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Sophisticated adversaries are moving their botnet command and control 

infrastructure to social media microblogging sites such as Twitter. As security 

practitioners work to identify new methods for detecting and disrupting such botnets, 

including machine-learning approaches, we must better understand what effect training 

data recency has on classifier performance. This research investigates the performance of 

several binary classifiers and their ability to distinguish between non-verified and verified 

tweets as the offset between the age of the training data and test data changed. Classifiers 

were trained on three feature sets: tweet-only features, user-only features, and all 

features. Key findings show that classifiers perform best at +0 offset, feature importance 

changes over time, and more features are not necessarily better. Classifiers using user-

only features performed best, with a mean Matthews correlation coefficient of 0.95 ± 

0.04 at +0 offset, 0.58 ± 0.43 at -8 offset, and 0.51 ± 0.21 at +8 offset. The R2 values are 

0.90, 0.34, and 0.26, respectively. Thus, the classifiers tested with +0 offset accounted for 

56% to 64% more variance than those tested with −8 and +8 offset. These results suggest 

that classifier performance is sensitive to the recency of the training data relative to the 

test data. Further research is needed to replicate this experiment with botnet vs. non-

botnet tweets to determine if similar classifier performance is possible and the degree to 

which performance is sensitive to training data recency. 
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1. Introduction
Botnets are using increasingly-sophisticated methods not only to communicate 

but to conceal the presence of the botnet communication. Covert command and control 

channels make it more difficult to detect and disrupt botnet communication, one of the 

most common methods for disabling a botnet. Can modern machine learning techniques 

identify social media messages (tweets) associated with covert botnet command and 

control traffic? And if so, to what extent is the performance of such classifiers dependent 

on having recent training data? I selected tweet- and user-specific features of tweets and 

trained a variety of binary classifiers to distinguish between non-verified and verified 

tweets, then measured their performance when predicting the non-verified vs. verified 

status of tweets from a range of years. Developing a better understanding of how 

classifiers can distinguish between “trusted” and “untrusted” classes of tweets will lead to 

better techniques for detecting and disrupting covert botnet command and control 

channels. Understanding the impact of training data recency will lead to the creation of 

more effective classifiers. 

2. Literature Review
Botnets are massive, distributed networks of bots or zombies, typically seen in the 

form of malware-infected hosts – that is, unwitting participants (Bailey, Cooke, Jahanian, 

Xu, & Karir, 2009; Vania, Meniya, & Jethva, 2013). Botnets rely on a command and 

control (C&C) channel to receive, execute, and respond to commands from the botmaster 

(Bailey et al., 2009; Vania et al., 2013). Over time, botnets have become more 

sophisticated, employing cutting-edge techniques to maintain availability and evade 

detection. In the early days of botnets, circa 2000, botnets relied on Internet Relay Chat 

(IRC) for C&C. IRC afforded a centralized command structure, anonymity, one-to-one 

(private) communication, and one-to-many communication (Vania et al., 2013). System 

administrators responded by restricting and monitoring access to IRC. Botnets, in turn, 

moved to a peer-to-peer (P2P) C&C structure, in which there is no central server; bots 

instead received commands from trusted locations or peers (other bots) (Bailey et al., 

2009; Vania et al., 2013). Detecting such P2P botnets is difficult, and became more so 
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with the advent of fast-flux botnets. Traditional approaches to detecting P2P botnets 

focus on network analysis – classifying traffic based on endpoints, latency, frequency, 

synchronicity, packet size, and similar (Bailey et al., 2009). The next evolution in botnet 

C&C was to move to social media and microblogging platforms, such as Facebook and 

Twitter (Kartaltepe, Morales, Xu, & Sandhu, 2010; Rodríguez-Gómez, Maciá-Fernández, 

& García-Teodoro, 2013; Stamp, Singh, H. Toderici, & Ross, 2013). The advantages of 

this move are that such platforms are resilient (their business depends on it), high-

volume, and accessed over HTTP/HTTPS.  

