
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Advanced Incident
Handling and

Hacker
Exploits

GCIH Practical Assignment
Version 2.1 Option 2

Support for the Cyber Defense Initiative
Port 22 – SSH

Man-in-the-Middle Attack

By:

Ronny LEPLAE, CISSP

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
2

August 2002

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
3

Table of contents

Executive Summary 3
Part I - Targeted Port 4

Why Port 22? 4
Services and Applications Running on Port 22 6

SSH (Secure Shell) 6
PC Anywhere 6
Adore SSHD 6
Shaft 6

Detailed Description of SSH 7
SSH1 7
SSH2 12

Part II Specific Exploit on SSH: Man-in-the-Middle 18
Exploit Details 18

Description 18
Variants 18
Systems Impacted 19
Protocol Description 19
How it Works 20

How to use the Exploit 23
The Configuration 23
The Various Steps 23
Signatures 30
How to Protect Against 30
Source Code – Pseudo Code 31
Additional Information 33
References 34

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
4

1 The SANS Institute http://www.sans.org

2 The Internet Storm Center http://www.incidents.org/

Executive Summary

Cyber Defense Initiative

The CDI (Cyber Defense Initiative) is an initiative to identify frequently targeted
services and the exploits commonly used against them1. By identifying the most
widely-exploited vulnerabilities, focused lists can be created of problems that
should be addressed immediately. A good example of such a list is the SANS
Top Twenty.

How it works

The Internet Storm Center is a well-known example that uses techniques based
on collecting a large number of log files from firewalls and intrusion detection
systems. Currently the log files of more than 3000 firewalls and Intrusion
Detection Systems in more than sixty countries are processed. Correlation and
visualization techniques are used to analyze this data.2

The result

The result of this analysis is a global view on attack patterns, widely attacked
services, top attacking systems and top attacked ports. This valuable
information allows understanding the behavior of attackers.

About this paper

This paper will discuss the SSH (Secure Shell) protocol as an example of a
widely attacked service on the Internet. The first part of the paper explains the
protocol, the usage of the protocol and commonly known vulnerabilities. The
second part explains a particular vulnerability of SSH when subject to a MiM
(Man-in-the-Middle) attack.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
5

3 http://www.incidents.org

Part I - Targeted Port

This section will discuss port 22, the services associated with port 22 and the
known exploits for port 22.

Why Port 22?

The Cyber Defense Initiative is an initiative that helps to understand, analyze and
avoid the exploit of common vulnerabilities. One of the goals of the initiative is to
compile lists of common attacked services. This is possible through the
collection of log files, submitted by many participants, to a central server. This
allows having a much broader view on what is going on.

Incidents.org is a virtual organization of advanced intrusion detection analysts,
forensics experts and incident handlers from across the globe. The
organization's mission is to provide real time "threat-driven" security intelligence
and support to organizations and individuals.3

On the website of incidents.org it is possible to view the Top 10 of attacked
services. The site gives both a geographical overview and a table per service.

The following diagram was downloaded from http://www.incidents.org on 11th

August 2002. It shows the distribution of the most common attacks per
continent.

According to the information on the site of incidents.org, the overview is
compilation of log file data, from more than 3000 firewalls and intrusion
detection systems spread over sixty countries.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
6

To see the top 10 most attacked ports, a selection in the menu of the site
http://www.incidents.org produces the following diagram:

On the above diagram, port 22 is ranked in 8th position. Clicking on the port
number gives an attack history for port 22. The diagram shows the last month’s
results.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
7

Services and Applications Running on Port 22

SSH (Secure Shell)
Well-known TCP-IP ports are registered by IANA and a list of currently well-
known port numbers is available on the IANA web site. According to the IANA
list, port 22 is a well-known port and is most commonly used for SSH.

PC Anywhere
PC Anywhere is a remote management software product sold by Symantec. The
product allows for remotely administering computers.

Some older versions of this product used port 22. These versions are no longer
supported by Symantec and have been replaced by newer versions, using other
ports.

Adore SSHD
Adore SSHD is a Trojan Horse. A Trojan Horse is malicious software, hidden in
another program. In this case the malicious code is hidden in the SSH daemon.
This particular Trojan Horse uses Adore, a kernel RootKit to hide itself. A
RootKit is software installed on a machine that will change the behavior of
system calls making the software invisible to the administrator. The system calls
will lie to the tools that call them. In this way, the Trojan Horse becomes
invisible to a command to list active processes like: ps.

Adore SSHD allows hackers to enter the system with the password h4ck3d!

More information about Adore SSHD can be found on the following URL:
http://www.simovits.com/trojans/tr_data/y48.html

Shaft
Shaft is a Trojan Horse and a Distributed Denial of Service (DDoS) program. It
can send packets in TCP, UDP or ICMP flood. Shaft can also steal passwords.

