
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

	

Pass-the-Hash in Windows 10

GIAC (GCIH) Gold Certification

Author: Lukasz Cyra, lukasz.cyra@gmail.com
Advisor: Sally Vandeven

Accepted: September 25, 2019

Abstract

Attackers have used the Pass-the-Hash (PtH) attack for over two decades. Its
effectiveness has led to several changes to the design of Windows. Those changes
influenced the feasibility of the attack and the effectiveness of the tools used to execute it.
At the same time, novel PtH attack strategies appeared. All this has led to confusion
about what is still feasible and what configurations of Windows are vulnerable. This
paper examines various methods of hash extraction and execution of the PtH attack. It
identifies the prerequisites for the attack and suggests hardening options. Testing in
Windows 10 v1903 supports the findings. Ultimately, this paper shows the level of risk
posed by PtH to environments using the latest version of Windows 10.

Pass-the-Hash in Windows 10 2
	

Lukasz	Cyra,	lukasz.cyra@gmail.com	 	 	

1. Introduction
Extracting password hashes is one of the first things an attacker typically does

after gaining admin access to a Windows machine. They can use those hashes for offline

analysis, or even to access the system directly, in a so-called Pass-the-Hash (PtH) attack.

Attackers have applied this technique for over two decades to facilitate lateral movement

(Ewaida, 2010).

The risk related to hash extraction and PtH is well recognized. Microsoft has been

trying to make these attacks more difficult by improving the security of successive

versions of Windows. The most notable, recent changes are the replacement of the RC4

encryption with AES (Deneut, 2018) and the introduction of the Credential Guard

(Joyce, 2019a). These changes made old ways of stealing credentials ineffective and led

to articles announcing the end of the PtH attack (Green, 2017).

At the same time, attack techniques have been evolving. Novel, ingenious

methods of attack, e.g., Internal Monologue (Fortuna, 2018), have been devised, posing

new security risks.

As a result, there is much confusion about the controls themselves. What is and is

not feasible in modern versions of Windows 10 and whether popular attack tools remain

effective is often unclear. Sources provide incorrect information (Strand, 2018b), or

information that is misleading, outdated, and not applicable to contemporary systems

(Ewaida, 2010). At the same time, Windows-based enterprises are migrating their

desktop environments to Windows 10, as the end of support for Windows 7 quickly

approaches (Microsoft, n.d.-b). Those organizations need access to reliable information

on Windows 10 security, including information about the PtH attack.

Ultimately, to learn the subject, one needs hours of study and experimentation.

The best strategy is to use fragmented and unreliable sources of information, such as

online discussion forums, which also require validation. The objective of this paper is to

provide up-to-date and verified information on the level of risk posed by PtH to

Windows 10.

Pass-the-Hash in Windows 10 3
	

Lukasz	Cyra,	lukasz.cyra@gmail.com	 	 	

2. Pass-the-Hash Theory
2.1. Paper Scope

This paper assumes that an attacker has obtained remote access to a host and is

trying to extract hashes of user credentials to facilitate lateral movement. This assumption

leads to the exclusion of multiple known attack techniques from the scope of this paper.

For instance, hash extraction via physical access is outside of the scope of this paper. The

same applies to the extraction of hashes from a compromised Domain Controller.

Furthermore, this paper does not consider credential extraction from the Windows

Credential Manager, as it focuses explicitly on password hashes used to log in to the

operating system.

This paper focuses only on NT hashes (also called NTLM hashes), NTLMv1

hashes (also called Net-NTLMv1 hashes), and NTLMv2 hashes (also called

Net-NTLMv2 hashes). Hosts store OS credentials in the form of NT hashes (see

Section 4). Windows 10 uses NT hashes, and therefore they fall in the scope of this

paper. Authentication protocols, NTLMv1 and NTLMv2 in particular, do not pass

NT hashes on the network, but rather pass values derived from the NT hashes, called

NTLMv1 and NTLMv2 hashes, respectively. Windows 10 environments do not support

by default NTLMv1 (Shamir, 2018). However, in some attacks, it can be enabled, and

therefore it is considered. Contemporary networks in the workgroup configuration use

NTLMv2 (Gombos, 2018). Domain-based environments support it by default, as well

(Microsoft, 2017). Kerberos-exclusive environments are still rare, as they pose

compatibility issues (Renard, 2017). Ultimately, in most networks, NTLMv2 is enabled,

and therefore it is considered in this paper.

LM hashes, an older way of storing login credentials in Windows, are not

considered. They are not stored on Windows 10 computers when default settings are

applied (Strand, 2018a). It is possible, though, to enable LM hashes through a GPO

setting (Gombos, 2018). This paper does not consider SHA1/SHA2 and MSCach2 (also

called DCC2) hashes. PtH attacks do not apply to SHA1/SHA2 (Delaunay, 2017) nor

MSCach2 (Lundeen, 2014). MD5 hashes, used in the WDigest authentication, are not

considered, as Windows 10 does not use WDigest by default (Joyce, 2019b).

Pass-the-Hash in Windows 10 4
	

Lukasz	Cyra,	lukasz.cyra@gmail.com	 	 	

2.2. Hashing Algorithms
To generate the NT hash from a plaintext password (see Figure 1), one needs to

apply the MD4 hashing function to the UTF-16 Little Endian encoding of the password

(Gombos, 2018).

Figure 1 NT Hashing Algorithm and Example

It is a good practice to use a salt when storing passwords. A salt is a random piece

of data used in the calculation of a hash, which makes the hash harder to crack and reuse.

It is essential to notice that the NT hash does not use a salt. Therefore, it is vulnerable to

precomputation attacks. Tables allowing for quick mapping of hashes to plaintext

passwords exist. Furthermore, identical passwords can be identified based on the

NT hashes solely, without breaking the encryption. It is worth noting that NT hashes, in

many scenarios, are equivalent to passwords themselves. They allow for authentication

based on the knowledge of the hash only. The attack is called Pass-the-Hash (PtH).

The NTLMv1 hashing algorithm takes as input the NT hash of a password and a

challenge provided by the server. It concatenates the NT hash with five bytes of zeros. It

splits this string into three 7-byte keys. Those keys are used to encrypt the challenge

using DES. The cryptograms are concatenated to create the NTLMv1 hash (see Figure 2).

