
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics

With Native Tools

GIAC (GCIH) Gold Certification

Author: Trevor McAfee, trevor.n.mcafee@gmail.com
Advisor: Bryan Simon

Accepted: July 14th, 2020

Abstract

Many organizations are interested in standing up threat response teams but are unable, or
unwilling, to provide funding or approval for third-party tools. This lack of support
requires threat response teams to utilize built-in, OS-specific tools, to investigate
suspicious processes and files. These tools can provide a significant amount of useful
information when scrutinizing a suspicious process or file. However, these tools and their
output are often unwieldy. A lack of cohesiveness requires running multiple similar
commands to gather all the data for an investigation, and then manually combining and
correlating that data. This paper examines the data of interest during an incident response
and the native Microsoft Windows tools used to obtain it. This paper also discusses how
to use PowerShell to automate the collection and compilation of this important data.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 2

Author Name, email@addressm

1. Introduction

Malicious software needs to be actively running as a process to be a threat to the

system. Due to this need, an analyst may notice and investigate it further. To determine

the legitimacy of a process, an investigator will analyze the running process thoroughly

and ascertain the details of the process in question. However, to adequately assess

process legitimacy, one must be familiar with their environment and standard Windows

processes and behaviors. Additional outside research into unfamiliar processes will likely

be necessary for making an informed decision, however this information is outside the

scope of this research. It is assumed that readers will conduct this external research on

their own as necessary.

There are many tools, both free and paid, that can significantly aid in an

investigation. The most common and indispensable set of tools is the Sysinternals suites

from Microsoft, which can accomplish system administration tasks, monitor, and

investigate what processes are doing and touching (Heddings, Sysinternals Pro: What Are

the SysInternals Tools and How Do You Use Them?, 2019). However, some

organizations are very strict about what software is allowed to be installed and executed

on their networks. Sometimes the process to obtain additional software approval is very

long and arduous, or the organization simply will not allow it. Unfortunately, even

though Microsoft acquired Sysinternals in 2006 (Microsoft, 2006), the tools have never

been included in a default Windows installation, thus triggering the additional software

approval process mandated by many companies.

Fortunately, Microsoft Windows comes with almost everything an incident

responder might need to investigate processes. However, the main drawback to these

tools is that much of the output data is unfriendly and often does not provide all the

information desired, requiring the use of multiple similar applications to gather all the

data.

This paper describes the tools in question and the viability of using PowerShell to

automate the collection and parsing of all the data into one standard output. The data of

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 3

Author Name, email@addressm

interest includes: the Process ID (PID), Parent Process ID (PPID), process lineage,

executable path, command-line arguments, the user account running the process,

associated network activity, and the Dynamic Link Libraries (DLLs) loaded into the

process. This paper also covers searching for persistence mechanisms potentially used by

the process, including scheduled tasks, Windows services, autorun directories, and other

locations in the registry known to launch applications automatically. Additionally, this

paper discusses collecting data from the filesystem related to the process in question,

including collecting hashes of the executable and loaded DLLs, the creation date and time

of the executable, and searching the filesystem for other files created within a specified

time window from the executable creation time. Finally, this paper also investigates the

automation of submitting the collected hashes to VirusTotal to help discern if these files

are known malicious.

The following Windows tools are used to gather the information mentioned above:

- Windows Management Instrumentation (WMI)

- Tasklist

- Netstat

- Reg

- Schtasks

- CertUtil

- PowerShell

 PowerShell is used throughout this paper both to collect data and to parse, filter,

and stitch together the output of the other Windows tools discussed to present the

information clearly and coherently. This paper assumes that the reader has a basic

knowledge of scripting and PowerShell.

2. Test Setup

 A test lab was created with the following versions of Windows to test the

automatic collection of data via native Windows tools using a PowerShell script:

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 4

Author Name, email@addressm

- Windows 7 Service Pack 1 Build 7601

- Windows 8.1 Build 9600

- Windows 10 Build 18363

- Windows Server 2008R2 Service Pack 1 Build 7601

- Windows Server 2012R2 Build 9600

- Windows Server 2016 Build 14393

- Windows Server 2019 Build 17763

 Two malicious executables using three means of persistence were the subjects of

this test. The first malicious executable is a Meterpreter Bind Shell configured to listen

on port 8080. This executable was created using MSFVenom on Kali Linux version

2020.1 and saved as a Windows executable named meter.exe.

Figure 1 Generating Meterpreter Bind Shell Executable

 This executable was placed in C:\windows\ on each test machine. A Windows

service named LocalProxy was created and configured to run on system startup. The

service executes cmd.exe, which in turn runs c:\windows\meter.exe.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 5

Author Name, email@addressm

Figure 2 Meterpreter Bind Shell in place on victim

Figure 3 Creation of LocalProxy Service

 The second executable is a copy of Netcat, nc.exe, taken from

/usr/share/windows-resources/binaries/nc.exe on the same Kali Linux machine. Nc.exe

was also placed in C:\windows\ on each test machine. A scheduled task was created

named "Simple Web Server Starter" which was set to run every hour as the SYSTEM

account with command-line arguments to set up a listener on port 80 that will execute

cmd.exe upon connection.

Figure 4 Netcat in place on victim

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 6

Author Name, email@addressm

Figure 5 Creating Simple Web Server Starter scheduled task

 Finally, a shortcut was created to nc.exe named "Management Interface," which

was configured to start another Netcat listener on port 8888 that also executes cmd.exe

upon connection. This shortcut was placed in the user's startup folder,

"C:\Users\Player1\AppData\Roaming\Microsoft\Windows\Start

Menu\Programs\Startup\," which runs the shortcut every time the user logs on to the

system.

Figure 6 Management Interface shortcut placed in startup folder

Figure 7 shows the full target path: “C:\Windows\nc.exe -L -p 8888 -e

C:\windows\system32\cmd.exe”

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 7

Author Name, email@addressm

Figure 7 Management Interface shortcut configuration

 After restarting the system, logging in, and waiting an hour, netstat was used to

confirm that each means of persistence, for each of these malicious executables, worked

successfully as processes were listening on port 80, 8080, and 8888. This is shown in

figure 8.

Figure 8 Netstat view of each malicious process

Task Manager, shown in figure 9, also confirmed that meter.exe and two instances of

nc.exe were running, and the PIDs matched the listening ports shown in figure 8.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 8

Author Name, email@addressm

Figure 9 Task Manager view of malicious processes

3. Gathering Data Using Windows Tools

The tools discussed in the following sections come pre-installed on every

Windows version, at least as far back as Windows 7. Below is a brief description of each

one, followed by how to gather the desired data with each tool.

3.1. Tools of the Trade

3.1.1. CertUtil
Certutil is a command-line application provided by Microsoft as part of

Certificate Services (Microsoft, 2017). While it is primarily meant to dump, display, and

configure certification authority configurations and verify certificates, it can also be used

to hash files using the -hashfile option. Interestingly, while CertUtil has this functionality,

the Microsoft documentation does not specify which hashing algorithms it supports.

Upon testing, it is confirmed that as far back as Windows 7, CertUtil supports at least the

MD5, SHA1, SHA256, and SHA512 hashing algorithms.

3.1.2. Netstat
Netstat is a Windows tool used to view all listening and active connections on a

system. It will also show the corresponding PID of the process listening or initiating the

connection (Microsoft, 2017). The PID enables cross-referencing of network activity with

running processes to see if the process in question is active on the network.

3.1.3. PowerShell
 PowerShell is an object-based command-line shell and scripting language

developed by Microsoft and built on .NET (Microsoft, 2020). It has come pre-installed

on every version of Windows since Windows 7 and Windows Server 2008R2 (Microsoft,

2010) with each new version of Windows coming with an updated version. Windows 7

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 9

Author Name, email@addressm

and Windows Server 2008R2 come with PowerShell Version 2.0, while Windows 10 and

Windows Server 2019 come with Version 5.1. Each release introduces new cmdlets and

features. To ensure the widest compatibility with created scripts, an understanding of the

environment is needed to determine the oldest version of PowerShell in use. All scripts

created should be designed with that version in mind. PowerShell scripts are forward

compatible, meaning scripts written for older versions will still work on newer versions,

so there is no risk of breaking something by ensuring backward compatibility (Wilson,

2015). Additionally, PowerShell can be used to execute non-PowerShell executables on

the system.

3.1.4. Reg
 Reg is a command-line tool that performs operations on registry keys and values

(Microsoft, 2017). The subcommand "reg query" is used to search the registry for any

entry that matches a given string.

3.1.5. Schtasks
 Schtasks is a Windows application that allows administrators to "create, delete,

query, change, run, and end scheduled tasks on a local or remote computer" (Microsoft,

2018).

3.1.6. Tasklist
 Tasklist is a Windows command-line application that displays a list of currently

running processes (Microsoft, 2017). The main benefit of using Tasklist is that when

executed with the verbose option, /v, it displays the user context of each process.

3.1.7. WMI
 The WMI tool is “the infrastructure for management data and operations on

Windows-based operating systems" (Microsoft, 2018). WMI was released in 1998 and

was the core system management utility starting with Windows 2000 (Microsoft, 2006).

Administrators use WMI to obtain detailed information about systems and to administer

them, both locally and remotely.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 10

Author Name, email@addressm

3.2. Running Process Information Collection

 In simple terms, a process is a program that is currently executing on the

computer (Microsoft, 2018). Running processes are the most volatile sources of data

discussed in this paper as they can stop at any time, eliminating much of the sought-after

data along with it.

3.2.1. Executable Path, Command Line Arguments, and PPID
 The executable path of a process provides essential insight into its legitimacy

(Nolan, et al., 2005). For example, common locations for program execution include the

Program Files and System32 folders, so processes running from these locations have a

higher probability of being legitimate. However, other places, such as internet cache

folders, user directories, and the root of the file system, are non-standard locations for

executables, and processes running from these locations are less likely to be legitimate

(Yonts, 2014). Many standard process viewing applications, such as Task Manager and

Tasklist, show only the name of the executable and not the path, so a malicious

executable can attempt to hide in plain sight by having the same name of a legitimate

program but running from a different location. For example, svchost.exe running from

c:\windows\system32\ is likely the valid Windows application, but svchost.exe running

from anywhere else, such as C:\Windows\, is suspect.

Many applications have either standard, expected command-line arguments or

don't use command-line arguments at all. Understanding what arguments are typical for

an application will help determine if the process is legitimate or if a malicious program is

masquerading as the legitimate one. For example, svchost.exe will almost always be

invoked with the -k option followed by an argument, so instances of svchost.exe running

without a -k option are worthy of investigation.

 A process's parent process is of interest to an investigator because many

applications have an expected lineage, and any deviation from this baseline is cause for

concern. For example, Microsoft Word should not be starting cmd.exe, wscript.exe, or

powershell.exe (Weyne, 2016), and only Wininit.exe should spawn lsass.exe (Lee &

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 11

Author Name, email@addressm

Pilkington, 2018). Any deviation from this behavior should be considered suspicious and

investigated further.

 WMI retains the executable path, command line arguments, PPID, and more for

each process. PowerShell's Get-WMIObject cmdlet, using the win32_process WMI class,

will display this data.

All of the PIDs used in the following examples are the PIDs of the test malware processes

created in the Test Setup section.

Figure 10 WMI process information for PID 2468

Figure 11 WMI process information for PID 1320

Figure 12 WMI process information for PID 1804

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 12

Author Name, email@addressm

Saving this output to a variable will allow investigators to combine this data with

additional information about each process gathered with different tools.

