
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih


© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights. 

Finding Secrets in Source Code the DevOps Way 

GIAC (GCIH) Gold Certification and ISE 5501 

Author: Phillip Marlow, phillip@marlow1.com 
Advisor: Dr.	Johannes Ullrich 

Accepted: 5/14/19 

Abstract 

Secrets, such as private keys or API tokens, are regularly leaked by developers in source 
code repositories. In 2016, researchers found over 1500 Slack API tokens in public 
GitHub repositories belonging to major companies (Detectify Labs, 2016). Moreover, a 
single leak can lead to widespread effects in dependent projects (JS Foundation, 2018) or 
direct monetary costs (Mogull, 2014). Existing tools for detecting these leaks are 
designed for either prevention or detection during full penetration-test-style scans. This 
paper presents a way to reduce detection time by integrating incremental secrets scanning 
into a continuous integration pipeline. 



© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights. 

Finding Secrets in Source Code the DevOps Way 2 
 

Phillip Marlow, phillip@marlow1.com 

1. Introduction 
Storing sensitive credentials in source code is a common problem. DevOps 

environments are particularly susceptible to this since they encourage automating the full 

build and deployment process for software and these credentials are needed by the 

continuous deployment pipeline to fetch artifacts, deploy results, or many other uses. As 

Dr. Eric Cole says, “Prevention is ideal, but detection is a must” (SANS, 2019). Without 

knowing when a credential is compromised, no one can do anything to mitigate the risk 

the exposure of the credential presents. 

Researchers found in 2016 over 1500 Slack API tokens that had been leaked in 

public GitHub repositories belonging to major companies (Detectify Labs, 2016). These 

tokens might provide access to exfiltrate internal communications or mine for other 

shared credentials, such as server or database access. Leaks such as these can have 

widespread effects beyond the individual service to which the leaked credential applied. 

For example, the compromise of a single credential from an unrelated breach led to 

arbitrary code execution on any system that used the ESLint dependency at the time (JS 

Foundation, 2018). ESLint reached about 3.5 million installs during the week of the 

incident. In another case, one analyst unintentionally leaked an AWS access key on 

github.com, which led to direct monetary costs due to fraudulent use of AWS services 

(Mogull, 2014). Because of the potentially devastating impact of a compromised 

credential, it is important that development and operations teams identify these 

compromised credentials early so that they can revoke the credentials before anyone can 

use them for malicious purposes. 

Several tools exist to detect credentials exposed in public source code 

repositories. A useful tool for penetration testers is truffleHog (Ayrey, 2018), which is 

designed to scan the entire history of a source code repository to look for potentially- 

leaked secrets. This approach is thorough, but slow and computationally wasteful in a 

DevOps pipeline because the tool scans large sections of history it had already analyzed 

on repeated invocations. Two tools designed for use by developers, git-secrets (Dowling, 

2018) and git-hound (Gabrielse, 2017), use git hooks to run before every commit or push 

to ensure a user never publishes a secret in source control. However, because non-

administrator users cannot install git hooks on sites such as gitlab.com, it is not possible 



© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights. 

Finding Secrets in Source Code the DevOps Way 3 
 

Phillip Marlow, phillip@marlow1.com 

to use tools such as these on the server-side where their use is enforceable (GitLab, 

2019). On the other hand, Yelp’s detect-secrets project (Loo, 2018) integrates well into a 

DevOps pipeline. However, it requires a persistent server (Yelp, 2019) to perform scans 

and store metadata which increases the cost of use. Small or budget-constrained projects 

often use sites such as GitLab or GitHub and may not be able to afford the increased cost 

of that additional persistent server. 

While existing tools fill important roles in the DevOps ecosystem, there remains a 

need for an inexpensive way to scan for and alert on compromised credentials. 

Development teams would also benefit from a technique to enforce this scanning on the 

server-side during continuous integration. This paper presents the strengths and 

weaknesses of a newly-developed tool, ci_secrets, which fulfills these needs. In addition, 

this paper will present a recommendation on when using this tool is appropriate and 

opportunities for future work in scanning for compromised credentials. 