Figure 2 NTLMv1 Hashing Algorithm and Example

It is essential to notice that NTLMv1 hashes can be cracked, revealing the

NT hash that was used to generate them. Rainbow tables exist for chosen NTLMv1

NT_Hash(password) = MD4(UTF-16-LE(password))

NT_Hash(“pass1”) = “8D7A851DDE3E7BED903A41D686CD33BE”

	
	
	

// c – challenge

K1 | K2 | K3 = NT_Hash(password) | “0000000000”
NTLMv1(password, c) = DES(K1, c) | DES(K2, c) | DES(K3, c)

c = “1122334455667788”

NTLMv1(“pass1”, c) = “151814cebe6083b0551173d5a42adcfa183c70366cffd72f”

	
	
	

Pass-the-Hash in Windows 10 5
	

Lukasz	Cyra,	lukasz.cyra@gmail.com	 	 	

challenges, making it possible to obtain the hash in minutes (Shamir, 2018). For instance,

https://crack.sh can be used to this end. Therefore, this paper treats the NTLMv1 hash as

equivalent to the corresponding NT hash. Nonetheless, it is essential to understand that

the PtH attack uses the actual NT hash.

The NTLMv2 hashing algorithm concatenates a user name and domain name, and

then it applies the HMAC-MD5 hashing function using the NT hash of a password as the

key. Next, it concatenates a server and client challenges and again applies the same

hashing function, using the output of the previous calculation as the key (see Figure 3).

Figure 3 NTLMv2 Hashing Algorithm and Example

NTLMv2 is stronger than NTLMv1. Usually, brute-force or dictionary attacks,

using tools like hashcat or john, need to be applied to break the hash (Siddhu, 2016).

These attacks are feasible and commonly applied (Stankovic, 2017), leading to the

recovery of the password rather than the NT hash. Therefore, this paper does not explore

this type of attack. Instead, it looks at man-in-the-middle attacks, which directly utilize

NTLMv2 hashes.

// u – user name | d – domain name | s – server challenge | c – client challenge

v2_Hash = HMAC-MD5(u+d, NT_Hash(password))
NTLMv2(password, u, d, s, c) = HMAC-MD5(s+c, v2_Hash)

u = “local_used1”; d = “GIAC-MSFT”; s = “1122334455667788”

c = “0F2795EDCC2AB44DCE77EC3031EBF595”
NTLMv2(“pass1”, u, d, s, c) = “0101000000000000C0653150DE09D20180DD46755
D637E72000000000200080053004D004200330001001E00570049004E002D005000
52004800340039003200520051004100460056000400140053004D00420033002E00
6C006F00630061006C0003003400570049004E002D0050005200480034003900320
0520051004100460056002E0053004D00420033002E006C006F00630061006C0005
00140053004D00420033002E006C006F00630061006C0007000800C0653150DE09
D20106000400020000000800300030000000000000000100000000200000F8E6D0C
07977EB77F39274A491B01EA3BE82BF0C85E35DFDAF1902D989438F1B0A001
000000000000000000000000000000000000900100063006900660073002F00640064
006400000000000000000000000000”

	
	
	

Pass-the-Hash in Windows 10 6
	

Lukasz	Cyra,	lukasz.cyra@gmail.com	 	 	

2.3. Pass-the-Hash Attack
PtH in Windows 10 is closely related to the NTLMv2 authentication protocol.

Windows implements a Single Sign-On (SSO) system, which caches credentials after the

initial authentication and uses them later to access hosts, file shares, and other resources.

This process is transparent to the user, who otherwise would need to retype his password

every time he accesses a network resource.

The NTLMv2 authentication process applies a challenge/response exchange,

which, instead of using the user’s password, uses its NT hash. This feature allows the

attacker to authenticate with the NT hash (Pass-the-Hash), without the knowledge of the

corresponding password. Furthermore, in man-in-the-middle attacks, authentication is

possible using the captured NTLMv2 hash directly, even with no knowledge of the

NT hash.

The PtH attack is composed of two primary steps:

1. Extraction of hashes from an already compromised host (explained in

Section 4) or from another, not-yet-compromised host via network

communication (explained in Section 5)

2. Application of the extracted hashes to gain access to the same or a

different machine (explained in Section 6)

Figure 4 shows an example illustrating a successful PtH connection using

Metasploit. The NT hash used in the attack is preceded with 32 zeros, representing the

LM hash. Zeros are accepted, as Windows 10 does not use LM hashes.

Figure 4 PtH Authentication

Pass-the-Hash in Windows 10 7
	

Lukasz	Cyra,	lukasz.cyra@gmail.com	 	 	

3. Test Environment
The objective of this paper is to test and confirm the level of risk posed by the

PtH attack in the latest Windows environments. To this end, several user accounts were

used. Figure 5 presents the configuration of those accounts. The NTLMv1 hashes use

“1122334455667788” as the challenge.

Account details

User name: local_used1 | Type: local | Groups: Administrators

Password: pass1A?1 | NT hash: D1E534455F97DBB7FBE436CD25CE661B
NTLMv1: C59DAC0FD53CCC70991990CB8EC3084AE1BF3881312D3280

Comment: The user has already logged in to the computer.

User name: local_used2 | Type: local | Groups: Administrators

Password: pass1A?2 | NT hash: 43BDCF65BD4D6603BBD8311D4B1670B1
Comment: The user has already logged in to the computer.

User name: local_notused | Type: local | Groups: Administrators
Password: pass1A?3 | NT hash: B85CA2C4BA3911C6DC427392FD7B7F7D

Comment: The user has never logged in to the computer.

User name: domain_used1 | Type: domain | Groups: Domain Admins

Password: pass1A?4 | NT hash: 7BBC9C60C62A1204364B66D678FCA2C9
NTLMv1: 04753E2350DB855B4A1BF6F7F693D3AFF9F3CEE75B64A7F6

Comment: The user has already logged in to the computer.

User name: domain_used2 | Type: domain | Groups: Domain Admins
Password: pass1A?5 | NT hash: 5E64EA6FBAFAC1289CE092AED46790A5

Comment: The user has already logged in to the computer

User name: domain_notused | Type: domain | Groups: Domain Admins

Password: pass1A?6 | NT hash: 05CF392F7B89860C6AC0F6FD85B87A3E
Comment: The user has never logged in to the computer.

User name: msft_used@outlook.com | Type: Microsoft | Groups: Administrators
Password: pass1A?7 | NT hash: 527E12E1627BA10C39324C4BB48CE1FE

Alias: msft_ | Comment: The user has already logged in to the computer.

Pass-the-Hash in Windows 10 8
	

Lukasz	Cyra,	lukasz.cyra@gmail.com	 	 	

User name: msft_notused@outlook.com | Type: Microsoft | Groups: Administrators

Password: pass1A?8 | NT hash: D5098E10765DE1E80713A61E644A5698
Alias: msft__mt4bjny | Comment: The user has never logged in to the computer.

User name: local_nonpriv | Type: local | Groups: Users
Password: pass1A?9 | NT hash: C5597987BCB2BAA5D78B056101D5EDD7

Comment: The user has already logged in to the computer.

