
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Content Security Policy in Practice

GCIH

Author: Varghese Palathuruthil, thealmostrealmccoy@gmail.com
Advisor: Johannes Ullrich

Accepted: June, 2018

Abstract

The implementation of Content Security Policy to leverage web browser capability in
protecting a web application from cross-site scripting attack has been a challenge for
many legacy web applications. Typical web applications maintained over the years
accumulate a number of web pages that do not follow a consistent design. There are no
widely available tools to quickly transform legacy web pages to adopt Content Security
Policy. The results of this research cover the outcome of implementing a set of tools to
address this need.

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Content Security Policy in Practice
	

2

	

Varghese	Palathuruthil,	
thealmostrealmccoy@gmail.com	 	 	

1. Introduction
Cross-site scripting or XSS continues to rank among the top ten web application

vulnerabilities listed by the Open Web Application Security Project. A cross-site

scripting attack occurs when an attacker injects a malicious script into a vulnerable page

of a web application. The malicious scripts is then executed in the web browser of a

different end user, accessing the same vulnerable page of the web application. One

response header introduced by web browser vendors to prevent cross-site scripting attack

is Content Security Policy. The web application specifies the policy in the response

header. The end-user-web-browser enforces the policy. The Content Security Policy is

typically listed in the web application response header and can also be applied as a meta-

tag in the web pages rendered on the end-user-web-browser. Content Security Policy

controls are not exclusive to scripts. The policy can be used to restrict a broad range of

resource types including styles, images, and fonts. The Content Security Policy was

introduced in September 2016. Since the initial release, Content Security Policy has

undergone a few revisions known as levels. Level 3 is the latest working draft of the

Content Security Policy.

1.1. Content Security Policy in Theory
The Content Security Policy directive grants additional control to the web

application over what locations the end-user-web-browser is permitted to load resources

from when loading pages from the web application. The directive uses a whitelist

approach. Scripts from any other domain will be blocked. Content Security Policy

provides several directives from which to choose so that different media types such as

images, objects, frames, fonts, styles, and more could be set to use their own white listed

resources. Figure 1 is an example of a Content Security Policy directive, in which all

resources from the host web application specifying the Content Security Policy is allowed

except for media and object resource types. The end-user-web-browser will block the

loading of any audio, video and plugin resources on the rendered pages from any domain

including the web application that specifies this Content Security Policy.

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Content Security Policy in Practice
	

3

	

Varghese	Palathuruthil,	
thealmostrealmccoy@gmail.com	 	 	

Content-Security-Policy: default-src 'self'; media-src 'none'; object-src 'none‘

Figure 1: Content Security Policy directives

Figure 2 is an example of a Content Security Policy directive, demonstrates how a

whitelist can be specified to restrict external resources loaded on the rendered web page

of the web application that uses this Content Security Policy. In this case, scripts only

from the host web application (‘self') and jquery.com will be permitted to be loaded on

the rendered web page.

Content-Security-Policy: default-src 'self'; object-src 'none‘; script-src ‘self ‘ http://www.jquery.com

Figure 2: Content Security Policy directive with whitelist

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Content Security Policy in Practice
	

4

	

Varghese	Palathuruthil,	
thealmostrealmccoy@gmail.com	 	 	

Figure 3 is a sample list of directives that could be used to restrict certain types of

resources.

Directive Restricted resource type

connect-

src

Restrict resources used for

script interfaces.

font-src Restrict resources used for

fonts.

img-src Restrict resources used for

images.

media-src Restrict resources used for

audios and videos.

object-src Restrict resources used for

plugins.

script-src Restrict resources used for

scripts such as JavaScript.

style-src Restrict resources used for

Cascading Style Sheets.

form-action Restrict domains specified in the

action of an html form element.

Figure 3: Sample list of Content Security Policy directives

Figure 4 list the two most commonly used keywords applied to resource-specific

directives in a typical Content Security Policy.

Keyword Restricted resource type

none Block all resources of this type from being loaded on the

rendered page.

self Restrict loading of resources of this type from only the host

web application on the page.

Figure 4: Keywords for Resource-Specific Directives

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Content Security Policy in Practice
	

5

	

Varghese	Palathuruthil,	
thealmostrealmccoy@gmail.com	 	 	

Content Security Policy provides a reporting feature that is useful for testing the Content

Security Policy. When using this feature, policy violations are collected by end-user-web-

browser and sent to the configured resource for further analysis. Figure 5 is an example

of a Content Security Policy configured to report all violations of the policy.

Content-Security-Policy: default-src 'self'; media-src 'none'; object-src 'none‘; report-uri

/csp_test/ContentSecurityPolicyReporter

Figure 5: Content Security Policy with reporting option

The value following the keyword report-uri is the URL to which the Content Security

Policy-compliant web browser will post violation to the policy. Web browsers post

Content Security Policy violations in JSON format. Figure 6 is an example of violation

reported by a Content Security Policy-compliant web browser.

{"csp-report":

 {"blocked-uri":"self",

 "document-uri":"http://localhost/csp_test/jsp/mouseclick.jsp",

 "original-policy":"report-uri http://localhost/csp_test/ContentSecurityPolicyReporter; default-

src http://localhost; script-src http://localhost

https://cdn.firebase.com/libs/angularfire/0.9.0/angularfire.min.js

https://getbootstrap.com/dist/js/bootstrap.min.js https://code.jquery.com/jquery-1.10.2.js

'nonce-XtiDaiPiuUnFJGV8bcHhnBGzWK5t92LH'",

 "referrer":"http://localhost/csp_test/",

 "script-sample":"onsubmit attribute on DIV element",

 "source-file":"http://localhost/csp_test/jsp/mouseclick.jsp",

 "violated-directive":"script-src"

 }

}

 Figure 6: Sample Content Security Policy Violation Report

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Content Security Policy in Practice
	

6

	

Varghese	Palathuruthil,	
thealmostrealmccoy@gmail.com	 	 	

The Content Security Policy-compliant web browser will not block violations to Content

Security Policy configured in report-only mode; it will merely report it. Figure 7 is an

example of a Content Security Policy in report-only mode:

Content-Security-Policy-Report-Only: default-src 'self'; media-src 'none'; object-src 'none‘;

report-uri /csp_test/ContentSecurityPolicyReporter

Figure 7: Content Security Policy Report Only Mode

A prominent drawback in level 1 of the Content Security Policy is the way it

addresses inline scripts, inline styles, and inline event handlers. Whitelisted directives

will not work for inline code on pages. Instead, it will block them from being executed.