The next URL provides a detailed description on Shaft:
http://security.royans.net/info/posts/bugtraq_ddos3.shtml

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
8

Detailed Description of SSH

In order to discuss the SSH protocol we need to make a difference between
SSH1 and SSH2. SSH2 was mainly developed as an answer to many previously
discovered weaknesses in the SSH1 protocol. SSH2 is very different from
SSH1.

SSH was developed in the first place to address the risks involved with using
protocols like telnet, rlogon, rexec and rsh. All of these protocols are vulnerable
to eavesdropping when using a sniffer. A sniffer is an application that allows
inspecting network packets traveling over a network. Because protocols like
telnet, rlogon, rexec and rsh do not encrypt their communication, very sensitive
information such as usernames and passwords could fall in the hands of an
eavesdropper.

SSH1

SSH1 was the first version of SSH and is a packet based protocol that can work
on top of any transport layer. SSH1 provides an encrypted connection protecting
all information exchanged between the server and the client from
eavesdropping.

The following diagram shows an overview of the components:

SSH Client SSH Server

SSH protocol SSH protocol

TCP/IP, ... TCP/IP, ...

SSH1 Tunnel

The diagram clearly shows the client part and the server part. When an SSH
connection is established all information is sent and received encrypted. This
creates a virtual pipe in which messages are passed encrypted between client

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
9

4 SSH, The Secure Shell: The Definitive Guide, O’Reilly

and server. Because the messages are encrypted they are not readable to an
eavesdropper sniffing the traffic.

Before any data can be exchanged between the client and the server, a
connection has to be established. A connection is negotiated between the client
and the server. This is a very straightforward process and includes the following
steps4:

The SSH client contacts the SSH server and the SSH server sends a 1.
version string.

The client will open a socket connection to the server on port 22. This can
be simulated with a telnet client overwriting the default port to use port 22
to connect. The following image is a screenshot of this simulation:

As soon as the TCP connection is established, the server replies with a
version string. In our simulation, we see “SSH-1.99-OpenSSH_2.9p2”.
This string tells the SSH client which version(s) of SSH is (are) supported
by the server.

SSH-1.5-… means the server is only capable of accepting SSH1.
SSH-1.99-… means the server is capable of handling both SSH1 &
SSH2.
SSH-2.00-… means the server is only capable of accepting SSH2.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
10

In our simulation the SSH-1.99- part of the reply means that the server is
capable of using both SSH1 and SSH2.

The part of the string after the second dash is disclosing information on
the software used by the server. Often administrators will remove this
label. This message is said to be ‘leaking’ additional information to
hackers. Knowing the exact version and brand of the SSH server can
make the job a lot easier to look for known vulnerabilities.

The SSH client selects an SSH version and sends its version string 2.
to the SSH server.

Depending on the settings of the SSH client, the SSH client will choose a
version of the SSH protocol to be used between client and server.

A string is sent back to the SSH server similar to:

SSH-1.5-client to establish an SSH-1 session
SSH-2.0-client to establish an SSH-2 session

The SSH client and SSH server switch to a packet-based protocol.3.

The SSH-1 packet layout looks like the following diagram:

32-bit
length field

Random
padding

Packet
Type Packet Payload 4-byte

Checksum

The random padding adds one to eight bytes of padding to thwart a
known-plaintext attack. The packet type is one byte.

The SSH server identifies itself to the SSH client and sends host and 4.
server key.

The server sends the following information to the client:
The RSA public key of the host called host key. •
A second - hourly changing - RSA public key called server key.•
Eight random bytes called check bytes.•
List of encryption, compression and authentication methods •
supported by the server.

Upon receipt of the host key, the SSH-1 client will check if it previously
received the host key. If an SSH-1 session was previously never

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
11

established with the host, the SSH-1 client will ask the user to accept the
host key after displaying the server’s key fingerprint.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
12

The following screen shows an SSH-1 client asking to accept the host
key:

The host key is stored for future reference in a caching database at the
client. If the host was found in the caching database and differs from the
current received host key, the SSH-1 client will issue a warning. The next
screen shows this warning:

The SSH client sends the SSH server a secret (session) key.5.

In the next step the SSH client will generate a symmetric key.

A symmetric key means that the same key is used to encrypt and decrypt

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
13

the message. Symmetric cryptography is much faster than asymmetric
cryptography. Asymmetric cryptography allows encrypting a message
with one key that can only be decrypted with the corresponding second
key. Both keys are related and called a key-pair.

Because the SSH client received the public key from the SSH server it is
able to securely transmit the session key encrypted with this public key.
Only the SSH server has the corresponding private key and is able to
decrypt the session key. In the implementation of SSH the session key is
encrypted twice. It is encrypted once using the server’s public host key
and a second time with the server key.

The key is called a session key because every session is using a newly
generated key.

Both sides turn on encryption and complete server authentication.6.

Both sides can now encrypt and decrypt with the session key. The SSH
client waits for the server to send a packet encrypted with the session
key. This provides server authentication because only the server could
have decrypted the session key with the private RSA key.