Figure 5 Account Configuration

All of the NT hashes were calculated using the https://www.tobtu.com service.

The NTLMv1 hashes were confirmed using John the Ripper.

VMware Workstation 15.1.0 provided the environment to build the lab. Figure 6

presents the configuration of the ten VMs used. Machines whose names end with “E” use

Windows 10 Education v1903, while those ending with “P” use Windows 10 Pro v1903.

All the machines were unpatched to make the tests reproducible. Furthermore,

Windows updates, Windows Defender Firewall, and Windows Defender Antivirus were

disabled.

Host details

Name: GIAC-DOM-E/GIAC-DOM-P | Credential Guard: disabled
Accounts: local_used1, local_used2, local_notused, domain_used1, domain_used2,
domain_notused, local_nonpriv

Name: GIAC-DOM-CG-E/GIAC-DOM-CG-P | Credential Guard: enabled
Accounts: local_used1, local_used2, local_notused, domain_used1, domain_used2,
domain_notused, local_nonpriv

Name: GIAC-MSFT-E/GIAC-MSFT-P | Credential Guard: disabled
Accounts: local_used1, local_used2, local_notused, msft_used@outlook.com,
msft_notused@outlook.com, local_nonpriv

Name: GIAC-MSFT-CG-E/GIAC-MSFT-CG-P | Credential Guard: enabled
Accounts: local_used1, local_used2, local_notused, msft_used@outlook.com,
msft_notused@outlook.com, local_nonpriv

Name: GIAC-AD | OS: Windows Server 2019 Datacenter | Domain: giac.local

Accounts: domain_used1, domain_used2, domain_notused

Name: - | OS: Kali Linux 2019.2

Figure 6 Computer Configuration

Pass-the-Hash in Windows 10 9
	

Lukasz	Cyra,	lukasz.cyra@gmail.com	 	 	

4. Hash Extraction from Host
The following section will analyze the multiple ways an attacker can use to

extract hashes.

4.1. NT Hashes in Registry
The Security Account Manager (SAM) database is a registry file that stores

NT hashes. SAM stores the hashes of local and Microsoft accounts, but it does not store

the hashes of domain accounts. Windows uses the MSCach2 format to cache domain

logon (Januszkiewicz, 2017).

SAM is located in %SystemRoot%/system32/config/SAM and mounted at the

HKLM/SAM registry hive. Reading these credentials requires privileged access

(SYSTEM or admin). One can find all the information needed to decrypt the hashes on

the computer. Deneut (2018) explains the algorithm, and Willett (2016) provides the data

structures.

The algorithm applied to encrypt SAM is highly relevant to the topic of this

paper. Hash extraction tools must keep up with the evolution of Windows. Microsoft

changed the algorithm in Windows 10 v1607, replacing the RC4 cipher with AES

(Deneut, 2018). This change broke all the extraction tools that directly access SAM to

dump hashes. Some of the tools have been updated and handle the new encryption

method properly. However, there is still much confusion about which tools to use and

when (Strand, 2018b).

Figure 7 Failed Hash Extraction

Pass-the-Hash in Windows 10 10
	

Lukasz	Cyra,	lukasz.cyra@gmail.com	 	 	

Figure 7 shows the results of the execution of the Smart_Hashdump module of

Metasploit v5.0.34 on GIAC-DOM-E. As depicted in the screenshot, all the extracted

NT hashes are the same and equal to “31d6cfe0d16ae931b73c59d7e0c089c0”. This result

is incorrect, and the hashes extracted are, in fact, the NT hashes of the empty string. Most

of the outdated tools produce this result when executed on Windows 10 v1607+

machines.

Mimikatz is one of the tools that has been updated to process the new format of

SAM correctly. To dump hashes using this tool, one needs to issue three commands:

privilege::debug, token::elevate and lsadump::sam. Figure 8 shows the results

obtained when using Mimikatz 2.2.0 on GIAC-MSFT-P.

Figure 8 Extraction of Hashes with Mimikatz

Mimikatz extracted correct hashes for all the local and Microsoft accounts, except

for msft__mt4bjny (an alias for msft_notused@outlook.com). This result is not

surprising. The administrator had authorized msft_notused@outlook.com to use the host,

which led to the creation of an account in SAM. In this case, the system used

msft__mt4bjny as the alias for the account. The user had never logged in yet though.

Therefore, the system had no way of knowing the correct hash for it. Figure 8 shows a

hash for this account, though, and this hash is incorrect (compare with Figure 5). Figure 9

shows the results of an attempt of authentication using this NT hash value. Even though

this hash is incorrect, the authentication was successful!

Pass-the-Hash in Windows 10 11
	

Lukasz	Cyra,	lukasz.cyra@gmail.com	 	 	

Figure 9 Successful Authentication Using Incorrect Hash

It seems that Microsoft prepopulates the NT hash field of newly created Microsoft

accounts with a random value, which only gets updated when the user logs in for the first

time. However, this incorrect value can be used to authenticate successfully. The author

was not able to find any paper that would mention this finding or explain the observed

behavior. What is even more surprising is the fact that it was possible to reproduce this

behavior on the Windows 10 Pro machines, but it did not work on the Windows 10

Education VMs. This difference may indicate that it is a product defect.

Sometimes it may be possible to use older tools to dump the SAM if additional

steps are applied. The hashdump command of Meterpreter can illustrate this approach. It

injects code into LSASS (see Section 4.2), and then it extracts data from the SAM

(Ewaida, 2010). For the hashdump command to work in Windows 10 v1903, first the

Meterpreter process must be migrated to LSASS. Once it is complete, executing

hashdump provides the same results as obtained before in Mimikatz using

lsadump::sam (see Figure 10). Mr. Wally Strzelec from SANS shared this method as a

workaround for difficulties mentioned in (Strand, 2018).

Figure 10 Extraction of Hashes with Hashdump

Pass-the-Hash in Windows 10 12
	

Lukasz	Cyra,	lukasz.cyra@gmail.com	 	 	

4.2. NT Hashes in Memory
The memory of the Local Security Authority Subsystem Service (LSASS) process

can be used to retrieve NT hashes. LSASS is an executable located at %SystemRoot%

\System32\Lsass.exe. It assures authentication and authorization in Windows. Whenever

a user logs in to the system, data structures with the username and NT hash are created

and stored in the process memory. In contrast to the registry-based approach, this

technique can provide credentials of local, Microsoft, and domain accounts. This method

requires privileged access.

Figure 11 shows the role of LSASS in Windows. It maintains a table of entries for

each user that has logged into the system. LSASS stores information about all the

accounts that are being used actively, including service accounts, RDP sessions, and

RunAs executions (Renard, 2017). Among the attributes stored are the NT hashes.

