
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certified Incident Handler (GCIH)

Practical Assignment
Version 2.1
Option 1 – Exploit in Action

“Paratrace Analysis and Defence”

By David Jenkins (GCIA)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Table of Contents

Introduction ... 3

The Exploit .. 4
Name .. 4
Operating System .. 4
Protocols/Services/Applications ... 4
Brief Description ... 4
Variants ... 4
References ... 4

The Attack .. 6
Description and diagram of network ... 6
Protocol description .. 7
How the exploit works .. 8
Description and diagram of the attack .. 14
Signature of the attack ... 20
How to protect against it .. 21

The Incident Handling Process .. 23
Preparation ... 23
Identification ... 26
Containment .. 31
Eradication ... 34
Recovery ... 36
Lessons Learned ... 37
Extras ... 40

List of References ... 41

Definitions .. 43

Appendix 1 ... 44

Appendix 2 – paratrace.c .. 47

Appendix 3 – scanutil.c ... 54

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Introduction
This paper consists of an extensive review of the Paratrace reconnaissance tool in how
it works and how it would be applied and the incident handling processes that should
be followed in response to the use of that tool on a network. All testing was
conducted on a test network for the research of the tool and for creating a hypothetical
scenario for incident response process.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The Exploit
Name

The Paratrace exploit has been selected for detailed rev iew. The tools were
compiled and all testing conducted in the test network. Paratrace comes
bundled in the Paketto download. There have been no CVE and CERT
numbers assigned to this exploit. This is most likely because it is not a
specific vulnerability that the tool target but utilises the way routers work on
the Internet and therefore is not an actual coding error on the vendor’s behalf,
but a general weakness in the design of IPv4.

Operating System

The systems affected by this are any routing devices that comply with the
IPv4 RFC’s. The exploit itself runs a several flavours of Unix and Linux.

Protocols/Services/Applications

The protocols utilised in the exploit are TCP and ICMP.

Brief Description

Paratrace (Parasitic Trace) is a cleverly designed program that traces the
route from the source to the destination, by ‘piggy backing’ on a current TCP
connection. The output result is similar to Unix traceroute and Windows
tracert, but works in a different manner. Paratrace utilises well selected time
to live TCP messages for each router and collates the information received
back in the time exceeded replies. Because of the different way it works, it is
possible Paratrace is able to identify routing devices behind a stateful packet
firewall which may have also been network address translated.

Variants

No variants known.

References

Following are relevant references to the program itself.

• Kaminsky, Dan, URL http://www.doxpara.com

• Kaminsky, Dan, “Paketto Brief” URL

http://www.doxpara.com/read.php/docs/pk_english.html

• Kaminsky, Dan, “Paketto-1.1”. Version 1.1 URL

http://www.doxpara.com/paketto/paketto-1.1.tar.gz

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

• Kaminsky, Dan, “BH-Asia-02-kaminsky.pdf” URL

http://www.blackhat.com/presentations/bh-asia-02/Kaminsky/bh-asia-02-
kaminsky.pdf

• DeJesus, Edmund X, “Paketto Keiretsu: New TCP/IP Tools Cut Both Ways

“. URL http://www.infosecuritymag.com/2002/nov/digest25.shtml#news1

• Johnston, Gretel. “The Golden Age Rolls On”. URL

http://www.computerworld.com/securitytopics/security/holes/story/0,10801,
75381,00.html

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The Attack
This section describes how the tool could be used to perform reconnaissance
on a network. A test network was created and the tool run against it. For
illustration purposes, port 80 HTTP is used to demonstrate the attack. This
reconnaissance can just as easily work with the FTP service, or any other
TCP service that is being hosted by the network.

Description and diagram of network

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Protocol description

The exploit works by utilising weaknesses in IP protocols TCP, ICMP and the
way stateful firewalls work.

In the TCP protocol if a packet is not acknowledged within a certain
timeframe, then a duplicate packet is sent. So it is perfectly acceptable and
normal for duplicate packets to be seen from the sender on TCP/IP networks.
Below a section from the DOD standard on TCP which reflects this.

DOD STANDARD - TRANSMISSION CONTROL PROTOCOL

2.6. Reliable Communication

When the TCP transmits a segment, it puts a copy on a retransmission
queue and starts a timer; when the acknowledgment for that data is
received, the segment is deleted from the queue. If the acknowledgment
is not received before the timer runs out, the segment is retransmitted
(DOD Standard TCP, Section 2.6)

Although this adds the to robustness of TCP, it can be a double edged sword.
These duplicate packets can be used by an attacker for means other than the
intended purpose.

The ICMP (Internet Control Message Protocol) is used to communicate IP
communication problems. RFC792 is the protocol specification for ICMP, and
details all requirements for ICMP, including but not limited to error messages
to the sender:

• if the packet cannot reach the destination,
• hop count exceeded for TTL (time exceeded),
• if destination port not available,
• echo requests…etc.

So although ICMP is essential in the proper functioning of IP, it can be used
also by attackers for reconnaissance. Many network scanning tools utilise
ICMP in some way. For example tools that scan for UDP ports, will try to
connect to a particular port, say 1234, and if there is no program servicing that
port, then an ICMP Type 3, Code 3 “Port Unreachable” will be sent back to
the sender.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

How the exploit works

Brief Description

1. Attacker runs Paratrace program with the target of the web server
2. Attacker then connects to web server
3. The Paratrace program creates duplicates of the TCP packets and sends

them onto the target network. These packets have low TTL values.
4. Routing devices that see the TCP packets with TTL 1, decrement the

value to 0, drop the packet and send an ICMP “Time Exceeded” message
back to the originator of the TCP packets, the attacker.

5. Attacker receives the ICMP messages and creates a map of the internal
network.

Detailed Description

The first step Paratrace does is watch packets that pass the network interface
and filters out anything but ICMP packets or TCP packets with the target
address in the IP header part of the packet. Paratrace utilises the pcap
libraries for some of the packet handling routines.

This first part of the program is done in the following lines of code from
paratrace.c source file, refer to Appendix 2 and 3 for the relevant source code
modules. All source referenced in this paper is from the Paketto suit, the
author being Dan Kaminsky.

snprintf(pfprogram, sizeof(pfprogram), "icmp or (src %s %s and tcp)", buf,
target);

This source line copies the relevant packet search parameters (being
ICMP, target host or net and TCP connections) into the string pfprogram.

if (pcap_compile(pcap, &fp, pfprogram, 1, 0x0) == -1) {

This source line compiles the search parameter string pfprogram into the
format pcap requires for use, and is encapsulated in an error checking if
statement.

if (pcap_setfilter(pcap, &fp) == -1) {

This source code line, actually sets the filter to the pcap library to only look
at the required packets as described in the filter.

The program then goes into a while loop which has 3 main ‘if’ segments of
code, these are

1) if(target_acquired && x.ip->ip_p == IPPROTO_ICMP)

2) else if(!up && target_acquired && x.ip->ip_p == IPPROTO_TCP)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

3) else if(!target_acquired && x.ip->ip_p == IPPROTO_TCP &&
x.tcp->th_flags == TH_ACK)

As the variable target_aquired is set to 0 at the start of the program, then the
first thing the program does, is wait for a TCP ACK packet. Once it find this
packet the following happens

• The program estimates the hop count to the target

 snprintf(ttlrange, 1024, "1-%u", estimate_hopcount(x.ip ->
ip_ttl)+hopfuzz);

• The program set’s up the reply to the TCP ACK packet by
switching the source destination host and port values

 pk_memswp(&(x.eth->ether_dhost), &(x.eth ->

 ether_shost),ETHER_ADDR_LEN);

 pk_memswp(&(x.ip->ip_src), &(x.ip->ip_dst),
IPV4_ADDR_LEN);

 pk_memswp(&(x.tcp->th_sport), &(x.tcp->th_dport), 2);

 pk_memswp(&(x.tcp->th_seq), &(x.tcp->th_ack), 4);

• Zero’s the payload by setting the packet length to end at the end of
the packet header.

 x.ip->ip_len = htons((int)x.ip->ip_hl*4 + (int)x.tcp->th_off*4);

pkthdr.caplen = LIBNET_ETH_H + (int)x.ip->ip_hl*4 + (int)x.tcp-
>th_off*4;

• Re-calculates the IP checksum.

recalc_checksums(&x, IPPROTO_TCP);

• Calls raw_sock_syn_scan from scanutil.c from paketto suite,
passing ttlrange value.

raw_sock_syn_scan(dest, sizeof(dest), dev, &x,
 ttlrange, seed, bandwidth, verbose, resolve, 1);

o Relevant parts from Raw_sock_syn_scan procedure for
paratrace are that it loops as many times as there are hops
to target

for(ttl=start_ttl; ttl<=end_ttl; ttl++){

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

§ Sets ttl to start ttl value and puts in IP TTL field

scanx->ip->ip_ttl = ttl;

§ Puts the TTL value into the IP ID field\

scanx->ip->ip_id = htons(ttl);

§ Sends the packet

i = libnet_write_ip(sockfd, (char *)scanx->ip, (int)scanx-
>ip->ip_hl*4 + (int)scanx->tcp->th_off*4);

This is the stage where the program is utilising duplicate packet allowable
state for TCP. Paratrace takes advantage of this and creates a duplicate
packet of an outgoing legitimate TCP packet and inserts a low TTL (Time To
Live) in the IP header. In the Paratrace Network Diagram above, the first
packet would have a TTL of 1. The next packet sent would have a TTL of 2
and so on.

Once the first packet hits the first router, the TTL value will be decremented
and will be dropped by the router because TTL is now 0. The router will also
issue an “ICMP Time Exceeded” message back to the attacker. The
following packets, once TTL has been reduced to 0 will also produce time
exceeded messages.

Paratrace utilises the ICMP Type 11, Code 0 “Time exceeded” in transmit
messages to map out the routing devices between the source and destination
IP addresses.

The ICMP replies are captured in the first of the main ifs in paratrace.c

if(target_acquired && x.ip->ip_p == IPPROTO_ICMP)

In this section of code, it takes the ICMP Time Exceeded message and prints
the relevant information from the packet. Sample output from
http://www.doxpara.com/read.php/docs/paratrace.html

002 = 63.251.53.219|80 [02] 5.170s(10.0.1.11 ->
66.35.250.150)
001 = 64.81.64.1|80 [01] 5.171s(10.0.1.11 ->
66.35.250.150)
003 = 63.251.63.14|80 [03] 5.195s(10.0.1.11 ->
66.35.250.150)
 UP: 66.35.250.150:80 [12] 5.208s
004 = 63.211.143.17|80 [04] 5.219s(10.0.1.11 ->
66.35.250.150)
005 = 209.244.14.193|80 [05] 5.235s(10.0.1.11 ->
66.35.250.150)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

006 = 208.172.147.201|80 [08] 5.273s(10.0.1.11 ->
66.35.250.150)
007 = 208.172.146.104|80 [06] 5.277s(10.0.1.11 ->
66.35.250.150)
008 = 208.172.156.157|80 [08] 5.314s(10.0.1.11 ->
66.35.250.150)
009 = 208.172.156.198|80 [08] 5.315s(10.0.1.11 ->
66.35.250.150)
010 = 66.35.194.196|80 [09] 5.337s(10.0.1.11 ->
66.35.250.150)
011 = 66.35.194.58|80 [09] 5.356s(10.0.1.11 ->
66.35.250.150)
012 = 66.35.212.174|80 [10] 5.379s(10.0.1.11 ->
66.35.250.150)

The crux of TCP legitimately having multiple packets is that Paratrace can go
through stateful packet firewalls. This works in the following way. Referring
to the “Paratrace Network Diagram” above, the firewall has a rule in it as
below:

Source (ANY), Destination (Web Server), Service (HTTP), Action (Allow)

This rule allows any source IP address connect to the web server using
HTTP. This is a very common rule to find in corporations so that their
company web pages can be viewed by the public. The following steps occur:

1) Attacker using their web browser connects to the target web site.
2) Firewall checks packet against rules and allows the connection.
3) There is now a new entry in the firewall state table that says:

Attacker – Web server – HTTP – Active

4) Attacker now sends a duplicate TCP packet to the web server. Firewall
checks to see if the packet is part of an already active TCP state, finds a
match and allows the packet through. Although in this case, the duplicate
packet has a TTL trigger to map the network.

