GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

Vulnerabilitiesin Web Services

by
William A. Shaffer

Option 1
GCIH Practical Assignment for
Hacker Techniques, Exploits, and Incident Handling
Version 2.1 (April 2002)

Table of Contents

TABLE OF CONTENTS ...ttt sttt st sttt st bbb 2
EXECUTIVE SUMMARY ..ottt st st s et st st ssesnesneeneas 3
PART 1 —THE EXPLOIT oottt ettt eneenneneas 5
OVERVIEW ..ttt sttt sttt ettt b s e bbbt h et e st e e e b e s b e b e s bt e he e e ne et e b et e naeebenbeeneeneens 5
WHAT AREWEB SERVICES?......ceuieuieieiesiesiestesiessesesseeseessessessessessessessessesssssssssessessessessessennens 6
Extensible Markup LANQUAGEcceiireririeieeee ettt 7
Smple Object ACCESS PrOtOCOIcoviiiieiisierieeeee e 8
Hypertext Transport ProtOCOL.........ccucceiieieee ettt 8
BenefitS Of WD SEIVICEScoieieieiee ettt 8
SECURITY PROBLEMSWITH WEB SERVICES.....cctetttetereeesseeeesseessesseesseesseesssseessessssssessseessenns 9
PART 2= THE ATTACK ..ottt sttt bbb 11
DESCRIPTION AND DIAGRAM OF THE NETWORKc.coiuiiteiiesiesienseseneeseeseesseseessessessessessessenns 11
PROTOCOL DESCRIPTION ...uveeiesueesteetesseesseeseaseessesssessesssessssssesssesssessesssessssasssssesssessesssesssenns 12
XML FEAEUINES ..ottt e s n e e nmeesnn e e s neennneennne s 12
HOW THE EXPLOIT COULD WORK ..c.viiuiitisieniieiieiesiestestesiessessessessesseeseessessessessessessessessessens 13
The Document ODJECt MOEcooiiiiiiieeeeeee e 13
Component to DEPIrobed ... s 13
Tacticsfor Probing MSXMLocieiice ettt 13
110] g0 TSR 16
DESCRIPTION OF THE ATTACK .1uvtetteeteeseesteesseaseesseessessessseessessesssesssessessseessssssssseessessesssesssenns 18
SIGNATURE OF ATTACKS w.tttieieeueeiesiesiestestessessessesseessesssstessessessessessessssssesssssessessessessessesnens 19
HOW TO PROTECT AGAINST THE ATTACK ...ccuteuieieiesiesiestessestessessesseesesssessessessessessessessessenns 20
PART 3—THE INCIDENT HANDLING PROCESS.........ccccotmiinieneenie e 23
PREPARATION ...utttestestesteeseeseeteseesee st st sbesae st e se e e e sessesbesaeebesbeeae e st e st e e e s e beseenbenbeabesaeeneeneens 23
IDENTIFICATION ..uvteuteutetestesiessessessesseessessesaessessessessesseensessessessessessessessesssensessessessessessensessenns 24
CONTAINMENT . ettetetesteetesteeseeseeseessessestessessesseeseeseeseessessessesseaseeseeseeseesaessessessessessessessensennens 24
CONLAINMENE PIrOCESSeeiveeiesieesieeieeeesteeeeseesteeaesseesteeeesseesseesesseesseensesseesseesesseensens 25

B 130 N S S 26
Y 0] 07y o TS 26
1@ Y = = 2SS 26
LESSONS LEARNEDccutitiiuieiieiesiesiesteste st siessesseeeesessse st saesbestessessesseeeesentesaesbesbesnesseeneenenns 27
REFERENGCES........oo ettt sttt e ntesbesbesbenreeneeneens 28
APPENDIX A — C PROGRAM TO GENERATE XML FILES......cccoeiiviirieeeerieeee 30

Executive Summary

Web services are predicted to become a mgjor capability of the Internet. Web services are
alow systems, often in different enterprises, to communicate with one another using XML
messages over HTTP. The linking of enterprise systems in this way may become one of the
most significant developments for the Internet and for the economy in general.

Unfortunately, like the World Wide Web, Web services pose a variety of security problems
because they allow access from the Internet into internal servers. They can therefore be
attacked in a variety of ways. Because of the potentially large amount of commerce
supported by Web services, it isvital that these services be as secure as possible.

This paper examines the vulnerability of one component that could be used in Web services,
the Microsoft XML Core Services, formerly the Microsoft XML Parser, or MSXML.
MSXML is used in various Microsoft products and is likely to be used in custom-devel oped
Web services running on the Windows platform. XML is a rich, complex standard.
Character-based, XML uses strings in a variety of ways. There are ample opportunities for
the writer of an XML parser to allow buffer overflows. If the component is susceptible to a
buffer overflow, it could provide an attacker a means to gain control of a server.

To test the robustness of MSXML, | performed 21 types of tests that gave some promise of
exceeding array bounds in MSXML. Fortunately for Web service developers, MSXML
proved quite robust and no buffer overflows were encountered.

The remainder of this paper is divided into three parts.

Part 1, the Exploit, describes Web services and some of the security
vulnerabilities that could occur. This part also summarizes vulnerabilities
already identified in certain products used in Web services.

Part 2, the Attack, describes in detail how the tests were performed to try to
uncover buffer overflows. It outlines the analysis of the XML protocol to
determine various roles for strings. It lists the results of the tests performed. The
part describes how a buffer overflow attack might be launched if one had been
found in MSXML. This part also makes some recommendations for protecting
Web services against buffer overflow.

Part 3, the Incident Handling Process, focuses on how the incident handling
process might be adapted to handle attacks launched through malicious XML
messages at Web services. Because of the potential financial impact of an attack
on Web services, an organization should assume they will have incidents and
should organize and prepare to handle these incidents. The nature of Web
services provides some interesting variants on the incident handling process.

Emphasisis placed on instrumenting the Web service application so that potential
attacks can be detected by the software and appropriate alerts issues.

The research for this paper suggests several recommendations.

| believe the MSXML component is reliable. Although | did not perform anywhere near all
possible tests, the tests performed did indicate that the component was robust in the face of
large or mal-formed XML documents. It also provided fairly detailed error messages.

Although it requires some extra time, enterprises should perform buffer overflow tests on
both purchase components and custom developed software. In particular, developers of
XML parsers should perform similar tests to the ones here to help insure that buffer
overflows do not occur. XML developers are accustomed to test suites for conformance to
the XML standards. Perhaps these suites could be expanded to include tests of robustness.

When developing Web services, developers should prepare a document type definition
(DTD) or schema as a formal, precise specification of each XML message. Developers
should consider whether the system performance will permit turning on XML validation in
production. Validation provides various checks of the XML message's structure before the
message data are passed to other components of the Web service. This validation could help
protect other components from malicious attack.

When developing Web services, thought should be given to pre-screening the XML
messages to avoid bogging down the parser and the rest of the service with overly long or
complex messages intended to provide a denia of service attack.