Network logons are an exception, though, as in this case, the NT hash never reaches the

machine (Damele, 2011c). LSASS uses the hashes on behalf of the user to provide the

SSO experience. According to Ewaida (2010), LSASS purges the credentials as soon as a

user locks his system or logs off. According to Damele (2011c), this happens several

minutes after the logoff. The author’s tests confirmed the latter.

Figure 11 LSASS

To dump passwords from the LSASS of GIAC-DOMAIN-E, one needs to execute

two commands, privilege::debug and sekurlsa::logonpasswords, in Mimikatz 2.2.0. As

presented in Figure 12, this method makes it possible to capture the NT hash of

domain_used1, who was logged in at that moment. By contrast, the hash of

domain_used2 remained protected because the user was not logged in. The same applies

to the hashes of passwords of local users who were not logged in at that time.

LSASS	

Password	
Interactive	user	
NT	hash	

Service	user	
NT	hash	

Network	
Service	NTLMv2	

response	

Pass-the-Hash in Windows 10 13
	

Lukasz	Cyra,	lukasz.cyra@gmail.com	 	 	

Figure 12 Extraction of Hashes with Mimikatz

4.3. NT Hashes in Credential Guard
Windows Defender Credential Guard (WDCG) is a security feature in

Windows 10 that uses virtualization-based security technology to protect secrets.

Initially, it was available in the Enterprise, Education and Server editions, but now it has

also been included in Windows 10 Pro (Microsoft, n.d.-a). WDCG introduces an isolated

by virtualization LSASS process (LSAISO), which allows only trusted, privileged

applications access to the data. This process is not accessible to the rest of the system.

Malicious applications, even when running in the admin/SYSTEM context, are not able

to obtain credentials from the LSASS/LSAISO process. WDCG protects domain NTLM,

and Kerberos derived credentials, and data stored by applications as domain credentials.

This way, it tries to prevent PtH attacks (Microsoft, 2017). Its introduction inspired

discussions on the future of the feasibility of the attack (Green, 2017). A significant

limitation of WDCG is that it does not protect the SAM. Furthermore, when enabled,

WDCG blocks specific authentication capabilities, like unconstrained delegation, DES

encryption, and NTLMv1 (Joyce, 2019a). Therefore, it can have a negative functional

impact.

The author tested WDCG by trying to execute sekurlsa::logonpasswords on

GIAC-DOM-CG-E. It worked as expected, i.e., the NT hash of the currently logged-in

domain_used1 user could not be obtained (see Figure 13). However, the author was able

to obtain the hashes of the currently logged-in local accounts. The tests repeated on

GIAC-MSFT-CG-E showed that WDCG prevented Mimikatz from extracting the hash of

the logged-in Microsoft account. One can still obtain the hash via lsadump::sam though.

Pass-the-Hash in Windows 10 14
	

Lukasz	Cyra,	lukasz.cyra@gmail.com	 	 	

Figure 13 Extraction of Hashes with Mimikatz – WDCG

GIAC-DOM-CG-P and GIAC-MSFT-CG-P underwent the same tests. WDCG

was activated on those hosts using the same procedure as the one applied for the

Windows 10 Education machines. Even though WDCG was running, as reported by

msinfo32 and the Device Guard and Credential Guard hardware readiness tool, it did not

seem to have any functional impact. Later tests of Internal Monologue (see Section 4.4)

led to the same conclusions. Therefore, in the context of the PtH attack, activating

WDCG on Windows 10 Pro does not have any positive impact.

4.4. Internal Monologue Attack
Internal Monologue is an attack technique in which the intruder extracts NTLMv1

hashes of all the logged-in users. The author of the tool advertises it as an alternative for

Mimikatz, which is increasingly being detected by antivirus solutions and which does not

work in environments with WDCG (Shamir, 2018). The attack is composed of four steps:

1. Windows 10 does not support NTLMv1 by default. InternalMonologue

changes registry settings to force the host to use NTLMv1 instead of

NTLMv2. This step requires privileged access.

2. The tool retrieves the list of non-network login tokens of the currently running

processes.

3. For each token, it uses impersonation to force the host to provide an NTLMv1

response to the chosen challenge.

4. InternalMonologue reverts the changes made in step 1.

Pass-the-Hash in Windows 10 15
	

Lukasz	Cyra,	lukasz.cyra@gmail.com	 	 	

If the attacker does not have admin privileges, the attack allows for the extraction

of NTLMv2 hashes, which are less useful (see Section 2.2).

The author of Internal Monologue admits that the attack does not work in

environments with WDCG (Shamir, 2018). WDCG blocks NTLMv1 (see Section 4.3). In

this case, Internal Monologue can only extract NTLMv2 hashes. Despite this limitation,

Internal Monologue can still be a useful technique in environments where Mimikatz is

blocked or where it can be easily detected.

The tests confirmed that the Internal Monologue tool successfully extracts the

NTLMv1 hashes of the currently logged-in local and domain users in environments

without WDCG (see Figure 14). However, it was not possible to obtain hashes of

Microsoft accounts. It was only possible to obtain NTLMv2 hashes of local and domain

accounts on Windows 10 Education hosts with WDCG.

Figure 14 Extraction of NTLMv1 Hashes with InternalMonologue

4.5. Summary of Findings
Figure 15 summarises the findings of Sections 4.1, 4.2, 4.3, and 4.4. “+/-“

indicates the feasibility of extraction of hashes of the given type for the given account

type on a host with the specified configuration.

Account – Configuration NT hash –
SAM

NT hash –
logged-in users

NTLMv1

Local – EDU/PRO, no WDCG + + +

Domain – EDU/PRO, no WDCG - + +

Microsoft – EDU/PRO, no WDCG + + -

Local – EDU, WDCG + + -

Domain – EDU, WDCG - - -

Microsoft – EDU, WDCG + - -

Figure 15 Dumping Hashes in Various Configurations

Pass-the-Hash in Windows 10 16
	

Lukasz	Cyra,	lukasz.cyra@gmail.com	 	 	

The tests demonstrated a higher level of protection of domain accounts in

comparison to local and Microsoft accounts. Extraction of non-domain account hashes

from the SAM is possible in all the configurations of Windows 10. The hashes of domain

accounts are only vulnerable to the extraction from the LSASS memory. Windows 10

Education in the configuration with WDCG enabled further improves the security of

domain accounts by preventing hash extraction in all the analyzed scenarios. It is worth

noting though that even in this case, there are other means of attack that can be applied

(e.g., keyloggers or the attacks discussed in Section 5).