Figure 13 Saving WMI process information to variable

 WMI can query the same information of each parent process using a PowerShell

loop to provide a complete picture of process lineage. This lineage will help an

investigator determine if there is anything suspicious regarding the creation of the process

in question. Figure 14 shows the process lineage for PID 2468 using the WMI process

data variable created in figure 13.

Figure 14 Process lineage for PID 2468

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 13

Author Name, email@addressm

3.2.2. Username
The process’ username is relevant because it specifies what permissions the

process has and what activity it can perform. For example, if a process is running as

standard user "Bob," it will be able to access and modify any of Bob's files. However, it

won't be able to access Alice's data, nor will it be able to perform system configuration

changes, such as creating new services. Conversely, processes running as an

administrator or the System account can access all files and implement any configuration

changes. Additionally, most executables run as an expected user, so any deviation could

be an indicator of malicious activity and is worth investigating further. For example, only

normal users should be running web browsers, and only System should be running

lsass.exe, so if a user is running lsass.exe or System is running a web browser, this is

abnormal and worthy of further examination.

 Running Tasklist with the verbose option, /v, when executed with administrator

privileges, will display the user context of every process. Tasklist can output this

information in Comma Separated Value (CSV) format, which can be easily converted to

PowerShell objects using the ConvertFrom-Csv PowerShell cmdlet.

Figure 15 Tasklist data for PID 2468 after conversion to PowerShell object

 Once PowerShell converts the data, the User Name field can be extracted and

added to the process variable created earlier. Now the data is combined and can be

displayed in one coherent output, as shown in figure 16 below.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 14

Author Name, email@addressm

Figure 16 Username information from Tasklist added to WMI data for PID 2468

3.2.3. Process List
 An investigator can combine the above techniques to display the process name,

PID, PPID, username, executable path, and command-line arguments of every running

process on the computer with a PowerShell loop. This process list would help during the

initial review of a system to determine if any process on the machine looks suspicious.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 15

Author Name, email@addressm

Figure 17 Combining and displaying Tasklist and WMI information for each

running process

 To display the data as a table, a PowerShell table object can be created, and each

process's data can be added as a new row to the table as described on Microsoft's website

(Microsoft, 2012). In this example, the script creates a function to create the table if

necessary and add rows to the table. The script then uses a loop to call the function on

each process to add it to the table. The script then displays the table on the screen.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 16

Author Name, email@addressm

Figure 18 Function for creating the process list table

Figure 19 Combining process data and adding process information to the table

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 17

Author Name, email@addressm

Figure 20 Displaying the process list table (Note: The command-line data is not

displayed in this screenshot due to space constraints)

3.2.4. Process Tree
 As mentioned previously, process lineage is a meaningful datapoint in

determining if a process is suspicious. User Kazun on Microsoft's Technet forum

provides a PowerShell function to create a simple process tree (Kazun, 2013).

Figure 21 Kazun's process tree function and results

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 18

Author Name, email@addressm

 With some minor adjustments to this function and the process table function

mentioned above, these functions can be combined to display the process name, PID,

PPID, username, executable path, and command-line arguments of each running process

in tree form.

Figure 22 Function creating the process table, same as figure 18

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 19

Author Name, email@addressm

Figure 23 New Process Tree function

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 20

Author Name, email@addressm

Figure 24 Display new process tree (Note: due to size constraints, the

CommandLine column is not displayed in this screenshot)

3.2.5. Network Data
 Besides information about the running process itself, another important set of data

to collect is any network activity associated with it. Malware often attempts network

communication, such as listening for inbound connections from the attacker or reaching

out to Command and Control (C2) servers to check for new instructions. This paper uses

netstat to gather this information instead of the more PowerShell-friendly Get-

NetTCPConnection cmdlet due to the desire to make this script backward compatible

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 21

Author Name, email@addressm

with PowerShell Version 2.0. Get-NetTCPConnection wasn't available until PowerShell

Version 3.0.

Figure 25 Raw Netstat output

 Netstat does not provide output formatting options and returns the results as a

series of strings, therefore piping the output to PowerShell's Select-String cmdlet is

required to obtain only the lines associated with the PID in question. However, it is worth

noting that using Select-String with just the PID will match anything in the output strings.

If the PID happens to match part of a port number or IP address, that line will also return.

The Select-String query can be enhanced with regular expressions to overcome this

challenge. The PID is always the final column in the netstat output and is preceded by

whitespace, so if an investigator searches for the PID as the last part of a line and after a

word boundary, they can ensure the search matches just the PID. For example, when

searching for PID 2468, the select-string query will be "\b2468$". A variable can also be

used in place of the hardcoded PID 2468.

Figure 26 Netstat output for the PID held in $process variable, PID 2468 in this

example

3.2.6. Loaded Dynamic Link Libraries
 Dynamic Link Libraries (DLLs) are files containing pre-written code that

programs can use to ease the burden on application developers and to ensure multiple

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 22

Author Name, email@addressm

programs performing the same action have the same experience (Microsoft, 2019).

Microsoft provides many DLLs with Windows, so their existence is not unusual.

However, a malicious actor can also create DLLs, which can be either injected into or

loaded by a running process (Phan, 2015). These malicious DLLs, once loaded by a

process, can provide whatever functionality a malicious actor wants.

 PowerShell's Get-Process cmdlet, when executed as an administrator, contains a

listing of each DLL loaded by a process, the path it was loaded from, the company that

created it, the file version, and more. Figure 27 shows the information for DLLs loaded

by PID 2468.

Figure 27 DLL and associated information loaded by PID 2468

 Saving this data to a variable, as shown in figure 28, permits the addition of each

DLL’s file hash to the PowerShell Object. Once combined, both sets of data can be

displayed in one view, as seen in figure 33.

Figure 28 Saving DLL information to a PowerShell variable

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 23

Author Name, email@addressm

3.2.7. File Hashes
 File hashes are like fingerprints uniquely identifying a file or string. Variable

sized data is fed to a hashing function, and a fixed size string is output, representing the

hash (Hoffman, 2018). Calculating the hash of the executable and DLLs allows an

investigator to use a tool, such as VirusTotal, to search for antivirus results of the files

without having to upload them.

 Using CertUtil with the -hashfile option, a file path, and a hashing algorithm, will

obtain the hash of the given file with the given hashing algorithm. The output format of

the hash generated by CertUtil has changed over the years. On Windows 7, there is a

space after every two hex characters, but on Windows 10, CertUtil outputs the hash

without spaces.

Figure 29 CertUtil output on Windows 7

Figure 30 CertUtil output on Windows 10

 As seen in figures 29 and 30, there are extraneous lines of data, and the hash

output is not normalized. PowerShell can be used to select just the line containing the

hash and then remove the spaces by using its string replacement functionality. Adding

this additional logic will produce normalized results regardless of the operating system.

Figure 31 CertUtil Normalized on Windows 7

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 24

Author Name, email@addressm

Figure 32 CertUtil Normalized on Windows 10

 To collect the hashes of each loaded DLL, loop through the DLL variable and add

a new member to the object containing the hash calculated by CertUtil. Figure 33 shows

the collection and addition of the DLL hashes to the DLL variable and displays the

results.

Figure 33 DLL hashes calculated, added to the PowerShell object, and displayed

3.3. VirusTotal Analytics

 VirusTotal is a website that offers free antivirus scanning of submitted files and

websites using over 70 antivirus scanners and shares the data with VirusTotal’s partners

and community (VirusTotal, n.d.). VirusTotal also offers the ability to search for

antivirus results based on file hash. A user might prefer this option for numerous reasons,

including a desire to keep company files private or not wanting to tip off a potential

attacker that someone is researching their malware. If a user queries VirusTotal for a file

hash that hasn't been scanned by their service, no results will return.

 PowerShell's Invoke-RestMethod cmdlet can be used to submit file hashes to

VirusTotal's API. Before using the API, an API key must be acquired by creating an

account on their site, which will provide a free "public" level API key. This key needs to

be embedded as an HTTP header with queries to the API. It is worth noting that this

public API key comes with request quota restrictions. At the time of this writing,

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 25

Author Name, email@addressm

VirusTotal limits the public API to four requests per minute, 1,000 requests per day, and

30,000 requests per month (VirusTotal, n.d.). The example script includes a 15-second

sleep timer to ensure it doesn't exceed these thresholds when looping through requests to

the VirusTotal API.

 It is also worth noting that unlike every other application and cmdlet discussed

thus far, PowerShell's Invoke-RestMethod Cmdlet is only available in PowerShell

Version 3.0 and higher, which comes standard with Windows 8. To run this part of the

script on Windows 7, PowerShell will need to be updated. Otherwise, this command must

be executed from Windows 8 or newer.

 VirusTotal’s API accepts a web request with the hash appended to the end of the

URL and the API key embedded as a request header field. In figure 34, a single request to

the API is sent where $hash is the variable containing a string of the hash being queried,

and $vtAPIKey is a variable containing the API key.

Figure 34 Sending request to VirusTotal's API using PowerShell

 Invoke-RestMethod returns a PowerShell object containing multiple sub-

attributes that hold the results from the query. The properties of interest are the

last_analysis_date and last_analysis_stats, which include the date VirusTotal last scanned

the file in question and the results from the scans. However, the last_analysis_date

provided is in Linux Epoch time format, requiring conversion to a human-readable

format before being displayed to the user.

 In figure 35, every loaded DLL is iterated through, and each file that is not from

Microsoft is submitted to VirusTotal. The decision not to submit DLLs from Microsoft to

VirusTotal was made to speed up script execution due to the VirusTotal queries-per-

minute limitation. If this behavior is not desired, the check to determine if the file is from

Microsoft can be removed.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 26

Author Name, email@addressm

Figure 35 PowerShell loop to query VirusTotal for each DLL not from Microsoft

Figure 36 Final results from VirusTotal

3.4. Persistence Mechanisms

 For malware to survive a system reboot, it needs to be configured for persistence,

so that it will execute automatically in the future (Fortuna, 2017). There are multiple

ways a piece of malware can accomplish this. This paper focuses on four primary

methods: Scheduled Tasks, System Services, Registry AutoStart Locations, and Startup

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 27

Author Name, email@addressm

Folders. These items may exist even if the executable in question is not currently running

as a process.

3.4.1. Scheduled Tasks
 Windows Task Scheduler is “like an alarm clock that you can set, to start a

procedure under specified circumstances" (Arntz, 2015). Scheduled tasks can be set to

start at a specific time, at repeatable time intervals, upon system boot, user login, and

more. When creating a scheduled task, the creator can also specify a program to execute,

the user the program should run as, and that the program automatically bypass User

Access Control (UAC) prompts (Arntz, 2015).

 Using Schtask with the /query and /v options gathers all information about each

scheduled task, and the /fo CSV option outputs the data as comma-separated values.

Piping this output to ConvertFrom-Csv in PowerShell turns the data into PowerShell

objects allowing easy searching and filtering of the data. To search for scheduled tasks

that run the executable in question, pipe the converted PowerShell object into Where-

Object searching for any matches of the executable path within the "Task to Run" field.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 28

Author Name, email@addressm

Figure 37 Scheduled Task results for tasks associated with executable of PID

2468

 Also, note the search string includes a beginning and ending '*' character in the

path. This wildcard character ensures that results match that have data before or after the

executable path, as shown in Figure 37. Otherwise, Where-Object will only return if the

executable path matches exactly, with no extra data. This example task would not have

matched without the wildcards.