Moving to social media effectively hides C&C traffic amongst the noise of 

legitimate traffic, making it impossible to block outright (Kartaltepe et al., 2010; Stamp et 

al., 2013). Instead, defenders are forced to distinguish the C&C traffic from the legitimate 

traffic. Jose Nozario, a research scientist with Arbor Networks, documented a naïve 

approach to C&C over Twitter (2009) in which the botmaster issued commands via 

tweet, with each tweet containing a base64 encoded bit.ly link. The links, in turn, 

contained base64 encoded executables. Such a C&C approach is obvious to anyone that 

is watching, as base64 encoded messages stand out from typical Twitter traffic. Stegobot 

uses image steganography to hide the commands in images, which it then posts to social 

media – Facebook in this case – to conceal the presence of the command (Nagaraja et al., 

2011). In Covert Botnet Command and Control Using Twitter, Pantic and Husain 

proposed an approach to concealing the presence of command and control traffic by 

using noiseless steganography and encoding the commands in the metadata – message 

length in this case (Pantic & Husain, 2015). 

Disrupting a botnet requires either disabling the botmaster, disabling the zombies, 

cleaning the botnet malware from the zombies, or interfering with the ability of the 

botmaster to communicate with the zombies (Gu, Zhang, & Lee, 2008). Ten years ago, 

interfering with the C&C channel could be as simple as blocking all outbound IRC traffic 

from a network. Botnet detection focused on host-based or network-based analysis 

techniques (Cooke, Jahanian, & McPherson, 2005). The use of a legitimate social media 

platform as a covert C&C channel has complicated this. Research has been conducted on 

detecting Twitter spam accounts (Hua & Zhang, 2013) and classifying accounts as either 

human, bot, or cyborg (human-assisted bots or bot-assisted humans) (Chu, Gianvecchio, 
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Wang, & Jajodia, 2010) using machine learning. In Detection of Stegobot: a covert social 

network botnet, Natarajan, Sheen, and Anitha (2012) presented a method for detecting 

Stegobot activity by analyzing the entropy of cover images, but there is still a research 

gap in the detection of botnet C&C behavior in Twitter. This gap is due at least in part to 

an acute lack of high-quality labeled training data, but this will hopefully change as 

researchers continue to identify large botnets in the wild, such as the 350,000 node botnet 

discovered by researchers at University College in London (Echeverría & Zhou, 2017). 

But the eventual availability of more and higher quality data leads to another research 

question: how important is the recency of the training data relative to the behaviors of 

interest? In other words, is there an expiration date on training data? 

3. Research Method 
The experiment required collecting and processing approximately 3.9 million 

tweets. From those, 1,500 tweets (1,000 non-verified and 500 verified) were randomly 

sampled from each year, 2010 – 2018, to generate nine datasets. For each year, several 

classifiers were trained with 1,000 tweets randomly sampled from that year’s dataset. 

Based on the analysis conducted, there was no measurable increase in performance when 

training with more than 1,000 tweets per year. Classifiers were then evaluated against 

each year individually. Test sets were generated by randomly sampling 300 tweets (200 

non-verified and 100 verified). The same training and test datasets were used for each 

classifier. To evaluate classifiers against their own year, tweets were drawn from the 500 

tweets not used to train the classifier. To evaluate classifiers against other year data, the 

tweets were drawn from the entire dataset. This approach guaranteed that classifiers were 

not trained and evaluated using the same tweets. 

3.1. Data Collection 

Twitter introduced the Verified designation in June 2009. The initial analysis 

determined that the percentage of non-verified vs. verified tweets is highly imbalanced. 

As of March 2018, the data collected for this experiment shows that only 0.08% of 

Twitter users are verified, and 5% of tweets are from verified users. To address this, the 

data were oversampled without replacement, with a final distribution of 67% non-verified 



© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights. 