5. Hash Extraction from Network
While the previous section discussed how to extract hashes from a compromised

host, this section analyzes the ways of conducting hash extraction via network.

5.1. DCSync
In the DCSync attack, an attacker simulates the behavior of a Domain

Controller (DC) to retrieve password hashes via domain replication. It takes advantage of

the necessary functionality, which cannot be disabled (Berg, 2019). Typically,

Administrators, Domain Admins, and Enterprise Admins, as well as DC (but not

Read-Only DC) computer accounts have the required rights (Metcalf, 2015a). Mimikatz,

as well as other tools like Impacket or DSInternals, implement DCSync.

Figure 16 Hash Retrieval with DCSync

Pass-the-Hash in Windows 10 17
	

Lukasz	Cyra,	lukasz.cyra@gmail.com	 	 	

This technique was tested using the domain_used1 account, and the

lsadump::dcsync command of Mimikatz, which was used earlier to extract NT hashes

from the registry and LSASS. As presented in Figure 16, this technique made it possible

to obtain the NT hash of the domain_used2 user. Furthermore, the command returned the

list of the hashes that the user used in the past, which can be useful for cracking (pattern

analysis) or hash spraying.

5.2. Man-in-the-Middle Attacks
A man-in-the-middle attack can be designed using NTLMv2 hashes (see

Section 2.2). Figure 17 shows the steps of the attack.

Figure 17 NTLMv2 Relay Attack

The attack can be broken down into two components:

(1) Tricking the user into trying to authenticate to the attacker’s machine;

(2) Relaying the messages so that the attacker gets access to a host on behalf of

the user.

The attack can be executed utilizing various protocols, e.g., SMB, HTTP, LDAP,

or MSSQL (Abraham, 2016). For the attack to work, the victim’s machine and the

attacked host must be two different hosts (Byt3bl33d3r, 2017). To avoid this constraint,

one needs to use different protocols in each component of the attack (Abraham, 2016).

1.	Access	
request	

4.	Challenge	

5.	NTLMv2	
hash	

7.	Access	
granted	

2.	Access	
request	

3.	Challenge	

6.	NTLMv2	
hash	

Victim	 Attacked	host	

Attacker	

Pass-the-Hash in Windows 10 18
	

Lukasz	Cyra,	lukasz.cyra@gmail.com	 	 	

Tricking users into authentication can be done in numerous ways. In some

organizations, there are active defense systems or vulnerability scanners that try to log in

to any new host on the network (Baggett, 2013). Social engineering can be of use,

e.g., enticing the user into clicking a link to an SMB share hosted on the attacker’s

machine (Strand, 2018a). Chrome supports automatic downloads of SCF files, which can

trigger authentication (Stankovic, 2017). Metasploit provides the Word UNC Injector

module that generates Word files with an embedded link to an SMB resource. Once

opened in edit mode, the document initiates an NTLMv2 authentication session with the

host of the attacker’s choosing (Chandel, 2017). ARP poisoning or DNS spoofing, which

provide a generic way of acting as a man-in-the-middle, may also lead to NTLMv2 relay

attacks (Strand, 2018a).

Another option is to use Broadcast Name Resolution Poisoning (BNRP) attacks

that use NBT-NS, LLMNR, or mDNS. The attacker can respond to requests for

nonexistent resources, e.g., executed due to misspelling or misconfiguration. In

particular, modern browsers on Windows 10 computers with the default configuration use

the Web Proxy Auto-Discovery (WPAD) protocol. WPAD is vulnerable to the BNRP

attack if a WPAD server does not exist on the intranet. This attack can even be used over

the Internet if the attacker finds a way to register a generic Top-Level Domain (gTLD)

that conflicts with the internal naming scheme of the organization (Abraham, 2016).

Furthermore, the attacker can even respond to requests for existing resources by

combining this attack with the DoS attack against the DNS server (Abraham, 2016).

Setting up a relay can be done using tools like ntlmrelayx, included in the

Impacket library. Another option is MultiRelay that comes with Responder.

The effectiveness of this technique was tested by setting up an SMB relay that

intercepted and responded to WPAD requests (Byt3bl33d3r, 2017). Acting as a user, the

author opened Chrome. In Windows 10 with the default configuration, this is all that

needs to be done to force the machine to issue a WPAD request. He utilized

Responder 2.3.4.0 for NBT-NS, LLMNR, and mDNS poisoning. Figure 18 shows the

attack.

Pass-the-Hash in Windows 10 19
	

Lukasz	Cyra,	lukasz.cyra@gmail.com	 	 	

Figure 18 Responder Sending Poisoned Answers for WPAD

The author used the ntlmrelayx command of Imacket 0.9.15 to respond to those

requests, initiate NTLMv2 authentication, and relay it to another server. Ultimately, this

made it possible to execute the ipconfig command on the compromised server (see

Figure 19).

(-----------------------------------some lines removed-----------------------------------)

Figure 19 Successful Authentication and Command Execution with ntlmrelayx

With this technique, the author was able to impersonate local and domain

accounts on machines with and without WDCG. When the impersonated domain user had

admin privileges, the author was able to execute commands on his/her behalf.

The attack was not successful when it was used to impersonate Microsoft

accounts. Most likely, this has more to do with the relay tool used rather than with the

fundamental security level of Microsoft accounts. Microsoft accounts use aliases for user

names. If this is not addressed correctly by the relay tool, it might be the reason for the

failure of the attack.

It is possible to automate the SMB relay attack even further. The “-socks” switch

of the ntlmrelayx command allows to keep authentication sessions active, and chain

commands through a SOCKS proxy (Solino, 2018). Mr. Nicholas Kosovich from the

United Nations shared this method with the author.

Pass-the-Hash in Windows 10 20
	

Lukasz	Cyra,	lukasz.cyra@gmail.com	 	 	

6. Applying Extracted Hashes
Sections 4 and 5 presented various methods of hash extraction. This section

explains how to take advantage of the hashes obtained. We already saw in Section 5.2

how to relay NTLMv2 hashes to gain access to a host, as this was inextricably related to

the step of obtaining the hashes in the presented man-in-the-middle attack. However,

there are numerous other vulnerable protocols and technologies which accept the

NT hash for authentication. This section tests SMB, WMI, Kerberos, and RDP to

illustrate the attack. However, SQSH (Duckwall & Campbell, 2012), HTTP Negotiate

Authentication/WIA (Panayi, 2018) and WinRM (Renard, 2017) have been reported to be

vulnerable as well.