Figure 8 is an example of a Content Security Policy with a restricted whitelist, blocking

inline scripts and styles on the rendered page from being executed in a Content Security

Policy-compliant web browser.

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Content Security Policy in Practice
	

7

	

Varghese	Palathuruthil,	
thealmostrealmccoy@gmail.com	 	 	

Content-Security-Policy: default-src 'self'; script-src 'self' https://code.jquery.com/jquery-

1.10.2.js

<html>

<head>

 <title>click demo</title>

 <style>

 p {

 color: red;

 margin: 5px;

 cursor: pointer;

 }

 p:hover {

 background: yellow;

 }

 </style>

 <script src="https://code.jquery.com/jquery-1.10.2.js"></script>

</head>

<body>

<p>First Paragraph</p>

<p>Second Paragraph</p>

<p>Yet one more Paragraph</p>

 <script>

$("p").click(function() {

 $(this).slideUp();

});

</script>

</body>

</html>

Figure 8: Content Security Policy blocking inline scripts

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Content Security Policy in Practice
	

8

	

Varghese	Palathuruthil,	
thealmostrealmccoy@gmail.com	 	 	

Content Security Policy does provide a directive called unsafe-inline. Adding this

directive to the Content Security Policy of a web application will allow inline code, such

as scripts, styles, and event handler on the web pages of that particular web application,

to be executed. However, this directive does not come with a whitelist option. Using the

unsafe-inline keyword will not only allow the execution of legitimate inline scripts,

styles, and event handler on the web page but will also permit malicious scripts injected

by an attacker into the inline scripts of the web page, thus effectively bypassing the

security of Content Security Policy. The solution to this problem is to move all inline

scripts, styles, and event handlers on web pages to whitelisted resources such as

Javascript or Cascaded Style Sheet files. This is a daunting task for a web application

which includes thousands of web pages with thousands of unique inline scripts, styles,

and event handler. Level 2 of the Content Security Policy implemented by web browsers

addressed this limitation of handling inline scripts by introducing the concept of a nonce.

A nonce is a random number or string used once. In level 2 of the Content Security

Policy, web applications can set a nonce value as an attribute in the Content Security

Policy header response of a web page. The same nonce value is then set as an attribute for

all the inline scripts and style tags within that web page. Web browsers that implement

level 2 of the Content Security Policy and load such a web page and response header will

now allow only those inline scripts and styles with a matching nonce and will block all

other injected scripts or styles. Figure 9 is an example of using a unique nonce value in

the Content Security Policy directive and the same nonce value in the inline scripts and

styles of the rendered page. As a result, the Content Security Policy-compliant web

browser will allow the execution of the matching nonce tagged inline scripts and styles in

the web browser.

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Content Security Policy in Practice
	

9

	

Varghese	Palathuruthil,	
thealmostrealmccoy@gmail.com	 	 	

Content-Security-Policy: default-src 'self'; script-src 'self' https://code.jquery.com/jquery-

1.10.2.js 'nonce-XtiDaiPiuUnFJGV8bcHhnBGzWK5t92LH'

<html>

<head>

 <title>click demo</title>

 <style nonce=”XtiDaiPiuUnFJGV8bcHhnBGzWK5t92LH”>

 p {

 color: red;

 margin: 5px;

 cursor: pointer;

 }

 p:hover {

 background: yellow;

 }

 </style>

 <script src="https://code.jquery.com/jquery-1.10.2.js"></script>

</head>

<body>

<p>First Paragraph</p>

<p>Second Paragraph</p>

<p>Yet one more Paragraph</p>

 <script nonce=”XtiDaiPiuUnFJGV8bcHhnBGzWK5t92LH”>

$("p").click(function() {

 $(this).slideUp();

});

</script>

</body>

</html>

Figure 9: Content Security Policy directive with nonce

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Content Security Policy in Practice
	

10

	

Varghese	Palathuruthil,	
thealmostrealmccoy@gmail.com	 	 	

This approach addresses the limitation of Content Security Policy on inline scripts

to a certain extent. However, level 2 of the Content Security Policy did not address all the

issues. The nonce attribute cannot apply to inline event handlers of a web page. As a

result, script injection on the inline event handler of a web page can still bypass level 2 of

the Content Security Policy. Level 3 of the Content Security Policy proposes a new

attribute called unsafe-hashed-attributes to address the limitation of the impact of Content

Security Policy on event handlers. Similar to the use of a nonce in inline scripts and

styles, level 3 of the Content Security Policy proposes to use matching hash values as a

part of the unsafe-hashed-attributes in the response header and the inline event handler of

the web page. Note that this proposal is still a work in progress. Level 3 of the Content

Security Policy also introduces an additional expression called strict-dynamic for the

script directive. Web browsers implementing level 3 of the Content Security Policy will

propagate the trust given to a script using a nonce to all the other scripts loaded by this

script.

1.2. Content Security Policy in Practice
The features implemented and proposed in the Content Security Policy is useful in

restricting resources loaded by an end-user-web-browser and addressing issues such as

cross-site scripting in a web application that integrates Content Security Policy. The

problem lies in the feasibility of its implementation in a typical web application.

Implementation of Content Security Policy is straightforward on a new web application

built from scratch with Content Security Policy in mind. Implementation of Content

Security Policy is also less daunting on an existing web application that already follows

good practices such as externalizing all scripts and styles code in external files. However,

this is not the case for a typical web application, built and maintained over many years,

by many different teams that have supported legacy features, while adding new features.