The secure connection is established.7.

Since both ends of the connection now have the session key, messages
can be exchanged encrypted. This completes the SSH connection
establishment.

After the secure SSH1 connection is established, the server will want to
authenticate the user before allowing access to any services. A mechanism
called “User Authentication” is used for this. SSH1 supports the following user
authentication mechanisms:

Password•
Public-key•

There are some other variants: Kerberos (central authentication server),
SecureID (using a cryptographic hardware token), Rhosts (trusted host), TIS
(OTP system from Trusted Information Systems, Inc).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
14

SSH2
SSH2 is a different protocol from SSH1. SSH2 was developed to solve the
weaknesses in the SSH1 protocol. Another difference is that SSH2 is no longer
one layer, but is divided in 3 layers as shown in the following diagram:

SSH Client SSH Server

SSH
Connection

SSH
Connection

SSH
Authentication

SSH
Authentication

SSH2 Tunnel

SSH Transport

TCP/IP, ...

SSH Transport

TCP/IP, ...

Each of these layers is specified in a separate document and the overall
architecture is described in a 4th document. The specifications can be found on
the web site: http://www.ietf.org/internet-drafts/

The layers are called:
SSH-TRANS. This layer is responsible for the server authentication, •
session key negotiation, privacy and integrity.
SSH-AUTH. This layer is responsible for the client authentication.•
SSH-CONN. This layer is responsible for the multiplexing and various •
connection related issues.

SSH2 has a number of improvements over SSH1. The following is a list of some
of these improvements:

An important improvement of SSH2 is an extendable namespace for •
algorithms. The method offers a mechanism to support both standard and
non-standard algorithms. The standard or registered names do not
contain the “@“sign. Non-registered names include the “@” sign in the
name. IANA5 is the organization responsible for registering the names of
the protocols.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
15

5 http://www.iana.org

Another improvement offered by SSH2 over SSH1 is the support for •
multiple key exchange methods. The key exchange method is used to
send the session key from the SSH client to the SSH server. Remember
that in SSH1 the session key is sent double encrypted to the SSH server.
SSH2 offers support for methods, which use a different way to exchange
the session key. Currently SSH2 only uses Diffie-Hellman and all
implementations must support this key exchange algorithm. Diffie-
Hellman is a key exchange method based on exchanging a derivate of
the session key, resulting in both sides ending up with the same secret
without exchanging this secret.

SSH2 also offers a stronger integrity check compared to SSH1. SSH1 is•
using the rather weak CRC32 integrity check. SSH2 supports Message
Authentication Code (MAC) algorithms. A MAC is a cryptographic hash
signed with a symmetric key.

SSH2 offers session re-keying. This means that either side of an SSH2 •
connection can request to change the session key. The reason being that
when a symmetric key is used for too long, the key could be discovered
by a potential attacker. A large amount of encrypted data can facilitate a
crypto attack. A solution for this weakness is periodically changing the
session key, thereby making it a lot more difficult to break the session
key.

Important to know is that most of the available SSH clients support both SSH1
and SSH2. This is because, from a commercial point of view, the offering is
stronger if the product supports both protocols. In the second section of this
paper, we will discuss the weakness resulting from this dual support and how
this can be exploited in a Man-in-the-Middle attack.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
16

Known Vulnerabilities of SSH

The NIST offers an excellent resource for searching vulnerabilities. The following
table is an extract from http://icat.nist.gov/icat.cfm:

Reference Date Description
CVE-1999-0013 1/22/1998 Stolen credentials from SSH clients via SSH-agent program,

allowing other local users to access remote accounts
belonging to the SSH-agent user.

CVE-1999-1085 6/12/1998 SSH 1.2.25, 1.2.23, and other versions, when used in CBC
(Cipher Block Chaining) or CFB (Cipher Feedback 64 bits)
modes, allows remote attackers to insert arbitrary data into
an existing stream between an SSH client and server by using
a known plaintext attack and computing a valid CRC-32
checksum for the packet, aka the "SSH insertion attack."

CVE-1999-0310 9/1/1998 SSH 1.2.25 on HP-UX allows access to new user accounts.
CVE-1999-1321 11/5/1998 Buffer overflow in SSH 1.2.26 client with Kerberos V enabled

could allow remote attackers to cause a denial of service or
execute arbitrary commands via a long DNS hostname that is
not properly handled during TGT ticket passing.

CVE-1999-1159 12/29/1998 SSH 2.0.11 and earlier allows local users to request remote
forwarding from privileged ports without being root.

CAN-1999-0398 1/1/1999 In some instances of SSH 1.2.27 and 2.0.11 on Linux
systems, SSH will allow users with expired accounts to login.