It is essential to understand the level of access that the PtH attack over the

network may provide. When the attacker uses domain accounts, the level of access

obtained via PtH corresponds to the level of privileges of the account used. There is a

noticeable difference, though, concerning local Windows accounts and Microsoft

accounts. There is the HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion

\Policies\System\LocalAccountTokenFilterPolicy registry key, which by default does not

exist in Windows 10 (Schroeder, 2017). When it exists and is enabled, local admin

accounts and Microsoft accounts with admin privileges can be used to get privileged

access to the host. With the default settings, though, local admin accounts and Microsoft

accounts get stripped of admin privileges upon connection. PtH with those accounts is

still possible, e.g., they can be used to connect to a file share, but they do not give

privileged access. This issue applies to all the PtH over the network attack methods

discussed in this paper, including the NTLMv2 relay attack.

6.1. PtH over SMB
The PtH attack on networks primarily uses SMB. The PsExec module of

Metasploit, pth-winexe and pth-rpcclient from the Pass-the-Hash toolkit, and several

other tools can be applied. It is worth mentioning, that contrary to multiple blog posts’

claims, the PsExec tool from the Sysinternals suite is not suitable for executing the PtH

attack (Renard, 2017).

Pass-the-Hash in Windows 10 21
	

Lukasz	Cyra,	lukasz.cyra@gmail.com	 	 	

The author tested the PtH attack using the PsExec module of Metasploit. The tool

uses the provided share and credentials to deploy a service image onto the target machine

first. Then it calls DCE/RPC to start the deployed service. For this to work, SMB must be

available and reachable, File and Printer Sharing must be enabled, and Simple File

Sharing must be disabled. Figure 20 shows a successful connection using the hash of

domain_used1.

Figure 20 Pth Connection Using Domain Account

domain_used1 is a privileged account. The author repeated the test using

local_nonpriv, and instead of the default share, which is Admin$, he configured a

different share on the target machine to which local_nonpriv had access. Figure 21 shows

the log of the connection. The account successfully connected to the target machine, and

the deployment of the payload was successful. The PtH attack was successful. The

service did not start, though, due to the lack of admin privileges.

Figure 21 Pth Using Non-Privileged Account

It is worth mentioning that one can spray the obtained hashes. The passwords

might give access to multiple accounts on multiple machines. Crackmapexec can be used

to this end (Byt3bl33d3r, 2018).

Pass-the-Hash in Windows 10 22
	

Lukasz	Cyra,	lukasz.cyra@gmail.com	 	 	

6.2. PtH over WMI
Invoke-TheHash makes it possible to execute the PtH attack over WMI

(Robertson, 2018). It requires credentials of an account with admin privileges on the

attacked host. The user executing the attack can be a regular user. Figure 22 shows a

successful connection, which created a folder on the attacked machine.

Figure 22 Pth Using WMI

6.3. PtH over Kerberos
Even Kerberos can accept the NT hash instead of a password. The attack is called

Overpass-the-Hash and can be executed using the sekurlsa::pth command of Mimikatz

(Delpy, 2014). In this attack, the NT hash is used to obtain a Kerberos ticket. The ticket

allows the attacker to access network resources on behalf of the impersonated user. The

attack uses process manipulation. Therefore, the executing user needs to have admin

privileges. Figure 23 shows the successful impersonation of domain_used2.

Figure 23 Overpass-the-Hash with Mimikatz

Pass-the-Hash in Windows 10 23
	

Lukasz	Cyra,	lukasz.cyra@gmail.com	 	 	

6.4. PtH over RDP
Finally, attackers may be able to use RDP to execute PtH attacks if the

organization uses a non-default RDP configuration. For this attack technique to work,

organizations must enable the Restricted Admin setting. Windows 10 does not allow

Restricted Admin RDP connections by default, but Microsoft recommends to activate

them (see Section 7). When connections are made using the Restricted Admin mode, the

server does not receive the credentials of the user in any reusable form. However, the

negative side effect of this configuration is the possibility of PtH attacks. While testing,

the author was able to successfully establish an RDP session using the xfreerdp

command, which is included in the Pass-the-Hash toolkit (see Figure 24).

Figure 24 Pth Using RDP

7. Protection
Previous sections presented numerous attack techniques utilizing password hashes

that may still be possible today. Organizations should apply the defense-in-depth

approach to mitigate the risk. They need to prevent hash extractions in the first place.

They need to try to make hash utilization more challenging. Finally, when a breach

occurs, they should be able to detect it.

7.1. Generic Security Measures
Upgrading the operating system to the latest version and keeping it patched is the

first step. Using Windows Enterprise/Education instead of Windows Pro is recommended

(see Section 4). It is essential to deploy generic security measures before implementing

PtH specific controls. Among other things, organizations should consider patching

applications, having effective anti-malware protection, having an adequate password

complexity policy, and utilizing a host-based firewall. They should also detect

unauthorized devices on the network, apply Multi-Factor Authentication (MFA), and

make sure that users have privileges corresponding to their needs. In particular, local

administrators should not have debug rights, when possible.

Pass-the-Hash in Windows 10 24
	

Lukasz	Cyra,	lukasz.cyra@gmail.com	 	 	

Furthermore, users should know that when they use RDP, they should not

disconnect, but log off instead. This way, they do not leave NT hashes in the LSASS

memory. All this makes any penetration attempt, including PtH attacks, significantly

more difficult.

7.2. Hash Protection
The most effective protection against the PtH attack is to prevent the hashes from

being stolen in the first place. Section 4.3 analyzed already the effectiveness of the

WDCG, showing the increased protection level for domain accounts it provides. There

are other ways to improve the security of hashes, however.

The holy grail concerning PtH is to block NTLMv2 on networks completely and

authenticate exclusively with Kerberos. This hardening step is not applied broadly,

however, as it leads to many compatibility issues.

On the other hand, Microsoft provides several comprehensive solutions that try to

address the problem by limiting user privileges and reducing the number of systems that

store credential hashes (Microsoft, 2016; Microsoft, 2019). One should consider

introducing zoning in Active Directory managed environments (Active Directory

administrative tier model, Enhanced Security Administrative Environment (ESAE)).

Security can be improved further by restricting privileges of users and hardening existing

accounts (Privileged Access Management (PAM), Just Enough Administration (JEA),

Protected Users security group). Finally, organizations should harden systems used for

privileged access (Privileged Access Workstations (PAWs)). These solutions are

effective at hindering lateral movement by reducing the impact of an initial breach. They

involve additional cost, though, in terms of administration, infrastructure, and daily

operation. They can also lead to compatibility issues.

Hardening RDP is essential. Organizations should enforce Network Level

Authentication to prevent password sniffing. Also, the Restricted Admin feature,

discussed in Section 6.4, significantly improves the security of admin credentials, when

used for remote access.