2. ci_secrets 
2.1. Description 

ci_secrets is a simple-to-use tool to scan for credentials in a git repository as part 

of a DevOps continuous integration (CI) pipeline. Because it is intended for use in this 

fashion, it is completely self-contained and does not require any persistent storage or 

other tools. Its output is designed to be easily parsed within a CI script so that appropriate 

action can be taken such as failing the pipeline and sending alerts. 

In order to limit duplicate scanning of the same source code changes, ci_secrets 

requires a parameter specifying how far back in the commit history the current changeset 

extends. When ci_secrets is already in use for a project, the commit that the parameter 

identifies should be the last commit that the tool scanned. The limit of any given scan is 

set via a command line argument referencing the ID of the latest-scanned commit. 

ci_secrets uses this method because the command line argument is an easy way to 

provide this information to the tool from the CI pipeline. Although reusing an existing CI 

environment variable would require less configuration by the user, it would also limit the 

types of CI systems in which ci_secrets could be used to a small, predefined list. By using 



© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights. 

Finding Secrets in Source Code the DevOps Way 4 
 

Phillip Marlow, phillip@marlow1.com 

a command line argument, it is easy for a project to insert ci_secrets into a pipeline run 

by any CI service that supports Python. 

ci_secrets checks all file changes in each commit for secrets, starting from the 

most recent commit and going back until it finds the latest-scanned commit. These 

individual changes are scanned using the same plugin system used in Yelp’s detect-

secrets project (Yelp, 2018). This system is beneficial because it allows any developer to 

create new plugins for scanning for credentials by conforming to the existing API. It also 

provides several open source plugins that are available for use out-of-the-box, including 

detection plugins for common credentials such as AWS keys, private key files, and Slack 

API tokens. 

2.2. Use in Continuous Integration 
ci_secrets addresses two common source control styles. The first, simplest style is 

single branch development, where each commit is added one after another on a single 

branch within the source code repository. In this situation, ci_secrets scans each commit 

one at a time back to the latest-scanned commit. The second style is one which relies on 

branching and merge, or pull, requests. In this style, ci_secrets scans each branch as if the 

single branch style applies. Then, when a user creates a merge or pull request, the 

common ancestor of the branches is determined; ci_secrets checks each commit 

individually until it reaches that common ancestor. It is possible to use either of these 

styles regardless of the choice of source control or continuous integration tool. However, 

there are some minor differences in how to set up and configure the scan based on the 

data provided by the tool. 

2.2.1. Use in GitHub/Travis CI 
Travis CI provides the TRAVIS_COMMIT_RANGE environment variable to 

determine which commits are included within the push or pull request (Travis CI, 2019). 

ci_secrets determines the latest-scanned commit from the first commit in the range 

provided as TRAVIS_COMMIT_RANGE environment variable’s value. If it is the first 

commit on a new branch, this variable is empty. Because ci_secrets requires a value for 

the last scanned commit, a user can pass the flag value of 

0000000000000000000000000000000000000000 when TRAVIS_COMMIT_RANGE 

is empty. 



© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights. 

Finding Secrets in Source Code the DevOps Way 5 
 

Phillip Marlow, phillip@marlow1.com 

When creating a pull request using GitHub and scanning with Travis CI, a merge 

commit is first created and then passed to the CI system. The completed merge commit 

presents a challenge because ci_secrets cannot determine if this merge commit is a result 

of a pull request, or if the previous commit just happened to be a merge commit. 

Therefore, the caller needs to specify whether or not the pull request contains a merge 

commit. ci_secrets provides the --includesMergeCommit flag for this purpose, and it 

should be specified when scanning pull requests from GitHub in Travis CI. Figure 1 

shows an example of how to specify this. 

 

Figure	1:	Script	for	running	ci_secrets	in	Travis	CI.	