CAN-1999-0547 1/1/1999 An SSH server allows authentication through the .rhosts file.
CVE-1999-0248 1/1/1999 SSHD 1.2.17 can be compromised through the SSH protocol.
CAN-1999-1029 5/13/1999 SSH server (sshd2) before 2.0.12 does not properly record

login attempts if the connection is closed before the maximum
number of tries, allowing a remote attacker to guess the
password without showing up in the audit logs.

CAN-1999-1231 6/9/1999 SSH 2.0.12, and possibly other versions, allows valid user
names to attempt to enter the correct password multiple
times, but only prompts an invalid user name for a password
once, which allows remote attackers to determine user
account names on the server.

CVE-1999-0787 9/17/1999 The SSH authentication agent follows symlinks via a UNIX
domain socket.

CVE-1999-1010 12/14/1999 An SSH 1.2.27 server allows a client to use the "none" cipher,
even if it is not allowed by the server policy.

CAN-2000-0143 2/11/2000 The SSH protocol server SSHD allows local users without
shell access to redirect a TCP connection through a service
that uses the standard system password database for
authentication, such as POP or FTP.

CVE-2000-0217 2/24/2000 The default configuration of SSH allows X forwarding, which
could allow a remote attacker to control a client's X sessions
via a malicious xauth program.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
17

CVE-2000-0532 6/7/2000 A FreeBSD patch for SSH on 2000-01-14 configures ssh to
listen on port 722 as well as port 22, which might allow
remote attackers to access SSH through port 722 even if port
22 is otherwise filtered.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
18

Reference Date Description
CVE-2000-0525 6/8/2000 OpenSSH does not properly drop privileges when the

UseLogin option is enabled, which allows local users to
execute arbitrary commands by providing the command to the
SSH daemon.

CAN-2000-0535 6/12/2000 OpenSSL 0.9.4 and OpenSSH for FreeBSD do not properly
check for the existence of the /dev/random or /dev/urandom
devices, which are absent on FreeBSD Alpha systems, which
causes them to produce weak keys which may be more easily
broken.

CVE-2000-0575 7/5/2000 SSH 1.2.27 with Kerberos authentication support stores
Kerberos tickets in a file which is created in the current
directory of the user who is logging in, which could allow
remote attackers to sniff the ticket cache if the home
directory is installed on N

CAN-2000-0784 10/20/2000 SSHD program in the Rapidstream 2.1 Beta VPN appliance
has a hard-coded "rsadmin" account with a null password,
which allows remote attackers to execute arbitrary commands
via SSH.

CAN-2000-0999 12/11/2000 Format string vulnerabilities in OpenBSD SSH program (and
possibly other BSD-based operating systems) allow attackers
to gain root privileges.

CVE-2000-0992 12/19/2000 Directory traversal vulnerability in scp in SSHD 1.2.xx allows
a remote malicious scp server to overwrite arbitrary files via
a .. (dot dot) attack.

CVE-2000-1169 1/9/2001 OpenSSH SSH client before 2.3.0 does not properly disable
X11 or agent forwarding, which could allow a malicious SSH
server to gain access to the X11 display and sniff X11
events, or gain access to the SSH-agent.

CVE-2001-0080 2/12/2001 Cisco Catalyst 6000, 5000, or 4000 switches allow remote
attackers to cause a denial of service by connecting to the
SSH service with a non-SSH client, which generates a
protocol mismatch error.

CVE-2001-0144 3/12/2001 CORE SDI SSH1 CRC-32 compensation attack detector
allows remote attackers to execute arbitrary commands on an
SSH server or client via an integer overflow.

CVE-2001-0155 6/2/2001 Format string vulnerability in VShell SSH gateway 1.0.1 and
earlier allows remote attackers to execute arbitrary
commands via a long user name.

CVE-2001-0156 6/2/2001 VShell SSH gateway 1.0.1 and earlier has a default port
forwarding rule of 0.0.0.0/0.0.0.0, which could allow local
users conduct arbitrary port forwarding to other systems.

CVE-2001-0259 6/2/2001 ssh-keygen in ssh 1.2.27 - 1.2.30 with Secure-RPC can allow
local attackers to recover a SUN-DES-1 magic phrase
generated by another user, which the attacker can use to
decrypt that user's private key file.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
19

CAN-2001-0471 6/27/2001 SSH daemon version 1 (aka SSHD-1 or SSH-1) 1.2.30 and
earlier does not log repeated login attempts, which could allow
remote attackers to compromise accounts without detection
via a brute force attack.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
20

Reference Date Description
CVE-2001-0361 6/27/2001 The SSH version 1.5 protocol allows a remote attacker to

decrypt and/or alter traffic via an attack on PKCS#1 version
1.5 knows as a "Bleichenbacher attack". OpenSSH up to
version 2.3.0, AppGate, and SSH Communications Security
ssh-1 up to version 1.2.31 have the vulnerability present,
although it may not be exploitable due to configurations.