3.4.2. Windows Services
 Windows services are "long-running executable applications that run in their own

Windows sessions" (Microsoft, 2017). Services can be configured to start on system

startup as a specified user and provide no user interface (Microsoft, 2017). Creating

services requires administrator-level privileges on the system (Heddings, Understanding

and Managing Windows Services, 2019).

 WMI's win32_service class provides detailed information about every installed

service such as: service name, startup type, the path to the executable, any command-line

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 29

Author Name, email@addressm

arguments passed to it, the user it runs as, if it's currently running, and more. This

information can be piped to Where-Object to filter the results based on the executable in

question.

Figure 38 Windows service data associated with the executable of PID 1320

3.4.3. Windows Registry Auto Start Locations
 The Windows registry has multiple locations where applications can be registered

to start automatically on system boot or user login. The most notable of these locations

are the Run and RunOnce registry keys. These keys "cause programs to run each time

that a user logs on" (Microsoft, 2018). The value of these keys is the command-line

invocation for a program, including the path and program arguments. The paths to

applications within these keys could be the fully defined path, such as

C:\windows\system32\notepad.exe, or use environment variables as part of the path, such

as %windir%\system32\notepad.exe. The RunOnce keys are automatically deleted before

the system executes its value, while the Run keys are permanent (Microsoft, 2018). Many

other registry locations can also be used for persistence.

 Sysinternal's Autorunsc program was executed to obtain a list of known registry

keys used for persistence. Each registry key was saved into a PowerShell array to be fed

to Reg for searching. This list is provided in Appendix A of this paper.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 30

Author Name, email@addressm

Figure 39 Autorunsc registry key output

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 31

Author Name, email@addressm

Figure 40 Adding each registry key to an array

 In Figure 41, Reg is used to search each registry key for the use of the

"C:\Windows\meter.exe" executable. Reg found one result in the

HKEY_LOCAL_MACHINE\system\CurrentControlSet\Services\LocalProxy key.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 32

Author Name, email@addressm

Figure 41 Using Reg to search the registry

 Reg's output is also plain text and requires the use of PowerShell to clean up the

data and present it in a more organized manner. In figure 42, an empty PowerShell array

is created to hold the final results and another variable is created to hold the raw output

from Reg. Reg always finishes the output with a blank line followed by a line that reads,

"End of search: x match(es) found," which will interfere with the otherwise standardized

output. The output can be trimmed by re-defining the variable holding the raw Reg

results to include all the data except these last two lines. Then this variable is run through

a For loop, creating a new PowerShell object and assigning properties to it for the registry

key found and the value that matched. This object is then added to the final results array,

and the final results array outputs all the data found.

Figure 42 Creating a PowerShell object out of normalized Reg output

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 33

Author Name, email@addressm

3.4.4. Startup Folders
 Startup folders are hidden system folders in Windows that automatically execute

programs and shortcuts placed within them upon user login (Azeria, n.d.). Each user has a

copy of this folder, located at

"C:\Users\<username>\AppData\Roaming\Microsoft\Windows\Start

Menu\Programs\Startup," which will execute the programs it contains whenever that

specific user logs on. Additionally, a system-wide startup folder is located at

"C:\ProgramData\Microsoft\Windows\Start Menu\Programs\Startup," which will run its

contents whenever any user logs on to the system.

 PowerShell's Get-ChildItem cmdlet displays the contents of these directories.

However, shortcuts are most common in these directories, and Get-ChildItem cannot

show what program executes when the shortcut is activated. To obtain this information, a

temporary ComObject must be used to take the path of a shortcut and reveal the target it

runs upon execution. Once done, this data can be compared to the executable path in

question. Figure 43 shows the file that is executed when the Management Interface

shortcut is activated.

Figure 43 Creating ComObject to reveal shortcut target

 To search all startup folders for references to the executable in question, enclose

the above logic into a loop that searches each startup folder and save the results into a

variable for later viewing. This method is shown in figure 44.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 34

Author Name, email@addressm

Figure 44 Searching all startup folders for the executable used by PID 1804 and

displaying the results

3.5. File and System Data

 Similar to persistence methods, the following items may also exist whether a

process is running or not. PowerShell can provide all the data desired in this section.

3.5.1. File Creation Time
 The date and time the executable was created on the system can be useful for

several reasons. First, if the executable is trying to masquerade as a system executable, its

creation time may be the same as another system file (Silveira, 2010). Second, many

system files are created and updated at roughly the same time, so if the creation time is

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 35

Author Name, email@addressm

much more recent or older than other system files, it may be malicious and is worth

further investigation.

 Get-ChildItem collects much more data than it displays by default, including the

file creation time in local and Coordinated Universal Time (UTC). To access this data,

simply pipe the output from Get-ChildItem to Select-Object and specify those fields.

Figure 45 Using Get-ChildItem to view multiple timestamps of file

3.5.2. Files Created at Nearly the Same Time as Executable
 It is common for malware and malicious actors to drop or create multiple files as

part of their regular operation, which can help an investigator gain insight into the inner

workings of the malware (Zeltser, 2018). These files may include scripts and

configurations used by the executable in question or may be the target of various

persistence mechanisms to obfuscate the relationship to the main malicious executable.

For example, a scheduled task is created to run a batch file, which in turn executes the

malicious executable. Searching scheduled tasks for the executable won't work, but

searching for files created around the executable will return the batch file, which would

provide a lead for further investigation.

 Using a combination of WMI's win32_LogicalDisk class, Get-ChildItem, and a

loop, we can recursively search each local hard drive for files created within a specified

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 36

Author Name, email@addressm

timeframe of the executable in question. To obtain the list of local disks, use the

PowerShell command Get-WMIObject win32_LogicalDisk and pipe the output to

Where-Object searching for any drive that has a DriveType of three, meaning it is a local

disk (Microsoft, 2018). Piping this output to Select-Object and expanding the property

DeviceID returns a list of just the drive letters. Assigning this result to a variable enables

the use of these drives within a ForEach loop.

Figure 46 Using WMI to determine local drives and saving the results to a

variable

Figure 47 Saving the executable creation timestamp to a variable

 Now, within a ForEach loop, recursively list all files on each drive, piping the

results into Where-Object searching for files created within a time window of the file in

question using the addminutes method. Figure 48 shows the search for files created five

minutes before or after the creation of c:\windows\nc.exe.

Figure 48 Files created five minutes before or after the creation of nc.exe

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 37

Author Name, email@addressm

3.6. Information Gathering by File Path

 In addition to searching for information based on running processes, much of the

same data can be gathered from a given file path, including the file hash, creation time,

and files created around the same time as the file in question. Searching by file path

would be of great benefit if an investigator discovers a malicious process on one system

and wants to search other computers for the same executable, even if the process is not

currently running. These checks can be done in the same manner listed above, simply by

replacing the $process.executablepath variable with a string of the executable path

directly.

Figure 49 Files created five minutes before or after the creation of nc.exe

Figure 50 Finding the file hash of nc.exe

 However, PowerShell and CertUtil will raise exceptions if the file does not exist.

These exceptions can be overcome by putting Get-ChildItem into an If statement and

saving the results in a variable. If the file does not exist, the If statement will fail, and it

will execute any code in the Else statement, such as a custom error stating the file does

not exist.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 38

Author Name, email@addressm

Figure 51 Results if the file exists

Figure 52 Results if the file does not exist

 In figure 51, only the original file searched, “C:\windows\nc.exe,” is hashed. This

decision was made because of the possibility of hundreds of files matching the search

criteria and hashing each one could significantly increase execution time.

 WMI can be used to see if the executable at the given path is currently running as

a process. If so, each of the data gathering methods mentioned thus far can be executed

on the process. WMI may return zero, one, or multiple processes, so it is recommended to

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 39

Author Name, email@addressm

run the initial call to Get-WMIObject as part of an If statement as described above, then

iterating through each result based on PID. Figure 53 shows the information for two

processes using the same executable obtained with this method.

Figure 53 Using WMI to get information for all processes associated with nc.exe

3.7. Collecting Data from Remote Machines

 Collecting the desired data from a remote system is simple using PowerShell's

Invoke-Command cmdlet, which comes built-in to every version of PowerShell. There

are two prerequisites to using Invoke-Command: 1) the system receiving the connection

needs to enable Windows Remote Management (WinRM), and 2) the Trusted Hosts list

on the system initiating the connection must contain the destination system’s hostname or

IP address.

 WinRM is Microsoft's implementation of the WS-Management Protocol and

enables PowerShell to be used remotely (Microsoft, 2018). WinRM is not enabled by

default and must be configured before PowerShell can be used on it remotely.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 40

Author Name, email@addressm

Figure 54 Setting up WinRM on the system receiving the connection

 The Trusted Hosts list is, as the name implies, a list of hosts that the computer

trusts. The local system must trust a remote system before it will allow a user to connect

to the remote system with PowerShell. An administrator can add the "*" wildcard to the

Trusted Hosts list to enable connections to any remote system, which is what was done in

the lab for this paper. However, for security purposes, it is recommended that an

administrator only add systems to the list that are specifically known and trusted.

Figure 55 Setting the Trusted Hosts list on the system initiating the connection

 PowerShell's Invoke-Command cmdlet runs commands or scripts on local and

remote systems (Microsoft, n.d.). Multiple commands and full scripting logic can be

provided when using the -ScriptBlock parameter.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 41

Author Name, email@addressm

Figure 56 Running a file path search on the remote system

4. Findings and Limitations

 The programs and scripts run in the previous section all worked across each

version of Windows tested, both locally and remotely, except for checking VirusTotal

results. Checking VirusTotal was unsuccessful on Windows 7 and Windows 2008R2 due

to the Invoke-RestMethod cmdlet being unavailable on PowerShell Version 2.0.

 The main limitation encountered was that using PowerShell to gather and

combine this data took a significant amount of time compared to running each command

individually. As shown in figures 59 and 60, when executed individually, Tasklist and

Get-WMIObject Win32_process took a combined total of 214 milliseconds. When ran in

a script to combine the output, it took a total of 840 milliseconds to create the process

tree, and 522 milliseconds to create the flat process list, as shown in figures 57 and 58,

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 42

Author Name, email@addressm

respectively. On a busier system, this difference would be even more noticeable. The

increase in time is most likely the result of cross-referencing and extracting process data

from multiple commands before displaying the results. The process tree must also

perform a recursive lookup for each process, further increasing the amount of time

required by the script.

Figure 57 Process Tree function time elapsed on execution

Figure 58 Process List function time elapsed on execution

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 43

Author Name, email@addressm

Figure 59 Tasklist execution time when ran individually

Figure 60 WMI execution time when ran individually

 Additionally, searching the filesystem for files created around the same time as

the file in question took 14 seconds and 759 milliseconds on the Windows 7 machine

with no additional software installed or files added. This search could take significantly

longer on systems with many more files to look through.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 44

Author Name, email@addressm

Figure 61 Filesystem search time elapsed

 Furthermore, while not within this paper's scope, it is worth noting that there are

no built-in Windows tools that allow an investigator to view the details of file handles

opened by a process. The closest one can get with built-in tools is PowerShell's Get-

Process cmdlet, which will show how many handles a process has open but not what they

are.

Figure 62 Get-Process showing number of file handles opened by a process

 The full script created to accomplish all of these data-gathering tasks has been

provided in Appendix B. This script is merely an example of one way to accomplish

these tasks. There may be different and more efficient methods using these same

techniques.