The program runs on flavours of Unix and Linux and can be used in simple
following manner.

paratrace www.sans.org

Then on the same machine, browse to www.sans.org. The program will then
use the browsed connection to operate.

There are a number of command line options that can be used with paratrace.
The list below are the available options with a description of what they do.

-s [hopfuzz]: This option allows the user to select the number of hops
to go further than the program estimates the target is. This can ensure

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

that if the program does not calculate the hop distance correctly, then
the whole path is followed. Selecting a value of –1 here reduces the
number of duplicate packets sent, and can aid in the degree of stealth.

-t [timeout]: This is the time the program will wait for the response to
the last packet before ending.

-b[bandwidth]: Allows the user to limit bandwidth consumption. Options
of 0/b/k/m/g. Implemented by using usleep c command. b=64
seconds, k=6.2 milliseconds, m= 61 microseconds, 0.06 microseconds.
If 0 selected no delays and maximum bandwidth used. Default is 0.

Relevant source code

• case 'b': multiple=1;
• case 'k': multiple=1024;
• case 'm': multiple=1024*1024;
• case 'g':multiple=1024*1024*1024;
• i=base*multiple;
• packetsleep=(1000000*64)/i; /*64 is min. frame size*/
• if(packetsleep)usleep(packetsleep);

-n : A llows the user to specify a target network instead of a target
address. This has the effect of any TCP packets from a host on that
network can be used for paratrace.

-N/-NN : Use –N reverse DNS lookups to determine the name of
the source address. Use –NN to do so with destination address
instead of source address.

-v : Go into verbose mode level 1. Display sending of packets.

-vv : Go into verbose mode level 2. This includes outputting all
interpreted TCP and IP headers.

-d [device]: Use this device for all traffic.
-i [source]: Use this source IP address for all traffic.

Theoretically it would also be possible to achieve the same results as
paratrace without the program, although it would be slow, and take more effort
and timing issues may come into play. To do this, one would need the
following:

• Their favourite packet crafting tool of the month,
• A packet capture program, tcpdump would be sufficient.

First, the person would run tcpdump and capture the TCP ACK packet. Then
take this packet and manipulate the information. i.e. – switch source
destination addresses and port, zero the payload, put the required TTL value

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

in the IP header and recalculate the checksums then inject the packet onto
the wire. To put the correct TTL value in, this would have to be worked out by
the person. Then repeat this process as many times as there are hops
between the themselves and the target. This would be a slow and tedious
process and naturally that is what computer programs are for.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Description and diagram of the attack

1) The attacker enters the command paratrace www.targetwebserver.com
2) They then browse to the target web server.

Tcpdump command is used to shows all ICMP packets or packets with port
80 as the source or destination port. The –v option shows output in verbose
mode, in particular we are interested in the TTL values.

tcpdump -v -n ip[9] = 1 or port 80

20:43:12.500095 10.0.0.151.1084 > 172.17.0.10.80: S
2115551386:2115551386(0) win 5840 (DF) (ttl 64, id 50290, len 60)
20:43:12.503967 172.17.0.10.80 > 10.0.0.151.1084: S
3623596701:3623596701(0) ack 2115551387 win 10136 (DF) (ttl 247, id
21697, len 60)
20:43:12.504035 10.0.0.151.1084 > 172.17.0.10.80: . ack 1 win 5840 (DF) (ttl
64, id 50291, len 52)
20:43:12.521246 172.17.0.10.80 > 10.0.0.151.1084: P 1:43(42) ack 1 win
10136 (DF) (ttl 247, id 21698, len 94)
20:43:12.523618 10.0.0.151.1084 > 172.17.0.10.80: . ack 43 win 5840 (DF)
(ttl 64, id 50292, len 52)
20:43:15.998353 10.0.0.151.1084 > 172.17.0.10.80: P 1:9(8) ack 43 win 5840
(DF) (ttl 64, id 50293, len 60)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

20:43:16.001112 172.17.0.10.80 > 10.0.0.151.1084: . ack 9 win 10136 (DF)
(ttl 247, id 21699, len 52)
20:43:16.001674 172.17.0.10.80 > 10.0.0.151.1084: P 43:73(30) ack 9 win
10136 (DF) (ttl 247, id 21700, len 82)
20:43:16.002595 10.0.0.151.1084 > 172.17.0.10.80: . ack 73 win 5840 (DF)
(ttl 64, id 50294, len 52)
20:43:16.031099 10.0.0.151.1084 > 172.17.0.10.80: . ack 43 win 10136 (DF)
[ttl 1] (id 1, len 52)
20:43:16.031497 10.0.0.201 > 10.0.0.151: icmp: time exceeded in-transit (ttl
255, id 50784, len 56)

20:43:16.044021 10.0.0.151.1084 > 172.17.0.10.80: . ack 43 win 10136 (DF)
(ttl 2, id 2, len 52)
20:43:16.044686 150.122.58.249 > 10.0.0.151: icmp: time exceeded in-transit
(ttl 254, id 34338, len 56)

The trace in green is the http connection handshake and data packets from
the browser on the attackers machines and the target web server.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

3) Paratrace, detects the TCP packets and sends out the duplicates with
ascending TTL values.

Below is the tcpdump output again:

20:43:12.500095 10.0.0.151.1084 > 172.17.0.10.80: S
2115551386:2115551386(0) win 5840 (DF) (ttl 64, id 50290, len 60)

20:43:12.503967 172.17.0.10.80 > 10.0.0.151.1084: S
3623596701:3623596701(0) ack 2115551387 win 10136 (DF) (ttl 247, id
21697, len 60)

20:43:12.504035 10.0.0.151.1084 > 172.17.0.10.80: . ack 1 win 5840 (DF) (ttl
64, id 50291, len 52)

20:43:12.521246 172.17.0.10.80 > 10.0.0.151.1084: P 1:43(42) ack 1 win
10136 (DF) (ttl 247, id 21698, len 94)

20:43:12.523618 10.0.0.151.1084 > 172.17.0.10.80: . ack 43 win 5840 (DF)
(ttl 64, id 50292, len 52)

20:43:15.998353 10.0.0.151.1084 > 172.17.0.10.80: P 1:9(8) ack 43 win 5840
(DF) (ttl 64, id 50293, len 60)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

20:43:16.001112 172.17.0.10.80 > 10.0.0.151.1084: . ack 9 win 10136 (DF)
(ttl 247, id 21699, len 52)

20:43:16.001674 172.17.0.10.80 > 10.0.0.151.1084: P 43:73(30) ack 9 win
10136 (DF) (ttl 247, id 21700, len 82)

20:43:16.002595 10.0.0.151.1084 > 172.17.0.10.80: . ack 73 win 5840 (DF)
(ttl 64, id 50294, len 52)

20:43:16.031099 10.0.0.151.1084 > 172.17.0.10.80: . ack 43 win 10136 (DF)
[ttl 1] (id 1, len 52)

20:43:16.031497 10.0.0.201 > 10.0.0.151: icmp: time exceeded in-transit (ttl
255, id 50784, len 56)

20:43:16.044021 10.0.0.151.1084 > 172.17.0.10.80: . ack 43 win 10136 (DF)
(ttl 2, id 2, len 52)

20:43:16.044686 150.122.58.249 > 10.0.0.151: icmp: time exceeded in-transit
(ttl 254, id 34338, len 56)

The lines in red are the actual trace of the packets with low TTL’s sent by
paratrace. The first red trace packet, shows a TTL of 1 and an id of 1. The
second red trace packet shows a TTL of 2 and an id of 2 as per the diagram.
This is concurrent with the source code:

§ Sets ttl to start ttl value and puts in IP TTL field

scanx->ip->ip_ttl = ttl;

§ Puts the TTL value into the IP ID field\

scanx->ip->ip_id = htons(ttl);

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

4) Paratrace collates the ICMP time exceeded replies.

Below is the tcpdump output again:

20:43:12.500095 10.0.0.151.1084 > 172.17.0.10.80: S
2115551386:2115551386(0) win 5840 (DF) (ttl 64, id 50290, len 60)

20:43:12.503967 172.17.0.10.80 > 10.0.0.151.1084: S
3623596701:3623596701(0) ack 2115551387 win 10136 (DF) (ttl 247, id
21697, len 60)

20:43:12.504035 10.0.0.151.1084 > 172.17.0.10.80: . ack 1 win 5840 (DF) (ttl
64, id 50291, len 52)

20:43:12.521246 172.17.0.10.80 > 10.0.0.151.1084: P 1:43(42) ack 1 win
10136 (DF) (ttl 247, id 21698, len 94)

20:43:12.523618 10.0.0.151.1084 > 172.17.0.10.80: . ack 43 win 5840 (DF)
(ttl 64, id 50292, len 52)

20:43:15.998353 10.0.0.151.1084 > 172.17.0.10.80: P 1:9(8) ack 43 win 5840
(DF) (ttl 64, id 50293, len 60)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

20:43:16.001112 172.17.0.10.80 > 10.0.0.151.1084: . ack 9 win 10136 (DF)
(ttl 247, id 21699, len 52)

20:43:16.001674 172.17.0.10.80 > 10.0.0.151.1084: P 43:73(30) ack 9 win
10136 (DF) (ttl 247, id 21700, len 82)

20:43:16.002595 10.0.0.151.1084 > 172.17.0.10.80: . ack 73 win 5840 (DF)
(ttl 64, id 50294, len 52)

20:43:16.031099 10.0.0.151.1084 > 172.17.0.10.80: . ack 43 win 10136 (DF)
[ttl 1] (id 1, len 52)

20:43:16.031497 10.0.0.201 > 10.0.0.151: icmp: time exceeded in-transit (ttl
255, id 50784, len 56)

20:43:16.044021 10.0.0.151.1084 > 172.17.0.10.80: . ack 43 win 10136 (DF)
(ttl 2, id 2, len 52)

20:43:16.044686 150.122.58.249 > 10.0.0.151: icmp: time exceeded in-transit
(ttl 254, id 34338, len 56)

The trace packets in blue are the time exceeded messages back from the
routers, in this case the firewall is acting as a router and so sends the ICMP
message as well.

The resultant output from paratrace is as below.

