
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Support for the CDI: Port 25 - SMTP

Presented as partial fulfillment for the

GCIH certification

Practical Exam v 2. 2

Steven Mancini
January 31, 2003

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Steve Mancini Page 2 2/21/2003

Table of Contents
Table of Contents ..2
Introduction...3

Top 10 Ports (reported July 10, 2002) ..4
Part 1 – Port 25..5

Targeted Port ...5
Application Description ...6
Protocols ...9
Vulnerabilities ...14

Part 2: Specific Exploit .. 22
Exploit Details ...22
Variants: ..25
Protocol Description .. 25
How the exploit works...29
Diagram...30
How to use the exploit ...31
Source code/ Pseudo code..34
References/Additional Information ..36
Appendix A: Protocol diagrams ...37
Appendix B: Unix Man Page for netdb.h .. 38

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Steve Mancini Page 3 2/21/2003

Introduction

“The sendmail program can be an open door to abuse. Unless the
administrator is careful, the misuse or misconfiguration of sendmail can lead to
an insecure and possibly compromised system. Since sendmail is usually
installed to run as an suid root program, it is a prime target for intrusion. ”
– Bryan Costatles, Sendmail

The Internet Assigned Numbers Authority (www. iana. org/assignments/port-
numbers) has designated that port 25 (tcp/udp) is assigned to the Simple Mail
Transfer Protocol (SMTP). This protocol has become the standard used for
transferring electronic mail (e-mail) between systems. An important feature of
SMTP is its capability to relay mail across transport service environments. This
transport service environment may cover one network, several networks, or a
subset of a network. To understand the potential this service holds for
destroying the integrity/availability/confidentiality of systems, it is important to
realize that e-mail has been around for over 2 decades. Email delivery was one
of the original reasons that ARPA and DARPA gained attention and support –
today it is still one of the most significant reasons people connect to the internet.
It has become an essential service in both the private and public sectors. As
such, this service has a great deal of appeal to the hostile attacker. This service
is a given for most targets – most companies and organizations have mail
enabled to both send and receive from the internet. For those seeking
credit/fame for the damage they have caused, mail is a very appealing target
because of the dependency that many organizations have upon it. Two traits of
the routine functioning of this service also facilitate the would-be attacker; 1) it is
not uncommon for the MTA to accept connections from external sources (for
most MTA’s this is a core requirement), and 2) it is the very function of email to
distribute data through its environment. For the attacker seeking to cause the
most damage, or who seeks to target a service that he/she knows a company will
be hesitant to disable as part of a containment strategy, port 25 becomes a very
appealing target. In addition, given the open relay between mail servers, it is
possible for a clever attacker to disguise his/her enumeration scans as merely
SMTP exchanges and (hopefully) go un-noticed by today’s growing number of
intrusion detection programs.

Incidents.org (or dshield.org) collects intrusion detection data from the Intrusion
Detection Systems of volunteer’s around the globe. This information is collated
to form reports of the top ports attacked which are posted on the dshield website
to provide indicators to security professionals – it allows them to “see which way
the wind blows”. The following screen shots were captured on July 10, 2002:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Steve Mancini Page 4 2/21/2003

Top 10 Ports (reported July 10, 2002)
Service
Name

Port
Number 30 day history Explanation

http 80 HTTP Web server

ftp 21
FTP servers typically run on this
port

ms-sql-s 1433 Microsoft SQL Server

??? 39213

ssh 22
Secure Shell, old versions are
vulnerable

??? 43981

??? 6346
Gnutella is a peer-to-peer file
sharing tool

smtp 25 Mail server listens on this port.

socks 1080 proxy/firewall program

webcache 8080 Frequently used for web servers

DShield - Port Report for 25 - SMTP

Not surprising, tcp port 25 is among the top 10. However, its station among the
top 10 may not be attributable to a single exploit or announcement. In fact, one

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Steve Mancini Page 5 2/21/2003

must recognize that there are other nefarious, and sometimes legitimate, reasons
for port 25 to be scanned.

E-Mail advertisement software may be seeking information from Mail Transfer
Agents (MTA’s) for possible “target audiences”. With the surge of email
marketing, tools have been designed to harvest email addresses from MTA’s
connected to the internet. This type of software connects to tcp port 25 on a mail
server and uses commands such as VRFY (which verifies an email address on
the server) and EXPN (expand a mailing list that is sponsored on the mail server)
to harvest potential audience members or addresses to impersonate. In some
instances the use of these SMTP commands may be based upon information
obtained from public sources (such as internet news groups or public mailing
lists). These tools also discover valid email addresses via brute force username
verification processes (example: steve@myisp.com). Automated tools such as
these will initiate their searches by trying to discover email servers – this is done
through a simple scan on port 25.

It is also important to keep in mind that the use of this port is not designated to a
platform specific application, it is possible that the reports at incidents.org are the
culmination of several exploits targeting a variety of mail programs (Exchange,
Lotus, Novell, etc) running on different platforms. A list of potential exploits
against all email server software would be too extensive a list to cover in this
document – though we will provide a sample further along in the paper to
demonstrate that the threat is not limited to any platform or application.