5. Conclusion

 Despite the additional time required to combine and parse the output from several

commands, it is entirely possible to obtain the data an investigator wants using only tools

built-in to Windows. This capability can provide personnel working in environments that

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 45

Author Name, email@addressm

are strict on additional software the opportunity to continue incident response

investigations mostly unimpeded. Furthermore, automating the collection and combining

of data for a specific process or file can help prevent crucial data from getting lost in the

noise of running and reviewing each command manually.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 46

Author Name, email@addressm

References

Arntz, P. (2015, March 23). Scheduled Tasks. Retrieved May 24, 2020, from

Malwarebytes: https://blog.malwarebytes.com/cybercrime/2015/03/scheduled-

tasks/

Azeria. (n.d.). Persistence. Retrieved May 24, 2020, from Azeria Labs: https://azeria-

labs.com/persistence/

Fortuna, A. (2017, July 06). Malware persistence techniques. Retrieved May 24, 2020,

from Andrea Fortuna: https://www.andreafortuna.org/2017/07/06/malware-

persistence-techniques/

Heddings, L. (2019, October 15). Sysinternals Pro: What Are the SysInternals Tools and

How Do You Use Them? Retrieved May 24, 2020, from How-to Geek:

https://www.howtogeek.com/school/sysinternals-pro/lesson1/

Heddings, L. (2019, April 30). Understanding and Managing Windows Services.

Retrieved May 24, 2020, from How-To Geek:

https://www.howtogeek.com/school/using-windows-admin-tools-like-a-

pro/lesson8/

Hoffman, C. (2018, August 23). What Are MD5, SHA-1, and SHA-256 Hashes, and How

Do I Check Them? Retrieved May 24, 2020, from How-To Geek:

https://www.howtogeek.com/67241/htg-explains-what-are-md5-sha-1-hashes-

and-how-do-i-check-them/

Kazun. (2013, March 15). How to recursively print process, parent process, grand parent

process, great grand parent process? Retrieved May 24, 2020, from Microsoft

Technet: https://social.technet.microsoft.com/Forums/windowsserver/en-

US/87b5e231-4832-43ca-92ed-0ab70b6e6726/how-to-recursively-print-process-

parent-process-grand-parent-process-great-grand-parent-

process?forum=winserverpowershell

Lee, R., & Pilkington, M. (2018). Find Evil - Know Normal. Retrieved May 26, 2020,

from SANS: https://digital-

forensics.sans.org/media/SANS_Poster_2018_Hunt_Evil_FINAL.pdf

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 47

Author Name, email@addressm

Microsoft. (2006, July 18). Microsoft Acquires Winternals Software - Stories. Retrieved

May 24, 2020, from Microsoft: https://news.microsoft.com/2006/07/18/microsoft-

acquires-winternals-software/

Microsoft. (2006, June 30). WMI Scripting Primer: Part 1. Retrieved May 24, 2020, from

Microsoft: https://docs.microsoft.com/en-us/previous-versions/windows/internet-

explorer/ie-developer/scripting-articles/ms974579(v=msdn.10)

Microsoft. (2010, September 20). Install Windows PowerShell 2.0. Retrieved May 24,

2020, from Microsoft: https://docs.microsoft.com/en-us/previous-

versions/appfabric/ff637750(v=azure.10)

Microsoft. (2012, February 01). Creating table using Powershell. Retrieved May 24,

2020, from Microsoft: https://docs.microsoft.com/en-

us/archive/blogs/rkramesh/creating-table-using-powershell

Microsoft. (2017, October 16). certutil. Retrieved May 24, 2020, from Microsoft:

https://docs.microsoft.com/en-us/windows-server/administration/windows-

commands/certutil

Microsoft. (2017, March 30). Introduction to Windows Service Applications. Retrieved

May 24, 2020, from Microsoft: https://docs.microsoft.com/en-

us/dotnet/framework/windows-services/introduction-to-windows-service-

applications

Microsoft. (2017, October 16). netstat. Retrieved May 24, 2020, from Microsoft:

https://docs.microsoft.com/en-us/windows-server/administration/windows-

commands/netstat

Microsoft. (2017, October 16). reg. Retrieved May 24, 2020, from Microsoft:

https://docs.microsoft.com/en-us/windows-server/administration/windows-

commands/reg

Microsoft. (2017, October 16). Tasklist. Retrieved May 24, 2020, from Microsoft:

https://docs.microsoft.com/en-us/windows-server/administration/windows-

commands/tasklist

Microsoft. (2018, May 31). Processes and Threads - Win32 apps. Retrieved from

Microsoft: https://docs.microsoft.com/en-

us/windows/win32/procthread/processes-and-threads

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 48

Author Name, email@addressm

Microsoft. (2018, May 31). Run and RunOnce Registry Keys. Retrieved May 24, 2020,

from Microsoft: https://docs.microsoft.com/en-us/windows/win32/setupapi/run-

and-runonce-registry-keys

Microsoft. (2018, May 31). Schtasks.exe - Win32 apps. Retrieved May 24, 2020, from

Microsoft: https://docs.microsoft.com/en-us/windows/win32/taskschd/schtasks

Microsoft. (2018, May 31). Win32_LogicalDisk class - Win32 apps. Retrieved May 24,

2020, from Microsoft: https://docs.microsoft.com/en-

us/windows/win32/cimwin32prov/win32-logicaldisk

Microsoft. (2018, May 31). Windows Management Instrumentation - Win32 apps.

Retrieved May 24, 2020, from Microsoft: https://docs.microsoft.com/en-

us/windows/win32/wmisdk/wmi-start-page

Microsoft. (2018, May 31). Windows Remote Management - Win32 apps. Retrieved May

24, 2020, from Microsoft: https://docs.microsoft.com/en-

us/windows/win32/winrm/portal

Microsoft. (2019, December 17). What is a DLL? Retrieved May 24, 2020, from

Microsoft: https://support.microsoft.com/en-us/help/815065/what-is-a-dll

Microsoft. (2020, May 22). What is PowerShell? Retrieved May 24, 2020, from

Microsoft: https://docs.microsoft.com/en-

us/powershell/scripting/overview?view=powershell-7

Microsoft. (n.d.). Invoke-Command. Retrieved May 24, 2020, from Microsoft:

https://docs.microsoft.com/en-

us/powershell/module/microsoft.powershell.core/invoke-

command?view=powershell-7

Nolan, R., Baker, M., Branson, J., Hammerstein, J., Rush, K., Waits, C., &

Schweinsberg, E. (2005, September). First Responders Guide to Computer

Forensics: Advanced Topics. Retrieved May 23, 2020, from Software Engineer

Institute - Carnegie Mellon University:

https://resources.sei.cmu.edu/asset_files/Handbook/2005_002_001_14432.pdf

Phan, T. (2015, December 10). A Crash Course in DLL Hijacking. Retrieved May 24,

2020, from Fortinet: https://www.fortinet.com/blog/industry-trends/a-crash-

course-in-dll-hijacking.html

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 49

Author Name, email@addressm

Silveira, C. (2010, August 18). Benefits of using multiple timestamps during timeline

analysis in digital forensics. Retrieved May 24, 2020, from SANS:

https://www.sans.org/blog/benefits-of-using-multiple-timestamps-during-

timeline-analysis-in-digital-forensics/

VirusTotal. (n.d.). How it works. Retrieved May 24, 2020, from VirusTotal:

https://support.virustotal.com/hc/en-us/articles/115002126889-How-it-works

VirusTotal. (n.d.). What is the difference between the public API and the private API?

Retrieved May 24, 2020, from VirusTotal: https://support.virustotal.com/hc/en-

us/articles/115002119845-What-is-the-difference-between-the-public-API-and-

the-private-API-

Weyne, F. (2016, September). Analyzing malicious office documents. Retrieved May 26,

2020, from Uperesia: https://www.uperesia.com/analyzing-malicious-office-

documents

Wilson, E. (2015, September 14). Backwards Compatibility in PowerShell. Retrieved

May 24, 2020, from Microsoft:

https://devblogs.microsoft.com/scripting/backwards-compatibility-in-powershell/

Yonts, J. (2014, August 25). Digging for Malware: Suspicious Filesystem Geography.

Retrieved from Malicious Streams: http://www.malicious-

streams.com/resources/articles/DGMW1_Suspicious_FS_Geography.html

Zeltser, L. (2018). Malware Analysis Fundamentals. FOR610 | Reverse-engineering

Malware: Malware Analysis Tools and Techniques. SANS.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 50

Author Name, email@addressm

Appendix A – Autostart Registry Keys

HKLM\System\CurrentControlSet\Control\Session Manager\BootExecute

HKLM\Software\Microsoft\Office\PowerPoint\Addins

HKLM\Software\Wow6432Node\Microsoft\Office\PowerPoint\Addins

HKLM\Software\Microsoft\Office\Word\Addins

HKLM\Software\Wow6432Node\Microsoft\Office\Word\Addins

HKLM\SOFTWARE\Classes\Htmlfile\Shell\Open\Command\(Default)