2.2.2. Use in GitLab CI 
The correct way to provide the latest-scanned commit when using GitLab CI 

depends on whether a scan will cover a single branch or if the scan is part of a merge 

request. GitLab CI provides an easy way to distinguish which jobs should be run for 

merge requests using the only and except keywords. A job configured to scan a merge 

request should be configured with only: merge_requests to run only when there is 

an open merge request for that branch. Figure 2: Script for running ci_secrets in GitLab 

CI for merge requests.Figure 2 shows an example of this configuration. The 

CI_MERGE_REQUEST_TARGET_BRANCH_NAME environment variable is only available 

when there is an open merge request, so configuring the distinction between merge 

requests and non-merge requests is important. This variable provides the name of the 

target branch and is used by ci_secrets to determine a common ancestor with the current 

branch. This common ancestor is used as the last scanned commit to limit the scope of 

the scan. 

 

Figure	2:	Script	for	running	ci_secrets	in	GitLab	CI	for	merge	requests.	



© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights. 

Finding Secrets in Source Code the DevOps Way 6 
 

Phillip Marlow, phillip@marlow1.com 

Alternatively, when scanning within a single branch, users should configure the 

ci_secrets job with except: merge_requests to skip running when within the 

context of the merge request. The job will still run when a merge request is open, but it 

will run as a separate pipeline. In this case, scans should be limited in scope to only 

changes that have been made since the most recently-scanned ancestor using the 

CI_COMMIT_BEFORE_SHA environment variable. This variable takes into consideration 

whether a single commit or multiple commits have been pushed to the repository 

simultaneously. Figure 3 shows an example configuration for running ci_secrets for 

merge requests. 

 

Figure	3:	Script	for	running	ci_secrets	in	GitLab	CI	for	non-merge	requests.	

By specifying different configurations for merge requests and ordinary updates, 

users can better specify the range of commits that ci_secrets should scan. While 

CI_COMMIT_BEFORE_SHA can specify this sufficiently for incremental updates, it does 

not cover an entire merge request. Because of this, the result from ci_secrets may give a 

false impression that a leak has already been resolved when used as part of a merge 

request. Section 3 covers this situation in more detail. 

3. Analysis 
Three test scenarios were created to evaluate the performance of ci_secrets in 

detecting leaked credentials. The first scenario is a simple commit of a credential which 

the user then pushes to the source control server. The second scenario simulates a user 

pushing several commits at the same time to the source control server, and the leaked 

credential is in the middle of the published commits. In the third scenario, a user has 

incorrectly removed a leaked credential. Specifically, a credential is committed but later 

removed in a separate commit. Finally, this paper also considers the additional 

complexity resulting from using a branching source control method and merge or pull 

requests. 



© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights. 

Finding Secrets in Source Code the DevOps Way 7 
 

Phillip Marlow, phillip@marlow1.com 

In each test scenario, the user adds Amazon Web Services (AWS) secret and 

access keys to the repository. The keys added are stored in a credentials file which is 

commonly used to configure the AWS CLI tool with access to one or more accounts. In 

order to prevent the compromise of a real AWS account during the test, the keys used for 

testing are the example keys published by Amazon which have the same format as real 

keys but do not provide access to an account. The AWSKeyDetector plugin can detect 

these keys when ci_secrets scans the commit containing them. 

3.1. Test Scenario 1 
In the first test scenario, where a secret is simply added and pushed to source 

control, ci_secrets computes the changes between the new commit and the previous one 

and then uses the configured plugins to scan those changes for secrets. When it finds a 

secret, it increments a count of found secrets and prints a summary of each secret to the 

log. Based on finding this secret, it exits with a failure code so that the CI job fails. When 

this happens, the CI system sends notifications so that recipients can further investigate 

and remediate the finding. Figure 4 shows this failure in build #51745431. 

When a developer adds and publishes subsequent commits, those scans are 

independent of the existence of any secrets in earlier commits. This independence is by 

design so that only new changes can be scanned to speed up the continuous integration 

process. However, this also means that the build status of the project can return to 

“passed” without resolving the underlying credential leak. Figure 4 shows this case where 

build #51746328 passed. This situation includes cases where a user improperly removes 

credentials by adding a new commit to remove them. Because of this, it is important to 

investigate and address every failure from the ci_secrets scan as it occurs so that no 

leaked credentials can fall through the cracks. 



© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights. 

Finding Secrets in Source Code the DevOps Way 8 
 

Phillip Marlow, phillip@marlow1.com 

 

Figure	4:	Test	Scenario	1	in	GitLab	CI.	