Such web applications tend to have hundreds of web pages with custom inline scripts,

styles, and event handlers. How do you transform these web pages quickly to benefit

from Content Security Policy features? How do you generate and propagate matching

nonce and hash values across all the inline script and style codes of such a web

application? Does a typical web application maintain an inventory of all external

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Content Security Policy in Practice
	

11

	

Varghese	Palathuruthil,	
thealmostrealmccoy@gmail.com	 	 	

resources referenced by its web pages so that it could be used to build a successful

whitelist for its Content Security Policy?

2. Tools to Build an Effective Content Security Policy
A set of tools is needed to apply a potent Content Security Policy to a legacy web

application. The tools work together to cover different aspects of Content Security Policy.

The Java programming language was chosen for this research to implement tools to apply

Content Security Policy to a test web application. The Java Enterprise Edition or Java EE

is the de facto standard in building web applications in Java. A favored implementation

of the Java EE servlet container is Apache Tomcat. The web application developed to test

these tools follows the Java EE standards and deploys on Apache Tomcat. A Java Servlet

Filter was implemented to apply the configured Content Security Policy to the test web

application. As the name implies, a Java Servlet Filter can be constructed to map URL

patterns of the web application to ensure that these URL requests are screened using the

rules implemented in the Java Servlet Filter. Java Servlet Filter is a powerful mechanism

that controls the response headers of web pages rendered in a Java EE web application.

As a result, the Java Servlet Filter was used to apply the Content Security Policy to the

response header of the rendered web pages. Java Servlet Filters like their Java Servlet

counterparts have access to the session scope of a Java EE web application. It provides

the advantage of generating and maintaining nonce values unique to each session in the

test web application. The pages implemented in the test web application use two other

standards from the Java EE stack, namely Java Server Pages and Java Server Pages

Standard Tag Libraries. Java Server Pages, or JSP, dynamically generates web pages to

aids in applying custom rules on the rendered html content that finally displays on the

end-user-web-browser. Java Server Pages Standard Tag Libraries, or JSP tags, are used to

pack small snippets of Java code that define as tags for reusability. Using JSP tags in

conjunction with Servlet filter enables the application of dynamic nonce to inline scripts

and styles in the rendered html content that displays in the end-user-web-browser. The

rendered html content on the test web pages include references to well-known style and

script libraries such as Bootstrap, Angular, and JQuery. Additionally, there are two Java

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Content Security Policy in Practice
	

12

	

Varghese	Palathuruthil,	
thealmostrealmccoy@gmail.com	 	 	

Servlets implemented for the test web application with vulnerability to cross-site

scripting attacks. Apache Ant is a favored tool used to compile and build Java

applications. Ant already comes with a wide range of built-in tasks to scan the/an

application workspace to prepare and package it into a deployable or executable

application. Like typical open source applications, the Ant tool design is highly

extensible to build new custom tasks. This feature has been leveraged to develop Ant

tasks that will scan an application workspace to compile a list of external styles, scripts,

images, and referenced frame resources. This feature also uses this list to prepare a

Content Security Policy that could be applied to the application.

2.1. Tool to list external resources referenced by web pages
ContentSecurityPolicyWhiteListCollector is an Ant task written in Java that will

scan the target web application codebase and compile the list of resources referenced by

web pages. The output will be an xml file (named csp_external_resource_list.xml) that

categorizes the list by resource media type such as scripts, frame, link, anchor, image,

e.t.c. Figure 10 outlines the details listed in the output xml file.

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Content Security Policy in Practice
	

13

	

Varghese	Palathuruthil,	
thealmostrealmccoy@gmail.com	 	 	

Name Description

resourceTypeDetail The element name

Name The resource type name sub-element. Examples of

value that will be listed here include script, image,

anchor, etc.

Pattern The pattern sub-element to find this resource. The value

is character data (CDATA) An example of a value that

will be listed here would be

<![CDATA[<script.*</script>]]>

fileDetail The location of the code base sub-element where this

resource is listed. The value is character data (CDATA)

An example of a value that will be listed here would be

<![CDATA[C:/tmp/csptest/src/main/webapp/WEB-

INF/jsp/welcome.jsp]]>

Value The retrieved resource sub-element. The value is

character data (CDATA) An example of a value that will

be listed here would be

<![CDATA[https://oss.maxcdn.com/libs/respond.js/1.4.2/r

espond.min.js]]>

Figure 10: Elements in the generated xml file of the

ContentSecurityPolicyWhiteListCollector Ant task.

Figure 11 is an example of an xml file generated by running the

ContentSecurityPolicyWhiteListCollector Ant task.

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Content Security Policy in Practice
	

14

	

Varghese	Palathuruthil,	
thealmostrealmccoy@gmail.com	 	 	

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<resourceType>

<resourceTypeDetail>

<name>script</name>

<pattern><![CDATA[<script.*</script>]]></pattern>

<fileDetail><![CDATA[C:/tmp/csptest/src/main/webapp/WEB-INF/jsp/welcome.jsp]]></fileDetail>

<value><![CDATA[https://oss.maxcdn.com/libs/respond.js/1.4.2/respond.min.js]]></value>

</resourceTypeDetail>

<resourceTypeDetail>

<name>anchor</name>

<pattern><![CDATA[<a.*]]></pattern>

<fileDetail><![CDATA[C:/tmp/csptest/src/main/webapp/WEB-INF/jsp/example.jsp]]></fileDetail>

<value><![CDATA[http://get.adobe.com/reader/]]></value>

</resourceTypeDetail>

<resourceTypeDetail>

<name>image</name>

<pattern><![CDATA[<img.*>]]></pattern>

<fileDetail><![CDATA[C:/tmp/csptest/src/main/webapp/WEB-INF/jsp/xss.jsp]]></fileDetail>

<value><![CDATA[<c:url value='/images/icon_alert.gif'></c:url>]]></value>

</resourceTypeDetail>

<resourceTypeDetail>

<name>link</name>

<pattern><![CDATA[<link.*>]]></pattern>

<fileDetail><![CDATA[C:/tmp/csptest/src/main/webapp/WEB-INF/jsp/xss.jsp]]></fileDetail>

<value><![CDATA[favicon.ico]]></value>

</resourceTypeDetail>

<resourceTypeDetail>

<name>link</name>

<pattern><![CDATA[<link.*>]]></pattern>

<fileDetail><![CDATA[C:/tmp/csptest/src/main/webapp/WEB-INF/jsp/xss.jsp]]></fileDetail>

<value><![CDATA[plugins/datepicker/css/datepicker3.css]]></value>

</resourceTypeDetail>

</resourceType>

Figure 11: Sample xml output generated by the

ContentSecurityPolicyWhiteListCollector Ant task

Figure 12 is an example of running the ContentSecurityPolicyWhiteListCollector Ant

task.