HKLM\System\CurrentControlSet\Services

HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Font Drivers

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Authentication\Credential

Providers

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Authentication\Credential

Provider Filters

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Authentication\PLAP

Providers

HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon\GpExtensions

HKLM\SYSTEM\CurrentControlSet\Control\Print\Monitors

HKLM\SYSTEM\CurrentControlSet\Control\Print\Providers

HKLM\SYSTEM\CurrentControlSet\Control\SecurityProviders\SecurityProviders

HKLM\SYSTEM\CurrentControlSet\Control\Lsa\Authentication Packages

HKLM\SYSTEM\CurrentControlSet\Control\Lsa\Notification Packages

HKLM\SYSTEM\CurrentControlSet\Control\NetworkProvider\Order

HKLM\System\CurrentControlSet\Services\WinSock2\Parameters\Protocol_Catalog9\Ca

talog_Entries

HKLM\System\CurrentControlSet\Services\WinSock2\Parameters\NameSpace_Catalog5

\Catalog_Entries

HKLM\System\CurrentControlSet\Services\WinSock2\Parameters\Protocol_Catalog9\Ca

talog_Entries64

HKLM\System\CurrentControlSet\Services\WinSock2\Parameters\NameSpace_Catalog5

\Catalog_Entries64

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 51

Author Name, email@addressm

HKLM\System\CurrentControlSet\Control\Terminal Server\Wds\rdpwd\StartupPrograms

HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon\Userinit

HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon\VmApplet

HKLM\System\CurrentControlSet\Control\Session Manager\KnownDlls

HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon\Shell

HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot\AlternateShell

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run

HKLM\SOFTWARE\Wow6432Node\Microsoft\Windows\CurrentVersion\Run

HKLM\SOFTWARE\Classes\Protocols\Filter

HKLM\SOFTWARE\Classes\Protocols\Handler

HKLM\SOFTWARE\Microsoft\Active Setup\Installed Components

HKLM\SOFTWARE\Wow6432Node\Microsoft\Active Setup\Installed Components

HKLM\Software\Microsoft\Windows NT\CurrentVersion\Windows\IconServiceLib

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\ShellServiceObjects

HKLM\SOFTWARE\Wow6432Node\Microsoft\Windows\CurrentVersion\Explorer\Shel

lServiceObjects

HKLM\Software\Microsoft\Windows\CurrentVersion\Explorer\Browser Helper Objects

HKLM\Software\Wow6432Node\Microsoft\Windows\CurrentVersion\Explorer\Browser

Helper Objects

HKLM\Software\Classes*\ShellEx\ContextMenuHandlers

HKLM\Software\Classes\Drive\ShellEx\ContextMenuHandlers

HKLM\Software\Classes*\ShellEx\PropertySheetHandlers

HKLM\Software\Classes\AllFileSystemObjects\ShellEx\ContextMenuHandlers

HKLM\Software\Classes\AllFileSystemObjects\ShellEx\PropertySheetHandlers

HKLM\Software\Classes\Directory\ShellEx\ContextMenuHandlers

HKLM\Software\Classes\Directory\Shellex\DragDropHandlers

HKLM\Software\Classes\Directory\Shellex\PropertySheetHandlers

HKLM\Software\Classes\Directory\Shellex\CopyHookHandlers

HKLM\Software\Classes\Directory\Background\ShellEx\ContextMenuHandlers

HKLM\Software\Classes\Folder\ShellEx\ContextMenuHandlers

HKLM\Software\Classes\Folder\ShellEx\DragDropHandlers

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 52

Author Name, email@addressm

HKLM\Software\Microsoft\Windows\CurrentVersion\Explorer\ShellIconOverlayIdentifi

ers

HKLM\Software\Microsoft\Internet Explorer\Extensions

HKLM\Software\Wow6432Node\Microsoft\Internet Explorer\Extensions

HKLM\Software\Microsoft\Windows NT\CurrentVersion\Drivers32

HKLM\Software\Wow6432Node\Microsoft\Windows NT\CurrentVersion\Drivers32

HKLM\Software\Classes\CLSID\{083863F1-70DE-11d0-BD40-

00A0C911CE86}\Instance

HKLM\Software\Wow6432Node\Classes\CLSID\{083863F1-70DE-11d0-BD40-

00A0C911CE86}\Instance

HKLM\Software\Classes\CLSID\{7ED96837-96F0-4812-B211-

F13C24117ED3}\Instance

HKLM\Software\Wow6432Node\Classes\CLSID\{7ED96837-96F0-4812-B211-

F13C24117ED3}\Instance

HKCU\Control Panel\Desktop\Scrnsave.exe

HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Run

HKCU\Software\Microsoft\Internet Explorer\UrlSearchHooks

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 53

Author Name, email@addressm

Appendix B – Sample Script

param([string]$computer=$null,[int]$p=$null,[switch]$tree,[int]$search=$null,[string]$fi
lepath=$null,$cred,[switch]$table=$null,[switch]$list=$null,$outpath=$null,[switch]$vt=
$null,[switch]$h=$null,[switch]$help=$null,[switch]$raw=$null)

$vtsleep = 15
$vtAPIKey = "" #Insert your VirusTotal API key here

if($h -or $help)
{
 $command = $MyInvocation.MyCommand

 write-host @"

 Usage: $command [options]

 When executed without options, will display a list of all running processes as a flat list.

 When executed given a PID or Filepath, will search the file system for the process'
lineage, loaded DLLs, Netstat results,
 scheduled tasks, services, Autostart Registry and folder matches, and file timestamps.
Additional Data can be retrieved with more options.

 Main Options:

 <no option> Displays all running processes as a flat list. Not compatible with
search, -p, filepath, or vt.
 -tree Display All running processes in tree format. Not compatible with
search, -p, filepath, or vt. Defaults to Table output format
 -p [PID] Process ID to get information for. Not compatible with -filepath.
Takes precendence over -filepath.
 -filepath [filename] Find information related to [filename]. If running as a process,
get process information as well. Not Compatible with -p.

 Additional Options:
 -computer Computer Name or IP address to run this script against
 -cred [var] Supply your own Get-Credential variable for the script to use when
accessing remote systems
 -search [min] Search the filesystem for other files created within [min] minutes
of the file or executable in quetsion
 -vt Check Non-Microsoft DLLs against VirusTotal. Valid API key must be
set within script.
 VirusTotal lookups will always be done from the local system, even if
script is executed against a remote machine.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 54

Author Name, email@addressm

 -h Display this Help message
 -help Display this help message

 Output Format Options:
 -table Display results in Format-Table format. Not Compatible with -list
option
 -list Display results in Format-List format. Not compatible with -tree option.
This is the default option if none other specified.
 -outpath [path] Save each type of result as separate CSV file in [path]
 -raw Output results without formatting. Use this if you want to save to your
own variable to use or parse separately.

 Usage Examples:
 $command
 $command -tree
 $command -p 1492
 $command -p 1492 -search 5 -vt
 $command -filepath "C:\windows\system32\svchost.exe" -table
 $command -computer 192.168.1.10 -p 2468 -vt -search 5 -table -outpath "C:\temp\"

"@

 exit
}

#check if given the outpath variable, and if so, append a slash to the end if the path given
doesn't end with one.
if($outpath)
{
 if($outpath[-1] -ne "\")
 {
 $outpath += "\"
 }
}

#This function encompassases all of the checks to be run regardless of option. This is
wrapped in a function so that it
can easily be executed against a remote machine with the invoke-command function.
Function FullScript($p, $tree, $search, $filepath)
{

$global:process_Table = $null

#Expects Get-WmiObject win32_process formatted process
#Creating a custom table to hold the consolidated process information from multiple
commands

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 55

Author Name, email@addressm

Function CreateProcessTable($process)
{
 #if table doesn't already exist, create it. otherwise just add to it
 if(!$global:process_table)
 {
 # Creating custom table -- https://docs.microsoft.com/en-
us/archive/blogs/rkramesh/creating-table-using-powershell
 $global:process_table = New-Object System.Data.DataTable "Processes"
 $global:process_table.Columns.Add((New-Object system.data.datacolumn
Name,([string])))
 $global:process_table.Columns.Add((New-Object system.data.datacolumn
PID,([int])))
 $global:process_table.Columns.Add((New-Object system.data.datacolumn
PPID,([int])))
 $global:process_table.Columns.Add((New-Object system.data.datacolumn
ProcessUser,([string])))
 $global:process_table.Columns.Add((New-Object system.data.datacolumn
ExecutablePath,([string])))
 $global:process_table.Columns.Add((New-Object system.data.datacolumn
CommandLine,([string])))
 }

 #add information to new process information table
 $row = $global:process_table.NewRow()

 $row.name = $process.indentedname
 $row.PID = $process.processId
 $row.PPID = $process.parentprocessid
 $row.ProcessUser = $process.Username
 $row.ExecutablePath = $process.executablepath
 $row.CommandLine = $process.commandline

 $global:process_table.rows.add($row)

}

Function GetTasklist()
{
 #get process info from tasklist to get user name data
 return (tasklist /v /fo csv | convertfrom-csv)
}

#found at https://social.technet.microsoft.com/Forums/windowsserver/en-US/87b5e231-
4832-43ca-92ed-0ab70b6e6726/how-to-recursively-print-process-parent-process-grand-
parent-process-great-grand-parent-process?forum=winserverpowershell

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 56

Author Name, email@addressm

###STart technet code. adding my own along the way. look at process-tree-technet script
to get original code

Function Show-ProcessTree
{
 $mytasklist = GetTasklist

 Function Get-ProcessChildren($P,$Depth=1)
 {
 $procs | Where-Object {$_.ParentProcessId -eq $p.ProcessID -and
$_.ParentProcessId -ne 0} | ForEach-Object {

 $indentedname = "{0}|--{1}" -f (" "*3*$Depth),$_.Name
 $_ | Add-Member NoteProperty IndentedName $indentedname
 $thispid = $_.processid
 if(!$_.Username)
 {
 $_ | Add-Member NoteProperty Username ($mytasklist | where-object
{$_.PID -eq $thispid} | select -expand "User Name")
 }
 CreateProcessTable($_)
 Get-ProcessChildren $_ (++$Depth)
 $Depth--
 }
 }

 $filter = {-not (Get-Process -Id $_.ParentProcessId -ErrorAction SilentlyContinue) -or
$_.ParentProcessId -eq 0}
 $procs = Get-WmiObject Win32_Process
 $top = $procs | Where-Object $filter | Sort-Object ProcessID

 foreach ($p in $top)
 {

 $p | Add-Member NoteProperty IndentedName $p.name
 $p | Add-Member NoteProperty Username ($mytasklist | Where-Object {$_.PID -eq
$p.processid} | select -expand "User Name")

 CreateProcessTable($p)

 Get-ProcessChildren $p
 }
}

##########END PROCESS TREE CODE FROM TECHNET

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 57

Author Name, email@addressm

Function MyProcessList
{

 $mytasklist = GetTasklist

 $mywmi = gwmi win32_process

 foreach ($process in $mywmi)
 {
 $process | Add-Member NoteProperty Indentedname $process.name
 $process | Add-Member NoteProperty Username ($mytasklist | Where-Object
{$_.PID -eq $process.processid} | select -expand "User Name")

 CreateProcessTable($process)
 }

}

#Powershell V2 compatible way to get scheduled tasks.
Function GetTasks($process){
 $tasks = schtasks /query /fo csv /v | convertfrom-csv

 if ($taskResult = $tasks | Where-Object {$_."Task to run" -like
$process.executablepath + "*"})
 {
 $taskResult
 }
}

Function SearchRegistry($process){

 $finalResult = @()

 $registryResults = @()
 foreach ($reg in $autostart_registry)
 {
 $temp = reg query $reg /s /f $process.executablepath 2> $null
 if ($temp -and $temp[-1] -notmatch " 0 match")
 {
 $registryResults += $temp[0..($temp.length-3)]
 }
 }

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 58

Author Name, email@addressm

 #Convert the raw string output from reg.exe to a PowerShell Object with defined
properties for the key it was found in and the value that was found
 for ($i = 1; $i -lt $registryResults.count; $i += 3)
{
 $ob = new-object psobject
 $ob | add-member -type NoteProperty -name "Key" -Value $registryResults[$i]
 $ob | Add-Member -type NoteProperty -name "Value" -Value
$registryResults[$i+1].trim()
 $finalResult += $ob
}

 return $FinalResult
}

Function AutostartFolders($process)
{
 $results = @()

 #start with standard system startup folder
 $autostartFolders = @("C:\ProgramData\Microsoft\Windows\Start
Menu\Programs\Startup")

 #Get users on system and add the start menu startup folder to the list of directories to
search
 foreach($user in (gci "$env:SystemDrive\users"))
 {
 $autostartFolders += $user.fullname +
"\AppData\Roaming\Microsoft\Windows\Start Menu\Programs\Startup"
 }

 #create an object we can use to find and search the target of shortcuts
 $sh = New-Object -ComObject wscript.shell

 foreach($folder in $autostartFolders)
 {
 $files = gci $folder -ErrorAction SilentlyContinue
 foreach ($file in $files)
 {

 if($file.fullname -eq $process.executablepath)
 {
 $results += $file.fullname
 }

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 59

Author Name, email@addressm

 #If file is a shortcut, check the target to see if it's pointing to the executable in
question
 if ($file.extension -eq ".lnk")
 {
 $target = $sh.createshortcut($file.fullname).targetpath

 if ($target -eq $process.executablepath)
 {
 $results += $file.fullname
 }
 }
 }
 }

 return $results
}

Function SearchFilesystem($process){
 $drives = gwmi win32_logicaldisk | Where-Object {$_.drivetype -eq 3} | select -
expand deviceid
 $suspectExecutable = gci $process.executablepath -ErrorAction SilentlyContinue