Web services need to be instrumented to identify potentially malicious XML messages and
provide alerts, since malicious messages may not be of consistent enough format to be
recognized by signature-based intrusion detection systems. The applications also need to
provide ways for response teams to back out unauthorized transactions entered into the
system via malicious XML messages.

Enterprises deploying Web services need to assume that they will have incidents, and need to
prepare properly for incident handling.

Part 1 — The Exploit

Overview

Web services have recently gained considerable attention as a mechanism for building
distributed computer applications. Almost al major vendors of enterprise software,
including Microsoft, IBM, and Oracle, have embraced Web services and are providing
products. Like the World Wide Web, Web services create vulnerabilities by their very
nature. First, Web services are often used to exchange data over public networks like the
Internet. Therefore, these services are accessible by potential attackers. Second, an
increasing amount of vital information is or will be exchanged via Web services. Disruption
of the service or impairment of the integrity and confidentiality of the information could
potentially be very costly.

This paper examines a possible exploit that could be used against certain applications of Web
services. buffer overflows in an XML parser. This part of the paper also describes some
other types of vulnerabilities of Web services.

Figure 1-1 below summarizes the exploits examined.

Figure 1-1: Summary of the Exploit

Name XML Parser Buffer Overflow

Operating System Windows NT 4.0, Windows 2000, Windows XP

Protocols/Services/Applications | Web Services (XML over HTTP)
Microsoft XML Core Services 4.0 (MSXML)

Brief Description Ability to gain access to, and control of, a server
supporting Web services by exceeding the memory
bounds of a storage areain an XML parser. An
XML parser is a good candidate for such problems,
since it must perform numerous string manipulations
in avariety of contexts.

Variants Attack against SOAP::Lite (thisis not a buffer
overflow, but is a situation where the supporting
component does allow execution of arbitrary Perl
subroutines, which could lead to an attacker
controlling the server.

References (There are no reported incidents of buffer overflows
in MSXML.)

The following references are relevant:

“Microsoft XML Core Services 4.0” [MICRO02],
page that briefly describes MSXML and provides
links to download the software development kit and
the component.

“Microsoft Security Bulletin M S02-008"
[MICRO2b], security bulletin describing a
vulnerability in MSXML that allows a Web site to
read files from a client computer running Internet
Explorer.

CAN-2002-0057 [MITRO2] describing the above
vulnerability in MSXML.

“RPC without borders (surfing USA ...)” [STEAQ1],
an article in Phrack describing vulnerabilitiesin
Web services and in SOAP::Lite in particular.

What Are Web Services?

The term “Web Services’ is used in narrow sense and broad sense. In the narrow sense, it
represents a network service in which Extensible Markup Language (XML) messages are
exchanged among computers over the Hypertext Transport Protocol (HTTP). In the broad
sensg, it is a philosophy of software architecture in which application software is divided into
subsystems that communicate with each other using XML messages.

Web services provide a way to interconnect various computer systems and avoid the
problems of “stovepipe” systems that have plagued enterprises in the past. “Stovepipe”
systems are ones that cannot easily exchange data with other systems, thus making
integration of systems costly or impossible.

Web services hold out the promise of interconnecting the systems of multiple enterprises to
support better supply chain management and other business transactions. In this role, Web
services could facility billions of dollars of commerce on the Internet. Many people expect
business-to-business commerce to far exceed sales to consumers on the Internet. For
example, Michael Hammer, in The Agenda: What Every Business Must Do to Dominate the

Decade, lists this interconnection of enterprises as one of eleven agenda items of high
importance for businesses in the next decade. Much of this interconnection will be done with
Web services.

Extensible Markup Language

Extensble Markup Language (XML) is a meta-language that alows developers to define
markup to represent the structure of documents, messages, or other data. Through a
mechanism called the document type definition (DTD) or a mechanism called schemas, a
person or organization can define a set of “tags’ that describe the content of the message.
Tags typically consist of a word or term enclosed in angle brackets. A piece of content is
enclosed between a beginning tag and an ending tag. An example of an XML document is
shown in Figure :2. As the example shows, the data are always in character format as
opposed to the binary format of many data exchange formats. The tags often provide
valuable information about the data content.

Figure 1-2: An Example of an XML Document

<?xml version="1.0" ?>
<!DOCTYPE Article ()>

<Article >

<Title >Test XML Document</Title >

<Sectl>

<Title >Test of Processing Instructions </Title >
<Para>
<?xm-replace_text {Paragraph}?>
</Para>
</Sectl>

<lLastModDate>Saturday, April 13, 2002 4:14:18 PM</LastModDate>
</Article >

A developer can define a DTD to match the type of data that needs to be transported. Thus,
XML does not specify any specific set of tags. Instead, the developer can specify a set of
tags that she believes best describes her data. Discussion of XML's features is contained in
Robert Eckstein, XML Pocket Reference [ECKS99] and Elliotte Rusty Harold and Scott
Means, XML in a Nutshell [HAROO1].

XML alows the creation of parsers that can pull apart messages and make the data available
for applications. These components are reusable with any DTD. In the last three years,
several XML parsers have been created and made available to developers at no cost. These
include the Microsoft XML Core Services 4.0 [MICR02] and the Xerces XML Parser
[APACOL]. These parsers are used in a number of commercial and custom-developed XML-
based applications.

Simple Object Access Protocol

In the last few years, a number of organizations have developed specific applications of
XML in an effort to provide standard message formats for exchanging information. One of
these standards is the Simple Object Access Protocol (SOAP). The World Wide Web
Consortium describes SOAP as:

SOAP is a lightweight protocol for exchange of information in a decentralized,
distributed environment. It is an XML based protocol that consists of three parts. an
envelope that defines a framework for describing what is in a message and how to
process it, a set of encoding rules for expressing instances of applicationdefined
datatypes, and a convention for representing remote procedure calls and responses.
SOAP can potentially be used in combination with a variety of other protocols;
however, the only bindings defined in this document describe how to use SOAP in
combination with HTTP and HTTP Extension Framework. [W3CO00]

Hypertext Transport Protocol

Hypertext Transport Protocol (HTTP) is a Transport Control Protocol/Internet Protocol
(TCP/IP) based protocol widely used in the World Wide Web. A server accepting HTTP
requests typically listens on TCP port 80 or TCP port 443 (for HTTP over secure socket
layer), although other ports can be used.

Benefits of Web Services

Web services offer several potential benefits:

XML offers the ability to represent arich set of data structures for transmission

The data description capabilities of XML improve the understanding of the data
exchange.

The availability of low-cost and free XML parsers and other tools reduce the cost
of development using XML and avoid the costs of developing custom parsers for
other message structures.

Organizations have experience using HTTP over the Internet.

The Web services protocols can be used over the Internet to interconnect multiple
enterprises.

Security Problemswith Web Services

By its very nature, Web services pose a number of security problems. These problems are
heightened when Web services are used to transact high dollar amounts of transactions.

Web services create open ports (port 80, 443, or other port) that can be accessible
from public networks and can be attacked remotely.

The XML messages can be monitored by unauthorized persons. Confidentiality
may be compromised.

Web services could allow fraudulent or other unintended transactions to be
executed. Authentication of messages may fail.

