requests.get(parser.get('sep', 'wsdl'), headers=headers,

verify=False)

 except:

 print "Error authenticating to SEPM server. Please verify client_id,

client_secret, and refresh_token"

 sys.exit()

 print "Connected!"

 # Request the SEP GUID for a computer by passing through computer's host name

via SOAP call

 try:

 headers = {"Authorization": "bearer " + access_token, 'content-type':

'text/xml', "SOAPAction":

"http://client.webservice.sepm.symantec.com/getComputersByHostName"}

 body = """

 <soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:ns="http://client.webservice.sepm.symantec.com/">

 <soapenv:Header/>

 <soapenv:Body>

 <ns:getComputersByHostName>

 <computerHostNames>"""+targetHost+"""</computerHostNames>

 </ns:getComputersByHostName>

 </soapenv:Body>

 </soapenv:Envelope>

 """

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Auto-Nuke It from Orbit: Automating Response to an Infected Endpoint 47

Jeremiah Hainly, jhainly@gmail.com

 # HTTP POST command. Sends the SOAP commands above

 response = requests.post(parser.get('sep',

'wsdl'),data=body,headers=headers, verify=False)

 import xmltodict

 # Writes the response to the HTTP POST to a dictionary for parsing

 doc = xmltodict.parse(response.content)

 # Access the dictionary and pull the GUIDE

 targetGUID =

doc['S:Envelope']['S:Body']['ns2:getComputersByHostNameResponse']['ns2:ComputerResult']

['computers']['computerId']

 # Print the GUID

 print " " + targetHost + " SEP GUID: " + targetGUID

 except:

 # Warn the user that other tasks within the script may have been run.

 print "Unable to retrieve host GUID. Please validate hostname and be

aware that I might have completed some tasks already."

 sys.exit()

 # Request quarantine / undo by passing the computer's GUID (found above) via

SOAP call

 try:

 headers = {"Authorization": "bearer " + access_token, 'content-type':

'text/xml', "SOAPAction":

"http://command.client.webservice.sepm.symantec.com/runClientCommandQuarantine"}

 body = """

 <soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:ns="http://command.client.webservice.sepm.symantec.com/">

 <soapenv:Header/>

 <soapenv:Body>

 <ns:runClientCommandQuarantine>

 <command>

 <commandType>"""+targetCommand+"""</commandType>

 <targetObjectType>COMPUTER</targetObjectType>

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Auto-Nuke It from Orbit: Automating Response to an Infected Endpoint 48

Jeremiah Hainly, jhainly@gmail.com

 <targetObjectIds>"""+str(targetGUID)+"""</targetObjectIds>

 </command>

 </ns:runClientCommandQuarantine>

 </soapenv:Body>

 </soapenv:Envelope>"""

 response = requests.post(parser.get('sep',

'wsdl'),data=body,headers=headers, verify=False)

 if targetCommand == "Quarantine":

 print " Successfully quarantined " + targetHost

 if targetCommand == "Undo":

 print " Successfully removed quarantine from " + targetHost

 except:

 print "Unable to quarantine. Dunno why I failed"

 sys.exit()

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Auto-Nuke It from Orbit: Automating Response to an Infected Endpoint 49

Jeremiah Hainly, jhainly@gmail.com

servicenowReimage.py

Purpose: Open ServiceNow ticket to reimage user. This is part of a larger script

that verifies the user's identity in Splunk and sends the user an email

to notify of a reimage ticket being created.

###

PLEASE VERIFY THAT THIS SCRIPT IS RUNNING IN TEST BEFORE DOING ANY TEST RUNS

 #

###

######## Imports ##########

Import required modules #

###########################

import requests # Python -m pip install requests

import re

import sys

import os

import ConfigParser

#################### RESOURCE PATH #######################

Changes the resource path so that the image in the #####

email can be referenced when compiled with pyinstaller #

but also referenced when running in Python #############

def resource_path(relative_path):

 # Get absolute path to resource, works for dev and for PyInstaller

 try:

 # PyInstaller creates a temp folder and stores path in _MEIPASS

 base_path = sys._MEIPASS

 except Exception:

 base_path = os.path.abspath(".")