CVE-2001-0364 6/27/2001 SSH Communications Security sshd versions 2.4 for
Windows allows a remote attacker to create a denial of
service via a large number of simultaneous connections.

CVE-2001-0529 8/14/2001 OpenSSH version 2.9 and earlier, with X forwarding enabled,
allows a local attacker to delete any file named 'cookies' via a
symlink attack.

CVE-2001-0553 8/14/2001 SSH Secure Shell 3.0.0 on Unix systems does not properly
perform password authentication to the sshd2 daemon, which
allows local users to gain access to accounts with short
password fields, such as locked accounts that use "NP" in the
password field.

CAN-2001-0572 8/22/2001 The SSH protocols 1 and 2 (aka SSH-2) as implemented in
OpenSSH and other packages have various weaknesses
which can allow a remote attacker to obtain the following
information via sniffing: (1) password lengths or ranges of
lengths, which simplifies brute force password guessing, (2)
whether RSA or DSA authentication is being used, (3) the
number of authorized_keys in RSA authentication, or (4) the
lengths of shell commands.

CAN-2001-1029 9/20/2001 libutil in OpenSSH on FreeBSD 4.4 and earlier does not drop
privileges before verifying the capabilities for reading the
copyright and welcome files, which allows local users to
bypass the capabilities checks and read arbitrary files by
specifying alternate copyright or welcome files.

CAN-2001-1382 9/27/2001 The "echo simulation" traffic analysis countermeasure in
OpenSSH before 2.9.9p2 sends an additional echo packet
after the password and carriage return is entered, which could
allow remote attackers to determine that the countermeasure
is being used.

CAN-2001-1380 10/18/2001 OpenSSH before 2.9.9, while using keypairs and multiple keys
of different types in the ~/.ssh/authorized_keys2 file, may not
properly handle the "from" option associated with a key, which
could allow remote attackers to login from unauthorized IP
addresses.

CVE-2001-0816 12/6/2001 OpenSSH before 2.9.9, when running sftp using sftp-server
and using restricted keypairs, allows remote authenticated
users to bypass authorized_keys2 command= restrictions
using sftp commands.

CVE-2001-0872 12/21/2001 OpenSSH 3.0.1 and earlier with UseLogin enabled does not
properly cleanse critical environment variables such as
LD_PRELOAD, which allows local users to gain root
privileges.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
21

CVE-2002-0083 3/15/2002 Off-by-one error in the channel code of OpenSSH 2.0 through
3.0.2 allows local users or remote malicious servers to gain
privileges.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
22

Reference Date Description
CAN-2002-0575 6/18/2002 Buffer overflow in OpenSSH before 2.9.9, and 3.x before

3.2.1, with Kerberos/AFS support and KerberosTgtPassing or
AFSTokenPassing enabled, allows remote and local
authenticated users to gain privileges.

CAN-2002-0639 7/3/2002 Integer overflow in sshd in OpenSSH 2.9.9 through 3.3 allows
remote attackers to execute arbitrary code during challenge
response authentication enabled
(ChallengeResponseAuthentication) when OpenBSD is using
SKEY or BSD_AUTH authentication.

CAN-2002-0640 7/3/2002 Buffer overflow in sshd in OpenSSH 2.3.1 through 3.3 may
allow remote attackers to execute arbitrary code via a large
number of responses during challenge response authentication
when OpenBSD is using PAM modules with interactive
keyboard authentication (PAMAuthenticationViaKbdInt).

CAN-2002-0460 8/12/2002 Bitvise WinSSHD before 2002-03-16 allows remote attackers
to cause a denial of service (resource exhaustion) via a large
number of incomplete connections that are not properly
terminated, which are not properly freed by SSHd.

CAN-2002-0765 8/12/2002 sshd in OpenSSH 3.2.2, when using YP with netgroups and
under certain conditions, may allow users to successfully
authenticate and log in with another user's password.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
23

6 http://stealth.7350.org/ssharp.pdf - http://stealth.7350.org/7350ssharp.tgz

Part II Specific Exploit on SSH: Man-in-the-Middle

Exploit Details

Description

The specific exploit discussed in this paper is a Man-in-the-Middle attack
between an SSH client and an SSH server. In the introduction it was explained
that the SSH protocol has a protection mechanism, warning the user of the SSH
client about a Man-in-the-Middle attack. This warning is mainly because the
SSH server key is different from the one used during previous SSH sessions.

A new vulnerability was found and published by Sebastian Krahmer on 1st July
2002, which allows avoiding the control mechanisms implemented in SSH
clients to detect a Man-in-the-Middle attack. In early August 2002, Sebastian
Krahmer also published a proof of concept application, demonstrating this
vulnerability. In this exploit the SSH client does not issue the MiM warning to the
user6.