Times Change and Your Training Data Should Too 

Author Name, email@address   

5 

tweets and 33% verified tweets. However, the Twitter API limits access to only the 3,200 

most recent tweets for each user. This makes it challenging to collect sufficient data for 

prior years. For example, of the 1,633 users in the final dataset, only 37 had one or more 

tweets in 2010. Of the 3.9 million tweets collected, 2,456 are from 2010. This is why it 

was necessary to collect such a large number of tweets to end up with a comparatively 

small dataset. 

3.2. Data Processing 

The Twitter API returns statuses as JSON objects. These JSON objects were then 

converted to comma-separated value (CSV) files. Some fields, such as retweeted_status, 

were converted to a boolean representation based on whether the field was present in the 

JSON object. Boolean values were converted to an integer value 0 (false) or 1 (true). 

Table 1 summarizes the JSON fields, corresponding CSV fields, Python data type, and 

default value used (if any). Table 2 summarizes the additional fields that were derived 

from the fields in Table 1. 

Table 1: JSON and CSV Data Fields 

JSON Field Name CSV Field Name Data 
Type 

Default 

id id uint641 (none) 
created_at created_at datetime (none) 
text text string (none) 
truncated is_truncated uint81 0 
source source string '' (empty string) 
lang lang string 'und' 
is_quote_status is_quote uint81 0 
in_reply_to_status_id is_reply uint81,2 0 
retweeted_status is_retweet uint81,2 0 
quote_count quote_count uint641,3 0 
reply_count reply_count uint641,3 0 
retweet_count retweet_count uint641 0 
favorite_count favorite_count uint641 0 
place has_place uint81,2 0 
coordinates has_coordinates uint81,2 0 
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user.id user_id uint641 (none) 
user.created_at user_created_at datetime (none) 
user.name user_name string '' (empty string) 
user.screen_name user_screen_name string '' (empty string) 
user.location user_location string '' (empty string) 
user.description user_description string '' (empty string) 
user.url user_url string '' (empty string) 
user.verified user_verified uint81 0 
user.followers_count user_followers_count uint641 0 
user.friends_count user_friends_count uint641 0 
user.listed_count user_listed_count uint641 0 
user.statuses_count user_statuses_count uint641 0 
user.favourites_count user_favorites_count uint641 0 
1: NumPy data type 
2: Converted to boolean value based on presence/absence of JSON field 
3: Field value is always 0 with free API 

 

Table 2: Derived Fields 

CSV Field Name Data 
Type 

Default Notes 

created_ts int641 (none) created_at / 1,000,000,000 
user_created_ts int641 (none) user_created_at /  

1,000,000,000 
retrieved_ts int641 (none) derived from JSON timestamp 
text_length int641 (none) characters in text 
text_length_pct float641 (none) text_length / 140 before 11/17 

text_length / 280 after 11/17 
age int641 (none) retrieved_ts − created_ts 
user_age int641 (none) retrieved_ts − user_created_ts 
quote_tsc 
(time-scaled count) 

float641 0 quote_count / age 

reply_tsc float641 0 reply_count / age 
retweet_tsc float641 0 retweet_count / age 
favorite_tsc float641 0 favorite_count / age 
user_followers_tsc float641 0 user_followers_count / user_age 
user_friends_tsc float641 0 user_friends_count / user_age 
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user_listed_tsc float641 0 user_listed_count / user_age 
user_statuses_tsc float641 0 user_statuses_count / user_age 
user_favorites_tsc float641 0 user_favorites_count / user_age 
time_delta float641 user_avg_delta time since previous status 
user_avg_delta float641 (none) mean of non-null time_delta 

values for user 
source_clean string '' (empty string) stripped HTML 
1: NumPy data type 

 

3.3. Classifier Training 

After data processing, the entire set of 3.9 million tweets was split into nine 

disjoint sets based on the created_at field year: 2010, 2011, 2012, 2013, 2014, 2015, 

2016, 2017, and 2018. For each year, a subset was created by randomly sampling 1,000 

non-verified tweets and 500 verified tweets. This subset was then randomly split into a 

training set and a validation set, comprising 67% and 33% of the subset respectively. For 

each training set, the scikit-learn Imputer preprocessor was fitted to NaN values using the 

mean strategy and the RobustScaler preprocessor was fitted with default parameters. 