The risk described above can be somewhat mitigated when all development is 

done using a branching strategy. Although ci_secrets scans each commit independently, 

the entire branch is scanned during the merge or pull request process, providing a second 

opportunity to catch the missing leak. So, in this test scenario, if subsequent commits do 

not contain secrets which cause the build to fail, such as in commit 8c55e74c in Figure 4, 

the build resulting from the merge or pull request would still fail because it will identify 

secrets contained in any of the new commits. Figure 4 shows this when build #51747075, 

labeled as a merge request, fails. However, while this is a useful mitigation, it should be 

considered a backup and not a primary method of identifying when credentials need to be 

revoked and rotated. If ci_secrets only scans for leaked secrets when a user opens a pull 

or merge request, that configuration may result in the scan happening a considerable time 

after the leak initially occurred. Scanning during both incremental development and pull 

or merge requests ensures both a quick time to detect leaks as well as thoroughness in 

coverage of published source code. 

3.2. Test Scenario 2 
The second test scenario contains a secret credential which is part of a commit 

that is pushed to the source control server simultaneously with other commits containing 

no secrets. ci_secrets then scans the changes between each commit in sequence until it 

reaches the last-scanned commit. In this case, when a commit does not contain a secret, 

ci_secrets continues scanning with the next commit. When it does find a secret within a 

commit, it performs as if that commit had been the only commit to be scanned. 

Specifically, ci_secrets increments a count of found secrets and logs a summary of each 



© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights. 

Finding Secrets in Source Code the DevOps Way 9 
 

Phillip Marlow, phillip@marlow1.com 

secret found. However, if there are additional commits that ci_secrets has not yet 

scanned, it does not exit with a failure code until it scans all commits. By doing this, 

ci_secrets ensures that it will log and notify on all secrets in the repository, limiting the 

extent of any additional manual investigation. Figure 5 shows the red X indicating that a 

build covering commits c9ef7e4 through 7f7b433 failed due to credentials in commit 

9c41c1a. 

 

Figure	5:	Test	Scenario	2	in	a	GitHub	pull	request.	

This scenario presents the same risks associated with subsequent batches of 

commits which are published simultaneously, as in the first scenario above. Specifically, 

because each set of commits is scanned independently from previously published sets, it 

is possible that the build will return to a successful status when a user publishes a 

subsequent batch of commits which does not contain any new secrets. The same 

mitigation using merge or pull requests is possible, and the same concern about the 

duration in which a leaked secret remains available but unresolved is still valid. Figure 6 

shows this situation where a pull request is failing despite the last commit on the branch 

passing. 

 

Figure	6:	Travis	CI	status	for	Test	Scenario	2	in	a	GitHub	pull	request.	

By checking all commits on a branch during a pull or merge request, the second 

test scenario and the first are identical for any case where a branch contains more than 

one commit. This scenario happens because commits do not store any metadata about 



© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights. 

Finding Secrets in Source Code the DevOps Way 10 
 

Phillip Marlow, phillip@marlow1.com 

when they are published, so it is impossible to tell from source control alone how many 

commits a user published to the server at one time. 

3.3. Test Scenario 3 
For the third test scenario, a secret credential is added in one commit and then 

improperly removed in a subsequent commit. If these commits are pushed independently 

to the source control server, they are also scanned independently by ci_secrets. This 

situation is one realization of the risk outlined in the first test scenario. The build 

resulting from the commit that added a secret would be scanned and fail, while the 

subsequent build resulting from the commit that removed the secret would be scanned 

and pass. If instead the commits containing the addition and subsequent removal of the 

secret are published simultaneously, the CI system only runs a single build and therefore 

a single scan. That scan will identify the commit which leaked the secret, fail the build, 

and cause the CI system to send an appropriate notification. Figure 7 shows this situation 

where commit 0678825f adds the credentials, commit 1c080eb3 removes them, and the 

build is run and fails after that. Either way, ci_secrets correctly identifies the leaked 

secret by performing a commit-by-commit scan through new changes rather than only 

considering the net changes. Leaked credentials are detected even when they are never 

immediately available from an instantaneous snapshot of the published code but exist in 

the change history. 