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Content Security Policy in Practice
	

15

	

Varghese	Palathuruthil,	
thealmostrealmccoy@gmail.com	 	 	

ant -f csp-tools.xml content_security_policy_white_list_collector

-Dprojectroot=C:/tmp/csp-test

Figure 12: Example of running the

ContentSecurityPolicyWhiteListCollector Ant task.

2.2. Tool to generate an initial Content Security Policy
The ContentSecurityPolicyGenerator is an Ant task written in Java that will take

the xml output from the CSPWhiteListCollector tool to create an initial Content Security

Policy for the target web application. The policy will include whitelist. It will not contain

nonce as this value will be generated to be unique per user session. The output will be in

an xml file. Figure 13 lists the details in the output xml file.

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Content Security Policy in Practice
	

16

	

Varghese	Palathuruthil,	
thealmostrealmccoy@gmail.com	 	 	

Name Description

policyHeader The element holding recurrent features that do not fall

under a specific resource type

Key The sub-element of the policyHeader element indicating

whether the policy is live or in report only mode.

Prefix The sub-element of the policyHeader element indicating

the frequent directives applied across all resource types.

Nonce The sub-element of the policyHeader element indicating

whether the tool that feeds in this document to administer

the policy should generate a nonce.

policyDetail The element holding policy specific to a resource type

Type The sub-element of the policyDetail element indicating the

resource type

Policy The sub-element of the policyDetail element indicating the

whitelist policy that will be applied to a specific resource

type.

Figure 13: Details in the generated xml file of the

ContentSecurityPolicyGenerator Ant task.

Figure 14 is an example of an xml file generated by running the

ContentSecurityPolicyGenerator Ant task.

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Content Security Policy in Practice
	

17

	

Varghese	Palathuruthil,	
thealmostrealmccoy@gmail.com	 	 	

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<contentSecurityPolicy>

<policyHeader>

<key><![CDATA[Content-Security-Policy]]></key>

<prefix><![CDATA[report-uri /csp_test/ContentSecurityPolicyViolationReporter; default-src

'self']]></prefix>

<nonce>true</nonce>

</policyHeader>

<policyDetail>

<type><![CDATA[script-src]]></type>

<policy><![CDATA['strict-dynamic'

https://cdn.firebase.com/libs/angularfire/0.9.0/angularfire.min.js

https://getbootstrap.com/dist/js/bootstrap.min.js https://code.jquery.com/jquery-1.10.2.js

https://ajax.googleapis.com/ajax/libs/angularjs/1.6.9/angular-resource.min.js

https://code.jquery.com/jquery-3.2.1.slim.min.js https://code.jquery.com/ui/1.12.1/jquery-ui.js

https://ajax.googleapis.com/ajax/libs/angularjs/1.6.9/angular-route.min.js

https://ajax.googleapis.com/ajax/libs/angularjs/1.6.9/angular.min.js

https://code.jquery.com/jquery-1.12.4.js https://cdn.firebase.com/js/client/2.0.4/firebase.js

https://getbootstrap.com/assets/js/vendor/holder.min.js

https://getbootstrap.com/assets/js/vendor/popper.min.js

https://getbootstrap.com/assets/js/vendor/jquery-slim.min.js]]></policy>

</policyDetail>

<policyDetail>

<type><![CDATA[style-src]]></type>

<policy><![CDATA['strict-dynamic' https://jqueryui.com/resources/demos/style.css

https://getbootstrap.com/dist/css/bootstrap.min.css

https://code.jquery.com/ui/1.12.1/themes/base/jquery-ui.css]]></policy>

</policyDetail>

</contentSecurityPolicy>

Figure 14: Sample xml output generated by the ContentSecurityPolicyGenerator

Ant task

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Content Security Policy in Practice
	

18

	

Varghese	Palathuruthil,	
thealmostrealmccoy@gmail.com	 	 	

Figure 15 is an example of running the ContentSecurityPolicyGenerator Ant task.

ant -f csp-tools.xml content_security_policy_generator

-DresourceListLocation=C:/tmp/csp-test/csp_external_resource_list.xml

-Dnonce=true

-DreportUri=/csp_test/ContentSecurityPolicyViolationReporter

-DreportOnly=false

Figure 15: Example of running the ContentSecurityPolicyGenerator Ant

task.

2.3. Tool to apply Content Security Policy to a response header
The ContentSecurityPolicyFilter is a Java Servlet Filter that will use the xml

output from the ContentSecurityPolicyGenerator tool and apply the prepared Content

Security Policy from it to the response header of all page URLs mapped to this Java

Servlet Filter in the web application. The output from the

ContentSecurityPolicyGenerator tool is an xml file. The location of this xml file is a

configured initialization parameter of the ContentSecurityPolicyFilter Java Servlet Filter.