Paratrace 172.17.0.10

Waiting to detect attachable TCP connection to host/net: 172.17.0.10
172.17.0.10:80/32 1-15
001 = 10.0.0.201|80 [01] 2.362s(10.0.0.152 -> 172.17.0.10)
002 = 172.16.0.251|80 [02] 2.378s(10.0.0.151 -> 172.17.0.10)
 UP: 172.17.0.10:80 [03] 3.319s

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Signature of the attack

The initial test network did not detect the attack. This was because the NIDS
system was placed on the network just before the web and ftp server, and the
duplicate probing packets did not go that far.

The NIDS was then moved and placed in front of the firewall as per the dotted
line in the diagram and the paratrace program run again.

The following snort alert was logged

[**] ICMP Time-To-Live Exceeded in Transit [**]
12/25-20:43:13.669085 10.0.0.201 -> 10.0.0.151
ICMP TTL:255 TOS:0x0 ID:50784 IpLen:20 DgmLen:56
Type:11 Code:0 TTL EXCEEDED IN TRANSIT
=+=
+=+=+=+=+=+=+=+
[**] ICMP Time-To-Live Exceeded in Transit [**]
12/25-20:43:13.680231 172.16.0.251 -> 10.0.0.151
ICMP TTL:254 TOS:0x0 ID:34338 IpLen:20 DgmLen:56
Type:11 Code:0 TTL EXCEEDED IN TRANSIT
=+=
+=+=+=+=+=+=+=+

This was using the latest version of Snort at the time, version 1.9.0 and the
latest ruleset.

The specific signature that matched was from the icmp-info.rules file and was:

alert icmp $EXTERNAL_NET any -> $HOME_NET any (msg:"ICMP Time-To-
Live Exceeded in Transit"; itype: 11; icode: 0; sid:449; classtype:misc-activity;
rev:4;)

The problem with this detect, is that it will match on any valid ICMP timeout
messages and not only alert when paratrace is being used. In the IDS field,
much time is spent on trying to minimise the number of false positives, so this
would be no good.

A very simple way of detecting the paratrace program would be to look for any
TCP packets sent out that had a TTL value matching the IP ID field. Here are
the two duplicate packets from the trace above that were sent by paratrace.
The parts in red are the TTL and IP ID field. We can see that they are equal.

20:43:16.031099 10.0.0.151.1084 > 172.17.0.10.80: . ack 43 win 10136 (DF)
(ttl 1, id 1, len 52)
20:43:16.044021 10.0.0.151.1084 > 172.17.0.10.80: . ack 43 win 10136 (DF)
(ttl 2, id 2, len 52)

The detect can be accomplished by using the following tcpdump command:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

tcpdump –v ip[9] = 6 and ip[8:1] == ip[5:1]

Which translates to:show packets of TCP protocol where TTL = IP ID

There were no other traces found in the firewall logs or on the router. To have
this information logged a specific rule would need to be added into the firewall
ruleset and configured to log the icmp packets. Also on the router the logging
would need to be turned on, although this can quickly fill up the available
space on the router.

How to protect against it

To stop paratrace being able to map out the internal network a number of
measures can be taken to control the traffic. Firstly we need to understand
how the firewall controls which packets can and which packets cannot pass
through the firewall.

The usual method on setting up the ruleset on checkpoint firewall-1 is to have
a list of rules which permit traffic that is required and the last rule drops
everything else. Drop everything unless speci fically granted.

Test Network Firewall Ruleset

• Rule 1 – Permit any source IP destined for WebServer using protocol
HTTP

• Rule 2 – Permit any source IP destined for FTPServer using protocol
FTP

• Rule 3 – Drop any external source IP’s destined for the internal
network using protocol ICMP Type Echo Request

• Rule 4 – Permit Firewall Manager destined for Firewall using FW1
protocol

• Rule Last – Drop any source IP destined for any destination IP any
protocols.

A packet coming into the firewall, would first be checked against Rule 1, to
see if it is permitted. If it is, the packet is passed through and there is no more
checking against the other rules. If it is not specifically permitted by the first
firewall rule then it moves onto the next one and checks the packet against
that. If it is permitted is passes the packet through and moves onto the next
packet. If a packet is checked against all the rules and has still not been
permitted, it reaches the last rule, which is drop everything. This of course
matches and so the packet is dropped.

One may well ask why in the test network, the ICMP messages were actually
passed through the firewall without any specific rules stating that ICMP is
allowed through. This is because apart from the ruleset checked against,
Checkpoint Firewall-1 has some extra rules which are not seen here. There is
a rule 0 which always comes first which handles a number of checks including
anti-spoofing. Additionally, in the security policy of the firewall there are a

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

number of options that can be selected. One of these is “Allow ICMP”
messages. If this is selected, then an automatic rule is added before the last
one, that allows ICMP messages. This was selected in the test network
firewall.

To stop the ICMP time exceeded messages from exciting back through the
firewall, one of two steps can be taken. De-select the “Allow ICMP” field in
the security policy of the firewall, which because there is no specific rule
allowing ICMP, would then drop all ICMP by the final rule. This will have the
added effect of also stopping all ICMP messages coming into the internal
network, which may cause problems because of the possibility of blocking
legitimate ICMP messages.

The other options is if you still want ICMP messages but only stop the ICMP
“Time Exceeded” messages, de-select the “Allow ICMP” field and put a
specific rule in the firewall, which drops packets of ICMP Type 11 Code 0.
Turning the logging on for this rule would be a good way to see how many
attempts are being made to try and map your network using expired TTL’s.
Although there may be some legitimate time exceeded messages, most of
them will be the result of scanning attempts. This second method is more
secure, as you need to specifically state exactly what ICMP is allowed through
the firewall, instead of allowing a carte blanche effect for all ICMP. Although,
this will take more effort in determining exactly what ICMP messages you
want to allow to pass in and out of your network.

From the vendor perspective, there is not too much that can be done as this is
mainly a design issue of IP version four. Checkpoint should make sure that
the “Allow ICMP” field in the security policies of the Firewall-1 product of all
version and all new versions is not selected by default and a better
explanation in the help section of there product describing the risks
associated with selecting this option. The router vendors, could put some
logic in their products that checked all packets to see if the TTL equalled the
IP ID value and drop the packet if it did. Although their stance on this may be
that their devices are just focusing on routing and not providing security
checks. An option for them would be to include this is a security plug-in for
their routers which would be optional for the owner to utilise or not.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The Incident Handling Process
This section describes what incident handling process should be followed to
address the attack described above on the “Company Network Diagram”
below.

Preparation

Prior to any incident, there should already be counter measures, an incident
handling process and policy statements and an incident handling team
already setup so as when an incident does happen the company is prepared
to deal with it.

Counter Measures

There should be a number of counter measures in place ready to be applied.
This can range from IDS, disconnecting the affected system from the network,
powering down the server, applying blocking rules in the firewall and applying
router controls.

In this case the counter measure was the IDS system which detected the
paratrace attempt in the first place.

Incident Handling Team

There should be a well defined incident handling team. This should consist of

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The incident coordinator – This person is responsible for coordinating the
whole incident. They will call in and direct each of the team and actions they
will take.

Security – A member from the security group to be able to provide subject
matter technical expertise in regards to the incident.

System support/administration – This will be a minimum select number of
people, depending on how the support structure works in the company. For
example, there may be a person from the Unix support team, the Microsoft
support team, the Mainframe support team and the Network support team.
These people will need to be hand picked, well trusted and have worked for
the company for an extended time.

Localised technical support – If the company is geographically disperse, then
the incident coordinator will need to call on the localised support person in
relation to the incident. If the company has many different locations, then the
total number of localised people involved in the incident response team may
be several tens of people. For each incident though, only the relevant
localised technical people to deal with the incident should be contacted and
involved, not the whole group. This complies with the incident handling best
practice of the less people that know about the incident the better.

Legal – The legal team member, will need to be able to advise on legal
matters as they arise. Also, they may need to prepare certain legal
documents.

Human resources – This member will advise on staff matters, how to handle
communications to the staff if necessary and what actions in relation to the
staff member may need to be taken.

Public relations – This team member will handle all communication with the
public. If any people external to the incident handling team ask questions in
relation to the incident then they should be directed to the public relations
person. This leads to the need to supply the public relations member enough
information about the incident so they can appropriately inform people as per
their procedures.

Excerpts from policy and procedure
Following are excerpts from the policy that support the incident handling and
ensure that the company is prepared to respond to an incident.

• You shall report all incidents and potential incidents that come to your
notice to your local help desk.

• The security group will investigate all security incidents and suspected
incidents

• Security event logging shall be implemented on all systems.
• Security events logs must be protected against unauthorised access or

modification

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

• Security event logs must be retained for a period not less than three
months

• All security events must be centrally monitored
• All networked devices that support time synchronisation must

synchronise to a single time source
• Where it appears that a breach has occurred, access to or use of the

affected systems should be minimised until further notification.
• In the vent of an incident an Incident Coordinator shall be nominated.
• At the discretion of the security group details of an incident may be

removed and replaced with a reference to a security investigation file.
• All media enquiries in relation to an incident shall be referred to the

media relations group.
• If warranted the incident coordinator may involve other parties such as

the legal group, human resources and media relations.
• Only those person directly involved in the incident handling and

notification process may be informed of the existence or details of the
incident.

• Reports detailing the nature volume and cost of incidents must be
supplied to management on a monthly basis.

• Upon resolution of all the serious incidents a review must be conducted
in order to identify the root cause and prevent recurrence.

• Incident response procedures must be tested on a annual basis.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Identification

Detection and Confirmation of Incident

The incident would be detected by the front network intrusion detection sensor
alarming on the ICMP “Time Exceeded” messages. To confirm it was an
incident a number of steps would have to be taken (evidence procedures are
not described in this section, refer chain of custody section below for the
procedures).

1) First, look at how many and how far apart in time the ICMP messages are
coming. The number and close spaced frequency would be a sign of first
suspicion of non-standard traffic.

2) Investigate the snort logs and determine where the reply ICMP messages
are being sent.

3) The tcpdump server out the front of the firewall is performing a packet
capture of all packets going to the firewall. This is captured in a file, which
because of it’s size would be rotated on a regular basis, a 24 hour time
period per rotation is a good start point. This will depend on the amount of
traffic passing the sensor and the storage capacity of the server. It would
be necessary to perform a tcpdump on the current capture file for all
packets from the attacker to see if there is anything strange in the packets
or not. Appropriate command line would be:

tcpdump –v <attackerIP> -r <filename>

 From close inspection we would see the suspicious values of TTL and IP
ID being the same (highlighted in red).

20:43:16.031099 10.0.0.151.1084 > 172.17.0.10.80: . ack 43 win 10136 (DF)
(ttl 1, id 1, len 52)
20:43:16.044021 10.0.0.151.1084 > 172.17.0.10.80: . ack 43 win 10136 (DF)
(ttl 2, id 2, len 52)

4) At this stage, the incident would be confirmed as a security incident.

Counter measures of incident
The counter measure used in this case was to detect the reconnaissance
coming into the network as it happened using the snort IDS system situated
out the front of the firewall.