Variants

There have been other MiM attacks on SSH. The first MiM attack on SSH was
probably done by Dug Song and is called monkey in the middle and is part of
dsniff. More information on dsniff is found at the following URL:
http://www.monkey.org/~dugsong/dsniff

Also ettercap is a sniffing tool that supports MiM attack on SSH. More detailed
information on ettercap is available at the URL http://ettercap.sourceforge.net/

The main difference between these variants is that dsniff and ettercap are based
on analyzing the packets, assembling, reassembling and forwarding them
again.

The exploit discussed in this paper works on the banners. It also does not trigger
the MiM warning included in the SSH client implementations. Therefore it goes
almost undetected by the user.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
24

Systems Impacted

The vulnerability is based on the fact that an SSH client does not use the MiM
attack warning when it receives a new key for the host and its cached key was
for another signature algorithm or another SSH protocol version. Most SSH
client software products support both SSH1 and SSH2 versions and many
different cryptographic functions. By using this exploit and translating the SSH
communication the MiM warning can be avoided.

Therefore, the problem is applicable to a very large number of systems using
SSH. This includes but is not limited to:

Unix systems•
Windows systems having an SSH server•
Network appliances supporting SSH connections (Cisco, …)•
All SSH clients not updated for this exploit•

Protocol Description
We explained in the introduction how SSH1 and SSH2 are used to make an
encrypted network connection between an SSH client and a SSH server.

In the first step, when setting up an SSH connection, the client connects to the
server and receives a string from the server. This string tells the client which
versions of SSH the server is able to support.

The string can be obtained with a telnet tool as shown in this screenshot:

The server can reply with a number of possibilities:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
25

SSH-1.5-… means the server is only capable of accepting SSH1.
SSH-1.99-… means the server is capable of handling both SSH1 &
SSH2.
SSH-2.00-… means the server is only capable of accepting SSH2.

The client replies with a similar string to tell the server its choice about the SSH
version to use. A string is sent back to the SSH server similar to:

SSH-1.5-client to establish an SSH-1 session
SSH-2.0-client to establish an SSH-2 session

The next screenshot shows the supported crypto algorithms received from the
SSH server:

The client selects a crypto algorithm and a key-exchange is initiated. When
both client and server have exchanged keys and have authenticated each other
the SSH connection is established.

How it Works

The discussed exploit of Man-in-the-Middle will typically alter these messages
and when receiving the strings from the server alter them or send other strings
to the client. As such, the SSH version chosen by the client and the crypto
algorithms used by the client are different from the SSH version and the crypto
algorithms used on the server.

It is important to understand that this Man-in-the-Middle attack is based on a
weakness in the SSH client. The SSH client stores the server key associated
with the version of SSH and the version of digital signature used. If the key
changes and the same type of connection is used a warning banner “Security
breach” is displayed. If the key changes and the type of connection also
changes then a banner is displayed asking the user to accept or refuse the new
key.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
26

The following diagram explains one particular way how the exploit works:

Network

SSH Server
SSH Client

Man in the Middle
Attacker

SSH-1
SSH-2

Because the SSH server key is stored at the SSH client and associated with the
type of connection, a new connection, using another version of the protocol, will
not issue the MiM attack warning screen. Instead, the client will ask the user to
accept the new key and display a screen showing the fingerprint of the new key,
issued by the Man-in-the-Middle server.

This is the screen, which should be displayed in the case of a MiM attack:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
27

However, when the attacking server changes the version of the protocol, as in
the previously explained diagram, a minor warning screen shows, telling the
user no key is known:

It is important to note that the very first time the user connects to a server he
also gets this screen and is told to accept the key. Because of this previous
situation, the odds are that the user will again press ‘YES’.

Changing the version of SSH between the client and the server is not the only
way of exploiting and preventing the Security breach banner from being
displayed. It is possible to have an SSH2 connection with the client and an
SSH2 connection with the server. When the MiM attacker changes the digital
signature algorithm, the key issued by the MiM system will also result in a
request to the user, to accept the new key rather than issuing a MiM warning
banner.

The following diagram explains this alternative exploit flow:

Network

SSH ServerSSH Client

Man in the Middle
Attacker

SSH-2

Diffie Hellm
an

DSS SSH-2
with

Diffi
e H

ell
man

RSA

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
28

How to use the Exploit

In the next section, we will simulate and discuss the details of this exploit. We
have logged all the packets and we will explain both the tools used and the logs
captured for this exploit.

The Configuration
Our lab configuration consists of a small network with 3 machines:

An SSH Server: Linux Redhat 7 with SSH server•
An SSH Client: W2000 With Putty SSH Client•
Attacking host: Linux Redhat 7 with SSharp from TESO.•

arpspoof from Dug Song.
mss-server and mss-client from TESO.