 $results = @()

 if (!$suspectExecutable)
 {
 return
 }

 if (!$search)
 {
 return $suspectExecutable
 }

 if($search -gt 0)
 {
 foreach ($drive in $drives)
 {
 #note the added '\' to the gci command. this is required for the filesystem search
will fail.
 $results += gci -recurse "$drive\" -ErrorAction SilentlyContinue | Where-Object
{$_.creationtime -gt $suspectExecutable.creationtime.addminutes(-$search) -and
$_.creationtime -lt $suspectExecutable.creationtime.addminutes($search)} | select
creationtime, fullname
 }
 }

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 60

Author Name, email@addressm

 return $results
}

#All Registry autostart locations used by autorunsc64.exe (version 13.96 executed on
windows 10)
$autostart_registry = @("HKLM\System\CurrentControlSet\Control\Session
Manager\BootExecute",
"HKLM\Software\Microsoft\Office\PowerPoint\Addins",
"HKLM\Software\Wow6432Node\Microsoft\Office\PowerPoint\Addins",
"HKLM\Software\Microsoft\Office\Word\Addins",
"HKLM\Software\Wow6432Node\Microsoft\Office\Word\Addins",
"HKLM\SOFTWARE\Classes\Htmlfile\Shell\Open\Command\(Default)",
"HKLM\System\CurrentControlSet\Services",
"HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Font Drivers",
"HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Authentication\Credential
Providers",
"HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Authentication\Credential
Provider Filters",
"HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Authentication\PLAP
Providers",
"HKLM\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Winlogon\GpExtensions",
"HKLM\SYSTEM\CurrentControlSet\Control\Print\Monitors",
"HKLM\SYSTEM\CurrentControlSet\Control\Print\Providers",
"HKLM\SYSTEM\CurrentControlSet\Control\SecurityProviders\SecurityProviders",
"HKLM\SYSTEM\CurrentControlSet\Control\Lsa\Authentication Packages",
"HKLM\SYSTEM\CurrentControlSet\Control\Lsa\Notification Packages",
"HKLM\SYSTEM\CurrentControlSet\Control\NetworkProvider\Order",
"HKLM\System\CurrentControlSet\Services\WinSock2\Parameters\Protocol_Catalog9\C
atalog_Entries",
"HKLM\System\CurrentControlSet\Services\WinSock2\Parameters\NameSpace_Catalog
5\Catalog_Entries",
"HKLM\System\CurrentControlSet\Services\WinSock2\Parameters\Protocol_Catalog9\C
atalog_Entries64",
"HKLM\System\CurrentControlSet\Services\WinSock2\Parameters\NameSpace_Catalog
5\Catalog_Entries64",
"HKLM\System\CurrentControlSet\Control\Terminal
Server\Wds\rdpwd\StartupPrograms",
"HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon\Userinit",
"HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon\VmApplet",
"HKLM\System\CurrentControlSet\Control\Session Manager\KnownDlls",
"HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon\Shell",
"HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot\AlternateShell",
"HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run",
"HKLM\SOFTWARE\Wow6432Node\Microsoft\Windows\CurrentVersion\Run",
"HKLM\SOFTWARE\Classes\Protocols\Filter",

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 61

Author Name, email@addressm

"HKLM\SOFTWARE\Classes\Protocols\Handler",
"HKLM\SOFTWARE\Microsoft\Active Setup\Installed Components",
"HKLM\SOFTWARE\Wow6432Node\Microsoft\Active Setup\Installed Components",
"HKLM\Software\Microsoft\Windows NT\CurrentVersion\Windows\IconServiceLib",
"HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\ShellServiceObject
s",
"HKLM\SOFTWARE\Wow6432Node\Microsoft\Windows\CurrentVersion\Explorer\Sh
ellServiceObjects",
"HKLM\Software\Microsoft\Windows\CurrentVersion\Explorer\Browser Helper
Objects",
"HKLM\Software\Wow6432Node\Microsoft\Windows\CurrentVersion\Explorer\Browse
r Helper Objects",
"HKLM\Software\Classes*\ShellEx\ContextMenuHandlers",
"HKLM\Software\Classes\Drive\ShellEx\ContextMenuHandlers",
"HKLM\Software\Classes*\ShellEx\PropertySheetHandlers",
"HKLM\Software\Classes\AllFileSystemObjects\ShellEx\ContextMenuHandlers",
"HKLM\Software\Classes\AllFileSystemObjects\ShellEx\PropertySheetHandlers",
"HKLM\Software\Classes\Directory\ShellEx\ContextMenuHandlers",
"HKLM\Software\Classes\Directory\Shellex\DragDropHandlers",
"HKLM\Software\Classes\Directory\Shellex\PropertySheetHandlers",
"HKLM\Software\Classes\Directory\Shellex\CopyHookHandlers",
"HKLM\Software\Classes\Directory\Background\ShellEx\ContextMenuHandlers",
"HKLM\Software\Classes\Folder\ShellEx\ContextMenuHandlers",
"HKLM\Software\Classes\Folder\ShellEx\DragDropHandlers",
"HKLM\Software\Microsoft\Windows\CurrentVersion\Explorer\ShellIconOverlayIdentif
iers",
"HKLM\Software\Microsoft\Internet Explorer\Extensions",
"HKLM\Software\Wow6432Node\Microsoft\Internet Explorer\Extensions",
"HKLM\Software\Microsoft\Windows NT\CurrentVersion\Drivers32",
"HKLM\Software\Wow6432Node\Microsoft\Windows NT\CurrentVersion\Drivers32",
"HKLM\Software\Classes\CLSID\{083863F1-70DE-11d0-BD40-
00A0C911CE86}\Instance",
"HKLM\Software\Wow6432Node\Classes\CLSID\{083863F1-70DE-11d0-BD40-
00A0C911CE86}\Instance",
"HKLM\Software\Classes\CLSID\{7ED96837-96F0-4812-B211-
F13C24117ED3}\Instance",
"HKLM\Software\Wow6432Node\Classes\CLSID\{7ED96837-96F0-4812-B211-
F13C24117ED3}\Instance",
"HKCU\Control Panel\Desktop\Scrnsave.exe",
"HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Run",
"HKCU\Software\Microsoft\Internet Explorer\UrlSearchHooks")

Function GetProcessLineage($process)
{

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 62

Author Name, email@addressm

 #clearing process table variable to prevent conflicts from multiple runs based off file
path
 Clear-Variable process_ table -scope Global

 do
 {
 $mytasklist = GetTasklist
 $ppid = $process.ParentProcessId

 $process | Add-Member NoteProperty IndentedName $process.name
 $process | Add-Member NoteProperty Username ($mytasklist | Where-Object
{$_.PID -eq $process.processid} | select -expand "User Name")

 CreateProcessTable($process)

 }while($process = Get-WmiObject win32_process -Filter "processid=$ppid")

}

Function GetNetworkActivity($p)
{
 $results = @()

 #To make this script PowerShell v2.0 compatible, we need to use netstat and manually
parse the output
 #instead of using the newer Get-NetTCPConnection and Get-NetUDPEndpoint
Cmdlets
 $net = netstat -ano | select-string "\bp"
 if($net)
 {
 foreach ($line in $net)
 {
 $temp = $line -split '\s+'

 $ConnectionObject = New-Object -TypeName psobject
 $ConnectionObject | Add-Member -MemberType NoteProperty -Name PID $p
 $ConnectionObject | Add-Member -MemberType NoteProperty -Name Protocol
$temp[1]

 #using substring to handle IPv6 Addresses
 $ConnectionObject | Add-Member -MemberType NoteProperty -Name
LocalAddress $temp[2].substring(0, $temp[2].lastindexof(':'))

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 63

Author Name, email@addressm

 $ConnectionObject | Add-Member -MemberType NoteProperty -Name LocalPort
$temp[2].split(':')[-1]

 if ($temp[1] -eq "TCP")
 {
 $ConnectionObject | Add-Member -MemberType NoteProperty -Name
ForeignAddress $temp[3].substring(0, $temp[2].lastindexof(':'))
 $ConnectionObject | Add-Member -MemberType NoteProperty -Name
ForeignPort $temp[3].split(':')[-1]
 $ConnectionObject | Add-Member -MemberType NoteProperty -Name State
$temp[4]
 }
 else
 {
 $ConnectionObject | Add-Member -MemberType NoteProperty -Name
ForeignAddress $null
 $ConnectionObject | Add-Member -MemberType NoteProperty -Name
ForeignPort $null
 $ConnectionObject | Add-Member -MemberType NoteProperty -Name State
$null
 }

 $results += $ConnectionObject

 }
 }
 return $results
}

Function GetFileTimestamps($process)
{

 return (gci $process.executablepath -ErrorAction SilentlyContinue | select Name,
CreationTime, CreationTimeUtc, LastWriteTime, LastWriteTimeUtc, LastAccessTime,
LastAccessTimeUtc)

}

Function GetService($process)
{
 $services = Get-WmiObject win32_service

 if ($ServiceResult = $Services | Where-Object {$_.Pathname -like "*" +
$process.executablepath + "*"})
 {
 return $ServiceResult

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 64

Author Name, email@addressm

 }

}

#expecting powershell's Get-Process process object
Function GetDLLs($gp_process)
{
 $LoadedDLLs = $gp_process | select -expand modules

 #get SHA256 hash of each DLL loaded into file using certutil. Replaces any spaces
produced by certutil (common in older OSes)
 $LoadedDLLs | foreach {$_ | Add-Member NoteProperty Hash ((certutil -hashfile
$_.filename SHA256)[1] -replace '\s','') }
 return $LoadedDLLs
}

Function GetPersistenceInfo($process)
{
 $filetimes = GetFileTimestamps $process
 $TaskResults = GetTasks $process

 $ServiceResults = GetService $process

 $registryResults = SearchRegistry $process

 $AutostartFolderResults = AutostartFolders $process

 if ($search)
 {
 $FilesystemSearchResults = SearchFilesystem $process
 }

 #If above functions didn't return results, force variable to have something to maintain
result array order
 if(!$taskresults){$TaskResults = ""}
 if(!$ServiceResults){$ServiceResults = ""}
 if(!$registryResults){$registryResults = ""}
 if(!$autostartFolderResults){$autostartFolderResults = ""}
 if(!$FilesystemSearchResults){$FilesystemSearchResults = ""}
 if(!$filetimes){$filetimes = ""}

 $results =
$taskresults,$ServiceResults,$registryResults,$AutostartFolderResults,$filetimes,$Filesy
stemSearchResults

 return $results

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 65

Author Name, email@addressm

}

Function GetSpecificProcessInfo($p)
{

 $gp_process = get-process -id $p

 $process = Get-WmiObject win32_process -filter "processid=$p"

 $LoadedDLLs = GetDLLs $gp_process

 $NetworkResults = GetNetworkActivity $p

 GetProcessLineage $process #the results of this are added to $global:process_table

 if(!$NetworkResults){$NetworkResults = ""}

 $ResultArray = $global:Process_table,$LoadedDLLs,$NetworkResults

 if(!$filepath)
 {
 $persistenceResults = GetPersistenceInfo($process)
 $resultArray += $persistenceResults
 }

 return $ResultArray
}

#####################START OF ACTUAL SCRIPT
PROCESSING#####################################

#If the user passes the -tree option, list all processes in tree format, otherwise write a
simple list of all processes sorted by PPID
 if (!$p -and $tree -and !$filepath)
 {
 Show-ProcessTree
 }
 elseif (!$p -and !$filepath)
 {
 MyProcessList
 }