Web services use relatively new software that could be compromised allowing
the execution of unintended code on the servers supporting the Web services.

Web services can be impared by passing messages that cause excessive
processing time (i.e. denial of service attack)

Other problems can also occur.

A literature review turned up relatively few reported exploits against Web services.
However, there is increasing concern about their vulnerability. Ravi Razdan writes in
ZDNet:

COMMENTARY--The hype surrounding Web services has reached crescendo
proportions. That's not surprising given how eager some big information-technology
companies are to find some sort of recurring, high-margin business in a down tech
economy.

But in their rush, an important data security issue is being ignored: Confidential
information is vulnerable to malicious employees or hackers because customer data,
which gets stored in applications or databases operated by the Web services provider,
still exist in clear or unencrypted form. [RAZDO02]

These vulnerabilities turned up in the literature search:

Name

Description

XML Core
Services
CAN-2002-0057
[MITROZ]
[MICRO24]

XMLHTTP control in Microsoft XML Core Services 2.6 and later
does not properly handle |E Security Zone settings, which allows
remote attackers to read arbitrary files by specifying alocal file as an
XML Data Source.

Oracle 9IAS
SOAP Default
Configuration

It is possible for remote attackers to deploy and undeploy SOAP
providers and services without valid credentials by default.

Vulnerability

[BUGTO2]

SOAP::Lite SOAP::Lite allows execution of unauthorized Perl subroutines and
[STEAO]] can give an attacker access to a command shell on the server.

10

Part 2 — The Attack

Description and Diagram of the Networ k

Figure 21 depicts a smplified configuration for a Web service. At the left, an enterprise
partner access the Web service through the Internet. The HTTP connection passes through a
company’s router/firewall to an application server. The software application runs on the
application server and typically (but not necessarily always) talks to a database server.

Figure 2-1:. Example of Web Service Hardware Configuration

Enterprise icati
Partner Internet Apgelzlf\fglron
\/\ : : Database

Router)
Firewall

Figure 2-2 depicts asimplified view of the software configuration on the Application Server.
The Application Server software, products like IBM WebSphere, BEA Weblogic, or similar
software, manages the HTTP connection and passes along the XML message. Strickly
speaking, many application servers operate along with a Web server that manages the HTTP
connection. For the purposes here, the Web server is considered part of the application
server. The message is then parsed by an XML parser that can separate the information in
the message and make it available to the business logic. The business logic knows how to
process this information, update the database, and return a response to the original sender.

Figure 2-2: Example of Web Services Software Configuration

Application XML Business Data
Server Parser Logic Access

— — &

11

Protocol Description

The exploit takes advantage of the fact that the XML message is passed through the
enterprise fire wall to the application server. There, the XML message is configured to
attack a weakness in the software processing the message.

XML Features

An XML message consists of strings that play many roles in the message. These roles
include element tags, entities, processing instructions, and content. The table in Figure 2-3
lists many of these various roles.

Figure2-3: The Many Roles of Stringsin an XML Document

Name of Role Example

In Primary Document

Processing Instruction <? Processing instruction here 2>

XML Instruction <?ml verson="1.0" 2>
DOCTY PE Declaration | <IDOCTYPE >
Public Identifier <IDOCTY PE PUBLIC “-//public declaration//EN” >
System Idnetifier <IDOCTYPE Article SYSTEM 'xmltest.dtd' >
Element <p>content/p>
Element Name <ELEMENTNAME>
Content <p>CONTENT</p>
Attributes <p attribute="value' >
Attribute Name <p attribute="value >
Attribute Value <p attribute="value' >
Entity Reference & entity;

In External Document
Type Definition

Element Declaration <IELEMENT para (#PCDATA) >

Attribute Declaration | <IATTLIST paraframe (yeslno) “yes’ >

Entity Declaration <IENTITY name “abc” >
Parameter Entity <IENTITY % name “cde’ >
Declaration
Notations <INOTATION GIF89a SY STEM “-//Compuserve//...” >

In Internal Document | (similar constructs to the External Document Type
Type Definition Subset | Definition)

The table is divided into three: the primary document, the external document type definition,
and the interna document type definition subset. The primary document is the tagged
content that follows the regular XML syntax. However, an XML document can reference an
externa DTD in the DOCTY PE declaration. The parser will then read and parse the DTD,

12

so that it can validate the primary document. The DTD follows a syntax that differs from the
regular XML syntax, thus presenting more opportunities for buffer overflows. Besides an
external DTD, an XML document can contain DTD declarations within the DOCTY PE
declaration. These are called the internal DTD subset.

How the Exploit Could Work

Each role opens the possible opportunity to exploit a buffer overflow in the XML parser.
Because there are so many different roles for strings, there are a number of places where
buffer overflows could occur. Once a buffer overflow isfound, an attacker can craft an XML
message that could overwrite the pointers in the execution stack of the parser and could place
hostile code for the parser to execute. As aresult, the parser will start to execute the
attacker’s code. The code, in turn, could open up a backdoor for the attacker to use to further
control the server.

The Document Object Model

The Document Object Model (DOM) is a standardized application programming interface for
accessing and updating XML documents. When a program uses DOM, the parser loads the
entire XML document into memory. Then the calling program can navigate through the
contents of the document, moving from element to element.

Component to be Probed

The XML parser selected for probing is the Microsoft XML Core Services. This component
was formerly caled the Microsoft XML Parser or MSXML. We use the term MSXML to
refer to the component in this paper. MSXML is used in a number of Microsoft products
including Internet Explorer (Versions 6), Windows XP, and SQL Server 2000. Available as
a free, separate download from the Microsoft site, MSXML is likely to be used in custom
built Web services constructed using Microsoft Component Object Model architecture. A
vulnerability in this component could seriously compromise several Web-services
implementations.

For testing purposes, | downloaded the most recent version which is Version 4.0 Service
Pack 1. | then downloaded and applied the Microsoft Security Update Q317244 [MICRO02b]
which is listed as fixing the vulnerability alowing a Web site to access arbitrary files on a
client machine, but which could fix other problems. The desire was to work with the most
up-to-date and probably most reliable version.

Tacticsfor Probing M SXML
The following steps were used to probe MSXML.:

A list of various roles for strings were developed. (See Figure 2-3.)

13

A list of anomalies for each role were developed. The focus was on testing
strings that were uncommon in actual practice in XML. Anomalies include
excessively long strings, strings incorrectly terminated, and excessive numbers of
strings. Although XML files used for documents are often fairly big (1 megabyte
or more), XML messages used for data exchange are usualy much smaller.
There are a number of typical styles observed in XML. Element tag names are
usualy ten or fewer characters. Similarly, attribute names are usually ten or
fewer characters. The content of a title element is usualy not 10 million
characters. These common practices create the possibility that a large string or
unusual XML structure may uncover defects in the parser. Therefore, the focus
was testing MSXML with unusually long strings or an unusua number of
elements.