Finally, each classifier was fitted to the training data using default parameters. 

3.4. Classifier Evaluation 

Initial experimentation showed that classifiers performed extremely well by 

predicting that all tweets are non-verified. While accurate, this finding was of limited 

value. If 95% of tweets are from non-verified users and 5% are from verified users, a 

classifier would achieve 95% accuracy by predicting that all tweets are non-verified. This 

necessitated changing the performance metric from accuracy to Matthews correlation 

coefficient (MCC). MCC was chosen as it incorporates true positives (TP), true negatives 

(TN), false positives (FP), and false negatives (FN). The formula is as follows: 

 

MCC is considered a balanced measure that performs well with imbalanced data 

classes (Boughorbel, Jarray, & El-Anbari, 2017). In the scenario where 95% of tweets are 
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from non-verified users and 5% are from verified users, predicting that all tweets are non-

verified would result in an MCC value of 0 (no correlation). 

Each trained classifier was evaluated against each year from 2010 to 2018. For 

each year, a test set was created by randomly sampling 200 non-verified tweets and 100 

verified tweets from the full dataset for the year. The exception to this was when the 

training year and test year were equal, in which case the validation set was used as the 

test set. Each test set was transformed using the previously fitted Imputer and 

RobustScaler preprocessors. Finally, the test class (non-verified vs. verified) was 

predicted using the previously fitted classifier and the MCC was calculated.  

3.5. Potential Shortcomings 

While care was taken to avoid common mistakes such as training and testing 

using the same data, the nature of the Twitter API does present some challenges. Chief 

among these is a potential selection bias. Twitter does not provide a method to choose a 

random user ID, so random user IDs were selected from a sample of the live stream, 

which means that all tweets used in this experiment are from users that were active as of 

March 2018. 

Second, the Twitter API only provides the 3,200 most recent Tweets for each 

user. This means that the more active a user is, the more recent the cutoff. Consequently, 

data from more distant years are more likely to be from less active users. 

4. Findings and Discussion 

4.1. Feature Importance 

Each classifier was trained and evaluated with three features sets: tweet-only 

features, user-only features, and all features. 

Tweet-only features are specific to an individual tweet and do not include user 

information. The following features were included: created_ts, age, time_delta, 

is_truncated, is_quote, is_reply, is_retweet, has_place, has_coordinates, text_length, 

text_length_pct, quote_tsc, reply_tsc, retweet_tsc, and favorite_tsc. 
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User-only features are independent of individual tweets and represent a user at the 

time the tweet is retrieved, not at the time the tweet is originally posted. The following 

features were included: user_created_ts, user_age, user_followers_tsc, user_friends_tsc, 

user_listed_tsc, user_statuses_tsc, user_favorites_tsc, user_avg_delta. 

 All features combines the features from the tweet-only and user-only feature sets. 

The mutual information (MI) score for each feature was calculated to determine 

how strongly the feature contributed to the correct classification. This information was 

not used for feature selection, but rather to measure the relative importance of features. 

Figure 1 is a plot of the mean and standard deviation per year of the tweet-only vs. user-

only feature sets. 

 
Figure 1: Feature importance for tweet-only vs. user-only feature sets 

The mean mutual information scores for the user-only features are 14 to 20 times 

higher than those for tweet-only features. This means that user-only features are stronger 

indicators of whether a tweet is non-verified vs. verified, a conclusion that will be 

confirmed when classifier performances are examined.  

The mean mutual information scores for user-only features drop steadily over 

time. One possible explanation for this observation is that user characteristics and 
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behaviors have become less able to predict if a tweet is from a verified user as the Twitter 

user base has grown in size and diversity. 

4.2. Classifier Performance 

The experiment compares the performance of seven classifiers: k-nearest 

neighbors, logistic regression, SVC, multi-layer perceptron, decision trees, random forest, 

and gradient boosting. In each instance, the scikit-learn implementation with default 

parameters was used. No optimization was performed.  