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 66

Author Name, email@addressm

#if given a PID, and it exists, get info about it. otherwise return an error message stating
PID doesn't exist
 if($p -and (get-process -id $p -ErrorAction SilentlyContinue) -and !$filename)
 {

 return GetSpecificProcessInfo $p

 }
 elseif ($p -and !$filename)
 {
 write-host "Process ID doesn't exist"
 return $false
 }

 if ($filepath)
 {

 #creating a new object with a property named ExecutablePath so we can use all the
same functions
 $filenameContainer = New-Object -TypeName psobject
 $filenameContainer | Add-Member NoteProperty Executablepath $filepath

 $persistenceResults = GetPersistenceInfo $filenameContainer

 $AllProcessResultsArray = @()

 $RunningProcesses = Get-WmiObject win32_process | where {$_.executablepath -
like $filepath}

 if ($RunningProcesses)
 {
 foreach ($process in $RunningProcesses)
 {
 $AllProcessResultsArray += GetSpecificProcessInfo $process.processid
 }
 }

 $fileresults = $persistenceResults
 $fileresults += $AllProcessResultsArray

 return $fileresults

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 67

Author Name, email@addressm

 }

} ###This is the ending bracket for "FullScript" Function

Function VirusTotal($LoadedDLLs)
{
 #This is the master variable that will hold the data for all dll lookups
 $VTLookupResults = @()

 foreach($dll in $LoadedDLLs)
 {
 # Don't Look up DLLs created by Microsoft. This was done to reduce the number of
lookups
 if ($dll.Company -ne "Microsoft Corporation")
 {
 $hash = $dll.hash

 #Try to check Virus Total for hash results. if no results found, return that
information instead
 try
 {

 $test = Invoke-restmethod https://www.virustotal.com/api/v3/files/$hash -
Headers @{"x-apikey"=$vtAPIKey} -ErrorAction SilentlyContinue

 #Convert Last Analysis Date from Epoch time to human readable time
 [datetime]$origin = '1970-01-01 00:00:00'
 $LastAnalysisDate =
$origin.AddSeconds($test.data.attributes.last_analysis_date)

 #Create a temporary variable to store just the VirusTotal results we want, to be
added to master variable
 $results = $test.data.attributes.last_analysis_stats
 $results | Add-Member NoteProperty Filename $dll.filename
 $results | Add-Member NoteProperty Hash $hash
 $results | Add-Member NoteProperty LastAnalysisDate $LastAnalysisDate
 }
 catch [System.Net.WebException] #Do this if Virus Total gives back a 404 error
meaning no data found
 {

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 68

Author Name, email@addressm

 $results = New-Object -TypeName psobject
 $results | Add-Member NoteProperty Filename $dll.filename
 $results | Add-Member NoteProperty Hash $hash
 $results | Add-Member NoteProperty LastAnalysisDate "Results not found"

 }
 catch
 {
 Write-host "Invoke-restmethod cmdlet not found"
 }
 #Add results to master variable
 $VTLookupResults += $results

 #VirusTotal API is rate limited (4 per minute with Free API). This call to sleep
ensures we don't break that limit
 sleep($vtsleep)
 }
 }

 return $VTLookupResults
}

Function FormatOutput($results, $vtresults)
{
 <#
 When processing the $Results variable, the array will contain data in different
elements depending on if this script was
 executing searching for a PID or file path. Below details what information is stored
in which element of the array.

 by PID
 (result data by index)

 0 = ProcessLineage
 1 = LoadedDLLs
 2 = Network Results
 3 = Scheduled Task Results
 4 = Service Results
 5 = Registry Results
 6 = Autostart Folder Results
 7 = File Timestamps
 8 = Filesystem Search Results

 By Filepath
 (Result data by index)

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 69

Author Name, email@addressm

 0 = Scheduled Task Results
 1 = Service Results
 2 = Registry Results
 3 = Autostart Folder Results
 4 = File Timestamps
 5 = Filesystem Search Results
 6 = Process Lineage
 7 = LoadedDLLs
 8 = Network Results

 NOTE:: when searching by filepath, it also checks for running processes executing
from that path, which is where 6-8 come in.
 it's possible for multiple processes to be running from that path, so there
might be multiple sets of data related to 6-8. This
 is why these elements were moved to the end of the array, so we can iterate through
these three elements as many times as there
 where processes running.

 #>

 #Process and output all process information
 if (!$p -and $tree -and !$filepath)
 {

 if ($list)
 {
 $global:process_table | select name, pid, ppid, processuser, executablepath,
commandline | fl
 }
 else
 {
 $global:process_table | select name, pid, ppid, processuser, executablepath,
commandline | ft -AutoSize -wrap
 }
 if ($outpath)
 {
 $global:process_table | select name, pid, ppid, processuser, executablepath,
commandline | export-Csv -NoTypeInformation ($outpath + "ProcessList.csv")
 }

 }
 elseif (!$p -and !$filepath)
 {

 if ($table)
 {

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 70

Author Name, email@addressm

 $global:process_table | sort ppid | select name, pid, ppid, processuser,
executablepath, commandline | ft -AutoSize -wrap
 }
 else
 {
 $global:process_table | sort ppid | select name, pid, ppid, processuser,
executablepath, commandline
 }
 if ($outpath)
 {
 $global:process_table | sort ppid | select name, pid, ppid, processuser,
executablepath, commandline | export-Csv -NoTypeInformation ($outpath +
"ProcessList.csv")
 }
 }

 if($p)
 {
 if($table)
 {
 Write-Host "Process Lineage in Reverse Order"
 $results[0] | Format-Table -auto -wrap

 Write-Host "Process Loaded DLLs"
 $results[1] | select modulename, filename, hash, company, fileversion | Format-
Table -auto -Wrap

 if($results[2])
 {
 Write-Host "Network Information"
 $results[2] | Format-Table -auto -wrap
 }
 else
 {
 Write-Host "No Network Activity Associated with PID'r `n"
 }

 if($results[3])
 {
 Write-Host "Scheduled Task Information"
 $results[3] | select Hostname, Taskname, "Next Run Time", Status, "Last Run
Time", Author, "Task to Run", "Run As User", "Schedule Type" | Format-Table -
AutoSize -wrap
 }
 else
 {

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 71

Author Name, email@addressm

 Write-Host "No Scheduled Tasks`r`n"
 }

 if($results[4])
 {
 Write-Host "Service Information"
 $results[4] | select SystemName, name, DisplayName, StartMode, Pathname,
StartName, State | format-table -auto -Wrap
 }
 else
 {
 write-host "No Matching Services`r`n"
 }
 if($results[5])
 {
 Write-Host "Autostart Registry Keys Found"
 $results[5] | select key, value | format-table -auto -wrap
 }
 else
 {
 Write-Host "No Autostart Registry Keys Found"
 }
 if($results[6])
 {
 Write-Host "Autostart Folder Results`r`n"
 $results[6]
 Write-Host "`r`n"
 }
 else
 {
 Write-Host "No Matching Autostart Folder Entries`r`n"
 }
 if($results[7])
 {
 Write-Host "Executable Timestamps"
 $results[7] | select name, creationtime, creationtimeutc, lastwritetime,
lastwritetimeutc, lastaccesstime, lastaccesstimeutc | format-table -auto -wrap
 }
 else
 {
 Write-host "Couldn't get executable timestamp information. File doesn't
exist.`r`n"
 }
 if($results[8])
 {
 Write-Host "Files created within $search minutes of the executable in question"

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 72

Author Name, email@addressm

 $results[8] | select creationtime, Fullname | format-table -AutoSize -wrap
 }
 else
 {
 Write-Host "Search not requested or no files crearted within search timeframe
of executable in question'r `n"
 }

 }
 elseif($list -or !$outpath)
 {
 Write-Host "Process Lineage in Reverse Order"
 $results[0] | format-list

 Write-Host "Process Loaded DLLs"
 $results[1] | select modulename, filename, hash, company, fileversion | Format-
List

 if($results[2])
 {
 Write-Host "Network Information"
 $results[2] | Format-List
 }
 else
 {
 Write-Host "No Network Activity Associated with PID'r `n"
 }

 if($results[3])
 {
 Write-Host "Scheduled Task Information"
 $results[3] | select Hostname, Taskname, "Next Run Time", Status, "Last Run
Time", Author, "Task to Run", "Run As User", "Schedule Type" | Format-list
 }
 else
 {
 Write-Host "No Scheduled Tasks`r`n"
 }

 if($results[4])
 {
 Write-Host "Service Information"
 $results[4] | select SystemName, name, DisplayName, StartMode, Pathname,
StartName, State | format-list
 }
 else

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 73

Author Name, email@addressm

 {
 write-host "No Matching Services`r`n"
 }
 if($results[5])
 {
 Write-Host "Autostart Registry Keys Found"
 $results[5] | select key, value | format-list
 }
 else
 {
 Write-Host "No Autostart Registry Keys Found"
 }
 if($results[6])
 {
 Write-Host "Autostart Folder Results`r`n"
 $results[6] | format-list
 Write-Host "`r`n"
 }
 else
 {
 Write-Host "No Matching Autostart Folder Entries`r`n"
 }
 if($results[7])
 {
 Write-Host "Executable Timestamps"
 $results[7] | select name, creationtime, creationtimeutc, lastwritetime,
lastwritetimeutc, lastaccesstime, lastaccesstimeutc | format-list
 }
 else
 {
 Write-host "Couldn't get executable timestamp information. File doesn't
exist.`r`n"
 }
 if($results[8])
 {
 Write-Host "Files created within $search minutes of the executable in question"
 $results[8] | select creationtime, Fullname | format-list
 }
 else
 {
 Write-Host "Search not requested or no files crearted within search timeframe
of executable in question'r `n"
 }
 }
 if($outpath)
 {

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 74

Author Name, email@addressm

 $results[0] | export-csv -NoTypeInformation "$outpath$p-ProcessLineage.csv"

 $results[1] | select modulename, filename, hash, company, fileversion | export-csv
-NoTypeInformation "$outpath$p-LoadedDLLs.csv"

 if($results[2])
 {
 $results[2] | export-csv -NoTypeInformation "$outpath$p-
NetworkInformation.csv"
 }
 else
 {
 Write-Host "No Network Activity Associated with PID'r `n"
 }

 if($results[3])
 {
 $results[3] | select Hostname, Taskname, "Next Run Time", Status, "Last Run
Time", Author, "Task to Run", "Run As User", "Schedule Type" | export-csv -
NoTypeInformation "$outpath$p-ScheduledTasks.csv"
 }
 else
 {
 Write-Host "No Scheduled Tasks`r`n"
 }

 if($results[4])
 {
 $results[4] | select SystemName, name, DisplayName, StartMode, Pathname,
StartName, State | export-csv -NoTypeInformation "$outpath$p-ServiceInformation.csv"
 }
 else
 {
 write-host "No Matching Services`r`n"
 }
 if($results[5])
 {
 $results[5] | select key, value | export-csv -NoTypeInformation "$outpath$p-
AutostartRegistryKeys.csv"
 }
 else
 {
 Write-Host "No Autostart Registry Keys Found"
 }
 if($results[6])
 {