A simple DTD was developed to support the tests. ThisDTD is shown below:

<!__ EIE R R I I S I R S R L I S S I R R R I R I I I S I S I S b I I I I
Name: XMLTEST. DTD
Aut hor : W A. Shaffer
Ver si on: 1.0
Description:
This is a docunent type definition to test XM. parsers for
buf fer overfl ows. ->
<!__ R IR R I Ik S I R S S R I R S S I R I I R R I R R S I I I I I I I S S I I S
Modi fication History
Dat e Per son What Was Done
14- APR- 2002 W A. Shaf f er File created
EIE IR R I I S R R R I I I R I R R I R I I I I I I R R I R R R I I I I I I I I I - >
<!__ EE IR R I S S I S L R S S I S R S I R I I S R S I I S I I S I I I S I S S I I I I
Entities
R R R S S S S S R S S S I S S S S S S I S I I S S S S S I S S S S I S I S S I S S S S S I S I I S I I I O - >
<!__ EIE IR IR R I I R R R R I R I R R I R R I I S R R R R I R I I R I R I R R R R I I I I I I I R I I I I I I I I I I I I I I
Not at i ons
Ak hkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhhhkhdhdhdkdhdhdkdkdkdkdkdkdkdkhkdhhdkhhhhhkhhhhkhkhkhkhkhkhkhkhkhhkhkhhkhhhxx __>
<!__ EE IR R R S S S S R R Sk S S S S S I S I R I I S S S I I I S S I I S I I I S S I S S I I I S I I I S I I O
El ement s
EIE R I I I I R I I I I I I I I I I I R I I A I I R I I R I R R R I I R IR A R I IR R I I A - >
<l-- ELEMENT CONTENT >
<l ELEMENT Article (Title, Sect +) >

14

<IELEMENT Title (#PCDATA) >

<l ELEMENT Sect (Header, Para+, Sect?*) >
<l ELEMENT Header (#PCDATA) >
<I ATTLI ST Header

ATTR CDATA "O" >
<l ELEMENT Para (#PCDATA| Enp) * >
<!l ELEMENT Enp (#PCDATA) >

A C program was constructed to produce XML files with various anomalies. (See
Appendix A.)

A Jscript script was written and included in an HTML page and executed from
Internet Explorer (Version 6). Although this is not a Web services environment,
the script produces a smilar effect by loading an XML message into the
MSXML parser. Thisisthe HTML file and script.

<! DOCTYPE HTML PUBLIC "-//WBC//DTD HTML 4.0 Transitional//EN'>
<htnl >
<head>
<title></title>
<nmeta nane="GENERATOR' content="Mcrosoft Vi sual St udi 0. NET

7.0">
<nmet a name="vs_t ar get Schem"
content="http://schemas. m crosoft.comintellisense/ie5">
</ head>
<body>

<script |anguage="jscript">
var xm = new ActiveXObject (" Msxm 2. DOVDocunent . 4. 0");
xm .async = fal se;
xm . val i dat eOnParse = fal se
var isload = xm .| oad("sanpl e2. xm ");
if (isload)

{

var err = xm .validate();

if (err.errorCode != 0)

{

alert(err.reason);

}
[lalert(xm.xm);
alert("Load is Completed");

}

el se

al ert(xml . parseError. errorCode+xnl . parseError. reason);

}
</script>
</ body>
</ htm >

In the above script, the line

15

var xm = new ActiveXObj ect (" Msxm 2. DOVDocunent . 4. 0");
loads the MSXML parser and creates an empty DOM object. Theline

var isload = xm .l oad("sanpl e2. xm");

causes the parser to load the contents of the XML file and populate the DOM object. If the
loading is successful, the parser is told to validate the file against the DTD and then reports
“Load is Completed” in a dialog box. If the loading is not successful, the script reports the
error from the parser.

The C program is modified to generate various XML files that are then loaded
into MSXML using Internet Explorer.. The execution is checked for the
execution of an illegal operation.

If a buffer overflow did appear, then an attacker could possibly use the
vulnerability to execute code on the server. There was no attempt to develop
such code.

Findings

MSXML proved to be quite robust and handled a wide variety of anomalous files. The table
in Figure 2-4 lists the types of probes attempted. As the table shows, no buffer overflows
were uncovered.

Figure 2-4. Table of Resultsin MSXML Probe

XML Feature Anomaly Result
DOCTYPE Public identifier is 2000 Handled normally as part of
Public Identifier characters long. document.
DOCTYPE System identifier is 2000 Parser correctly reports
System Identifier characters long error that syntax is

incorrect. (System
identifier needs to be alegal

URI).
DTD DTD isactualy afile with binary | Parser correctly reports
External DTD numbers not characters. illegal character in DTD
DTD Name of element is over 1000 Handled as legal.

Element declaration | characters long.

16

XML Feature

Anomaly

Result

DTD
Entity declaraction

Name of entity is over 1000
characters long

Handled as legd

Attribute Name of attribute is 2000 Handled without error
characters long (validation turned off)

Attribute Value of attribute is 2000 Handled without error

Attribute 2000 character attribute valueis | Parser correctly reports the

not terminated with quote.

< (character starting the
next element) cannot be in
an attribute value

Element Content

Mixed content contains 10,000
embedded tags. (Mixed content
exists when an element contains
both parsed character data and
other elements interspersed.)

Handled without error.

Element Content

Title element contained 10
million characters.

Handled without error.

Element Content

Overlapping Tags (one element
starts before another is ended)

Parser correctly reportsan
error.

Element Content

Elements are nested 10,000
levels deeps

Handled without error.

Element Tag

Begin tag is not terminated with
>

Parser correctly reportsan
error that an element name
contained an illegal
character.

Element Tag Name

Element nameis 5 million
characters.

Handled without error.

Element Tag

32000 Article (top level)
elements in XML document

Parser correctly reports that
there are multiple top leve
elements in document.

Entity Reference

10,000 character entity reference.

Parser correctly reports that
entity is not recognized,
since the entity is not
defined in the DTD.

17

XML Feature Anomaly Result
Entity Reference The semi- colon terminator ona | Parser recognizes the end of
10,000 character entity reference | the entity anyway and
Is omitted. correctly reports that entity

IS not recognized, since the
entity is not defined in the
DTD.

XML Instruction

2000 character encoding attribute

Parser correctly reports an
error that encoding attribute
Is not avalid value.

XML Instruction

Non-standard attribute is added
with 200 character value.

Parser correctly reports that
the attribute isillegal.

XML Instruction

Standalone attribute is given
value with 6000 characters.

Parser correctly reports that
the attribute must have a
value of “yes’ or “no”.

XML Instruction

Version number is given various
values other than “1.0”.

Parser correctly reports
error that Version number is
incorrect. Only the text
“1.0" islegd.

In none of the tests did the Parser exhibit a buffer overflow or fail to perform as required.

Description of the Attack

Buffer Overflow If abuffer overflow had been found, an attack could be launched against a

Web service using MSXML as shown in Figure 2-5.

18

Figure 2-5: Diagram of Web Services Attack in the Wild

Attacking
XML L
Application
Document pgerver MSXML

|,

Command shell or
other
unauthorized
code.