 return os.path.join(base_path, relative_path)

Define parser for configuration file

parser = ConfigParser.RawConfigParser()

parser.read(resource_path('configs.ini'))

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Auto-Nuke It from Orbit: Automating Response to an Infected Endpoint 50

Jeremiah Hainly, jhainly@gmail.com

################### Define Variables #############################

Define ServiceNow URL, Hershey Proxy, and ServiceNow credentials

proxies =

{parser.get('production_proxy','proxytype'):parser.get('production_proxy','proxyurl')}

headers = {"Content-Type":"application/json","Accept":"application/json"}

url = parser.get('production_servicenow', 'url') # PRODUCTION

ServiceNow URL

user = parser.get('production_servicenow', 'user') # PRODUCTION

ServiceNow Username

pwd = parser.get('production_servicenow', 'pwd') # PRODUCTION

ServiceNow Password

'''

url = parser.get('development_servicenow', 'url') # TEST ServiceNow URL

user = parser.get('development_servicenow', 'user') # TEST

ServiceNow Username

pwd = parser.get('development_servicenow', 'pwd') # TEST ServiceNow

Password

'''

############# METHOD 1 ####################

Method to submit new ServiceNow tickets #

def submit(targetHost, targetUser):

 # Try connecting to ServiceNow and submitting a ticket

 print "\nConnecting to ServiceNow"

 try:

 # variable "response" equal to output from HTTP POST via requests

method. Use previously defined URL, auth, proxy, headers

 # Data provides information for each field in the ServiceNow ticket

 response = requests.post(url, auth=(user, pwd), proxies=proxies,

headers=headers ,data='{"impact":"' + parser.get('snOptions','impact') +

'","urgency":"' + parser.get('snOptions','urgency') + '","priority":"' +

parser.get('snOptions','priority') + '","assignment_group":"' +

parser.get('snOptions','assignment_group') + '","short_description":"Reimage

Workstation: '+ str(targetHost)

+'","caller_id":"'+str(targetUser)+'","contact_type":"System","incident_state":"' +

parser.get('snOptions','incident_state') + '","state":"' +

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Auto-Nuke It from Orbit: Automating Response to an Infected Endpoint 51

Jeremiah Hainly, jhainly@gmail.com

parser.get('snOptions','state') + '","category":"' + parser.get('snOptions','category')

+ '","subcategory":"' + parser.get('snOptions','subcategory') + '","comments":"' +

parser.get('snOptions','teamName') + ' has identified the workstation with hostname

['+targetHost+'] as an infected workstation. Please backup the user\'s files to

OneDrive and reimage the machine as soon as possible to prevent further infection on

the network. After reimage, please reset the user\'s domain password."}')

 except Exception as e:

 print(e)

 # If requests method is unable to connect (Wrong password, wrong URL,

wrong proxy, etc.), provide the inputs and stop the script

 print "Failed to connect to ServiceNow. Please make sure the instance is

available."

 print "CONNECTION DETAILS"

 print " ServiceNow URL: " + url

 print " ServiceNow User: " + user

 print " ServiceNow Password: " + pwd

 print " Hostname: " + targetHost

 sys.exit()

 # Check for HTTP codes other than 201 (Created)

 if response.status_code != 201:

 print('Status:', response.status_code, 'Headers:', response.headers,

'Error Response:',response.json())

 exit()

 else:

 # If requests method is successful, communicate it

 print "Connected!"

 # Decode the JSON response from requests method to return Incident Number

 try:

 snOutput = str(response.json())

 # Regex search the JSON response for the text "INC" and provide the text

until the next non-letter character

 getSnTicket = re.search('(?<=u\WINC)\w+', snOutput)

 # regex search stores the results as a group. Let's put that incident

number into a variable

 snTicket = str(getSnTicket.group(0))

 # Positive feedback

 print " Successfully created INC" + snTicket + " to reimage " +

targetHost + "\n"

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Auto-Nuke It from Orbit: Automating Response to an Infected Endpoint 52

Jeremiah Hainly, jhainly@gmail.com

 except:

 # Negative feedback if the regex fails. Stops the script

 print "\nCannot find Incident Number"

 sys.exit()

 # Give the new ServiceNow Ticket number back to be used elsewhere

 return snTicket

##################### METHOD 2 #######################

Method to request the sysID for ServiceNow tickets #

Used when an update to a ticket needs to be made ###

since ServiceNow only communicates in sysID's ######

def request(snTicket):

 # Change the URL so that it queries for the ServiceNow ticket number

 global url

 tmpurl = url + '?sysparm_query=number=INC' + snTicket #TEST SERVICENOW

 # Try connecting to ServiceNow and getting ticket info

 print "\nConnecting to ServiceNow"

 try:

 # variable "response" equal to output from HTTP GET via requests method.

Use previously defined URL, auth, proxy, headers

 response = requests.get(tmpurl, auth=(user, pwd), proxies=proxies,

headers=headers)

 except:

 # If requests method is unable to connect (Wrong password, wrong URL,

wrong proxy, etc.), provide the inputs and stop the script

 print "Failed to connect to ServiceNow. Please make sure the instance is

available."

 print "CONNECTION DETAILS"

 print " ServiceNow URL: " + tmpurl

 print " ServiceNow User: " + user

 print " ServiceNow Password: " + pwd

 sys.exit()

 # Check for HTTP codes other than 200 (OK)

 if response.status_code != 200:

 print('Status:', response.status_code, 'Headers:', response.headers,

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Auto-Nuke It from Orbit: Automating Response to an Infected Endpoint 53

Jeremiah Hainly, jhainly@gmail.com

'Error Response:',response.json())

 exit()

 else:

 # If requests method is successful, communicate it

 print "Connected!"

 # Decode the JSON response from requests method to return Incident Number

 try:

 snOutput = str(response.json())

 # Regex search the JSON response for the text "sys_id" and a few non-

letter chars, then provide the text until the next non-letter character

 getSysID = re.search('(?<=u\Wsys_id\W\W\W\w\W)\w+', snOutput)

 # regex search stores the results as a group. Let's put that incident

number into a variable

 sysID = str(getSysID.group(0))

 # Positive feedback

 print " Successfully found sys_id: " + sysID + " for INC" + snTicket +

"\n"

 except:

 # Negative feedback if the regex fails. Stops the script

 print "\nCould not find anything"

 sys.exit()

 # Give the sysID back to be used for the update method

 return sysID

################# METHOD 3 ###################

Method to update old ServiceNow tickets ####

Used when an incident exists for the issue #

def update(sysID, targetHost, targetUser):

 # Change the URL so that it points at the sysID of the ServiceNow incident

identified in the "request" method

 tmpurl = url + '/' + sysID

 # Try connecting to ServiceNow and updating a ticket

 print "\nConnecting to ServiceNow"

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Auto-Nuke It from Orbit: Automating Response to an Infected Endpoint 54

Jeremiah Hainly, jhainly@gmail.com

 try:

 # variable "response" equal to output from HTTP PUT via requests method.

Use previously defined URL, auth, proxy, headers

 response = requests.put(tmpurl, auth=(user, pwd), proxies=proxies,

headers=headers

,data='{"impact":"1","urgency":"2","priority":"2","assignment_group":"HCOD","short_desc

ription":"Reimage Workstation: '+ str(targetHost)

+'","caller_id":"'+str(targetUser)+'","contact_type":"System","incident_state":"-

1","category":"PC Software","subcategory":"Antivirus","comments":"Hershey Cyber Defense

has identified the workstation with hostname ['+targetHost+'] as an infected

workstation. Please backup the user\'s files to OneDrive and reimage the machine as

soon as possible to prevent further infection on the network. After reimage, please

reset the user\'s domain password."}')

 except:

 # If requests method is unable to connect (Wrong password, wrong URL,

wrong proxy, etc.), provide the inputs and stop the script

 print "Failed to connect to ServiceNow. Please make sure the instance is

available."

 print "CONNECTION DETAILS"

 print " ServiceNow URL: " + tmpurl

 print " ServiceNow User: " + user

 print " ServiceNow Password: " + pwd

 sys.exit()

 # Check for HTTP codes other than 200 (OK)

 if response.status_code != 200:

 print('Status:', response.status_code, 'Headers:', response.headers,

'Error Response:',response.json())

 exit()

 else:

 # If requests method is successful, communicate it

 print "Connected!"

 print " Successfully updated incident!"