Incident Details

The initial incident would be reported fairly quickly by the front IDS system.
The log files of snort would show the following

Snort Log:
[**] ICMP Time-To-Live Exceeded in Transit [**]

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

12/25-20:43:13.669085 10.0.0.201 -> 10.0.0.151
ICMP TTL:255 TOS:0x0 ID:50784 IpLen:20 DgmLen:56
Type:11 Code:0 TTL EXCEEDED IN TRANSIT
=+=
+=+=+=+=+=+=+=+
[**] ICMP Time-To-Live Exceeded in Transit [**]
12/25-20:43:13.680231 172.16.0.251 -> 10.0.0.151
ICMP TTL:254 TOS:0x0 ID:34338 IpLen:20 DgmLen:56
Type:11 Code:0 TTL EXCEEDED IN TRANSIT
=+=
+=+=+=+=+=+=+=+

Confirmation would come from the tcpdump step as described above.
Tcpdump:

Investigation of the incident would take more time than the initial alert being
acknowledged but would be fairly brief in this case. If the person is on site
already, then the confirmation of the incident would be within the hour.

Chain of custody
An appropriate chain of custody process is:
The member of the responding team responsible for recording should:
• Complete an affirmation declaration
• Start a new Evidence Record form for each piece of evidence
• Assign an Evidence Number to the evidence
• Note the date and time that the evidence was found
• Describe the evidence
• Note the location in which the evidence was found
• Note who found the evidence
• Sign and date the form

The evidence should be placed in a plastic bag and retained by the member
of the responding team responsible for recording. The completed Evidence
Record should be attached to the bag.

The member of the responding team responsible for recording should
maintain possession of the bag until such time as it can be placed in a secure
room for analysis, or a safe for storage. The number of people who have
access to this safe should be minimal.

Each time the evidence is moved from one place to the another the following
details should be recorded

• Transferred from, By, Signature, Date
• Transferred to, By, Signature, Date
• Reason of transfer

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The chain of custody part of the form is shown below. This section should be
repeated at least as many times as the evidence is likely to change hands, so
that the complete chain of custody can be recorded on the one form.

Chain of Custody

Transferred
From:

 By:

Signature: Date:

Transferred To: By:

Signature: Date:

Reason:

Transferred
From:

 By:

Signature: Date:

Transferred To: By:

Signature: Date:

Reason:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Following is a flowchart of the evidence handling process.

Evidence Handling Process

Forensic Imaging ProviderResponding Team

Arrive at Scene

Any Physical
Evidence?

Complete an
Incident

Survey form

Forensic
Imaging

Required?

Electronic
Analysis

Required?

Note System State
then Record Input

and Output

Gather and
Record Physical

Evidence

Conduct Forensic
Im aging Process

Secure the
Evidence

Process
Completed

Yes

Yes

Yes

No

No

No

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

For the attack above an appropriate affirmation would be:

“I, David Jenkins, 25th December 2002, am in Computer room 2A, 112
Spencer St Melbourne, and am looking at a Sun Sparc Ultra 30, serial number
122884EF3. This computer is suspected of containing evidence of criminal
activity. At 21:14 I am removing one of the mirrored disks for ev idence.”

Listing of evidence

Mirrored hard drive from packet capture server, server name watcher, IP
address 10.0.0.121

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Containment

Assessment Process
The following assessment questions need to be answered in relation to the
incident.

1. How widely deployed is the affected platform or application?
2. What is the effect of the exploitation?
3. Can the vulnerability be exploited remotely?
4. Is a public exploit available for the vulnerability and how easily is it

obtained?
5. What level of skill and prerequisites are required by an attacker to

exploit the vulnerability?
6. Is the vulnerability present in a default configuration?
7. Is a fix available for the vulnerability?
8. Do other factors exist which reduce or increase the vulnerability’s risk

or potential impact such as possibility it is a worm?

Below are the answers to the above questions in relation to the paratrace
tool.

1. This exploit affects all routing devices.
2. The result of utilising the exploit is reconnaissance information
3. The vulnerability can be exploited anywhere on the internet.
4. Yes, the exploit is readily downloadable from

http://www.doxpara.com/read.php/code/paketto.html
5. Skill level required to run this exploit is very minimal. Although an

understanding of how best to use and which systems to target along
with the meaning of the results requires some degree of network
knowledge.

6. Not only the default behaviour, but the internet RFC’s mandate that
routers respond to the exploit.

7. No fix is available for the vulnerability, although a number of work
arounds can be employed to stop the exploit be successful.

8. Exploit can only be successful if ICMP time exceeded replies
messages are allowed through the firewall. Secondly the
reconnaissance can only be able to map as far into the network as the
deepest public accessible TCP service the company provides. This is
supporting argument for having all public accessible services in the
outer DMZ segment. Having a publicly accessible TCP service further
in on the network provides the possibility of deeper reconnaissance
into the internal network using paratrace.

Based on the answers above, this exploit should be addressed immediately.

Containment Process
As mentioned above, the first step of the process would be to pull out the
mirror drive of the watcher server. This drive contains an exact copy of the
main drive and therefore there is no need to make a backup. This makes the

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

process extremely simple and time efficient. Once the initial investigation has
completed, then a new hard drive can be re-inserted into the watcher server
and the create mirror command initiated to return the server back to the
mirrored state.

The next step is to query and search through the current capture file on and
locate the packets from the suspected source.

This would be done with the tcpdump command:

tcpdump –v <attackerIP> -r <filename>

20:43:12.500095 10.0.0.151.1084 > 172.17.0.10.80: S
2115551386:2115551386(0) win 5840 (DF) (ttl 64, id 50290, len 60)
20:43:12.503967 172.17.0.10.80 > 10.0.0.151.1084: S
3623596701:3623596701(0) ack 2115551387 win 10136 (DF) (ttl 247, id
21697, len 60)
20:43:12.504035 10.0.0.151.1084 > 172.17.0.10.80: . ack 1 win 5840 (DF) (ttl
64, id 50291, len 52)
20:43:12.521246 172.17.0.10.80 > 10.0.0.151.1084: P 1:43(42) ack 1 win
10136 (DF) (ttl 247, id 21698, len 94)
20:43:12.523618 10.0.0.151.1084 > 172.17.0.10.80: . ack 43 win 5840 (DF)
(ttl 64, id 50292, len 52)
20:43:15.998353 10.0.0.151.1084 > 172.17.0.10.80: P 1:9(8) ack 43 win 5840
(DF) (ttl 64, id 50293, len 60)
20:43:16.001112 172.17.0.10.80 > 10.0.0.151.1084: . ack 9 win 10136 (DF)
(ttl 247, id 21699, len 52)
20:43:16.001674 172.17.0.10.80 > 10.0.0.151.1084: P 43:73(30) ack 9 win
10136 (DF) (ttl 247, id 21700, len 82)
20:43:16.002595 10.0.0.151.1084 > 172.17.0.10.80: . ack 73 win 5840 (DF)
(ttl 64, id 50294, len 52)
20:43:16.031099 10.0.0.151.1084 > 172.17.0.10.80: . ack 43 win 10136 (DF)
[ttl 1, id 1, len 52)
20:43:16.031497 10.0.0.201 > 10.0.0.151: icmp: time exceeded in-transit (ttl
255, id 50784, len 56)
20:43:16.044021 10.0.0.151.1084 > 172.17.0.10.80: . ack 43 win 10136 (DF)
(ttl 2, id 2, len 52)
20:43:16.044686 150.122.58.249 > 10.0.0.151: icmp: time exceeded in-transit
(ttl 254, id 34338, len 56)

From looking at the packets above, it would be obvious that the red packets
are the stimulus (specifically the bolded red part, being low TTL values) and
the blue ICMP “Time Exceeded” messages are the response. The routers are
sending ICMP messages back to the attacker and thus revealing their own IP
addresses so the attacker can map the internal network. Successful
reconnaissance is in action.

The next step would be to determine if the attacker has performed other work
than just reconnaissance or has gone further, i.e. actually trying to penetrate
systems. This can be done either looking through the firewall logs or

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

investigating the rest of the packets that were output from the tcpdump
command above. At this stage it would be more thorough using the tcpdump
command output as if there is some packets that require more detail, then the
–X option prints out the captured part of the packet in hex and ASCII for
detailed investigation.

The first three packets from the tcpdump are the TCP handshake and the next
six packets are the http data transfer. This does not look suspicious and the
important fact here is that there is only a total of nine packets that are not
related to the paratrace reconnaissance. Secondly, the target is the same in
each and that there is no other trigger alerts from the snort system to indicate
any attempts to exploit known vulnerabilities.

The attacker could have after their scan, disconnected from their ISP and
reconnected and thus have a new IP address. So it would be a good
measure at this stage to check to make sure there are no IDS alerts recently,
especially after the “ICMP Time Exceeded” ones.

Finding no further alerts it would be a fair decision to say that only
reconnaissance has taken place at this stage. A further step would be to
check if any other similar reconnaissance has occurred of the same type.
This could be achieved with the following command line
tcpdump –v ip[9] = 6 and ip[8:1] == ip[5:1] –r <filename>

This would give a picture of how wide spread the reconnaissance is. In this
case there was only the one attempt.

The appropriate containment measure to take would be to either stop the
stimulus and or stop the response. As TCP packets for web traffic is allowed
through the firewall and is needed for the operation of the web page, then the
only simple control at this time would be to stop the response. Although the
stimulus would still get through to the internal network the response would not
and thus stop the mapping process from being successful. Secondly, the
stimulus is not harmful to the routing devices. To do this it can be done by
inserting a new firewall rule before the last rule which stops the ICMP
messages. An appropriate rule would be:

Drop any “ICMP Time Exceeded” messages destined for outside the firewall.

As these ICMP messages are a normal part of the everyday internet, this
could cause problem with using some of the companies internet services.
Although with default values for TTL’s at 64, 128 and 255, it is not frequent at
all to see ICMP “Time Exceeded” messages unless a network has been setup
incorrectly, possibly with a network loop somewhere.

Other containment measures, like changing root and administrative accounts
passwords would not be necessary as there were no systems compromised.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Eradication

The first step of the eradication phase is to determine the cause and
symptoms of the incident. At this stage we would know the following
symptoms:

• The tools is a reconnaissance tool
• It uses low TTL values with matching IP ID values
• It triggers ICMP “Time Exceeded” messages from routing devices.
• It can go through stateful firewalls.

To try and determine the cause of the symptoms, a method would be to
search for these systems with a good internet search engine. The following
was typed into www.google.com

“mapping ttl id icmp time exceeded firewall stateful”

Each link would be investigated and found that the 6 th link was a match to a
presentation that the author of the reconnaissance tool gave at Hivercon in
Dublin. The link being

www.doxpara.com/Black_Ops_Hivercon.ppt .

The searcher should now go to the base section of the URL and they would
find available for download the paketto bundle which in the description on the
web site describes a tool paratrace, that produces the symptoms found
above. The tool should be downloaded and tested on a separate test network
to see if it was actually the tool used for the reconnaissance. In this case it
would be confirmed that paratrace was indeed the tool that was used. The
options of the tool should be investigated and determined if after the
containment controls were put in place, can the network still be vulnerable
running the tool with different options. Additionally with this tool the source
code is available. It could be determined fairly easily that there is no
malicious code in the tool and that is would be safe to run the tool against the
live network. This would show you the point of the view from the attackers
perspective and what information is available. As in this case, all options of
the tool depends on the ICMP “Time Exceeded” messages and so there is no
further threat.