In the diagram, the attacker develops an XML document that could cause a buffer overflow
and contains code that could be executed. The document is passed to the application server
via HTTP and the PUT operation. The application server passes the document to the
application code (not shown) that invokes the MSXML parser. The parser attempts to read
the document and suffers the buffer overflow. The malicious code in the document gets
control and invokes a command shell or other unauthorized code that can then be
manipulated to open a backdoor to allow the attacker to access the system through another
route.

Denial of Service. One result of the MSXML tests showed that the parser can take a long
time to process a complex document. Web services can be vulnerable to sending a number
of complex documents, tying up the server as it spends its resources parsing the documents.

Signature of Attacks

Since the attacks are predicated on various sizes of strings in the XML document and may
have various patterns, no single set of signatures would guard against an attack. If a
particular automated attack were used, it is likely to have a consistent message that an
Intrusion Detection System could detect. If the messages are developed for a specific attack,
the format of the actual attacking message could vary widely.

19

How to Protect Against the Attack

For the Web Services Operator. An important defense against attack messages is to
formally define legal input messages. XML has two levels of validations. well-formed and
validated. A well-formed message obeys the rules for nesting of tags and a few other rules,
but is not validated against a document type definition or schema. A validated message is
well-formed and also is validated against a document type definitionor schema.

It is common practice to use XML messages without formally defining the DTD. This can
be dangerous, since the developers may not have the benefit of a precise definitionof avalid
message. This makes it easier to produce code that fails to handle al the correct messages
and may not report errors properly on invalid messages.

An interesting question is whether validation should be turned on when the XML message is
loaded into MSXML. MSXML has an option that provides for validation against the DTD
upon loading. Validation requires more computing resources. However, the parser will stop
processing the message once it finds an invalid part, freeing up resources for processing other
messages. Testing with specific Web services should reveal whether validation of good
messages is justified to prevent excessive time spent on bad messages.

Another benefit of validating the XML message is that subsequent processing code can then
depend on the DOM object being properly formed. Determining if an XML message has a
correct structure is not a trivial task, but it is a task that validating parsers do well. If the
parser passes aong an invalid message, the incorrect DOM object could cause the business
logic code to fail.

One protection that should be considered is to perform arapid pre-processing of the message
to check for obvioudy invalid messages. For example, the message could be scanned
quickly for a count of tags and an overall number of characters. Messages that are obviously
too long or have too many tags could be shuttled to one side and not parsed, thus avoiding a
denia of service attack caused by the parser working too long to parse bad messages.

20

Figure 2-6. Using Extra Serversto Protect Against Attacker Gaining Access on
Application Server

Application Server with
Server with Business
Parser Logic

Database
Server

=

Firewall Firewall Firewall

Another protective measure is to harden the exposed application srver. Figure 2-6 depicts
additional hardening that the Web service operator can perform. In this diagram, the code
with the business logic and the database are placed on separate servers, following a three-
tiered architecture. The application server along with the XML parsing code runs on a
“bastion” host that offers few resources to an attacker who gains access to a shell on the
server. Firewalls separate each of the servers. The connection from the application server to
the server with the business logic could be accomplished using a protocol like the Common
Object Request Broker Architecture (CORBA) which does not depend on XML or Web
Services. The connection from the Business Logic Server to the Database Server could use
SQL*Net or other protocol for database connection The firewalls block all ports except
those used by the specific connection protocols and any other protocols used for managing
the server. The goal is to provide few computing resources for the successful attacker and to
be able to restore the application server quickly.

For the Product Developer. The probes of MSXML indicated that the component
developer had taken considerable care to make the parser robust. Not only did it not execute
illegal operations when subjected to illegal and unusual XML, but the parser was able to
handle much larger XML messages than are required.

However, Web services use a variety of components. Developers and purchasers of these
components would benefit from performing the kinds of tests to which MSXML was
subjected to see if there are buffer overflows. More important, developers need to follow
best practices to avoid buffer overflows, since it is costly to perform extensive testing and
such testing is unlikely to find every vulnerability. In Writing Secure Code, Howard and
LeBlanc [HOWAOQ2] outline several practices that developers need to follow. These include:

Avoiding unsafe functions like strepy (string copy) and sprintf in the
programming language C.

Avoiding confusion over character sizes when ANSI and Unicode characters are
involved.

21

Avoiding variables in place of constants for print formats.

Using proper checks to insure that the bounds of arrays are not exceeded.

Rigorous check of inputs to avoid unexpected inputs from overrunning storage
aress.

Using tools like StackGuard to assist in checking for buffer overflow.

22

Part 3 — The Incident Handling Process

Operators of Web services need to expect to respond to incidents. The enterprise that is
dependent on the operation of one or more Web services to receive revenue or manage
logistics must be able to respond rapidly to an attack. The possibility that large amounts of
money could be involved means that the enterprise must restore operations rapidly while at
the same time, it must be able to determine the cause and prevention of the attack. This
section outlines steps that operators of Web services should take to handle attacks launched
through the submission of XML messages to the Web service. The incident handling process

should follow six stages:
Preparation
[dentification
Containment
Eradication
Recovery

Lessons Learned

Preparation

Because of the need to respond rapidly to incidents and because of the possibility of large
financial impact, preparation is probably the most important stage of the incident response.
Preparation should include these items:

Organization. A written plan should set out who participates onthe incident response team.
Responsibilities should be described and assigned. Phone lists and contact procedures should

be established.

Policies. Policies should be discussed and documented. The policies should address what
constitutes an incident, escalation procedures, and when law enforcement should be
contacted.

Contacts. The response team should have the names and phone numbers of appropriate
people to contact. These people should include the appropriate technical support at the
enterprises network provider and possible law enforcement contacts.

Equipment. Because of the possibility that a server could be disabled or seized as evidence,
the enterprise should have available standby servers that could quickly be brought on line.

23

Forensic Tools. The enterprise should acquire extra disk drives, forensic software tools like
Coroner’s Toolkit, disk duplication equipment, and other tools needed to perform forensics.
Also important is the establishment of properly protected logs for the various components.
The application server logs should be stored in a protected manner and possibly copied
automatically to a protected device. Particularly important is logging each incoming XML
message (possibly on write-once media) so that the messages can be analyzed.

Test Plans and Sripts. The response team needs to have ready access to test plans, test
scripts, and test equipment, so that if the Web service has to be rebuilt or modified, it can be
readily tested before being put in production. By their nature, Web services lend themselves
to automated testing. A set of automated tests should be developed for each Web service as
part of the development processes.

Practice. The response team should practice the incident response plan and should be
trained to be proficient in using the forensic tools, reading and understanding the logs and
messages, and maintaining chain of custody for evidence. The system administration staff
should practice restoring systems to operation and bringing the stand-by servers into
operation.

| dentification

If the enterprise operates a variety of Web services and some of them have high volume s of
transactions, identification of some kinds of attacks could be difficult. Because of the
variations in an XML message, use of current, signature-based intrusion detection systems
may not give warnings of attacks via the XML messages. Firewall and router logs will not
give warnings, because the traffic looks like normal traffic intended for the Web service.