For the purposes of evaluating classifier performance, the data has been offset 

such that the difference between training year and test year are the same at a given point 

on the x-axis. For example, Figure 2 shows MCC values for the SVC classifier with user-

only features. In the top table, the y-axis represents the training data year and the x-axis 

represents the test data year. However, this research is primarily focused on determining 

how well classifiers can predict the class of data that is older or newer than the training 

data. In the bottom table, the data has been shifted to reflect the offset between the test 

year and the training year. In the first row, which corresponds to training data from 2010, 

the test data from 2010 has an offset of +0 (2010 – 2010), the test data from 2011 has an 

offset of +1 (2011 – 2010), and so on. As a result, we can quickly see that for an offset of 

+0 (that is, for all instances in which the training data year and test data year were the 

same), the performance was quite good, but declines as the offset grows. This approach 

to offsetting the data is used throughout this paper. 

 
Figure 2: Example of performance data before and after being offset 
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4.2.1. Tweet-Only Features 

Figure 3 compares the individual mean Matthews correlation coefficient of seven 

different classifiers.  

 
Figure 3: Mean performance of each classifier with tweet-only features 

Figure 4 shows the mean Matthews correlation coefficient and standard deviation 

of all seven classifiers. Performance is optimal at +0 offset, with a mean MCC of 0.31 ± 

0.04 (weak positive relationship), and quickly drops as the offset changes. After reaching 

a low of 0.09 ± 0.06 at +5 offset, the MCC begins to rise, but so does the standard 

deviation, until reaching an MCC of 0.2 ± 0.19.  

 
Figure 4: Mean classification performance across all classifiers with tweet-only features 

4.2.2. User-Only Features 

Figure 5 compares the individual mean Matthews correlation coefficient of seven 

different classifiers.  
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Figure 5: Mean performance of each classifier with user-only features 

Figure 6 shows the mean Matthews correlation coefficient and standard deviation 

of all seven classifiers. Again, performance is optimal at +0 offset, with a mean MCC of 

0.95 ± 0.04 (very strong positive relationship), and drops as the offset changes. Unlike 

the tweet-only features, however, performance at the extreme offsets still shows a 

moderate positive relationship. At −8 offset the mean MCC is 0.58 ± 0.43, while at +8 

offset the mean MCC is 0.51 ± 0.21. In both instances, the standard deviation grows as 

we move from an offset of +0. 

 
Figure 6: Mean classification performance across all classifiers with user-only features 

4.2.3. All Features 

Figure 7 compares the individual mean Matthews correlation coefficient of seven 

different classifiers.  
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Figure 7: Mean performance of each classifier with user-only features 

Figure 8 shows the mean Matthews correlation coefficient and standard deviation 

of all seven classifiers. Again, performance is optimal at +0 offset, with a mean MCC of 

0.89 ± 0.08 (very strong positive relationship) and drops as the offset changes. 

Performance at the extreme offsets still shows a moderate positive relationship, though 

not to the same extent as with the user-only features. At −8 offset the mean MCC is 0.4 ± 

0.41, while at +8 offset the mean MCC is 0.45 ± 0.3. In both instances, the standard 

deviation grows as we move from an offset of +0. 

 
Figure 8: Mean classification performance across all classifiers with all features 

4.3. Summary of Findings 

The experiment resulted in three key findings: 

1. Classifiers perform best at +0 year offset and generally perform worse 

as the offset increases or decreases. Ensemble classifiers (random forest, 

gradient boosting), decision trees, and multi-layer perceptron were most 
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resilient to this performance loss. For these four classifiers, the mean 

MCC at +0, −8, and +8 offset was 0.98 ± 0.01, 0.91 ± 0.08, and 0.51 ± 

0.06 respectively. SVC was the most susceptible to performance loss, with 

mean MCC at +0, −8, and +8 offset of 0.92, −0.097, and 0.07 respectively. 