The next step of eradication is to improve the defences. In this cause it is
known that the attacker has gained the IP address of the external interface of
the firewall and the IP address of the router directly behind the firewall. There
is a possibility of changing the internal IP address scheme so that the
information that the attacker has gleaned is not valid anymore. Although this
can required substantial effort, the risk and cost need to be weighed to justify
this course of action.

At this stage it is prudent to perform a vulnerability analysis of the systems
and network. This should be done on the systems and also from the network

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

vulnerability side and can be performed in house with available tools or a
security consultant can be brought in to perform the work.

The actionable step in this section is to report the incident to the local CIRT
and provide sanitised logs and traces in relation to the incident.

As no systems were actually compromised, there would be no need to follow
the standard procedure of locating the most recent clean backup.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Recovery

The standard steps of recovery, decide when to restore, restore and validate
the system would not be required to be actioned in this case as no systems
were actually found to be compromised.

At this phase further investigation to determine if the paratrace traffic could be
blocked before entering the internal network should be investigated. Or can
the routing devices be configured to stop responding to the paratrace
stimulus. This second option is doubtful as the ICMP “Time Exceeded”
message is the normal operation of the routing device.

Trying to stop the packet entering the network in the first place cannot be
done by the firewall. This is because the decision parameters of the firewall
of whether to pass a packet or not, does not include looking at the detail of the
TTL or the IP ID, and they cannot be compared to determine if these values
are the same. As the firewall cannot block the traffic it should be investigated
if the router that connects the company to the ISP can perform the blocking.

In the test network diagram there is no router in front of the firewall, but in a
real situation there would be. Certain routers and models provide some
functionality to be able to drop packets based on certain rules. Depending on
what hardware is being run at the company, it may be possible to block
packets that have a TTL value that matches the IP ID value. If this is the
case, then the paratrace stimulus packet would not pass into the internal
network in the first place. The problem with this control is that, the paratrace
code can easily be changed so that the values of the IP ID field do not match
the TTL value. It would be a fairly simple programming exercise to encrypt
the IP ID value so the field would appear random.

A vital part of the recovery phase is to keep monitoring the network and see if
the attack is continuing. If there is a continuous use from any IP address in
relation to this type of traffic, then this may be a sign that the firewall control
put in place is not working. This may be because the rule was not
implemented correctly, or there is a variant of the reconnaissance tool that
has been released that works differently, or simply just a new version of the
tool which operates in a different manner.

Finally to ensure the exposure had been totally removed and after ensuring
the code is not malicious in the eradication phase the tool should be run
against the network and made sure that not internal information is gained from
running it. In this case, as the ICMP “Time Exceeded” messages are blocked
at the firewall, then no reconnaissance information would be gained by using
the tool.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Lessons Learned

Analysis of incident

Following are the brief steps and flow of the reconnaissance that had taken
place and the incident response steps that followed.

1. Attacker runs paratrace program with the target of the web server
2. Attacker then connects to web server, which the firewall passes as

connections to the web server are allowed based on rule 1.
3. The paratrace program creates duplicates of the TCP packets on port

eighty, the firewall passes them, as this connection is already in the state
table of the firewall. Number of duplicates is equal to the number of hops
to the target. Although the packets are not exact duplicates, the TTL value
and IP ID values are modified to trigger responses.

4. Routing devices that see the TCP packets with TTL 1, decrement the
value to 0, drop the packet and send an ICMP “Time Exceeded” message
back to the originator of the TCP packets, the attacker.

5. Firewall passes these packets, as “Allow ICMP” is selected in the security
policy of the firewall.

6. Attacker receives the ICMP messages and creates a map of the internal
network up to the web server.

7. External IDS snort sensor alerted with “ICMP Time Exceeded” messages
8. Incident team went on site and obtained a forensic copy of the hard drive

of the watcher server. Evidence and incident process was followed.
9. Incident team found the source of the attack and the stimulus packets from

the attacker.
10. Incident team blocked the outgoing internal information from passing back

to the attacker.
11. Reconnaissance tool was determined and located and tested against own

network to determine if still vulnerable to further attacks.
12. Other methods of further strengthening security were investigated.

Recommendations
Cause of problem

Although a specific rule was put in the firewall to stop people mapping the
network with ICMP echo requests, the paratrace technique was still
successful. Investigation found that the main reason for this was the
parameter in the security policy of the firewall which allowed ICMP
messages through (Allow ICMP) even though there was no specific
firewall rule permitting this. The containment control of adding a new rule
in the firewall which specifically stopped ICMP “Time Exceeded”
messages from leaving the internal network was effective to stop this
reconnaissance technique.

Recommendation

The recommendation is to keep the rule of blocking outgoing ICMP “Time
Exceeded” messages in the firewall. Secondly, it would be ideal to

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

deselect the “Allow ICMP” in the security policy of the firewall and
investigate what ICMP traffic is required for proper operation of the
network and specifically allow this through the firewall instead of allowing a
carte blanche for all ICMP. The investigation should include current
exploits, Trojans, DOS’s and backdoors available that utilise ICMP
messages for operation.

Results of problem

The reconnaissance was successful in this case. The attacker gained
information about the internal IP addresses of the network.

Recommendation

A review to be conducted to weigh up the risk of this knowledge being in
the hands of an external person, or many depending on if the information
has been shared and the cost of changing the internal network IP address
so that the gained information is no longer valid. Secondly that the
findings of the review be carried out.

Incident Process problem - 1

Possible problems could have arisen from blocking all outgoing ICMP
“Time Exceeded” messages. No testing of the companies internet
services were conducted from the point of view of an external person.
Although there is probably a fairly low chance of this, it still would have
been prudent to conduct some testing to help ensure no interruption to
business services.

Recommendation

For any new change, the change should be tested in the test lab and all
critical services tested before applying to the production network. Incident
procedures to be changed to reflect this.

Incident Process problem - 2

Contrary to the policy, all systems did not have a synchronised clock.
Therefore there were times during the incident where is was confusing
which packet related to which other packet from different systems.

Recommendation 2

Synchronise all systems to one single time source. Audits to include
checking this part of the policy is being carried out.

Incident Process problem - 3

The companies evidence handling process calls for a forensic imaging
provider to be used to conduct the forensic imaging process. This was not

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

needed in this case and if used would have added hours to the whole
process. As nothing should be done on the system until the forensic
image has been completed this would have had the effect of leaving the
path open for the reconnaissance tool to keep working for the attacker for
a longer period, thereby allowing them to continue to map the network.

Recommendation 3

Change the evidence handling process to have a decision box in the part
where a forensic image is required. The decision box would ask the
question, is a mirrored disk available for use for the forensic image? If
yes, then use that disk, otherwise call in the forensic image provider.

Incident Process well done - 1

Rapid response to the initial problem and confirmation that the alert was
actually an incident that needed to be addressed.

Recommendation 1

Continue to have watcher server outside the firewall which captures all
packets. If a secondary link to the internet is established, then a
secondary packet capture server should also be implemented.

Incident Process well done - 2

Forensic imaging of device was done very easily and timely.

Recommendation 2

As the watcher server was deemed a critical part in determining possible
causes of security incidents and because of this was initially marked as a
likely source of evidence, the mirrored disk option was selected. Any time
a forensic image was needed, it would be a simple matter to just pull one
of the mirrored hard drives. A review should be instigated to determine
other systems that may be used for evidence. Once these systems are
selected, then they should be configured to have mirrored disks also if not
already.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Costs

Security personal 1 day
Onsite incident handler (*2) 1 day
Administration questions 2 hours
Review 2 days

If recommendations followed
Recommendation 1 – 2 days
Recommendation 2 - 2 days / 4 days
Recommendation 3 – 1 day
Recommendation 4 – 3 days
Recommendation 5 – 2 hours
Recommendation 6 – N/A
Recommendation 7 – 4 days

Total time for incident 16.5 days / 20.5 days

Although the total time to address the incident was just over four man days,
the total time to properly address the incident to the full extent, would be
sixteen and a half days. Using the standard company rate of $100 an hour,
the total cost of the incident is $13,300. If the results of the review of the
internal network information being out in the public is to change the network
then the total cost is $16,400.

Summary
The initial preparation for the incident was good and sufficient to deal with this
case. The problem was addressed in a timely manner and the
communication channel was sufficient. There were some problems overall
and if the recommendations are followed then the next incident will be
addressed more effectively and efficiently. This incident was a minor one of
reconnaissance only and the total cost of the incident was $13,300 or $16,400
depending on if the internal network is fully re-secured.

Extras

A management report is to be produced. This is a one page report that
contains a summary of the incidents that have happened for the month and
the costs involved. This report should be distributed to the CIO and the
board.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

List of References
• Kaminsky, Dan, URL http://www.doxpara.com

• Kaminsky, Dan, “Paketto Brief” URL

http://www.doxpara.com/read.php/docs/pk_english.html

• Kaminsky, Dan, “Paketto-1.1”. Version 1.1 URL

http://www.doxpara.com/paketto/paketto-1.1.tar.gz

• Kaminsky, Dan, “BH-Asia-02-kaminsky.pdf” URL
http://www.blackhat.com/presentations/bh-asia-02/Kaminsky/bh-asia-
02-kaminsky.pdf

• DeJesus, Edmund X, “Paketto Keiretsu: New TCP/IP Tools Cut Both

Ways “. URL
http://www.infosecuritymag.com/2002/nov/digest25.shtml#news1

• Johnston, Gretel. “The Golden Age Rolls On”. URL

http://www.computerworld.com/securitytopics/security/holes/story/0,10
801,75381,00.html

• Baker, F. “RFC1812 Requirements for IP Version 4 Routers “ June
1995. URL http://www.ietf.org/rfc/rfc1812.txt?number=1812

• Postel, J. “rfc792 INTERNET CONTROL MESSAGE PROTOCOL“

September 1981. URL http://www.ietf.org/rfc/rfc0792.txt?number=792

• IETF, Braden, R. “rfc1122 Requirements for Internet Hosts --

Communication Layers” URL
http://www.ietf.org/rfc/rfc1122.txt?number=1122

• Network Socery, “ICMP message 11” URL

http://www.networksorcery.com/enp/protocol/icmp/msg11.htm

• Kaminsky, Dan. URL
http://www.doxpara.com/read.php/code/paketto.html

• Kaminsky, Dan URL “Meet Dan Kaminsky IRC”

http://umeet.uninet.edu/umeet2002/talk/2002-12-09/linux3.3.txt.html

• Kaminsky, Dan URL
http://www.doxpara.com/read.php/docs/paratrace_logs.html

• USA, DOD, “DOD STANDARD - TRANSMISSION CONTROL

PROTOCOL”

• Kaminsky, Dan. “Paketto” Version 1.1. URL
http://www.doxpara.com/read.php/code/paketto.html

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

• URL http://www.google.com

• Kaminsky, Dan, “Black Ops Hivercon”. URL
http://www.doxpara.com/Black_Ops_Hivercon.ppt

• “Snort Rule Stabe” URL http://www.snort.org/dl/rules/snortrules-

stable.tar.gz

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Definitions

FTP - File Transfer Program

HTML - Hyper Text Markup Language

ICMP - Internet Control Message Protocol

IDS - Intrusion Detection System

IP - Internet Protocol

IP ID - ID field in the IP header

NIDS - Network Intrusion Detection System

TTL - Time To Live

TCP - Transmission Control Protocol

Tcpdump - Program to capture packets

UDP - User Data Protocol

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Appendix 1

PARATRACE(1) PARATRACE(1)

NAME
 paratrace - Parasitic Traceroute via Established TCP Flows
 & IPID Hopcount

SYNOPSIS
 paratrace [-b bandwidth] [options] host|network

PACKAGE
 Paketto Keiretsu 1.0

DESCRIPTION
 Paratrace traces the path between a client and a server,
 much like "traceroute", but with a major twist: Rather
 than iterate the TTLs of UDP, ICMP, or even TCP SYN pack-
 ets, paratrace attaches itself to an existing, stateful-
 firewall-approved TCP flow, statelessly releasing as many
 TCP Keepalive messages as the software estimates the
 remote host is hop-distant. The resultant ICMP Time
 Exceeded replies are analyzed, with their original hop-
 count "tattooed" in the IPID field copied into the
 returned packets by so many helpful routers. Through this
 process, paratrace can trace a route without modulating a
 single byte of TCP/Layer 4, and thus delivers fully valid
 (if occasionally redundant) segments at Layer 4 -- seg-
 ments generated by another process entirely.