The content of the xml file is loaded and parsed during the Java Servlet Filter

initialization phase typically when the Java EE servlet container deploys the web

application or when the container restarts. The parsed content of the xml file is

maintained by the Java Servlet Filter for later analysis during the doFilter method

invocation. doFilter is a critical method used in a Java Servlet Filter implementation. This

method is invoked when the Java Servlet Filter screens request to URLs mapped to this

Java Servlet Filter in the web application configuration file. The doFilter method in the

ContentSecurityPolicyFilter will analyze the parsed content of the xml file. If the policy

has been configured to generate a nonce, then it will examine the web application session

scope for such a nonce value. If none exist, it will produce a new nonce value and store it

in the web application session scope as an attribute. The Filter updates the parsed Content

Security Policy from the xml file with the nonce value and adds the updated content as a

header to the response of the rendered page served by the requested URL. Figure 16 is an

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Content Security Policy in Practice
	

19

	

Varghese	Palathuruthil,	
thealmostrealmccoy@gmail.com	 	 	

example of ContentSecurityPolicyFilter configured in the web application configuration

file of a typical Java EE web application.

<?xml version="1.0" encoding="UTF-8"?>

<web-app xmlns=http://xmlns.jcp.org/xml/ns/javaee>

 <description>Series of CSP Tests</description>

 <display-name>CSP Test</display-name>

…

 <filter>

<filter-name>ContentSecurityPolicyFilter</filter-name>

 <filter-class>csptest.filter.ContentSecurityPolicyFilter</filter-class>

 <init-param>

 <param-name>policyLocation</param-name>

 <param-value>/WEB-INF/content_security_policy.xml</param-value>

 </init-param>

 </filter>

 <filter-mapping>

 <filter-name>ContentSecurityPolicyFilter</filter-name>

 <url-pattern>*.jsp</url-pattern>

 </filter-mapping>

 <filter-mapping>

 <filter-name>ContentSecurityPolicyFilter</filter-name>

 <url-pattern>/servlet/*</url-pattern>

 </filter-mapping>

…

</web-app>

Figure 16: Sample ContentSecurityPolicyFilter configuration in web.xml

2.4. Tool to synchronize inline scripts and styles with the
nonce from Content Security Policy

The NonceTag is an implementation of the Java Server Pages Standard Tag

Library. It can only be applied to the contents of Java Server Pages. Pages with the

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Content Security Policy in Practice
	

20

	

Varghese	Palathuruthil,	
thealmostrealmccoy@gmail.com	 	 	

NonceTag that are requested by end-user-web-browser will scan the enclosed content on

the page and update matches for regular expressions such as "<script.*?>", "<style.*?>",

or "<link.*?>" with the nonce value retrieved from the web application session scope.

Figure 17 is an example of the NonceTag declaration in a typical tag library descriptor

file.

<taglib>

 <tlib-version>1.0</tlib-version>

 <jsp-version>1.2</jsp-version>

 <short-name>CSPTags</short-name>

...

 <tag>

 <name>nonce</name>

 <tag-class>csptest.tag.NonceTag</tag-class>

 <description>Add nonce attribute to enclosed script and style

tags</description>

 </tag>

</taglib>

Figure 17: Sample NonceTag declaration in tag library descriptor file.

Figure 18 is an example of the use of the NonceTag on one of the Java Server Pages in

the test web application.

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Content Security Policy in Practice
	

21

	

Varghese	Palathuruthil,	
thealmostrealmccoy@gmail.com	 	 	

<!doctype html>

<%@ taglib prefix="csp" uri="/WEB-INF/taglib/csp.tld" %>

<html lang="en">

<head>

 <meta charset="utf-8">

 <title>click demo</title>

 <csp:nonce>

 <style>

 p {

 color: red;

 margin: 5px;

 cursor: pointer;

 }

 p:hover {

 background: yellow;

 }

 </style>

 <script src="https://code.jquery.com/jquery-1.10.2.js"></script>

</head>

<body>

<p>First Paragraph</p>

<p>Second Paragraph</p>

<p>Yet one more Paragraph</p>

<script>

$("p").click(function() {

 $(this).slideUp();

});

</script>

 </csp:nonce>

</body>

</html>

Figure 18: Example usage of NonceTag in a Java Server Page

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Content Security Policy in Practice
	

22

	

Varghese	Palathuruthil,	
thealmostrealmccoy@gmail.com	 	 	

The resultant output rendered on the end-user-web-browser is listed in Figure 19 with a

comparison to the output generated without the NonceTag.

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Content Security Policy in Practice
	

23

	

Varghese	Palathuruthil,	
thealmostrealmccoy@gmail.com	 	 	

Without NonceTag With NonceTag

!doctype html>

<html lang="en">

<head>

 <meta charset="utf-8">

 <title>click demo</title>

 <style>

p {

 color: red;

 margin: 5px;

 cursor: pointer;

 }

 p:hover {

 background: yellow;

 }

 </style>

<script src="https://code.jquery.com/jquery-

1.10.2.js"></script>

</head>

<body>

<p>First Paragraph</p>

<p>Second Paragraph</p>

<p>Yet one more Paragraph</p>

<script>

$("p").click(function() {

 $(this).slideUp();

});

</script>

</body>

</html>

!doctype html>

<html lang="en">

<head>

 <meta charset="utf-8">

 <title>click demo</title>

<style

nonce="bEypmVNJ4vNWYj45EVJcXaVZNQHWtTif">

p {

 color: red;

 margin: 5px;

 cursor: pointer;

 }

 p:hover {

 background: yellow;

 }

 </style>

<script src="https://code.jquery.com/jquery-1.10.2.js"

nonce="bEypmVNJ4vNWYj45EVJcXaVZNQHWtTif"></s

cript>

</head>

<body>

<p>First Paragraph</p>

<p>Second Paragraph</p>

<p>Yet one more Paragraph</p>

<script

nonce="bEypmVNJ4vNWYj45EVJcXaVZNQHWtTif">

$("p").click(function() {

 $(this).slideUp();

});

</script>

</body>

</html>

Figure 19: Comparison of generated output with and without NonceTag

usage in a Java Server Page.