This finding suggests that it is important to use recent training data and 

that different classifiers are more or less sensitive to this recency 

requirement.  

2. Feature importance changes over time. The tweet-only features were 

uniformly uninformative, with a mean mutual information (MI) ranging 

from 0.03 ± 0.04 in 2010 to 0.03 ± 0.03 in 2018. But the user-only features 

proved more informative, with a mean MI ranging from 0.62 ± 0.01 in 

2010 to 0.39 ± 0.03. The mean MI change from 2010 to 2018 was −0.22, 

while the features with the greatest change were user_friends_tsc and 

user_statuses_tsc with MI changes of −0.32 and −0.24 respectively. The 

feature with the smallest change was user_created_ts with an MI change 

of −0.18. While this research does not attempt to identify what underlying 

user trends cause these changes in feature importance over time, it is 

important to know that they do change. This would explain, at least in 

part, the recency requirement from the first finding.  

3. Adding more features does not necessarily improve performance. In 

fact, certain classifiers performed markedly worse with all features 

compared to user-only features. The mean MCC change was −0.13, while 

SVC and multi-layer perceptron both showed a mean MCC change of 

−0.26. The classifier with the smallest change (though still negative) was 

the random forest with a mean MCC change of −0.01. Gradient boosting 

and decision trees had a mean MCC change of −0.04 and −0.05 

respectively. This finding throws into question a commonly-accepted 

machine learning maxim and merits further investigation. 
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5. Recommendations and Implications 

5.1. Recommendations for Practice 

This research has shown that ML classifiers can distinguish between non-verified 

and verified tweets and that such classification is highly sensitive to the recency of the 

training data. This work has significant implications for future research in detecting 

botnet traffic over Twitter. In particular, researchers must be sensitive to the timeliness of 

the training data they are using. Future research should test whether a similar effect is 

found when distinguishing between genuine traffic and botnet C&C traffic. 

If the approach used in this research proves viable for botnet traffic as well, social 

media platforms (such as Twitter) could employ this approach to identify messages that 

are part of a botnet C&C channel and disrupt it by modifying/removing the messages. In 

addition, network owners could employ this approach at their network boundary, in 

conjunction with an SSL forward proxy, to inspect outbound messages to social media 

platforms and identify C&C messages. Such an approach would supplement host-based 

approaches to detection. 

The drawbacks to such an approach are largely performance-cost related. 

Network owners would incur a relatively small processing cost by implementing such an 

approach on their network, given the relative volume of social media traffic compared to 

other traffic. However, getting buy-in from a significant number of network owners 

would be challenging. Conversely, social media platforms could implement such an 

approach to identifying suspicious traffic, but the processing cost incurred would be 

higher. The impact on processing speed for such an approach is outside the scope of this 

research. Lastly, as with any automated system, false positives have the potential to 

negatively affect users’ experiences. 

5.2. Implications for Future Research 

This is a field ripe for further exploration, and several significant questions 

directly follow from this research. First, and perhaps most obvious, does the methodology 

used in this research hold true for distinguishing between botnet C&C traffic and non-

botnet C&C traffic? Related, is the assumption that there is a correlation between non-
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verified vs. verified and botnet vs. non-botnet tweets true? And if so, how strongly are 

they correlated? 

Second, what effects do the limitations on the Twitter API have on the 

performance observed in this research? Would the ability to truly randomly select users 

and retrieve users’ entire tweet history result in better or worse performance? Or to frame 

it differently, is the performance observed in this research a result of these limitations, or 

in spite of them? 

Third, several features were ignored from the training data, including the actual 

tweet content. What effect would the inclusion of these features have on performance? 

Are there other features that could be derived from the available data to improve 

performance? 

The ability to predict whether a tweet resembles tweets from verified or non-

verified users does have some direct applicability. Twitter could use such an approach to 

streamline the Verified process and suggest that certain individuls apply for Verified 

status who strongly resemble other verified individuals. However, the ultimate goal of 

this research is to detect botnet traffic. As such, the obvious next step is to identify or 

create a labeled training set and repeat this research to answer the first question above.  