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Auto-Nuke It from Orbit: Automating Response to an Infected Endpoint 55

Jeremiah Hainly, jhainly@gmail.com

splunkReimage.py

Purpose: Access the Splunk API to retieve user information.

import sys

import os

import re

import splunklib.client as client

import splunklib.results as results

from time import sleep

import ConfigParser

#################### RESOURCE PATH #######################

Changes the resource path so that the image in the #####

email can be referenced when compiled with pyinstaller #

but also referenced when running in Python #############

def resource_path(relative_path):

 # Get absolute path to resource, works for dev and for PyInstaller

 try:

 # PyInstaller creates a temp folder and stores path in _MEIPASS

 base_path = sys._MEIPASS

 except Exception:

 base_path = os.path.abspath(".")

 return os.path.join(base_path, relative_path)

Define parser for configuration file

parser = ConfigParser.RawConfigParser()

parser.read(resource_path('configs.ini'))

########################## Method 1 ###################################

Search splunk for the inputted user and return their name and email #

def search(reimageUser):

 #Connect to Splunk Server

 print "\nConnecting to Splunk..."

 try:

 # Connect to Splunk

 service = client.connect(

 # Connection parameters

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Auto-Nuke It from Orbit: Automating Response to an Infected Endpoint 56

Jeremiah Hainly, jhainly@gmail.com

 host=parser.get('splunk', 'host'), #

Splunk search head addres

 port=parser.getint('splunk', 'port'),

 # Splunk default deployment server port

 username=parser.get('splunk', 'username'), # Admin

profile username

 password=parser.get('splunk', 'password')) # Admin

profile password

 except Exception as e:

 print str(e)

 print "\nError connecting to Splunk Server. Please check credentials and

URL"

 sys.exit()

 # Positive feedback after connection established

 print "Connected!"

 #Search Splunk for target user, return email address, first and last name

 job = service.jobs.create("| inputlookup "+parser.get('splunk', 'lookupFile')+"

| search identity="+reimageUser+" | table identity email givenName last")

 while not job.is_done():

 # Wait until search is complete to avoid errors on successful queries

 sleep(.2)

 # Get the results of the query and write into an array

 reader = results.ResultsReader(job.results())

 # Take the values from the array and write to userInfo

 for result in reader:

 userInfo = str(result)

 #Validate that Splunk returned valid results

 try:

 # If userInfo has a value, this will return true, otherwise it will drop

into the "except"

 userInfo

 except NameError:

 # If userInfo does not have a value, negative feedback and close the

script

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Auto-Nuke It from Orbit: Automating Response to an Infected Endpoint 57

Jeremiah Hainly, jhainly@gmail.com

 print "\nInvalid User. Check for typos and verify the user is in Active

Directory.\nIf you're doing it right, then the "+parser.get('splunk', 'lookupFile')+"

Splunk lookup is broken."

 sys.exit()

 # Parse out and display the data collected from Splunk

 print "Here's what I found:"

 # Parse and print User ID

 getUserID = re.search('(?<=identity\W\W\W\W)\w+', userInfo)

 userID = str(getUserID.group(0))

 print " User ID: " + userID

 # Parse and print Email

 getUserEmail = re.search('(?<=email\W\W\W\W)\w+\W+\w+\W+\w+', userInfo)

 userEmail = str(getUserEmail.group(0))

 print " User Email: " + userEmail

 # Parse and print first name

 getFirstName = re.search('(?<=givenName\W\W\W\W)\w+', userInfo)

 firstName = str(getFirstName.group(0))

 print " User First Name: " + firstName

 # Parse and print last name

 getLastName = re.search('(?<=last\W\W\W\W)\w+', userInfo)

 lastName = str(getLastName.group(0))

 print " Last Name: " + lastName

 # Return User ID, email, and name for user in original method parameter

 return userID, userEmail, firstName, lastName