One approach is to instrument the Web service software to recognize anomalies. As noted
above, XML messages could be pre-scanned to recognize unusualy long or complex
messages. The parser itself can provide warnins by validating messages. Because Web
services are intended for communication among cooperating software processes, any invalid
XML message should set off an alert for someone to investigate. The business logic software
should also be instrumented to recognize unusual transactions and issue alerts. These checks
should be tuned over time and software updated to reduce false positives and recognize
additional behaviors that could indicate an attack.

Checking software should be designed to send a page or other timely notification when an
anomaly is identified.

Containment

Once an anomaly is identified, the incident response team needs to determine what, if any
containment action isrequired. As set of questions needs to be addressed:

Does the anomaly indicate an attack?

24

What is the XML message promoting the attack?

What is the attacker's intention: gain access to the server, initiate an
unauthorized transaction, perform adenia of service attack?

Did the attacker gain access to the server? If so, through what mechanism?

How far did the attacker get? Did he get past the Application Server? Did he
penetrate the business logic server or the database server?

If the intent was to perform an unauthorized transaction, did the transaction
occur?

If the attack is a denial of service, where can it be blocked?
Containment Process

Containment steps can vary widely based on the type of attack and how successful the
attacker was.

Fird, if the attacker has gained control or executed an unauthorized transaction, the affected
systems need to be taken off line and the disks duplicated. The original disks should be
stored in evidence bags and the duplicated disks used for analysis and restoration of the
service.

If the attacker was able to gain control of one or more servers, the entire Web service may
need to be taken off-line until the damage and countermeasures can be assessed.
Management needs to make a decision about whether to bring the standby servers on-line.
Doing so will reestablish the Web service on clean servers, but the attacker may be able to
successfully repeat his attack to gain access on the new servers.

If the attacker is attempting to perform an unauthorized transaction, then the transaction can
be backed out and the system closely monitored for new attempts. Hopefully, the designers
of the application have provided appropriate ways to recognize transactions and back them
Out.

If the attacker is attempting a denia of service, it may be possible to block him at the router
or firewall in front of the application server or at the network service provider’s router.

Once theinitial containment is accomplished, the attack needs to be analyzed. If the attack is
through the XML message, the message needs to be retrieved and examined. Hopefully, all
XML messages have been logged.

25

Jump Kit

The response team should have jump kits prepared ahead of time. Besides the usua contents
for the jump kit (log books, tape recorder, extra disk drives, operating system media, pens,
forensic software, evidence bags), the jump kit for Web services should contain software for
scanning large amounts of text and viewing and validating XML:

Easily used text scanning tools like grep or similar utilities operable on the
operating system.

Powerful text manipulation software like Perl.
A validating XML parser and editor like XMetal.
Document type definitions for all XML messages involved with the Web service.

These tools will be useful for searching through the XML messages and analyzing individual
messages.

Eradication

If the XML message reveals the mechanism of the attack, such as a buffer overflow or
unauthorized transaction, then the response team and system administrators need to take
steps to eliminate the vulnerability and restore service. A complete fix may require updates
from the vendors of any vulnerable components. These vendors should be contacted with
requests for such updates.

Recovery

However, it is unlikely that the enterprise can wait for the fixes. The vulnerability can be
blocked in several ways:

The attacker’s IP address can be blocked at the router or firewall in front of the
application server. (However, the attacker may be able to easly attack from a
different IP address, so this approach is not very secure.)

The signature of the XML message can be checked and diverted before the
message reaches the vulnerable component. This may require modification of
the custom-devel oped software.

The vulnerable component may be capable of being reconfigured to eliminate the
vulnerability.

Following any changes to the configuration or code of the Web service, the response team
should test the service using the scripts and test cases developed for this service.

26

When the response tteam and management determine that the Web service can safely be
brought back up, the standby servers can be activated, or, if the origina servers were not
penetrated, the original servers can be restarted using the copies of the disks made in the
containment stage. The original disks should be maintained in evidence bags and chain of
custody maintained.

Additiona investigation may be conducted using the copies of the disk and other servers.

L essons L ear ned

Soon after recovery, the response team should conduct a Lessons Learned review, probably
involving some of the software development team. Among the items that may be reviewed
are;

Coding practices that created vulnerabilities

Ease with which transactions could be located and, if necessary, backed ou
Practices that would improve detection of anomalies

Components that proved vulnerable. Can the vendor easily repair them? Can
they be easily replaced by more robust components? Should they be avoided in

future devel opment?

Ease of use of the test cases. Can they be installed and operated quickly? Are
they automated as much as they should be? Do they provide adequate coverage?

27

[APACO1]

[BUGTO02]

[CPANO1]

[ECK S99]

[HAMMO1]

[HAROO1]

[HOWAOZ]

[MICROZ]

[MICRO024]

References

Apache XML Project, “Welcome to the Apache XML Project”,
2001, http://xml.apache.org/

BugTrack, “Oracle 9iIAS SOAP Default Configuration
Vulnerability” BugTrack 1D: 4289
http://online.securityfocus.com/bid/4289

CPAN, SOAP-Lite-0.52.zip,
http://search.cpan.org/search?dist=SOAP-L ite

Robert Eckstein, XML Pocket Reference (Sebastopol, CA:
O'Reilly & Associates, Inc., 1999) ISBN: 1-56592-709-5

Michael Hammer, The Agenda: What Every Business Must Do
to Dominate the Decade (New Y ork: Random House, 2001)
|SBN: 0609609661

Elliotte Rusty Harold and W. Scott Means, XML in a Nutshell
(Sebastopol, CA: O'Reilly & Associates, Inc., 2001) ISBN: O-
596-00058-8

Michael Howard and David LeBlanc, Writing Secure Code
(Redmond, WA: Microsoft Press, 2002) 1SBN: 0-7356-1588-8

Microsoft Corp., “Microsoft XML Core Services 4.0,”
http://msdn.microsoft.com/downl oads/default.asp?url=/downl o
ads/sampl e.asp?url=/msdn
files/027/001/766/msdncompositedoc.xml

Microsoft Corp., “XMLHTTP Control Can Allow Accessto
Local Files” Microsoft Security Bulletin M S02-008,
http://msdn.microsoft.com/downl oads/default.asp?URL =/down
|loads/sample.asp?url=/M SDN-

FIL ES/027/001/887/msdncompositedoc.xml

28

[MICRO2b]

[MITRO2]

[RAZDOZ]

[STEAO1]

[W3CO0]

Microsoft Corp., “Security Update, February 13, 2002,”
Q317244 http://www.microsoft.com/
windows/ie/downloads/critical/q317244/default.asp

Mitre Corporation, “XMLHTTP control in Microsoft XML
Core Services 2.6 and later,” CAN-2002-0057,
http://www.cve.mitre.org/cgi- bin/cvename.cgi 7name=CAN -
2002-0057

Ravi Razdan, “Web services. Security nightmare?’ ZDNet,
March 25, 2002,
http://www.anchordesk.co.uk/anchordesk/commentary/column
§/0,2415,7111979,00.html

Stealth, “RPC without borders (surfing USA ...)", Phrack,
Volume 0x0b, Issue 0x3a, Phile #0x09 of 0OxOe,
http://www.phrack.com/show.php?p=58& a=9