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Content Security Policy in Practice
	

24

	

Varghese	Palathuruthil,	
thealmostrealmccoy@gmail.com	 	 	

2.5. Content Security Policy Violation Reporting
ContentSecurityPolicyViolationReporter is a Java Servlet that accepts the feed of

Content Security Policy violations reported by end-user-web-browsers. The URL

configured to represent this Java Servlet is specified as the report-uri value in the Content

Security Policy identified in the requested page response header. This Java Servlet

accepts the policy violation in JSON format and writes it to the application log. Figure 20

is an example of configuring ContentSecurityPolicyViolationReporter Java Servlet in the

Java EE web application and Figure 21 is an example of specifying

ContentSecurityPolicyViolationReporter Java Servlet in the Content Security Policy

directive to report violations.

<?xml version="1.0" encoding="UTF-8"?>

<web-app>

 <description>Series of CSP Tests</description>

 <display-name>CSP Test</display-name>

...

 <servlet>

 <servlet-name>ContentSecurityPolicyViolationReporter</servlet-name>

 <servlet-class>csptest.report.ContentSecurityPolicyViolationReporter</servlet-

class>

 </servlet>

 <servlet-mapping>

 <servlet-name>ContentSecurityPolicyViolationReporter</servlet-name>

 <url-pattern>/ContentSecurityPolicyViolationReporter</url-pattern>

 </servlet-mapping>

...

</web-app>

Figure 20: Sample configuration of ContentSecurityPolicyViolationReporter Java

Servlet in web.xml

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Content Security Policy in Practice
	

25

	

Varghese	Palathuruthil,	
thealmostrealmccoy@gmail.com	 	 	

Content-Security-Policy: report-uri

http://localhost/csp_test/ContentSecurityPolicyViolationReporter;

default-src self;

script-src self

https://cdn.firebase.com/libs/angularfire/0.9.0/angularfire.min.js

https://getbootstrap.com/dist/js/bootstrap.min.js

https://code.jquery.com/jquery-1.10.2.js

'nonce-bEypmVNJ4vNWYj45EVJcXaVZNQHWtTif';

style-src self

https://jqueryui.com/resources/demos/style.css

https://getbootstrap.com/dist/css/bootstrap.min.css

https://code.jquery.com/ui/1.12.1/themes/base/jquery-ui.css

'nonce-bEypmVNJ4vNWYj45EVJcXaVZNQHWtTif'"

Figure 21: Example of configuring ContentSecurityPolicyViolationReporter

Java Servlet in a Content Security Policy directive.

3. Findings
The impact of Content Security Policy on the Java EE web application was tested

using a Content Security Policy-compliant web browser such as the latest version of

Firefox. The debugging tool bundled with the Firefox web browser provided information

about Content Security Policy violation. The Content Security Policy violations reported

by the configured Java Servlet in the web application logs were reviewed. The findings

from the tests are detailed below.	

3.1. Impact on XSS vulnerable Java Servlets
The Content Security Policy violations reported by the configured Java Servlet in

the web application logs proved that the Content Security Policy specified in the response

header of the XSS vulnerable Java Servlets was effective in suppressing the loading of

malicious input payload in a Content Security Policy-compliant web browser. Figure 22

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Content Security Policy in Practice
	

26

	

Varghese	Palathuruthil,	
thealmostrealmccoy@gmail.com	 	 	

is a snippet from the web application logs reporting the Content Security Policy

violations.

2018-04-28 07:11:45,224 DEBUG [http-nio-10148-exec-9]

[csptest.report.ContentSecurityPolicyViolationReporter]

{"csp-report":

{"blocked-uri":"self",

"document-uri":"http://localhost/csp_test/servlet/ReflectedXSS?

userInput=%3Cscript%3Ealert(%27Hello%20World!%27)%3C/script%3E",

"line-number":8,

"original-policy":"report-uri

http://localhost/csp_test/ContentSecurityPolicyViolationReporter;

default-src http://localhost;

script-src http://localhost

https://cdn.firebase.com/libs/angularfire/0.9.0/angularfire.min.js

https://getbootstrap.com/dist/js/bootstrap.min.js https://code.jquery.com/jquery-1.10.2.js

'nonce-WTSD5pvnzxCVKv8MrzKvtC626fQjVtnt';

style-src http://localhost https://jqueryui.com/resources/demos/style.css

https://getbootstrap.com/dist/css/bootstrap.min.css

'nonce-WTSD5pvnzxCVKv8MrzKvtC626fQjVtnt'",

"referrer":"http://localhost/csp_test/",

"script-sample":"alert('Hello World!')",

"source-file":"http://localhost/csp_test/servlet/ReflectedXSS?

userInput=%3Cscript%3Ealert(%27Hello%20World!%27)%3C/script%3E",

"violated-directive":"script-src"}}

Figure 22: Content Security Policy violation reported for XSS vulnerable

Java Servlets.

3.2. Impact on external resources referenced
The tests proved that external resources such as third-party JavaScript libraries

and Cascading Style Sheets correctly whitelisted in the Content Security Policy specified

in the response header loads without any restrictions by a Content Security Policy-

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Content Security Policy in Practice
	

27

	

Varghese	Palathuruthil,	
thealmostrealmccoy@gmail.com	 	 	

compliant web browser. As a result, these test pages rendered correctly on the web

browser.

3.3. Impact of nonce on inline scripts
The test proved that inline scripts and styles with nonce value attributes that

match the nonce value specified in the Content Security Policy in the response header of

the rendered page were correctly whitelisted and were allowed to load and execute in a

Content Security Policy- compliant web browser. The same results were seen when the

'strict-dynamic' attribute was included in the Content Security Policy and used in

conjunction with the nonce attribute. The generation and usage of a nonce in Content

Security Policy for this research was session-based. The ContentSecurityPolicyFilter

inspected the session scope of the Java EE test web application and generated new nonce

value if none existed for this user session. The generated nonce persist during the lifetime

of that particular session. As a result, nonce value specified in the Content Security

Policy in the requested page response header are unique per user session. This uniqueness

of nonce value per user session maintains the random nature of the nonce value,

improving the defense of the nonce value against exploits. The randomness of nonce

value was tested using two separate instances of Content Security Policy-compliant web

browsers requesting the same page from the test web application. The test resulted in the

creation of two distinct sessions by the web application, and two unique nonce values

returned in the response header as part of the Content Security Policy. Figure 23 is a

comparison of nonce values generated by two separate user sessions to the test web

application.