6. Conclusion
This research addresses the question of whether ML classifiers can distinguish 

between non-verified and verified tweets, with those classes being stand-ins for botnet vs. 

non-botnet tweets. Further, the research investigates the degree to which the offset 

between training and test data affects the performance of the classifiers. In this research, I 

collected a corpus of tweets from 2010 – 2018, trained a variety of classifiers on data 

from each year, and tested the performance of the classifiers against data from every year. 

This approach was repeated for three feature sets: tweet-only features, user-only features, 

and all features. 

Findings showed that the classifiers could distinguish between non-verified and 

verified tweets, with the user-only feature set performing best. Further, the findings 

showed that there is a strong performance loss when testing a classifier against data from 
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years other than the year used to train the classifier. In most cases, the performance loss 

becomes more severe as the gap between training and test year increases. 

Future research is needed to identify what correlation (if any) there is between 

non-verified vs. verified and botnet vs. non-botnet tweets. In addition, future research is 

also needed to repeat this experiment with labeled botnet vs. non-botnet tweets. 
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Appendix A: Classifiers 
This appendix lists the scikit-learn classifiers and parameters used in this research, 

as shown by a call to each classifiers’ str() method: 

KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', 
metric_params=None, n_jobs=1, n_neighbors=5, p=2, weights='uniform') 

LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True, 
intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1, 
penalty='l2', random_state=42, solver='liblinear', tol=0.0001, 
verbose=0, warm_start=False) 

SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, 
decision_function_shape='ovr', degree=3, gamma='auto', kernel='rbf', 
max_iter=-1, probability=False, random_state=42, shrinking=True, 
tol=0.001, verbose=False) 

MLPClassifier(activation='relu', alpha=0.0001, batch_size='auto', beta_1=0.9, 
beta_2=0.999, early_stopping=False, epsilon=1e-08, 
hidden_layer_sizes=(100,), learning_rate='constant', 
learning_rate_init=0.001, max_iter=200, momentum=0.9, 
nesterovs_momentum=True, power_t=0.5, random_state=42, shuffle=True, 
solver='adam', tol=0.0001, validation_fraction=0.1, verbose=False, 
warm_start=False) 

DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=None, 
max_features=None, max_leaf_nodes=None, min_impurity_decrease=0.0, 
min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, 
min_weight_fraction_leaf=0.0, presort=False, random_state=42, 
splitter='best') 

RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini', 
max_depth=None, max_features='auto', max_leaf_nodes=None, 
min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, 
min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=10, 
n_jobs=1, oob_score=False, random_state=42, verbose=0, warm_start=False) 

GradientBoostingClassifier(criterion='friedman_mse', init=None, 
learning_rate=0.1, loss='deviance', max_depth=3, max_features=None, 
max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, 
min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, 
n_estimators=100, presort='auto', random_state=42, subsample=1.0, 
verbose=0, warm_start=False) 
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Appendix B: Individual Classifier Performance 

K-Nearest Neighbors 

 

 

 
Figure 9: k-Nearest-Neighbors, MCC by year, Tweet-Only vs. User-Only vs. All Features 
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Logistic Regression 

 

 

 
Figure 10: Logistic Regression, MCC by year, Tweet-Only vs. User-Only vs. All Features 
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SVC 

Figure 11: SVC, MCC by year, Tweet-Only vs. User-Only vs. All Features 
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MLP 

Figure 12: Multi-Layer Perceptron, MCC by year, Tweet-Only vs. User-Only vs. All Features 
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Decision Trees 

Figure 13: Decision Tree, MCC by year, Tweet-Only vs. User-Only vs. All Features 
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Random Forest 

Figure 14: Random Forest, MCC by year, Tweet-Only vs. User-Only vs. All Features 
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Gradient Boosting 

 

 

 
Figure 15: Gradient Boosting, MCC by year, Tweet-Only vs. User-Only vs. All Features 

 