World Wide Web Consortium, “ Simple Object Access Protocol
(SOAP) 1.17, http://www.w3.0rg/ TR/SOAP/

29

Appendix A — C Program to Generate XML Files

/1 Descri ption:

11 This programis used to generate various absurd XM. docunents
/1 to test for buffer overflows.

11 Aut hor : WIlliam A Shaffer

/1 Dat e: 13 April 2002

1 Revi sion Hi story

/1 Aut hor Dat e Description

/1 WAS 13- APR- 2002 File created

11 Exanpl e:

/1 xm ex.exe > file.xm

#i ncl ude <stdio. h>
#i ncl ude <string. h>
#i ncl ude <assert. h>

nt witeXMlInstruction(char * encoding, char * standal one);
nt putString(char * string);

nt witeProcessinglnstruction(char * content);

nt witeDOCTYPE(char * root, char * dtd);

nt witeBody(void);

nt writelnternal Subset (void);

nt witeEl emrent Begi nTagEnd(voi d);

nt writeEl enent Begi nTagStart (char * name, int repeat);
nt witeEl ementBegi n(char * nane, int repeat);

nt witeEl ement End(char * nanme, int repeat);

nt witeTitle(void);

nt witeSections(int repeat);

30

int witeHeader(void);

int witePara(void);

int witeEmp(char * content, int repeat);

int witeAttribute(char * name, int namect, char * value, int valuect);
int witeEntity(char * name, int repeat);

Descri ption:
The main function invokes other functions to build the XML docunent.

int result - 0 - termnated correctly

/1

/1

/1

/1

/1 Ret ur n:
/1

/1

/1 1 - error occurred
/1

1/ Argunent s:

11
1 int argc - nunber of argunents passed in fromcommand |ine
Il char *argv[] - argunments fromthe command |ine
/1
e LR LT R LT PR
int main(void)
{
int result;
result = witeXMlnstruction("US-ASCI 1", "yes");

if (result) result = witeDOCTYPE("Article", "xmtest.dtd");
if (result) result writeBody();
return (!result);

1

/1 Nare: writeXMInstruction

11l

/1 Descri ption:

11l

/1 This function outputs the XM. instruction in the form

/1 <?xm version="1.0" encodi ng="YYYYY" standal one="XX" ?>

Il

1/ This function should be called as the first function to output an XM. document.
Il

1 Note: Input argunents are not checked on purpose to allowinvalid val ues.
Il

I Ret ur n:

Il

/1 int result - 1if no errors occurred

I 0 if an error occurred

11l

/1 Argunent s:

11l

/1 char * encoding - The type of encoding for this document, e.g.

11 US- ASCl |

/1 char * standalone - "yes" if the docunent uses a DTD

/1 "no" if no DIDwill be nentioned in the DOCTYPE specification.
11

11 Exanpl e:

Il

/1 result = witeXMlnstruction("USASCI 1", "no");

11l

int witeXMInstruction(char * encodi ng, char * standal one)

31

{

int result;
char buffer[32000];

/1 build content of processing instruction
strcpy(buffer, "xm version="1.0" ");
strcat (buffer, "encoding='");

strcat (buffer, encoding);

strcat(buffer, "' standal one="");
strcat (buffer, standal one);
strcat (buffer, "'");

// output processing instruction
result = witeProcessinglnstruction(buffer);
return (result);

/1

/1 Narre: wri t eProcessinglnstruction

11

/1 Descri ption:

11

/1 Wite out the processing instruction in the form

11 <?CONTENT ?>

11

1 Where CONTENT is the content of the processing instruction.
11

I Ret ur n:

11l

11 int result - 1 if no output errors occurred

11 O error if output error occurred

11l

11 Ar gument s:

11l

11 char * content - content of the processing instruction.
/1

11 Exanpl e:

11l

11 result = witeProcessinglnstruction("xm encoding="US ASC |’
/1l

int witeProcessinglnstruction(char * content)

{

int result;

result = putString("<?");

if (result) result = putString(content);
if (result) result = putString("?>\n");
return (result);

}
R R R LR
/1
/1 Nare: put String
11l
11 Description:
11l
/1 Wite a string to standard out put.
11l
I Ret ur n:
11l
/1 int result - 1if wite had no errors
/1 O0if an error occurred
11
1/ Argunent s:

32

st andal one='no' ") ;

Il

11 char * string - anull-termnated string
11

1/ Exanpl e:

11l

1 result = putString("this is a string");
11l

int putString(char * string)
{

int result;
int isError;

if (string !'= NULL)

{

isError = 0;

while (*string & !isError)
{
(voi d)putchar((int)*string);
isError = ferror(stdout);
string++;
}

if (iskError)

perror("Error witing string to stdout");
result = 0;

else result = 1;
}

el se

perror("Null pointer in putString");
result = 0;

return(result);

/1 Narre: wri t eDOCTYPE

/1 Descri ption:

/1 Wite the DOCTYPE instruction in the follow ng format:

1/ <! DOCTYPE root SYSTEM'dtd' >

1 Note: for these tests, we will a ways use the SYSTEM vari ant.
I Ret ur n:

11/ int result - 1 if output was produced wi thout an error
/1 0 if an output error occurred

/1 Argunent s:

/1 char * root - astring with the name of the root el enent.
11 char * dtd - astring with the URI of the docunent type definition file

int witeDOCTYPE(char * root, char * dtd)
{

int result;

/] output beginning of instruction
result = putString("<!DOCTYPE ");

33

/1 output name of root el enent

if (result) result = putString(root);

/1 output docurment type definition nane

if (result) result = putString(" SYSTEM'");
if (result) result = putString(dtd);

/1 put in internal subset of DID

if (result) result = putString("'\n [");
if (result) result = witelnternal Subset ();
if (result) result = putString(" 1>\n");
return(result);

/1

/1 Nare: writel nternal Subset

11l

11 Descri ption:

11l

/1 Qutput the internal subset of the DTD.
11

I Ret ur n:

11

/1 int result - 1 if output occurred wthout error
11 0 if an error occurred
11

1/ Argunent s: (none)

/1

int witelnternal Subset (voi d)

{

int result;

result = putString("<!'ENTITY jones ' aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' >");
return(result);

/1

11 Nane: wr i t eBody

11l

/1 Descri ption:

Il

11 Qutput the root element and any subel enents.
Il

I Ret ur n:

Il

1/ int result - 1 if output occurred w thout error
I 0 if an error occurred

11l

/1 Argunent s: (none)

/1

int witeBody(void)

int result;
int count;

/1 output the top |evel elenent

result = 1;
for(count = 0; count < 1; count++)

result = witeE enentBegin("Article", 1);
if (result) result = witeTitle();

34

if (result) result
if (result) result

return(result);

/1 Nane: writeE

11 Descri ption:

writeSections(1);
witeEl ementEnd("Article", 1);

enent Begi n

Wite the start tag for an element with no attributes.