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Content Security Policy in Practice
	

28

	

Varghese	Palathuruthil,	
thealmostrealmccoy@gmail.com	 	 	

<html>

<head>

...

<link rel="stylesheet"

href="https://code.jquery.com/ui/1.12.1/themes

/base/jquery-ui.css"

nonce="2sxB2ahLG9CYbfv7HavyUuemMP6B

opjB">

 <script src="https://code.jquery.com/jquery-

1.12.4.js"

nonce="2sxB2ahLG9CYbfv7HavyUuemMP6B

opjB"></script>

 <script

src="https://code.jquery.com/ui/1.12.1/jquery-

ui.js"

nonce="2sxB2ahLG9CYbfv7HavyUuemMP6B

opjB"></script>

 <script

nonce="2sxB2ahLG9CYbfv7HavyUuemMP6B

opjB">

 $(function() {

...

 });

 </script>

</head>

<body>

<div class="ui-widget">

...

</div>

…

</body>

</html>

<html>

<head>

...

<link rel="stylesheet"

href="https://code.jquery.com/ui/1.12.1/theme

s/base/jquery-ui.css"

nonce="zfWJot8LcgQRBtLQcKLBaoeKg9sET

Hyr">

 <script src="https://code.jquery.com/jquery-

1.12.4.js"

nonce="zfWJot8LcgQRBtLQcKLBaoeKg9sET

Hyr"></script>

 <script

src="https://code.jquery.com/ui/1.12.1/jquery-

ui.js"

nonce="zfWJot8LcgQRBtLQcKLBaoeKg9sET

Hyr"></script>

 <script

nonce="zfWJot8LcgQRBtLQcKLBaoeKg9sET

Hyr">

 $(function() {

...

 });

 </script>

</head>

<body>

<div class="ui-widget">

...

</div>

…

</body>

</html>

Figure 23: Example of two separate nonce values generated in two

separate user sessions

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Content Security Policy in Practice
	

29

	

Varghese	Palathuruthil,	
thealmostrealmccoy@gmail.com	 	 	

3.4. Impact on inline event handlers
The test proved that whitelisting and the application of nonce could not be applied

to inline event handlers on the rendered web pages. As a result, the Content Security

Policy specified in the response header of the web page ensured that a Content Security

Policy-compliant web browser blocked inline event handlers from loading or executing

on the rendered web page. Figure 24 is a snippet from the web application log reporting

Content Security Policy violation against inline event handler on the web page.

2018-04-28 07:31:17,599 DEBUG [http-nio-10148-exec-5]

[csptest.report.ContentSecurityPolicyViolationReporter]

{"csp-report":

{"blocked-uri":"self",

"document-uri":"http://localhost/csp_test/jsp/autocomplete.jsp",

"original-policy":

"report-uri http://localhost/csp_test/ContentSecurityPolicyViolationReporter;

default-src http://localhost;

script-src 'strict-dynamic'

https://cdn.firebase.com/libs/angularfire/0.9.0/angularfire.min.js

https://getbootstrap.com/dist/js/bootstrap.min.js

https://code.jquery.com/jquery-1.10.2.js

'nonce-dDJdk8EZmAyQrzftCUWdxj5NWuZGnnhQ';

style-src https://jqueryui.com/resources/demos/style.css

https://getbootstrap.com/dist/css/bootstrap.min.css

'nonce-dDJdk8EZmAyQrzftCUWdxj5NWuZGnnhQ'",

"referrer":"http://localhost/csp_test/",

"script-sample":"onfocusin attribute on DIV element",

"source-file":"http://localhost/csp_test/jsp/autocomplete.jsp",

"violated-directive":"script-src"}}

Figure 24: Example of Content Security Policy violation reported against inline

event handler on a web page.

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Content Security Policy in Practice
	

30

	

Varghese	Palathuruthil,	
thealmostrealmccoy@gmail.com	 	 	

This limitation may be addressed when the proposed unsafe-hashed-attributes for inline

event handlers in level 3 of the Content Security Policy are widely adopted by web

browsers. In the meantime, integration with the current Content Security Policy would

require code refactoring. Figure 25 is an example of using HTML 5 data attribute as a

workaround to inline event handler on the web page to comply the web page with the

Content Security Policy.

<html>

<body>

<a id="foo" data-param1="xyz" data-param2="abc" data-param3="efg"

href="javascript:void(0)">Test

<script nonce="2sxB2ahLG9CYbfv7HavyUuemMP6BopjB">

$(document).ready(function() {

$('#foo').bind('click', function() {

 alert($(this).attr('data-param1') + $(this).attr('data-param2') + $(this).attr('data-

param3'));

});

});

</script>

</body>

</html

Figure 25: Example of workaround to inline event handlers on web page to

comply with Content Security Policy.

3.5. Processing embedded JSP Tags
In a typical Java Server Page of a Java EE web application, tag libraries are often

used to specify resource location. It has been a challenge for the

ContentSecurityPolicyWhiteListCollector tool to compile the list of resources referenced

when the resources are specified using Java Server Pages Tag Libraries. Figure 26 is an

example of tag library usage in a Java Server Page to specify a resource and Figure 27 is

the corresponding example of the rendered content on the end-user-web-browser. When

the ContentSecurityPolicyWhiteListCollector tool scans a Java Server Page with a tag

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Content Security Policy in Practice
	

31

	

Varghese	Palathuruthil,	
thealmostrealmccoy@gmail.com	 	 	

library specified in Figure 26, it is difficult for the

ContentSecurityPolicyWhiteListCollector tool to predict what the generated value for the

resource URL would be on the end-user-web-browser.

<script src='<c:url value="/js/myscripts.js"></c:url>'></script>

Figure 26: Example of JSP tag library used to specify a resource location.