 

Figure	7:	Test	Scenario	3	in	GitLab.	

3.4. Complexity with Branching 
Although the sections above already address branching, there are some additional 

complexities which result from trying to scan for secrets in a branching repository. These 

issues arise from difficulties in identifying the source from which a branch was created, 

in trying to run a ci_secrets scan after a merge commit, and in efficiently identifying all 

the commits ci_secrets still needs to scan on a given branch. 



© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights. 

Finding Secrets in Source Code the DevOps Way 11 
 

Phillip Marlow, phillip@marlow1.com 

3.4.1. Identifying the Branch Source 
Git does not store metadata on the source of branches when a user creates a 

branch. Practically, this results in no way for ci_secrets to determine the correct common 

ancestor to use as the latest-scanned commit to limit the scope of its scan. Three cases 

need to be considered regarding the state of a branch when trying to limit the scope of a 

scan: a new branch, a branch under active development, and a branch ready to be merged. 

When the branch is at its end and ready to be merged, not knowing the source of 

the branch becomes irrelevant, because we know the target branch for the merge. Often 

this will be the source branch, but it does not have to be. Either way, a common ancestor 

can be found based on the target branch to provide a limit to the scope of the scan. When 

the target is the source branch, ci_secrets scans every commit since the original branching 

occurred and duplication of scanning is limited to any scans that have occurred during the 

development of the branch. If the target is another branch, it is likely that some 

duplication of scanning will result, but this will still be an improvement over re-scanning 

the entire repository. 

A branch under active development is the simplest case. It can stand on its own 

without any regard to whether or not new commits are occurring on the main or master 

branch, or if new commits are occurring on any other branch. Users apply these meanings 

on top of the source control model, as they are not inherent to the model itself. 

Practically, this means that ci_secrets can compare each new set of commits to the 

previously-scanned set on the branch and there is no concern about an unknown source of 

the branch. 

Finally, the most difficult case is the beginning of a new branch. Because a user 

can publish more than one commit at a time and there is no metadata tracking the source 

of a branch, it is not possible to determine the appropriate common ancestor that 

ci_secrets will use as the latest-scanned commit. In testing, this results in GitLab CI 

providing a fake commit value of 0000000000000000000000000000000000000000 

in the variable CI_COMMIT_BEFORE_SHA, while the value of TRAVIS_COMMIT_RANGE 

in Travis CI is empty. ci_secrets, not knowing the appropriate commit at which to stop its 

scan, prints a warning to the log. Additionally, it assumes that the most common case is 

that a single commit creates the new branch and therefore only scans a single commit 



© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights. 

Finding Secrets in Source Code the DevOps Way 12 
 

Phillip Marlow, phillip@marlow1.com 

back into the branch history. The result is a risk that a credential leaked in an earlier 

commit to the new branch and ci_secrets will not find it. By scanning the entire branch 

before the merge, this risk is partially mitigated since ci_secrets will find secrets at that 

time. However, the leaked credential may go undetected for a significant amount of time 

before that occurs. Also, if the branch is abandoned or deleted, ci_secrets may never 

properly identify the leak. 

3.4.2. Scanning after a Merge Commit 
When using GitLab CI, the context for scanning a merge request maintains the 

source and target branches of the merge as separate branches. Since the source branch is 

checked out and the name of the target branch is in the 

CI_MERGE_REQUEST_TARGET_BRANCH_NAME environment variable, it is easy for 

ci_secrets to compare these to find a common ancestor. However, when using GitHub 

and Travis CI, a merge commit is first created and then passed to the CI system. This 

commit presents a challenge because ci_secrets cannot determine if this merge commit is 

a result of a pull request or if the previous commit just happened to be a merge commit. 

Therefore, the caller needs to specify whether or not the pull request contains a merge 

commit. ci_secrets provides the --includesMergeCommit flag for this purpose. 