Pass-the-Hash in Windows 10 25
	

Lukasz	Cyra,	lukasz.cyra@gmail.com	 	 	

The LSASS process is another candidate for hardening. The protection of LSASS,

when enabled, prevents non-protected processes from interacting with it. This change

may pose compatibility issues, however.

Finally, there are several steps an organization can take to reduce the risks of

man-in-the-middle attacks. All internal systems should have valid DNS entries, and

entries for commonly searched systems should be added, e.g., for the WPAD server (see

Section 5.2). Alternatively, WPAD should be disabled. The organization should consider

disabling LLMNR and NetBIOS, blocking outgoing SMB traffic, and requiring the SMB

Packet Signing. As with any widespread changes, organizations should test these

solutions thoroughly before implementation.

7.3. PtH Prevention
Based on Section 6, the LocalAccountTokenFilterPolicy setting should be

disabled to reduce the impact of leaked NT hashes. However, there are scenarios in which

this creates issues. Even Microsoft recommends enabling it as a workaround for some

problems (Schroeder, 2017).

A better solution is to implement the Local Administrator Password Solution

(LAPS). This control assures regular changes of local admin passwords.

Furthermore, Authentication Policies can be used to limit the impact of PtH

attacks. With the policies, it is possible to restrict hosts from which authentication with a

given account can take place. This way, the attacker is not able to use leaked admin

password hashes unless logging in from the admin console.

7.4. PtH Detection
To effectively detect PtH attacks, the organization should apply several strategies.

Firstly, one should monitor the logs for alerts about PtH tools. Presence of those

tools on the network certainly requires investigation.

Secondly, one should monitor for unusual activity on hosts. Using Sysmon, it is

possible to detect attempts of tampering with the LSASS process (Warren, 2019). SACL

is a process in Windows that can be enabled to provide advanced auditing of LSASS

(Metcalf, 2015b). Furthermore, searching for unusual configuration changes on hosts can

Pass-the-Hash in Windows 10 26
	

Lukasz	Cyra,	lukasz.cyra@gmail.com	 	 	

help detect attacks. Good candidates for monitoring are LocalAccountTokenFilterPolicy

and WDigest-related settings.

Unusual connections between hosts can also indicate attacks. One should look for

client-to-client or server-to-server connections, and multiple successful or failed

connections from a single IP address. Honeypots and honeycreds can turn out to be

useful. Domain replication from unexpected IP addresses may indicate DCSync attacks.

Finally, tools like Got-Responded may be used to detect man-in-the-middle attacks,

executed using NBT-NS, LLMNR, or mDNS poisoning.

8. Future Research
This paper specifically focused on the PtH attack in a scenario in which an

attacker obtained access to a host. Future research could extend the findings presented

here by testing the effectiveness of the security measures discussed in Section 7. It could

identify attacks against those protections, e.g., bypassing SMB Packet Signing or

working around WDCG. Future research could cover related attack techniques, such as

attacks via physical access, hash extraction from Domain Controllers, NTLMv2 cracking,

attacks on Kerberos, or extraction of credentials from popular applications. It could

include clear-text password retrieval from the Credential Manager, LSA Secrets,

Protected Storage, and Group Policy Preference files.

Furthermore, Section 6 presented PtH attacks using four protocols. Additional

tests could be performed using SQSH, HTTP Negotiate Authentication/IWA, and

WinRM. Tests could also cover RDP’s vulnerability to man-in-the-middle attacks.

9. Conclusions
This paper analyzed the feasibility of the PtH attack in environments using

Windows 10 v1903. It presented several techniques of hash extraction. It demonstrated in

which situations attackers can authenticate using those hashes. Finally, it showed

additional security controls an organization may consider applying to minimize this risk.

Ultimately, the tests executed proved that the PtH attack is still a real threat, and it poses

a risk that each organization needs to address.

Pass-the-Hash in Windows 10 27
	

Lukasz	Cyra,	lukasz.cyra@gmail.com	 	 	

References
	
Abraham, J. (2016). Broadcast Name Resolution Poisoning / WPAD attack vector.

Retrieved August 31, 2019, from https://www.praetorian.com/blog/broadcast-

name-resolution-poisoning-wpad-attack-vector

Baggett, M. (2013). SMB Relay demystified and NTLMv2 pwnage with Python. Retrieved

September 1, 2019, from https://pen-testing.sans.org/blog/2013/04/25/smb-relay-

demystified-and-ntlmv2-pwnage-with-python

Berg, L. (2019). What is DCSync? An introduction. Retrieved August 31, 2019, from

https://blog.stealthbits.com/what-is-dcsync/

Byt3bl33d3r. (2017). Practical guide to NTLM Relaying in 2017 (a.k.a getting a foothold

in under 5 minutes). Retrieved August 31, 2019, from

https://byt3bl33d3r.github.io/practical-guide-to-ntlm-relaying-in-2017-aka-

getting-a-foothold-in-under-5-minutes.html

Byt3bl33d3r. (2018). CrackMapExec - SMB command reference. Retrieved

September 11, 2019, from https://github.com/byt3bl33d3r/CrackMapExec/wiki

/SMB-Command-Reference

Chandel, R. (2017). 4 ways to capture NTLM hashes in network. Retrieved

August 31, 2019, from https://www.hackingarticles.in/4-ways-capture-ntlm-

hashes-network/

Damele, B. (2011a). Dump Windows password hashes efficiently - Part 1. Retrieved

July 12, 2019, from https://bernardodamele.blogspot.com/2011/12/dump-

windows-password-hashes.html

Damele, B. (2011b). Dump Windows password hashes efficiently - Part 2. Retrieved

July 12, 2019, from https://bernardodamele.blogspot.com/2011/12/dump-

windows-password-hashes_16.html

Damele, B. (2011c). Dump Windows password hashes efficiently - Part 5. Retrieved

July 14, 2019, from https://bernardodamele.blogspot.com/2011/12/dump-

windows-password-hashes_28.html

Delaunay, J. C. (2017). DPAPI exploitation during pentest and password cracking.

Retrieved July 12, 2019, from https://www.synacktiv.com/ressources

/univershell_2017_dpapi.pdf

Pass-the-Hash in Windows 10 28
	

Lukasz	Cyra,	lukasz.cyra@gmail.com	 	 	

Delpy, B. (2014). Overpass-the-hash. Retrieved September 2, 2019, from

http://blog.gentilkiwi.com/securite/mimikatz/overpass-the-hash

Deneut, T. (2018). Retrieving NTLM hashes and what changed in Windows 10. Retrieved

July 3, 2019, from https://www.insecurity.be/blog/2018/01/21/retrieving-ntlm-

hashes-and-what-changed-technical-writeup/

Duckwall, A., & Campbell, C. (2012). PTH with MSSQL and FreeTDS/SQSH. Retrieved

September 2, 2019, from https://passing-the-hash.blogspot.com/2012/08/pth-with-

mssql-and-freetdssqsh.html

Ewaida, B. (2010). Pass-the-Hash attacks: tools and mitigation. SANS Institute

Information Security Reading Room.