/1
/1
/1 Ret ur n:
/1
/1
/1

int result
11
1/ Argunent s:
11
1/ char * nane
/1 int repeat
/1
/1
1 Exanpl e
11

1
0

if output occurred without error
if an error occurred

a string with the nane of the el enent
nunber of tinmes nane is repeated to formthe actual
el ement nane. Can be used to generate really |ong nanes.

int witeE enent Begi n(char * name, int repeat)

int result;

result = witeEl ement Begi nTagSt art (nanme, repeat);
if (result) result = witeEl ement Begi nTagEnd();

return(result);

I

11 Nane: wri t eEl ement Begi nTagSt art

Il

/1 Descri ption:
11l

/1 Qutput the start of an elenment tag in the form
/1
1 <NAME
/1
11 Where NAME is the nane of the element tag.
/1
/1 Ret ur n:
/1
11/ int result - 1 if output occurred without error
/1 0 if an error occurred
/1
11 Argunent s:
/1
11 char * nane - the nane of the el enent
/1 int repeat - the nunber of times to repeat the nane to generate really | ong
/1 el enent nanes
I
R e
int witeEl ement Begi nTagStart (char * name, int repeat)
{
int result;
int count;

35

result = putString("<");
for(count = 0; (count < repeat) &% result; count++)
{

result = putString(nane);

}
if (result) result = putString(" ");
return(result);

Nare: wri t eEl enent Begi nTagEnd
Descri ption:
Conpl ete a beginning el enent tag by putting the > at the end.

Ret ur n:

~ e e e e e~~~ —
—~— e~ —

int result - 1 if output occurred w thout error
0 if an error occurred

-
-~

\\
iy
z
@
3
=4
o

(none)

~
~

int witeEl enent Begi nTagEnd(voi d)
int result;

result = putString(" >\n");
return(result);

/1 Narre: wri t eEl enent End

11 Descri ption:

1 Qutput the end tag of an element in the form
1/ </ NAME>

/1 Wiere NAME is the nane of the el ement.

I Ret ur n:

11/ int result - 1 if output occurred wthout error
I 0 if an error occurred

/1 Argunent s:
11 char * nane - nane of el enent

11 int repeat - nunber of tines to repeat the name to generate a really |ong
I nane.

int witeE ement End(char * name, int repeat)

int result;
int count;

result = putString("</");
for(count = 0; (count < repeat) && result; count++)

{

result = put String(nane);

36

}
result = putString(">n");
return(result);

11 Nane: witeTitle

/1 Descri ption:

1 Qutput the title for the XMLTEST DID in the form
/1 <Titl e>header info</Title>

I Ret ur n:

11 int result - 1 if output occurred w thout error

/1 0 if an error occurred
1/ Argunent s: (none)

int witeTitle(void)
int result;
int repeat = 10;
int count;
result = witeEl ementBegin("Title", 1);

0; (count < repeat) && result; count++)

for(count

{
result = putString("A");
result = witeEntity("jones", 1000);

if (result) result = witeEl ementEnd("Title", 1);
return(result);

}
B e
I
/1 Name: writeSections
/1
/1 Descri ption:
/1
11 Qut put a nunber of sections.
/1
/1 Ret ur n:
/1
11/ int result - 1 if output occurred w thout error
/1 0 if an error occurred
/1
/1 Argunent s:
/1
/1 int repeat - the nunber of sections nested in one another
/1
A e e e
int witeSections(int repeat)
{
int result;
int nunPara = 1,
int count;
int countl,
result = 1;
for(count = 0; (count < repeat) &% result; count++)

{

37

result = witeEl ementBegi n("Sect", 1);
if (result) result = witeHeader();

11

/1 wite out a nunber of paragraphs

11

for(countl = 0; (countl < nunPara) &% result; count1l++)
{
result = witePara();
}

}

for(count = 0; (count < repeat) &% result; count++)
{

result = witeEl ement End("Sect", 1);

return(result);

/1 Nane: wri t eHeader

/1 Descri ption:

/1 Wite out the header to a section.
I Ret ur n:

/1 int result - 1 if output occurred wthout error
11 0 if an error occurred

11 Argunent s: (none)

int witeHeader (void)

int result;
int textCount = 1;
int count;

result = witeE enent Begi nTagStart (" Header", 1);

if (result) result = witeAttribute("ATTR', 1, "E', 1);
wri t eEl ement Begi nTagEnd() ;

for(count = 0; (count < textCount) && result; count++)

result = putString("B");

}
if (result) result = witeEl ement End("Header", 1);
return(result);

}
[R e T
I
11 Nane: witePara
/1
11 Description:
/1
/1 Qut put the paragraph with content.
/1
I Ret ur n:
/1
/1 int result - 1 if output occurred without error
/1 0 if an error occurred
/1
1/ Argunent s:
/1
1 (none)

38

int witePara(void)

int result;
int textCount = 10;
int count;

result = witeE enent Begi n("Para", 1);

for(count = 0; (count < textCount) &% result;

{

result = putString("C');

if (result) result
if (result) result
}
if (result) result =
return(result);

11

witeEnp("C', 1);
putString("C');

writ eEl ement End(" Para", 1);

/1 Narre: writeEm

11
/1 Descri ption:
11

/1 Qutput text with Enphasis tag in form

Il

11 <Enmp>cont ent </ Enp>

/1

/1 Ret ur n:

/1

/1 int resut -
/1

/1

11 Argunent s:

/1

/1 char * content
1/ int repeat
/1

count ++)

1 if output occurred without error

0

if an error occurred

content to be put in Enp tag
nunber of times the content

int witeEmp(char * content, int repeat)

int result;
int count;

result = witeEl erent Begi n("Enp", 1);
for(count = 0; (count < repeat) &% result; count++)

result = putString(content);

}
if (result) result =
return(result);

wri t eEl enent End(" Enp", 1);

/1 Narre: witeAttribute

/1 Descri ption:

/1 Qutput an attribute name and val ue pair.

Ret ur n:

/1 int result -

is repeated in the file

1 if output occurred without error

39

/1 O if an error occurred

/1

/1 Argunent s:

/1

11 char * nane - name of attribute

11/ int namect - nunber of tines nane string is output to formactual nane
/1 of attribute

I char * value - attribute value

1/ i nt val uect - nunber of tines value string is output to formactual value
I

e LR T

int witeAttribute(char * nanme, int namect, char * value, int val uect)

int result;
int count;

result = 1;
for(count = 0; (count < namect) && result; count++)

result = put String(nane);

}
if (result) result = putString("="");
for (count = 0; (count < valuect) && result; count++)

{

result = putString(val ue);

if (result) result = putString("'");
return(result);

/1

11 Nane: witeEntity

11l

11 Descri ption:

11l

11 Qutput an entity in the formof &nane;

11l

I Ret ur n:

/1l

11/ int result - 1 if output occurred w thout error
I 0 if an error occurred

11l

/1 Argunent s:

11l

/1 char * nane - name of entity

11/ int repeat - nunber of times to repeat name to produce actual entity reference.
11

int witeEntity(char * name, int repeat)

int result;
int count;

result = putString("&");
for(count = 0; (count < repeat) &% result; count++)

result = putString(nane);
if (result) result = putString(";");

return(result);

}

40