If the configuration omits the --includesMergeCommit flag, ci_secrets 

identifies the parent of the merge commit as the common ancestor of the merged 

branches and does not continue to scan the rest of the branch. When the configuration 

includes the flag, the scan continues back along the source branch until it once again 

reaches a commit whose parent is the common ancestor. This configuration option allows 

ci_secrets to correctly scan the source branch but puts the onus on the user to configure 

the --includesMergeCommit flag correctly for their environment. If the caller does 

not set the flag correctly, cases such as test scenario three where a credential is added and 

incorrectly removed may not emerge during the pull request. There are two methods to 

mitigate this risk. First, a user should always configure the tool to scan each set of 

commits when the CI server receives them. By doing this, a user will identify the leak 

earlier and without ever encountering the situation dealing with the merge commit. 

Second, a user should only need to configure this setting once ¾ at the time that a project 

starts using ci_secrets. At that time, concerns about security and correctly configuring the 



© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights. 

Finding Secrets in Source Code the DevOps Way 13 
 

Phillip Marlow, phillip@marlow1.com 

new tool will be at their highest. After that, the configuration will remain until someone 

actively modifies it. 

3.4.3. Branches within Branches 
Because there are no special branches within Git, it is possible to create a new 

branch starting from any other branch. Therefore, it is possible to have branches which 

are multiple levels “deep” that ci_secrets needs to scan. If all these branches are pushed 

to the CI server and scanned as developers create and merge them, ci_secrets treats these 

branches as it would any other, and, as a result, will correctly identify leaked secrets. 

However, if a sub-branch is developed and merged locally without being pushed to the CI 

server and scanned, ci_secrets will not identify all the commits from that sub-branch 

when scanning the branch into which it merged. Although in the author’s experience, this 

is an uncommon situation, it still needs to be considered as part of the overall project risk. 

This risk is especially important to consider if the user is concerned about a potential 

insider threat especially since this scenario provides a known way to exfiltrate credentials 

without detection. 

3.5. Notifications 
The identification of secrets is useless unless the user is aware that a leak has 

happened. Therefore, it is important that appropriate notifications are sent to users when 

ci_secrets has detected a leak. The main method for this notification is failing the build in 

the CI pipeline. This failure is highly visible to developers and appears prominently in 

several locations regardless of the choice of source control and CI system. In GitLab CI, 

it appears at the top of the repository view when viewing a branch and within the merge 

request. It also appears throughout the various views in the CI/CD section. GitHub 

displays this prominently on the pull request overview and within the individual pull 

requests. GitHub also shows the status of any builds from commits included in the pull 

request’s history. 

By default, when a build fails, both GitLab CI and Travis CI will send email 

notifications to the users who published the changes that broke the build. The CI system 

also sends these notifications when ci_secrets detects a leak. By default, GitLab provides 

the log text in the body of the email, showing the results of the scan as seen in Error! 



© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights. 

Finding Secrets in Source Code the DevOps Way 14 
 

Phillip Marlow, phillip@marlow1.com 

Reference source not found.. This format makes it immediately clear to the user that the 

failure was because of leaked credentials. 

 

Figure	8:	Email	notification	from	GitLab	CI	showing	the	detection	of	an	AWS	access	key.	

In contrast, Travis CI provides only a link, as seen in Error! Reference source 

not found., but the full log text is available after clicking through to the Travis CI 

website. The contents of the email do not immediately inform the user that the build 



© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights. 

Finding Secrets in Source Code the DevOps Way 15 
 

Phillip Marlow, phillip@marlow1.com 

failed because of leaked credentials and might, on its own, mean that the leak is not 

resolved in a timely fashion. 

 

Figure	9:	Email	notification	from	Travis	CI	showing	the	failure	of	a	build	when	a	secret	is	found.	

Because these failures are critical to security, more contributors than just the user 

who caused the leak may need to be made aware of the failure. For example, a security 

team or the project owner may also need to receive a notification when a leak occurs. 

Both GitLab CI and Travis CI provide several options for specifying additional 

notifications. For additional email notifications, GitLab CI provides the Pipelines emails 

integration, and Travis CI provides the notifications:  email: configuration 

option. Similar integration and configuration options exist for other notification 

mechanisms such as Slack and custom webhooks. By default, these notifications may be 

too noisy since they may trigger for reasons other than security, but they can be filtered 

by looking for the ci_secrets job name.	