Fortuna, A. (2018). Retrieving NTLM hashes without touching LSASS: the “Internal

Monologue” attack. Retrieved August 24, 2019, from

https://www.andreafortuna.org/2018/03/26/retrieving-ntlm-hashes-without-

touching-lsass-the-internal-monologue-attack/

Gombos, P. (2018). LM, NTLM, Net-NTLMv2, oh my! A pentester's guide to Windows

hashes. Retrieved July 11, 2019, from https://medium.com/@petergombos/lm-

ntlm-net-ntlmv2-oh-my-a9b235c58ed4

Green, A. (2017). Windows 10 authentication: the end of pass the hash? Retrieved

July 6, 2019, from https://www.varonis.com/blog/windows-10-authentication-the-

end-of-pass-the-hash/

Januszkiewicz, P. (2017). Cached credentials: important facts that you cannot miss.

Retrieved July 13, 2019, from https://cqureacademy.com/blog/windows

-internals/cached-credentials-important-facts

Joyce, K. (2019a). Defender Credential Guard: protecting your hashes. Retrieved

August 30, 2019, from https://blog.stealthbits.com/defender-credential-guard

-protecting-your-hashes/

Joyce, K. (2019b). WDigest clear-text passwords: stealing more than a hash. Retrieved

September 3, 2019, from https://blog.stealthbits.com/wdigest-clear-text

-passwords-stealing-more-than-a-hash/

Lundeen, R. (2014). MSCash hash primer for pentesters. Retrieved July 12, 2019, from

https://webstersprodigy.net/2014/02/03/mscash-hash-primer-for-pentesters/

Pass-the-Hash in Windows 10 29
	

Lukasz	Cyra,	lukasz.cyra@gmail.com	 	 	

Metcalf, S. (2015a). Mimikatz DCSync usage, exploitation, and detection. Retrieved

August 31, 2019, from https://adsecurity.org/?p=1729

Metcalf, S. (2015b). Unofficial guide to Mimikatz & command reference. Retrieved

September 6, 2019, from https://adsecurity.org/?p=2207

Microsoft. (2014). Mitigating Pass-the-Hash (PtH) attacks and other credential theft

techniques. Retrieved September 6, 2019, from https://www.microsoft.com/en

-us/download/details.aspx?id=36036

Microsoft. (2016). Protected Users security group. Retrieved September 6, 2019, from

https://docs.microsoft.com/en-us/windows-server/security/credentials-protection

-and-management/protected-users-security-group

Microsoft. (2017). Network security: Restrict NTLM: NTLM authentication in this

domain. Retrieved July 13, 2019, from https://docs.microsoft.com/en-

us/windows/security/threat-protection/security-policy-settings/network-security

-restrict-ntlm-ntlm-authentication-in-this-domain

Microsoft. (2017). Protect derived domain credentials with Windows Defender

Credential Guard. Retrieved August 30, 2019, from

https://docs.microsoft.com/en-gb/windows/security/identity-protection/credential

-guard/credential-guard

Microsoft. (2019). Active Directory administrative tier model. Retrieved

September 6, 2019, from https://docs.microsoft.com/en-us/windows-

server/identity/securing-privileged-access/securing-privileged-access-reference

-material

Microsoft (n.d.-a) Compare Windows 10 editions. Retrieved August 30, 2019, from

https://www.microsoft.com/en-us/WindowsForBusiness/Compare

Microsoft (n.d.-b). Windows 7 End of Support 365. Retrieved July 6, 2019, from

https://www.microsoft.com/en-us/microsoft-365/windows/end-of-windows-7

-support

Munro, K. (2013). Pass the hash. SC Magazine: For IT Security Professionals.

Panayi, C. (2018). Passing-the-Hash to NTLM authenticated web applications. Retrieved

September 2, 2019, from https://labs.mwrinfosecurity.com/blog/pth-attacks

-against-ntlm-authenticated-web-applications/

Pass-the-Hash in Windows 10 30
	

Lukasz	Cyra,	lukasz.cyra@gmail.com	 	 	

Renard, J. (2017). *Puff* *Puff* PSExec. Retrieved July 5, 2019, from

https://www.toshellandback.com/2017/02/11/psexec/

Robertson, K. (2018). Invoke-TheHash. Retrieved September 2, 2019, from

https://github.com/Kevin-Robertson/Invoke-TheHash

Ronin. (2014). Passing the hash with remote desktop. Retrieved September 2, 2019, from

https://www.kali.org/penetration-testing/passing-hash-remote-desktop/

Schroeder, W. (2017). Pass-the-Hash is dead: long live LocalAccountTokenFilterPolicy.

Retrieved September 1, 2019, from https://posts.specterops.io/pass-the-hash-is

-dead-long-live-localaccounttokenfilterpolicy-506c25a7c167

Shamir, E. (2018). Internal monologue attack: retrieving NTLM hashes without touching

LSASS. Retrieved July 14, 2019, from https://github.com/eladshamir/Internal

-Monologue

Siddhu, Y. (2016). Cracking NTLMv2 responses captured using Responder. Retrieved

August 27, 2019, from https://zone13.io/post/cracking-ntlmv2-responses

-captured-using-responder/

Solino, A. (2019). Playing with relayed credentials. Retrieved September 9, 2019, from

https://www.secureauth.com/blog/playing-relayed-credentials

Stankovic, B. (2017). Stealing Windows credentials using Google Chrome. Retrieved

September 11, 2019, from https://defensecode.com/news_article.php?id=21

Strand, J. (2018a). Computer and Network Hacker Exploits Part 3. In

SEC504_4_D03_01 | Hacker tools, techniques, exploits, and incident handling.

SANS Institute.

Strand, J. (2018b). Workbook. In SEC504_W_D03_01 | Hacker tools, techniques,

exploits, and incident handling. SANS Institute.

VandenBrink, R. (2019). Mitigations against Mimikatz style attacks. Retrieved

September 7, 2019, from https://isc.sans.edu/forums/diary/Mitigations+against

+Mimikatz+Style+Attacks/24612/

Warren, J. (2019). How to detect Pass-the-Hash attacks. Retrieved September 6, 2019,

from https://blog.stealthbits.com/how-to-detect-pass-the-hash-attacks/

Willett, T. (2016). Hacking the local passwords on a Windows system. Retrieved

July 13, 2019, from https://pigstye.net/forensics/password.html