The Various Steps
1st Step. The SSH client connects directly to the SSH server

This is not part of the actual attack but it is important to look at this step
because part of the MiM Attack protection mechanism is based on the fact that
the SSH client stores the key of the SSH server the first time it connects to the
SSH server. The next screen shot shows the key stored in the registry:

The SSH client will use this key when reconnecting to the SSH server and if it
receives a different key it will issue a MiM attack warning. The weakness of this
mechanism is that the key will only be compared if the SSH client is
reconnecting with the same version of SSH to the server and if the SSH is using
the same digital signature algorithm.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
29

7 SSharp is a tool that allows for MIM attack on SSH. It is available at http://stealth.7350.org/

2nd Step. Reroute the traffic.

Normally the SSH client would connect directly to the SSH server (green arrow).
In our lab configuration, we want all traffic rerouted to our attacking server, with
SSharp7 from TESO installed. The next diagram shows all the servers, their IP
address and their MAC address.

network

Workstation
with putty SSH

Client

Server with
OpenSSH

Server with
Ssharp

192.168.12.76
00-04-76-1B-A0-05

192.168.12.12
00-00-E8-32-8F-A3

192.168.12.120
00-08-C7-E1-47-54

In order to be able to modify traffic, we have to reroute the traffic to our system.
Once the traffic is rerouted to our system, we can modify it. In order to have the
SSH client and the SSH server send their traffic for each other to the attacking
host, we need to do an ARP spoofing. An ARP spoofing works by sending ARP
reply packets to both systems fooling them about the IP address of the other
system.

In order to establish this traffic deviation we use the tool that comes with dsniff
called arpspoof. The syntax is very simple and looks like:

arpspoof –i eth0 –t 192.168.12.76 192.168.12.12
arpspoof –i eth0 –t 192.168.12.12 192.168.12.76

Both commands are running in separate windows. As long as the commands
are running all traffic from the SSH client to the SSH server will be sent to the
attacking host. All traffic from the SSH server to the SSH client will also be sent
to the attacking host. When the attacking host has IP forwarding installed,
neither party will notice anything at all.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
30

Our first objective has been achieved; we have successfully rerouted all traffic to
our attacking host. On each window at the attacking host, you can regularly see
an ARP reply broadcast. The following is a screenshot from the attacking host:

Note the MAC address 00-08-C7-E1-47-54 which is used by both the SSH client
and SSH server to identify each other. This is the MAC address from the
attacking host.

When we sniff the network, the ARP reply packets can be logged. The following
dump shows a capture of these ARP reply packets visualized with ethereal.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
31

3rd Step. Intercept the traffic.

In this step we install the Ssharp tool available from TESO at
http://www.7350.org. The tool is based on a modified version of an SSH
daemon. It consists of two parts: an SSH server part, that accepts incoming
SSH connections, and a client part that connects to the original intended server.
This mechanism makes it possible to have access to the communication in an
unencrypted form between the SSH server and the SSH client on the attacking
host.

The following diagram shows how it works:

Ssharp
SSH

server

Ssharp
SSH
client

network

Workstation
with putty SSH

Client

Server with
OpenSSH

Server with
Ssharp

192.168.12.76
00-04-76-1B-A0-05

192.168.12.12
00-00-E8-32-8F-A3

192.168.12.120
00-08-C7-E1-47-54

Because we are interested in hijacking the session, we have configured it with
the advanced USE_MSS option.

To make the Ssharp work, we run it as a daemon and make it listen on port
11000.
This can be done with the following command:

sshd -4 –p 11000

The traffic coming from the SSH client will be directed to port 22 and our
daemon is listening to port 11000. To route the incoming traffic for port 22 to port
11000 we add a rule in iptables with the following command:

iptables –t –nat –A PREROUTING –p tcp --dport 22 --sport 1000:8000 –j

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
32

REDIRECT --to-ports 11000

We have now successfully installed our software and are ready to intercept any
SSH connections made from the SSH client to the SSH server with our
attacking host.

When the SSH client connects to the SSH server a pop-up window appears
requesting to accept the new key. The user has no concern about this and clicks
yes.

We are now successfully in between the SSH client and SSH server with our
attacking host! If we look at a dump of the network packets, we see the
following:

The first six lines are the TCP connection setup between the SSH client and the
attacking host and between the attacking host and the SSH server. Note that in
the second line, the source address is spoofed. This is the Ssharp on the
attacking host replying to the SSH client and not the SSH server.

As soon as the connection between the attacking host and the SSH server is
established, the SSH server replies with a packet on line 7. The detail can be
seen in the lowest window of the previous Ethereal screen capture. We see in
the contents of the packet the SSH server replying with “SSH-1.99-
OPENSSH_2.5.2 p2”. This line means that the SSH server supports both SSH1
and SSH2.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
33

The next interesting line is line 10 where the attacking host is replying to the
SSH client with a spoofed IP address (as being the SSH server) and now look at
the contents of the packet on the next screen capture!

The packet data has been altered by Ssharp and tells the SSH client the host is
only capable of supporting SSH2. This is achieved with the string “SSH-2.0-
OpenSSH_2. 5.2p2.”