<script src='http://localhost/js/myscripts.js'></script>

Figure 27: Example of rendered content of a JSP tag on the end-user-web-

browser	

4. Recommendations for Future Research
The tools developed for this research have room for improvement The Content

Security Policy is a standard that has been evolving over the last few levels. For instance,

directives such as frame-src have been deprecated in level 2 of the Content Security

Policy while new directives such as form-action, and child-src are added. Similarly, the

Content Security Policy Reporting directive report-uri will be replaced with report-to in a

future version of the policy. These changes to the specification and corresponding web

browser support needs to be kept in mind when building and maintaining tools to apply

Content Security Policy to a web application. One of the most critical enhancement

needed to Content Security Policy is whitelisting inline event handlers. Level 3 of the

Content Security Policy proposed the unsafe-hashed-attributes to whitelist event handlers

in a similar manner that the nonce attribute did to whitelist inline scripts and styles. If and

when web browsers adopt and support the unsafe-hashed-attributes for Content Security

Policy, tools developed to implement Content Security Policy to a web application need

to follow suit. The collection of Content Security Policy violations developed as part of

this research were rudimentary. JSON data reported by end-user-web-browser writes to

the application logs. This feature could be enhanced and integrated with an external

database so that the indexed reports are available for further analysis.

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Content Security Policy in Practice
	

32

	

Varghese	Palathuruthil,	
thealmostrealmccoy@gmail.com	 	 	

5. Conclusion
Content Security Policy is a step in the right direction to address issues such as

cross-site scripting. The directives specified in the Content Security Policy could use the

compiled list of resources referenced in a web application as a whitelist to block

unauthorized references. Unique nonce value per session could be used to allow sanitized

inline script execution. However, Content Security Policy is an evolving policy with a lot

of challenges. Tools such as the ones covered in this paper will continue to be developed

and eventually gain traction as this policy matures.

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Content Security Policy in Practice
	

33

	

Varghese	Palathuruthil,	
thealmostrealmccoy@gmail.com	 	 	

References

Klein, A. (2002, June). Cross Site Scripting Explained. Retrieved from

https://crypto.stanford.edu/cs155/papers/CSS.pdf

OWASP Top 10 - 2017. Retrieved from

https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf

OWASP Top 10 - 2013. Retrieved from https://storage.googleapis.com/google-

code-archive-

downloads/v2/code.google.com/owasptop10/OWASP%20Top%2010%20-

%202013.pdf

OWASP Top 10 - 2010. Retrieved from https://storage.googleapis.com/google-code-

archive-

downloads/v2/code.google.com/owasptop10/OWASP%20Top%2010%20-

%202010.pdf

Barth, A., Sterne, B. (2015, February). Content Security Policy 1.0. Retrieved from

https://www.w3.org/TR/CSP1/

West, M., Barth, A., Veditz, D. (2016, December 15). Content Security Policy Level 2.

Retrieved from https://www.w3.org/TR/CSP2/

West, M. (2016, September 13). Content Security Policy Level 3. Retrieved from

https://www.w3.org/TR/CSP3/

Weichselbaum, L., Spagnuolo, M., Lekies, S. (2016, October 16). CSP Is Dead, Long

Live CSP! On the Insecurity of Whitelists and the Future of Content Security

Policy. Retrieved from

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/

45542.pdf

Kotowicz, K., Gross, S., Vela Neva, E., A., Johns, M., Lekies, S. (2017, October 30).

Code-Reuse Attacks for the Web: Breaking Cross-Site Scripting Mitigations via

Script Gadgets. Retrieved from https://acmccs.github.io/papers/p1709-lekiesA.pdf

Patil, K., Braun, F. (2015, May 5). A Measurement Study of the Content Security Policy

on Real-World Applications. Retrieved from

http://ijns.femto.com.tw/contents/ijns-v18-n2/ijns-2016-v18-n2-p383-392.pdf

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Content Security Policy in Practice
	

34

	

Varghese	Palathuruthil,	
thealmostrealmccoy@gmail.com	 	 	

Doupé, A., Weidong, C., Jakubowski, M., H., Peinado, M., Kruegel, C., Vigna, G. (2013,

November). deDacota: Toward Preventing Server-Side XSS via Automatic Code

and Data Separation. Retrieved from http://sefcom.asu.edu/publications/dedacota-

ccs2013.pdf

Patil, K., Vyas, T., Braun, F., Goodwin, M., Liang, Z. (2013, July). Poster: UserCSP-

User Specified Content Security Policies. Retrieved from

https://cups.cs.cmu.edu/soups/2013/posters/soups13_posters-final1.pdf

Java Platform, Enterprise Edition (Java EE). Retrieved from

http://www.oracle.com/technetwork/java/javaee/overview/index.html

JavaServer Pages Technology. Retrieved from

http://www.oracle.com/technetwork/java/javaee/jsp/index.html

JavaServer Pages Standard Tag Library. Retrieved from

http://www.oracle.com/technetwork/java/index-jsp-135995.html

Apache Ant. Retrieved from https://ant.apache.org/

Java Servlet Filters. Retrieved from http://www.oracle.com/technetwork/java/filters-

137243.html

OWASP Content Security Policy Cheat Sheet. Retrieved from

https://www.owasp.org/index.php/Content_Security_Policy_Cheat_Sheet

JavaScript Object Notation. Retrieved from https://www.json.org

Apache Tomcat. Retrieved from http://tomcat.apache.org/

JQuery. Retrieved from https://jquery.com/

Bootstrap. Retrieved from https://getbootstrap.com/

Angular. Retrieved from https://angular.io/

HTML data-* Attributes. Retrieved from

https://www.w3schools.com/tags/att_global_data.asp

CSP: script-src. Retrieved from https://developer.mozilla.org/en-

US/docs/Web/HTTP/Headers/Content-Security-Policy/script-src

CSP: report-uri. Retrieved from https://developer.mozilla.org/en-

US/docs/Web/HTTP/Headers/Content-Security-Policy/report-uri

Tools developed for this research. https://github.com/thealmostrealmccoy123/csp-test