 OPTIONS

 -s [hopfuzz]
 "Overshoot" target host by a number of hops equal
 to the hopfuzz. paratrace passively estimates the
 number of hops away that a given target is, based
 on the incoming ACK/PSH|ACK's TTL's deviation from
 a clean factor of 64. This is, at *best*, a rough
 estimate, so we set the number of hops larger to
 make sure we get all the way there. (The scan is
 stateless, so we can't just send more packets when
 we don't get all we wanted.) Setting this value to
 -1 may offer some degree of stealth.

 -t [number of seconds]

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 Set maximum number of seconds that may pass before
 listening process gives up on receiving any more
 responses. This timer is reset with every good
 response, whether the port is up or down.

 -b [bandwidth][b][k][m][g]
 Limit the amount of bandwidth that scanrand may use
 for its outgoing requests. -b 100k would limit
 said bandwidth to 100kbyte/s. Note, since outgoing
 SYN frames constitute only 64 bytes on the wire,
 very little bandwidth can go very, very far. The
 bandwidth value of 0 -- set by default -- corre-
 sponds to no bandwidth limitation.

 -n Specify network, instead of host, to attach a para-
 sitic trace to. This has the caveat ofrequiring
 an IP address, rather than a single DNS name, but
 in return CIDR notation(1.2.3.0/24) lets users
 specify pretty decent host ranges they're inter-
 ested in.

 -N Use Reverse-DNS to determine a DNS host name that
 matches the source of a detected packet.

 -NN Use Reverse-DNS to determine a DNS host name that
 matches the intended destination of a given packet.

 -v Verbosity Level 1: Mark the sending of packets.

 -vv Verbosity Level 2: Output all interpreted TCP and
 IP headers.

 ADDRESSING
 -d <interface>
 Use this Layer 2 Device for all traffic.

 -i <source ip>
 Use this Layer 3 Source IP for all traffic.

BUGS
 Again, it is very easy to scan faster than the network can
 accept packets.No code exists to dynamically reduce scan
 speed. Furthermore, we can only capture absolute latency
 from beginning of scan, rather than latency of a given
 response to its received packets. There is a fix in
 progress for this. Also, bandwidth calculation presently
 doesn't take into account the time necessary to actually
 send a given packet. This will be fixed.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

AUTHOR
 This work has been done by Dan Kaminsky of DoxPara
 Research, who may be reached at dan@doxpara.com.

 PARATRACE(1)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Appendix 2 – paratrace.c
#include "paketto.h"
#include "pk_crypt.h"
#include "scanutil.h"
/*#include "d_services.h"*/

void paratrace_usage();

int main(int argc, char **argv)
{
 int opt;
 extern char *optarg;
 extern int opterr;

 pcap_t *pcap; /* PCAP descriptor */
 u_char *packet; /* Our newly captured packet */
 char pfprogram[2048];
 char dev[255];
 char *p;
 char target[1024];
 long source_ip = 0;
 int source_port = 0;
 struct pcap_pkthdr pkthdr; /* PCAP packet information structure */
 struct bpf_program fp; /* Structure to hold the compiled prog */
 char error[PCAP_ERRBUF_SIZE]; /* Structure for libpcap errors.
*/

 struct frame x, ic;

 int hopfuzz = 4;
 int network = 0;
 int up = 0;
 int immediate = 1;
 int i,j,k,l,pid;
 float timeout = 60;
 int verify=1;
 int force_sip = 0;
 int resolve = 0;

 int verbose = 0;

 long li,lj;
 struct in_addr temp_ip;

 char buf[MX_B], buf2[MX_B], destbuf[1024], rangebuf[1024], portbuf[1024];
 char dest[MX_B];
 char *ttlrange = NULL;
 char *bandwidth = NULL;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 int check_icmp_seq = 0;
 int target_acquired = 0;
 u_char *seed = malloc(20);

 u_char *tcpscan = malloc(MX_B);
 struct libnet_link_int *temp = NULL;

 struct frame *scanx;

 struct timeval start, now, then, diff;

 FILE *targets, *logs;

 prng_state prng;
 pk_initrng(&prng);

 bzero(buf, sizeof(buf));
 bzero(buf2, sizeof(buf2));

 if(geteuid() != 0)
 {
 perror("PK requires root to access the network directly.");
 exit(EXIT_FAILURE);
 }

 p = NULL;
 p = pcap_lookupdev(error);
 if(!p){
 fprintf(stderr, "Couldn't lookup default ethernet device with
pcap_lookupdev: %s\n", error);
 exit(EXIT_FAILURE);
 }
 snprintf(dev, sizeof(dev), "%s", pcap_lookupdev(error));

 while ((opt = getopt(argc, argv, "d:i:nNt:b:T:vs:S")) != EOF) {
 switch (opt) {
 case 'd':
 snprintf(dev, sizeof(dev), "%s", optarg);
 break;
 case 'i':
 source_ip = ntohl(libnet_name_resolve(optarg, 0));
 force_sip++;
 break;
 case 'n':
 network++;
 break;
 case 'N':
 resolve++;
 break;
 case 't':

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 timeout = atof(optarg);
 break;
 case 'b':
 bandwidth = malloc(1024);
 snprintf(bandwidth, 1024, "%s", optarg);
 break;
 case 'v':
 verbose++;
 break;
 case 's':
 hopfuzz = atoi(optarg);
 break;
 case 'S':
 hopfuzz = -1;
 break;
 default:
 paratrace_usage();
 }
 }

 if(argv[optind] != NULL)
 {
 snprintf(target, sizeof(target), "%s", argv[optind]);
 } else {
 fprintf(stderr, "Paratrace requires a target to attempt a trace
against.\n");
 paratrace_usage();
 }

 if(!force_sip) source_ip=libnet_get_ipaddr(temp, dev, NULL);

 if(!bandwidth){
 bandwidth = malloc(1024);
 snprintf(bandwidth, 1024, "0");
 }

 if(verbose)fprintf(stderr,
"Stat|=====IP_Address==|Port=|Hops|==Time==|=============Details===
=========|\n");
 fprintf(stderr, "Waiting to detect attachable TCP connection to
host/net: %s\n", target);
 gettimeofday(&start, NULL);

 if(!network) snprintf(buf, sizeof(buf), "host");
 else snprintf(buf, sizeof(buf), "net");
 snprintf(pfprogram, sizeof(pfprogram), "icmp or (src %s %s and tcp)", buf,
target);
 pcap = pcap_open_live(dev, 65535, 1, 1, error);
 if(!pcap){

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 fprintf(stderr, "Couldn't open device: %s\n", error);
 exit(1);
 }

 ioctl(pcap_fileno(pcap), BIOCIMMEDIATE, &immediate); // prolly breaks
nonblock

 if (pcap_compile(pcap, &fp, pfprogram, 1, 0x0) == -1) {
 pcap_perror(pcap, "pcap_compile");
 exit(EXIT_FAILURE);
 }

 if (pcap_setfilter(pcap, &fp) == -1) {
 pcap_perror(pcap, "pcap_setfilter");
 exit(EXIT_FAILURE);
 }
 gettimeofday(&now, NULL);
 gettimeofday(&then, NULL);

 while(!timeout || now.tv_sec <= (then.tv_sec + timeout))
 {
 packet = (u_char *) pcap_next(pcap, &pkthdr);
 gettimeofday(&now, NULL); /* packet header sigfigs seem strange */
 if(packet &&
 parse_layers(packet, pkthdr.caplen, &x, 2, pcap_datalink(pcap), 0)){

 /* Accept ICMP packets. */

 if(target_acquired &&
 x.ip->ip_p == IPPROTO_ICMP){
 i=parse_layers((char *)&x.icmp->icmp_data,
 pkthdr.caplen-LIBNET_ETH_H-(int)x.ip->ip_hl*4-LIBNET_ICMP_H,
/* XXX slight chance of bug */
 &ic, 3, DLT_EN10MB, 1);
 if(i && ic.ip->ip_p == IPPROTO_TCP &&
 x.icmp->icmp_type == ICMP_TIMXCEED){
 timeval_subtract(&diff, &pkthdr.ts, &start);
 gettimeofday(&then, NULL); /* just for the loop
maintenance */
 if(verbose){
 fprintf(stderr, "Got %i on %s:\n", pkthdr.caplen, dev);
 fprintf(stderr, " "); print_ip((char *)x.ip);
 fprintf(stderr, "ICMP: "); print_ip((char *)ic.ip);
 fprintf(stderr, "ICMP: "); print_tcp((char *)ic.tcp, 1);
 }
 bzero(buf, sizeof(buf));
 bzero(buf2, sizeof(buf2));
 /* whoa this works?! WTF */
 snprintf(buf + 0, 16, inet_ntoa(x.ip->ip_src));
 snprintf(buf +16, 16, inet_ntoa(ic.ip->ip_src));