In the next packet the SSH client replies with the string “SSH-2.0-PuTTY-
Release-0.52” confirming an SSH2 connection between the SSH client and the
attacking host.

Now the attacking host and SSH client will exchange the protocols they both
support and agree on a key exchange and cipher block protocol. Using this
technique, Ssharp can send a new key to the SSH client. A window appears

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
34

asking the user to accept the new key. The user does not expect anything
malicious and accepts the key. The logon prompt appears and the user has a
working SSH connection to the server.

A close look to the registry shows that our SSH client has now two keys:

A second key is now stored in the registry and is used for the SSH2 connection
to the Ssharp MiM attacking host.

4th Step. Hijacking the connection.

The user is not worried about anything and works on the SSH server.

At the attacking host, everything is in place to hijack the session. The directory
/tmp contains a number of interesting files.

Password hijacking

The first interesting file is /tmp/ssharp. This file stores all username/password
pairs used by user sessions where the attack host was successfully in the
middle.

Session hijacking

More interesting is hijacking the user session with the following command:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
35

mss-client ssharp-192.168.12.12.1834

The attacker has now access to the user’s session and can take over control
and even kill the connection to the user. The session has been successfully
hijacked!

Signatures
The signature of the attack is represented as a new key to the user. The user
should be trained not to accept any new key from the SSH server without prior
notice.

When a new unknown key is sent to the SSH client a screen appears as
follows:

How to Protect Against
This is a good example of an attack where user awareness training can be
extremely useful. Users who are trained to report any anomalies or react on
suspicious events can assist considerably in detecting this event at an early
stage.

The best solution against the vulnerability is to patch the SSH client •
applications to issue a more severe warning when a new key is
presented and another key was found for the same host using a different
protocol:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
36

Alternatively the SSH server and the SSH client can be configured to use •
one specific protocol to avoid the possibility of a Man-in-the-Middle
attacking system to have a two leg situation.

Another protection against Man-in-the-Middle is to replace passwords •
with hardware identification tokens. It was explained that the Ssharp
exploit stores the username and password. The attacker can use this
information to gain access to the server.

By using a hardware identification token the password is replaced with a
challenge/response mechanism. The SSH server asks a different
question on every session preventing the attacker from using a previously
captured response.

Users should be trained to be aware of the login banner. The banner •
provides information on the last session. This could give a clue about
other people using a stolen username/password.

Source Code – Pseudo Code
Source code for this vulnerability is available at http://stealth.7350.org

Some effort went into compiling the source code and make it work. The
documentation provided with the source code is the bare minimum, but the tool
works. The traces show how this proof of concept demonstrates vulnerability to
exploitation.

The source contains an SSH server and an SSH client as explained on page 26.
The SSH server listens for incoming calls and the SSH client continues the
outgoing SSH connection to the original SSH server.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
37

The package will create a different type of connection between the attacking
host and the SSH client and between the attacking host and the SSH server.
This allows exploiting the fact that the SSH client receives a key for the SSH
server, which it never received before prompting the user to accept it. Because
the key is associated with another context of connection (version / key
algorithm) the severe security breach warning is not issued.

The following is a diagram of the Sshap package:

Ssharp
SSH

server

Ssharp
SSH
client

network

Workstation
with putty SSH

Client

Server with
OpenSSH

Server with
Ssharp

192.168.12.76
00-04-76-1B-A0-05

192.168.12.12
00-00-E8-32-8F-A3

192.168.12.120
00-08-C7-E1-47-54

file-
system

log all
username-

passwords

log
 a

se
ss

ion
ha

nd
le

to
be

us
ed

 w
ith

mss
-cl

ien
t

Important are the logging for username/password and the session handling that
allows to hijack the SSH session.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
38

Additional Information
Additional information on the subject can be found at various websites:

TESO website contains a proof of concept and the original paper of Sebastian
Krahmer.
http://stealth.7350.org/

The internet engineering task force publishes a number of draft documents
including standards and specifications on the SSH2 protocol.
http://www.ietf.org/internet-drafts/

Dug Song is probably the first having developed a MiM implementation for SSH.
His development is part of the well-known package dsniff.
http://www.monkey.org/~dugsong/dsniff

Discussion of MiM attack on SSH in the Phrack 59 from 07-28-2002.
http://www.phrack.com/show.php?p=59&a=11

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.
39

References

IANA provides a list of internet assigned TCP and UPD port numbers also
referred to as well-known ports:
http://www.iana.org/assignments/port-numbers

Symantec support website provides more info on the port(s) used by the various
PC Anywhere products:
http://service4.symantec.com/SUPPORT/pca.nsf/pfdocs/1998122810210812

The NIST provides an excellent website to allow querying known vulnerabilities
in products:
http://icat.nist.gov/vt_portal.cfm

The internet engineering task force publishes all standards. The documents with
details on the SSH protocol can also be found on this website:
http://www.ietf.org/internet-drafts/