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 75

Author Name, email@addressm

 $results[6] | export-csv -NoTypeInformation "$outpath$p-
AutostartFolderResults.csv"
 }
 else
 {
 Write-Host "No Matching Autostart Folder Entries`r`n"
 }
 if($results[7])
 {
 $results[7] | select name, creationtime, creationtimeutc, lastwritetime,
lastwritetimeutc, lastaccesstime, lastaccesstimeutc | export-csv -NoTypeInformation
"$outpath$p-ExecutableTimestamps.csv"
 }
 else
 {
 Write-host "Couldn't get executable timestamp information. File doesn't
exist.`r`n"
 }
 if($results[8])
 {
 $results[8] | select creationtime, Fullname | export-csv -NoTypeInformation
"$outpathPID-$p-FilesystemSearchResults.csv"
 }
 else
 {
 Write-Host "Search not requested or no files crearted within search timeframe
of executable in question'r `n"
 }
 }
 }

 #The elements in the array were re-ordered when given the filepath option. This was
because multiple processes could be running from the same file
 # Which makes the length of the array variable while the rest is static. By putting it at
the end, we can work through the dynamic length with a loop.
 elseif($filepath)
 {
 if($table)
 {
 if($results[0])
 {
 Write-Host "Scheduled Task Information"
 $results[0] | select Hostname, Taskname, "Next Run Time", Status, "Last Run
Time", Author, "Task to Run", "Run As User", "Schedule Type" | Format-Table -
AutoSize -wrap
 }

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 76

Author Name, email@addressm

 else
 {
 Write-Host "No Scheduled Tasks`r`n"
 }

 if($results[1])
 {
 Write-Host "Service Information"
 $results[1] | select SystemName, name, DisplayName, StartMode, Pathname,
StartName, State | format-table -auto -Wrap
 }
 else
 {
 write-host "No Matching Services`r`n"
 }
 if($results[2])
 {
 Write-Host "Autostart Registry Keys Found"
 $results[2] | select key, value | format-table -auto -wrap
 }
 else
 {
 Write-Host "No Autostart Registry Keys Found"
 }
 if($results[3])
 {
 Write-Host "Autostart Folder Results`r`n"
 $results[3]
 Write-Host "`r`n"
 }
 else
 {
 Write-Host "No Matching Autostart Folder Entries`r`n"
 }
 if($results[4])
 {
 Write-Host "Executable Timestamps"
 $results[4] | select name, creationtime, creationtimeutc, lastwritetime,
lastwritetimeutc, lastaccesstime, lastaccesstimeutc | format-table -auto -wrap
 }
 else
 {
 Write-host "Couldn't get executable timestamp information. File doesn't
exist.`r`n"
 }
 if($results[5])

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 77

Author Name, email@addressm

 {
 Write-Host "Files created within $search minutes of the executable in question"
 $results[5] | select creationtime, Fullname | format-table -AutoSize -wrap
 }
 else
 {
 Write-Host "Search not requested or no files crearted within search timeframe
of executable in question'r `n"
 }

 #Check if any results from the file running as a process. if so, process the data,
otherwise skip it and move on.
 if($results[6])
 {
 ###start running process processing
 $i = 6 #starting at 6 to match the index position of results array
 do
 {
 Write-Host "Process Lineage in Reverse Order"
 $results[$i] | Format-Table -auto -wrap

 Write-Host "Process Loaded DLLs"
 $results[$i+1] | select modulename, filename, hash, company, fileversion |
Format-Table -auto -Wrap

 if($results[$i+2])
 {
 Write-Host "Network Information"
 $results[$i+2] | Format-Table -auto -wrap
 }
 else
 {
 Write-Host "No Network Activity Associated with PID'r `n"
 }

 $i += 3

 }while($i -lt $results.count)
 }
 else
 {
 Write-Host "File not running as process"
 }

 }
 elseif($list -or !$outpath)

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 78

Author Name, email@addressm

 {

 if($results[0])
 {
 Write-Host "Scheduled Task Information"
 $results[0] | select Hostname, Taskname, "Next Run Time", Status, "Last Run
Time", Author, "Task to Run", "Run As User", "Schedule Type" | Format-list
 }
 else
 {
 Write-Host "No Scheduled Tasks`r`n"
 }

 if($results[1])
 {
 Write-Host "Service Information"
 $results[1] | select SystemName, name, DisplayName, StartMode, Pathname,
StartName, State | format-list
 }
 else
 {
 write-host "No Matching Services`r`n"
 }
 if($results[2])
 {
 Write-Host "Autostart Registry Keys Found"
 $results[2] | select key, value | format-list
 }
 else
 {
 Write-Host "No Autostart Registry Keys Found"
 }
 if($results[3])
 {
 Write-Host "Autostart Folder Results`r`n"
 $results[3] | format-list
 Write-Host "`r`n"
 }
 else
 {
 Write-Host "No Matching Autostart Folder Entries`r`n"
 }
 if($results[4])
 {
 Write-Host "Executable Timestamps"

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 79

Author Name, email@addressm

 $results[4] | select name, creationtime, creationtimeutc, lastwritetime,
lastwritetimeutc, lastaccesstime, lastaccesstimeutc | format-list
 }
 else
 {
 Write-host "Couldn't get executable timestamp information. File doesn't
exist.`r`n"
 }
 if($results[5])
 {
 Write-Host "Files created within $search minutes of the executable in question"
 $results[5] | select creationtime, Fullname | format-list
 }
 else
 {
 Write-Host "Search not requested or no files crearted within search timeframe
of executable in question'r `n"
 }

 #Check if any results from the file running as a process. if so, process the data,
otherwise skip it and move on.
 if($results[6])
 {
 ###start running process processing
 $i = 6 #starting at 6 to match the index position of results array
 do
 {
 Write-Host "Process Lineage in Reverse Order"
 $results[$i] | format-list

 Write-Host "Process Loaded DLLs"
 $results[$i+1] | select modulename, filename, hash, company, fileversion |
Format-List

 if($results[$i+2])
 {
 Write-Host "Network Information"
 $results[$i+2] | Format-List
 }
 else
 {
 Write-Host "No Network Activity Associated with PID'r `n"
 }
 $i += 3
 }while($i -lt $results.count)
 }

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 80

Author Name, email@addressm

 else
 {
 Write-Host "File not running as process"
 }

 }
 if($outpath)
 {
 $justFilename = ($filepath.split('\')[-1]).split('.')[0]

 if($results[0])
 {
 $results[0] | select Hostname, Taskname, "Next Run Time", Status, "Last Run
Time", Author, "Task to Run", "Run As User", "Schedule Type" | export-csv -
NoTypeInformation "$outpath$justFilename-ScheduledTasks.csv"
 }
 else
 {
 Write-Host "No Scheduled Tasks`r`n"
 }

 if($results[1])
 {
 $results[1] | select SystemName, name, DisplayName, StartMode, Pathname,
StartName, State | export-csv -NoTypeInformation "$outpath$justFilename-
ServiceInformation.csv"
 }
 else
 {
 write-host "No Matching Services`r`n"
 }
 if($results[2])
 {
 $results[2] | select key, value | export-csv -NoTypeInformation
"$outpath$justFilename-AutostartRegistryKeys.csv"
 }
 else
 {
 Write-Host "No Autostart Registry Keys Found"
 }
 if($results[3])
 {
 $results[3] | export-csv -NoTypeInformation "$outpath$justFilename-
AutostartFolderResults.csv"
 }
 else

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 81

Author Name, email@addressm

 {
 Write-Host "No Matching Autostart Folder Entries`r`n"
 }
 if($results[4])
 {
 $results[4] | select name, creationtime, creationtimeutc, lastwritetime,
lastwritetimeutc, lastaccesstime, lastaccesstimeutc | export-csv -NoTypeInformation
"$outpath$justFilename-ExecutableTimestamps.csv"
 }
 else
 {
 Write-host "Couldn't get executable timestamp information. File doesn't
exist.`r`n"
 }
 if($results[5])
 {
 $results[5] | select creationtime, Fullname | export-csv -NoTypeInformation
"$outpath$justFilename-FilesystemSearchResults.csv"
 }
 else
 {
 Write-Host "Search not requested or no files crearted within search timeframe
of executable in question'r `n"
 }

 #Check if any results from the file running as a process. if so, process the data,
otherwise skip it and move on.
 if($results[6])
 {
 ###start running process processing
 $i = 6 #starting at 6 to match the index position of results array
 do
 {
 #Get the PID of the first process found. Just trying to get the PID field from
results gives an array of all PIDs within the process
 # lineage, so we have t specify just the first PID in the array, which is the pid
of the exectuable in quetsion
 $currentPID = ($results[$i][0].pid)[0]

 $results[$i] | export-csv -NoTypeInformation "$outpath$justFilename-
$currentPID-ProcessLineage.csv"

 $results[$i+1] | select modulename, filename, hash, company, fileversion |
export-csv -NoTypeInformation "$outpath$justFilename-$currentPID-LoadedDLLs.csv"

 if($results[$i+2])

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 82

Author Name, email@addressm

 {
 $results[$i+2] | export-csv -NoTypeInformation "$outpath$justFilename-
$currentPID-NetworkInformation.csv"
 }
 else
 {
 Write-Host "No Network Activity Associated with PID $ currentPID'r `n"
 }

 $i += 3

 }while($i -lt $results.count)
 }
 else
 {
 Write-Host "File not running as process"
 }

 }
 }

 if($vt -and $vtresults)
 {
 if($table)
 {
 $vtresults | select Filename, LastAnalysisDate, Undetected, type-unsupported,
malicious, suspicious, failure, timeout, harmless, hash | Format-Table -AutoSize -wrap
 }
 elseif($list -or !$outpath)
 {
 $vtresults | select Filename, LastAnalysisDate, Undetected, type-unsupported,
malicious, suspicious, failure, timeout, harmless, hash | Format-list
 }
 if($outpath)
 {
 if($p)
 {
 $vtresults | select Filename, LastAnalysisDate, Undetected, type-unsupported,
malicious, suspicious, failure, timeout, harmless, hash | Export-Csv -NoTypeInformation
"$outpath$p-VirusTotal.csv"
 }
 elseif($filepath)
 {
 $vtresults | select Filename, LastAnalysisDate, Undetected, type-unsupported,
malicious, suspicious, failure, timeout, harmless, hash | Export-Csv -NoTypeInformation
"$outpath$justFilename-VirusTotal.csv"

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 83

Author Name, email@addressm

 }
 }
 }
 elseif($vt -and !$vtresults)
 {
 Write-host "No Results from Virus Total. This likely means all DLLs loaded are
from Microsoft or the file is not a running process."
 }

}

if ($computer)
{
 if(!$cred)
 {
 $cred = Get-Credential
 }

 $temp = Invoke-Command -ComputerName $computer -cred $cred -ScriptBlock
${function:FullScript} -ArgumentList $p,$tree,$search,$filepath

 if($vt -and $p)
 {
 $vtresults = VirusTotal $temp[1]
 }
 elseif($vt -and $filepath)
 {
 if($temp[7])
 {
 $vtresults = VirusTotal $temp[7]
 }
 }

 if($temp -ne $false)
 {
 FormatOutput $temp $vtresults
 }
}
else
{

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

You’ve Had the Power All Along: Process Forensics With Native Tools 84

Author Name, email@addressm

 $temp = FullScript $p $tree $search $filepath

 if($vt -and $p)
 {
 $vtresults = VirusTotal $temp[1]
 }
 elseif($vt -and $filepath)
 {
 if($temp[7])
 {
 $vtresults = VirusTotal $temp[7]
 }
 }

 if($raw)
 {
 $temp
 }
 if(($temp -ne $false) -and !$raw)
 {
 FormatOutput $temp $vtresults
 }
}