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 snprintf(buf +32, 16, inet_ntoa(ic.ip->ip_dst));
 //fprintf(stdout, "%3.3u = ", 255 - (source_port -
ntohs(ic.tcp->th_sport)));
 fprintf(stdout, "%3.3u = ", htons(ic.ip->ip_id));
 fprintf(stdout, "%16.16s|%-5i [%2.2hu]", buf,
 ntohs(ic.tcp->th_dport), estimate_hopcount(x.ip-
>ip_ttl));
 fprintf(stdout, "%4lu.%3.3lus", diff.tv_sec,
diff.tv_usec/1000);
 if(resolve==1)
 fprintf(stdout, "(%35.35s)\n", libnet_host_lookup(x.ip-
>ip_src.s_addr, 1));
 else if(resolve==2)
 fprintf(stdout, "(%35.35s)\n", libnet_host_lookup(ic.ip-
>ip_dst.s_addr, 1));
 else fprintf(stdout, "(%16.16s -> %-16.16s)\n", buf+16,
buf+32);
 }
 else if(target_acquired &&
 x.icmp->icmp_type == ICMP_UNREACH &&
 ic.ip->ip_p == IPPROTO_TCP)
 {
 timeval_subtract(&diff, &pkthdr.ts, &start);
 gettimeofday(&then, NULL); /* just for the loop
maintenance */
 snprintf(buf2, sizeof(buf2), "un%2.2i", x.icmp-
>icmp_code);
 snprintf(buf + 0, 16, inet_ntoa(x.ip->ip_src));
 snprintf(buf +16, 16, inet_ntoa(ic.ip->ip_src));
 snprintf(buf +32, 16, inet_ntoa(ic.ip->ip_dst));
 fprintf(stdout, "%s: %16.16s:%-5i [%2.2hu]",
 buf2, buf+32, ntohs(ic.tcp->th_dport),
 estimate_hopcount(x.ip->ip_ttl));
 fprintf(stdout, "%4lu.%3.3lus", diff.tv_sec,
diff.tv_usec/1000);
 if(resolve==1)
 fprintf(stdout, "(%35.35s)\n", libnet_host_lookup(x.ip-
>ip_src.s_addr, 1));
 else if(resolve==2)
 fprintf(stdout, "(%35.35s)\n", libnet_host_lookup(ic.ip-
>ip_dst.s_addr, 1));
 else fprintf(stdout, "(%16.16s -> %-16.16s)\n",
buf+16, buf);
 }

 }
 /* Accept...ummm...anything TCP from target. */
 else if(!up && target_acquired &&
 x.ip->ip_p == IPPROTO_TCP)
 {

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 if(verbose>=2){
 fprintf(stderr, "Got %i on %s:\n", pkthdr.caplen, dev);
 fprintf(stderr, " "); print_ip((char *)x.ip);
 fprintf(stderr, " "); print_tcp((char *)x.tcp, 0);
 }
 gettimeofday(&then, NULL); /* just for the loop maintenance */
 bzero(buf, sizeof(buf));
 bzero(buf2, sizeof(buf2));
 timeval_subtract(&diff, &now, &start);
 snprintf(buf2, sizeof(buf2), " UP"); /* we got SOMETHING */
 if((int)buf2[0]) /* :-P */
 {
 fprintf(stdout, "%s: %16.16s:%-5i [%2.2hu]", buf2,
inet_ntoa(x.ip->ip_src), ntohs(x.tcp->th_sport), estimate_hopcount(x.ip-
>ip_ttl));
 fprintf(stdout, "%4lu.%3.3lus", diff.tv_sec, diff.tv_usec/1000);
 if(resolve)fprintf(stdout, "(%35.35s)\n", libnet_host_lookup(x.ip-
>ip_src.s_addr, 1));
 else fprintf(stdout, "\n"); /*fprintf(stdout, "(%29.29s)\n", buf);
*/
 }
 up++;
 //exit(0); /* gotta figure out to precisely detect the response */
 }
 /* Got an ACK? Lets trace it back w/ a keepalive, which'll pass all dem
stateless filters */
 /* I haven't figured out yet how to detect *hitting* the actual target vs.
normal traffic */
 else if(!target_acquired &&
 x.ip->ip_p == IPPROTO_TCP &&
 x.tcp->th_flags == TH_ACK)
 {
 char temp_mac[ETHER_ADDR_LEN];

 target_acquired++;
 if(!ttlrange) ttlrange = malloc(1024);
 snprintf(ttlrange, 1024, "1-%u", estimate_hopcount(x.ip-
>ip_ttl)+hopfuzz);

 snprintf(dest, sizeof(dest), "%s:%u/32", inet_ntoa(x.ip->ip_src),
ntohs(x.tcp->th_sport));

 pk_memswp(&(x.eth->ether_dhost), &(x.eth->ether_shost),
ETHER_ADDR_LEN);
 pk_memswp(&(x.ip->ip_src), &(x.ip->ip_dst),
IPV4_ADDR_LEN);
 pk_memswp(&(x.tcp->th_sport), &(x.tcp->th_dport), 2);
 pk_memswp(&(x.tcp->th_seq), &(x.tcp->th_ack), 4);

 /* zero the payload */

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 x.ip->ip_len = htons((int)x.ip->ip_hl*4 + (int)x.tcp->th_off*4);
 pkthdr.caplen = LIBNET_ETH_H + (int)x.ip->ip_hl*4 + (int)x.tcp-
>th_off*4;
 recalc_checksums(&x, IPPROTO_TCP);

 fprintf(stderr, "%s %s\n", dest, ttlrange);
 pid=0;
 pid=fork();
 if(!pid){
 usleep(1000); /* wait for OS to deal with that segment first
*/
 raw_sock_syn_scan(dest, sizeof(dest), dev, &x,
 ttlrange, seed, bandwidth, verbose, resolve,
1);
 exit(0);
 }
 }
 }

 }
 }
void paratrace_usage()
{
 fprintf(stderr, "Paratrace %s: Parasitic Traceroute via Established TCP
Flows & IPID Hopcount\n", VERSION);
 fprintf(stderr, "Component of: Paketto Keiretsu %s; Dan Kaminsky
(dan@doxpara.com)\n\n", VERSION);
 fprintf(stderr, " Example: Paratrace -b100k www.doxpara.com\n");
 fprintf(stderr, " Example: Paratrace -t0 -n 10.0.1.0/24\n");
 fprintf(stderr, " Options: -s [hopfuzz]: Fuzz hopcount estimation for TTL
scan (+4)\n");
 fprintf(stderr, " -t [timeout]: Wait n full seconds for the last response
(60s)\n");
 fprintf(stderr, " -b[bandwidth]: Limit bandwidth consumption to n
b/k/m/g bytes(0)\n");
 fprintf(stderr, " (0 supresses timeouts; maximizes bw
utilization)\n");
 fprintf(stderr, " -n : Specify network instead of host to
respond to\n");
 fprintf(stderr, " -N/-NN : Enable name resolution (Prefer
Source/Dest)\n");
 fprintf(stderr, " -v : Mark packets being sent, as well as
received\n");
 fprintf(stderr, " -vv : Output full packet traces to stderr\n");
 fprintf(stderr, " Addressing: -d [device]: Send requests from this L2
hardware device\n");
 fprintf(stderr, " -i [source]: Send requests from this L3 IP
address\n");
 exit(1);
}

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Appendix 3 – scanutil.c

#include <scanutil.h>
#include <d_services.h>

long bake_syncookie(u_char *ipp, u_char *key)
{
 u_char buf[MX_B];
 struct libnet_ip_hdr *ip = NULL;
 struct libnet_tcp_hdr *tcp = NULL;

 u_char syncookie[20];
 long synbits;

 (char *)ip = (char *)ipp;
 (char *)tcp = (char *)ip + (int)ip->ip_hl*4;

 bzero(buf, sizeof(buf));
 memcpy(buf, &ip->ip_src, 4);
 memcpy(buf+4, &ip->ip_dst, 4);
 memcpy(buf+8, &tcp->th_sport, 2);
 memcpy(buf+10,&tcp->th_dport, 2);

 pk_hmac(syncookie, key, buf, 12);
 memcpy(&synbits, &syncookie, sizeof(synbits));

 /*fprintf(stderr, "Sending: %lx vs. %lx from %i/%i\n", ntohl(synbits), 0,
 ntohs(tcp->th_sport), ntohs(tcp->th_dport));*/

 return(synbits);
}

long munch_syncookie(u_char *ipp, u_char *key)
{
 u_char buf[MX_B];
 struct libnet_ip_hdr *ip = NULL;
 struct libnet_tcp_hdr *tcp = NULL;
 int i = 1;

 u_char syncookie[20];
 long synbits;

 (char *)ip = (char *)ipp;
 (char *)tcp = (char *)ip + (int)ip->ip_hl*4;

 bzero(buf, sizeof(buf));
 memcpy(buf, &ip->ip_dst, 4);

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 memcpy(buf+4, &ip->ip_src, 4);
 memcpy(buf+8, &tcp->th_dport, 2);
 memcpy(buf+10,&tcp->th_sport, 2);

 pk_hmac(syncookie, key, buf, 12);

 memcpy(&synbits, &syncookie, sizeof(synbits));

 if(tcp->th_flags == TH_RST) /* Distco st00 rides again */
 {
 if(!(ntohl(tcp->th_ack))) tcp->th_ack = tcp->th_seq; /* WEIRD fix */
 i=0;/* RST's don't increment */
 }

 if(ntohl(tcp->th_ack)-i == ntohl(synbits))
 {
 return(synbits);
 }

 else{
 return(0); // this screws up 1/2^32 times.
 }
}

/* XXX shaddup shaddup i know raw_sock_syn_scan is horrifying, shaddup */

int raw_sock_syn_scan(char *dest, int length, char *dev, struct frame *scanx,
 char *ttlrange, char *seed, char *bandwidth, int verbose, int
resolve,
 int disable_seq)
{
 char abuf[1024], bbuf[1024], cbuf[1024], dbuf[1024], pbuf[1024], tbuf[1024],
rbuf[1024];
 unsigned short a, b, c, d, ttl, start_a, end_a, start_b, end_b;
 unsigned short start_c, end_c, start_d, end_d, start_p, end_p;
 unsigned short start_ttl, end_ttl;
 unsigned int dport;

 unsigned int base, multiple, packetsleep;
 int knownscan = 0;
 int kcount = 0;
 int flag = 0;

 struct timeval now, then, bench_pre, bench_post, diff;

 struct libnet_link_int *temp = NULL;
 int sockfd = -1;
 int i,j,source_port = ntohs(scanx->tcp->th_sport);
 int keep_ipid = 0;
 char buf[MX_B], buf2[MX_B];

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 struct in_addr temp_ip;
 struct libnet_plist_chain *alist, *blist, *clist, *dlist, *plist, *tlist;

 sockfd = libnet_open_raw_sock(IPPROTO_RAW);

 gettimeofday(&then, NULL);

 if(!sockfd)
 {
 fprintf(stderr, "Couldn't open raw socket.\n");
 exit(1);
 }

 /* We need to figure out how fast we're allowed to send packets. We do this
 * by noting that our standard packet is 40 bytes, plus 14 from ethernet,
yielding
 * 54 bytes on the wire. Ah, but the minimum size for an ethernet frame is
64 bytes,
 * and until I get off my duff and properly support non-ether interfaces, that'll
 * have to be our per-packet cost.
 */

 if(!bandwidth || bandwidth[0]=='0') packetsleep=0;
 else{
 i=sscanf(bandwidth, "%1024[^BbKkMmGg]%1024s", buf, buf2);
 if(i==0)return(0);
 base=atoi(buf);
 if(i==1){buf2[0]='B'; i=2;}
 if(i==2)switch(buf2[0]){
 case 'B':
 multiple=1;
 break;
 case 'b':
 multiple=1;
 break;
 case 'K':
 multiple=1024;
 break;
 case 'k':
 multiple=1024;
 break;
 case 'M':
 multiple=1024*1024;
 break;
 case 'm':
 multiple=1024*1024;
 break;
 case 'G':