4. Conclusion 
ci_secrets successfully identifies and alerts on several common cases of leaked 

secrets in a DevOps pipeline. This tool provides an option for developers and incident 

handlers to quickly identify leaked credentials so they can investigate and revoke them 

before anyone can use the credentials maliciously. However, ci_secrets is not a silver 



© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights. 

Finding Secrets in Source Code the DevOps Way 16 
 

Phillip Marlow, phillip@marlow1.com 

bullet, and users should understand its limitations when deciding to include this tool as 

part of a secure development program. 

As ci_secrets is a new tool, there remain many opportunities to study and improve 

on both ci_secrets and the context in which it runs. These may include studying how 

ci_secrets behaves in other development methodologies using Git, such as when a project 

uses re-basing as a merge strategy. One opportunity for further development is to extend 

ci_secrets to handle source control systems other than Git, such as Subversion or 

Mercurial. There also may be opportunities to improve how ci_secrets handles the 

branching issues identified in the analysis section of this paper. One possible approach 

for future development in improving the handling of branches could explore how 

continuous integration systems can be modified to provide additional information to tools 

such as ci_secrets during scanning. Another approach might consider how Git could be 

enhanced to provide more metadata about the history of branches. 

In conclusion, ci_secrets provides a robust and flexible solution to the problem of 

detecting sensitive credentials stored in source code in a DevOps environment. The 

potential for complete automation of the build and deployment process that DevOps 

environments offer is tremendously valuable for developers yet presents unique 

challenges from a security perspective. A lightweight tool, which does not require a 

persistent server, will enable many users in common use cases to mitigate this potentially 

severe and expensive risk. The ci_secrets tool works well to address the core 

vulnerability of exposed credentials in source code and provides developers and incident 

handlers with a straightforward method to better secure their software development 

process. 

 



© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights. 

Finding Secrets in Source Code the DevOps Way 17 
 

Phillip Marlow, phillip@marlow1.com 

References 
Ayrey, D. (2018, December 6). truffleHog. Retrieved from GitHub: 

https://github.com/dxa4481/truffleHog 

Detectify Labs. (2016, April 28). Slack bot token leakage exposing business critical 

information. Retrieved from Detectify Labs: 

https://labs.detectify.com/2016/04/28/slack-bot-token-leakage-exposing-business-

critical-information/ 

Dowling, M. (2018, October 24). git-secrets. Retrieved from GitHub: 

https://github.com/awslabs/git-secrets 

Gabrielse, Z. (2017, January 8). git-hound. Retrieved from GitHub: 

https://github.com/ezekg/git-hound 

GitLab. (2019, January 19). Custom Git Hooks. Retrieved from GitLab Docs: 

https://docs.gitlab.com/ee/administration/custom_hooks.html 

JS Foundation. (2018, July 12). Postmortem for Malicious Packages. Retrieved from 

ESLint: https://eslint.org/blog/2018/07/postmortem-for-malicious-package-

publishes 

Loo, A. (2018, June 11). Yelp's Secret Detector: Preventing Secrets in Source Code. 

Retrieved from Yelp Engineering: 

https://engineeringblog.yelp.com/2018/06/yelps-secret-detector.html 

Mogull, R. (2014, January 7). My $500 Cloud Security Screwup. Retrieved from 

Securosis: https://securosis.com/blog/my-500-cloud-security-screwup 

SANS. (2019, January 19). Advanced Security Essentials - Enterprise Defender. 

Retrieved from SANS: https://www.sans.org/course/advanced-security-essentials-

enterprise-defender 



© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights. 

Finding Secrets in Source Code the DevOps Way 18 
 

Phillip Marlow, phillip@marlow1.com 

Travis CI. (2019, February 25). Environment Variables. Retrieved from Travis CI: 

https://docs.travis-ci.com/user/environment-variables/ 

Yelp. (2018, December 28). detect-secrets. Retrieved from GitHub: 

https://github.com/Yelp/detect-secrets 

Yelp. (2019, January 9). detect-secrets-server. Retrieved from GitHub: 

https://github.com/Yelp/detect-secrets-server 

 