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 multiple=1024*1024*1024;
 break;
 case 'g':
 multiple=1024*1024*1024;
 break;
 }
 i=base*multiple;
 /* XXX Need to incorporate time spent actually sending packets :-) */
 packetsleep=(1000000*64)/i; /* 64 is minimum frame size */
 }
 if(sscanf(dest,
"%1024[^.].%1024[^.].%1024[^.].%1024[^:]:%1024[^/]%1024s",
 abuf, bbuf, cbuf, dbuf, pbuf, rbuf) != 6) return(0);

 if(!ttlrange){
 ttlrange = malloc(1024);
 snprintf(ttlrange, 1024, "%i-%i", scanx->ip->ip_ttl, scanx->ip->ip_ttl);
 }
 if(!strncmp(pbuf, "known", sizeof(pbuf))){
 knownscan++;
 snprintf(pbuf, sizeof(pbuf), "0-1");
 }

 libnet_plist_chain_new(&alist, abuf);
 while(libnet_plist_chain_next_pair(alist, &start_a, &end_a)){
 libnet_plist_chain_new(&blist, bbuf);
 while(libnet_plist_chain_next_pair(blist, &start_b, &end_b)){
 libnet_plist_chain_new(&clist, cbuf);
 while(libnet_plist_chain_next_pair(clist, &start_c, &end_c)){
 libnet_plist_chain_new(&dlist, dbuf);
 while(libnet_plist_chain_next_pair(dlist, &start_d, &end_d)){
 libnet_plist_chain_new(&plist, pbuf);
 while(libnet_plist_chain_next_pair(plist, &start_p, &end_p)){
 libnet_plist_chain_new(&tlist, ttlrange);
 while(libnet_plist_chain_next_pair(tlist, &start_ttl, &end_ttl)){
 /* libnet_plist was meant for port lists, but we're hacking it
 to do IP/TTL lists as well. Though an IP is 32 bytes, ports are
 16 bytes, and each range is an 8 byte range. So, we clamp the
 iteration to an 8 byte range. */
 if(start_a > 255) start_a = 255; if(end_a > 255) end_a = 255;
 if(start_b > 255) start_b = 255; if(end_b > 255) end_b = 255;
 if(start_c > 255) start_c = 255; if(end_c > 255) end_c = 255;
 if(start_d > 255) start_d = 255; if(end_d > 255) end_d = 255;
 if(start_ttl > 255) start_ttl = 255; if(end_ttl > 255) end_ttl = 255;

 //fprintf(stderr, "%u-%u.%u-%u.%u-%u.%u-%u:%u-%u\n", start_a,
end_a, start_b,
 // end_b, start_c, end_c, start_d, end_d, start_p, end_p);

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 for(ttl=start_ttl; ttl<=end_ttl; ttl++){
 for(a=start_a; a<=end_a; a++){
 for(b=start_b; b<=end_b; b++){
 for(c=start_c; c<=end_c; c++){
 //usleep(subnet_sleep*1000);
 gettimeofday(&now, NULL);
 for(d=start_d; d<=end_d && d; d++){
 for(dport=start_p; dport<=end_p; dport++){

 scanx->ip->ip_dst.s_addr = ntohl(a*256*256*256 + b*256*256 +
c*256 + d);
 /*bzero(buf, sizeof(buf));
 snprintf(buf, sizeof(buf), "%u.%u.%u.%u", a, b, c, d);
 inet_aton(buf, &scanx->ip->ip_dst);*/ /* cheap trick */
 if(!disable_seq){
 scanx->tcp->th_dport = htons(dport);
 scanx->tcp->th_sport = htons(source_port - 255 + ttl); /* XXX i
know, i know -- this needs to be time */
 }
 if(knownscan){
 scanx->tcp->th_dport = htons(knownports[kcount].port);
 if(kcount<1150)dport=0;
 else dport=1;
 kcount++;
 }
 scanx->ip->ip_ttl = ttl;
 scanx->ip->ip_id = htons(ttl); /* redundant hop capacity, for your
convenience */

 if(!disable_seq){
 i=bake_syncookie((u_char *)scanx->ip, seed);
 memcpy(&scanx->tcp->th_seq, &i, 4);
 if(scanx->tcp->th_flags == TH_ACK){
 memcpy(&scanx->tcp->th_ack, &i, 4);
 }
 }

 recalc_checksums(scanx, scanx->ip->ip_p);
 i = libnet_write_ip(sockfd, (char *)scanx->ip, (int)scanx->ip->ip_hl*4 +
(int)scanx->tcp->th_off*4);
 if(verbose>=1){
 gettimeofday(&now, NULL);
 timeval_subtract(&diff, &now, &then);
 fprintf(stdout, "%s: %16.16s:%-5i [%2.2hu]", "SENT",
inet_ntoa(scanx->ip->ip_dst), ntohs(scanx->tcp->th_dport), 0);
 fprintf(stdout, "%4lu.%3.3lus", diff.tv_sec, diff.tv_usec/1000);
 if(resolve)fprintf(stdout, "(%35.35s)\n",
libnet_host_lookup(scanx->ip->ip_dst.s_addr, 1));
 else fprintf(stdout, "\n"); /*fprintf(stdout, "(%29.29s)\n", buf);
*/

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 }
 if(verbose>=2){
 fprintf(stderr, "Sent %i on %s:\n", i, dev);
 fprintf(stderr, " "); print_ip((char *)scanx->ip);
 fprintf(stderr, " "); print_tcp((char *)scanx->tcp, 0);
 }
 if(packetsleep)usleep(packetsleep);
 }}}}}} /* all those for loops */
 }libnet_plist_chain_free(tlist);
 } libnet_plist_chain_free(plist);
 } libnet_plist_chain_free(dlist);
 } libnet_plist_chain_free(clist);
 } libnet_plist_chain_free(blist);
 } libnet_plist_chain_free(alist);
 return(0);
}

struct frame *build_generic_syn(struct frame *x)
{
 x->data = malloc(2048);

 x->eth = x->data;

 libnet_build_ethernet("000000", /*x.eth->ether_dhost*/
 "000000", /*x.eth->ether_shost*/
 ETHERTYPE_IP, /*x.eth->ether_type*/
 NULL, /*extra crap to tack on*/
 0, /*how much crap*/
 (char *)x->eth);

 (char *)x->ip = (char *)x->eth + LIBNET_ETH_H;

 libnet_build_ip(LIBNET_TCP_H,
 0, // tos
 1234, // ipid
 0, // frag
 255, // ttl
 IPPROTO_TCP,
 0, //source
 0, // dest
 NULL, // ip payload
 0, // ip payload size
 (char *)x ->ip);

 x->ip->ip_off = 64; /* set DF flag */
 (char *)x->tcp = (char *)x->ip + (int)x->ip->ip_hl*4;

 libnet_build_tcp(12345, // source port
 139, // dest port
 420, // seq

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 0, // ack
 TH_SYN, // flags
 4096, // win
 0, // urgp
 NULL, // tcp payload
 0, // tcp payload size
 (char *)x->tcp);
 return(x);
}

int estimate_hopcount(int ttl)
{
 /* tip of the hat to nomad's despoof -- no, this ain't supposed to be perfect */
 int passive_factor=32; /* may be low but i found a host w/ base TTL 32 */
 /* i've heard rumors of hosts w/ ttl base 240 but
 haven't found any yet */
 /* when wrong, it'll usually be off by 4 (damn 60 ttl hosts)*/
 int distco_factor = 216; /* any less and we hit win32 ttl=128, any more and
valid */
 if(ttl < (distco_factor-80) || ttl > distco_factor) /* handles up to 40 hops */
 {
 if(ttl%passive_factor == 0)ttl--;
 return(passive_factor - (ttl%passive_factor));
 } else {
 return((distco_factor - ttl + 1) / 2); /* they don't adjust ttl when they RST! */
 }
}

int parse_dest(char *dest, int length, char *shortdest, int multi)
{
 char buf[MX_B], buf2[MX_B], destbuf[1024], rangebuf[1024],
portbuf[1024];
 int i,j,k,l;
 struct in_addr temp_ip;
 const char quickbuf[] = "80,443,445,53,20-
23,25,135,139,8080,110,111,143,1025,5000,465,993,31337,79,8010,8000,66
67,2049,3306";
 const char squickbuf[] = "80,443,139,21,22,23";

 /* there's gotta be an easier way to do this :-)
 * basically we're splitting the destination string into
 * destination, CIDR range, and ports...the whole purpose of
 * this function is to take whatever garbage the user gave us
 * and convert it to my canonical form -- or die trying.
 */
 sscanf(shortdest, "%1024[^/]/%1024s", buf, rangebuf); /* only need range
*/
 sscanf(shortdest, "%1024[^:/]:%1024[^:/]:%1024s", destbuf, portbuf, buf);

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 if(!destbuf[0]){
 return(0);
 }

 /* So, here's the deal. By default, I want to scan the bejesus out of a single
host, but
 I don't want to throw out thousands of packets per host for a simple
 traceroute or netsweep. So there's differential default behavior, but it's
doing
 the Right Thing. Manual override of course can do anything. */

 i=0;
 k=0;

 while(i<1024 && destbuf[i]!=0){
 if((destbuf[i]=='-' || destbuf[i]==',')){
 k=2; /* might be plural */
 }
 else if((destbuf[i]>='A' && destbuf[i]<='Z') ||
 (destbuf[i]>='a' && destbuf[i]<='z')){
 j++;
 }
 if(destbuf[i]=='\n' || destbuf[i] == '\r'){
 destbuf[i]=0; /* chomp, DNS resolver needs no trailing newline */
 }
 i++;
 }

 if(k==2 && !j) multi=2;/* found dash/comma w/o DNS -- must be multi */
 if(j){ /* found ASCII character */
 temp_ip.s_addr = libnet_name_resolve(destbuf, 1);
 if(!memcmp(&temp_ip.s_addr, "\xff\xff\xff\xff",
IPV4_ADDR_LEN)){
 //fprintf(stderr, "Couldn't resolve name: %s\n", destbuf);
 return(0);
 } else snprintf(destbuf, 1024, "%s", inet_ntoa(temp_ip));
 }

 if(sscanf(destbuf, "%1024[^.].%1024[^.].%1024[^.].%1024s",
buf,buf,buf,buf) != 4){
 fprintf(stderr, "Invalid IP Specification: Not enough octets(four
needed).\n");
 return(0);
 }

 if(!atoi(rangebuf) || atoi(rangebuf)>32 || j+k==2) snprintf(rangebuf,
sizeof(rangebuf), "32");
 if(atoi(rangebuf) < 32) multi=3;

 if(!portbuf[0]){ /* no default ports? Whatever shall we do! */

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 if(multi) snprintf(portbuf, sizeof(portbuf), "80");
 else snprintf(portbuf, sizeof(portbuf), "quick"); /* was d */
 }
 /* ok lets set up some defaults */
 if(!strncmp(portbuf, "quick", sizeof(portbuf))){
 snprintf(portbuf, sizeof(portbuf), "%s", quickbuf);
 }
 if(!strncmp(portbuf, "squick", sizeof(portbuf))){
 snprintf(portbuf, sizeof(portbuf), "%s", squickbuf);
 }
 if(!strncmp(portbuf, "all", sizeof(portbuf))){
 snprintf(portbuf, sizeof(portbuf), "0-65535");
 }
 /* we set up knownscan in raw_sock itself */

 snprintf(dest, length, "%s:%s/%s", destbuf, portbuf, rangebuf);
 return(1);
}