In this paper we are going to map the surge in activity on this port to the timely
discovery of the DNS resolver library buffer overflow and the vulnerability to this
exploit announced by the developers of one of the most widely used mail servers
for the unix platform, sendmail. Sendmail is compiled such that it relies upon this
DNS resolver library to lookup addresses and map them to IP addresses to
which the email is delivered. We shall proceed forward under the assumption
that at least some significant component of the activity is attributable to the
recent exploit announcement and the pre-emptive scanning by unfriendly
perpetrators on the net eagerly awaiting (or designing) code to take advantage of
this exploit. In some way, exploitation of this vulnerability draws several
similarities to the ancient parable of the Trojan horse – the exploit involves the
concealment of exploit code in circumvents the usual computer defense
(firewalls) by including itself in a response to an otherwise trusted response.

Part 1 – Port 25

Targeted Port

The ARPANET e-mail proposals, RFC 821 (transmission protocol) and RFC 822
(message format), were introduced in 1982 and designated port (tcp/udp) 25 for

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Steve Mancini Page 6 2/21/2003

use in the transfer of e-mail. In 1984, CCITT drafted its X.400 recommendation,
which was later taken over as the basis for OSI’s MOTIS. Four year later (1988),
CCITT modified X.400 to align it with MOTIS. MOTIS was supposed to be the
representing application of OSI, a system that was to be all things to all people.
X. 400 never really caught on – people were drawn to the easy implementation
that RFC 821 and 822 provided. Today, most e-mail systems are based on RFC
822, whereas those based on X.400 have disappeared. In this case, the RFC
won favor for its simplicity and because X.400 was too challenging to
successfully implement.

The simplicity of SMTP has allowed for the development of numerous mail client
(pine, elm, exmh, Eudora, Outlook, Lotus Notes, etc) and server applications
(Sendmail, Qmail, Exchange, Lotus, Novell, etc) which attach to port 25 - all of
which can exchange mail messages because they rely upon the taxonomy
initially defined in RFC 821 and 822.

While the exchange of mail using is performed by a message transfer agent,
most users normally don’t deal directly with the MTA; they are usually only aware
of their e-mail clients and the sending and receiving of e-mail. SMTP is the
protocol that describes how two MTAs communicate with each other using a
single TCP connection. SMTP uses the concept of spooling. The idea of
spooling is to allow mail to be sent from a local application to the SMTP
application, which stores the mail in some device or memory. Once the mail has
arrived at the spool, it has been queued. A server checks to see if any
messages are available and then attempts to deliver them. If the user is not
available for delivery, the server may try later. Eventually, if the mail cannot be
delivered, it will be discarded or perhaps returned to the sender.

Application Description

SMTP has since become the default for almost all MTA’s on the net – and those
MTA’s listen on TCP/IP 25. While SMTP is operating system independent and
used by an assortment of e-mail programs, our report focuses on one of the most
popular unix MTA’s – Sendmail. Sendmail is a freely available and widely
distributed Mail Transfer Agent (MTA). Sendmail is packaged with most
versions of UNIX, and source code is publicly available. Current Sendmail
information and source code can be obtained at http://www.sendmail.org.
Sendmail is based on the following protocols and formats:

q RFC821 (Simple Mail Transport Protocol): This rfc is the foundation for
SMTP – it describes the model, the exchange between sender and
recipient, and the command specifications for the exchange and error
codes.

q RFC822 (Internet Mail Headers Format): This standard specifies a syntax
for text messages that are sent among computer users, within the

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Steve Mancini Page 7 2/21/2003

framework of email. There are 3 components to a message, an envelope,
a header, and the message – this rfc deals with the header and the
message.

q RFC974 (MX routing): This rfc deals with the delivery of email to a
domain. Network maps have been established that sometimes one does
not deliver mail to an apparent host (ie, mail may be sent from
client12.domain.com within the domain.com intranet, but should be
delivered to mailserver.domain.com). Instead, for a given domain, mail
delivery is linked to MX records and the priority established by these
records.

q RFC1123 (Internet Host Requirements): Specifically, section 5, involves
Electronic Mail and the changes to 822 as necessary for developments in
internet communication (including DNS). This rfc focuses on applying
SMTP and 822 to the Internet. This rfc is pertinent to our current
examination because it requires that the HELO command perform a
domain name lookup and have valid <domain> syntax. It is this
requirement that results in programs such as sendmail calling the resolver
library.

q RFC1652 (SMTP 8BITMIME Extension): This rfc covers the
implementation of a MIME message containing arbitrary octet-aligned
material. The implementation uses the mechanism described in rfc 1651
to define an extension to the SMTP service.

q RFC1869 (SMTP Service Extensions): Issued 10 years after 821, this rfc
defines the framework for expanding the SMTP service by defining how an
SMTP server can inform a client as to the service extensions (esmtp) it
supports.

q RFC1870 (SMTP SIZE Extension): This rfc defines an extension to the
SMTP service whereby a client and server may interact to give the server
an opportunity to decline a message based on the client's estimate of the
message size.

q RFC1891 (SMTP Delivery Status Notifications) This rfc defines an
extension to the SMTP service allowing an SMTP client to specify
a) that delivery status notifications (DSNs) should be generated under

certain conditions,
b) whether such notifications should return the contents of the message,

and
c) additional information, to be returned with a DSN, that allows the

sender to identify both the recipient(s) for which the DSN was issued,
and the transaction in which the original message was sent.

q RFC1892 (Multipart/Report): This rfc defines the use of the
Multipart/Report MIME content-type, a container type for electronic mail
reports of any kind.

q RFC1893 (Enhanced Mail System Status Codes): This RFC addresses
the evolution of email server/client programs by providing more robust set
of standardized error handling codes.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Steve Mancini Page 8 2/21/2003

q RFC1894 (Delivery Status Notifications): This memo defines a MIME
content-type that may be used by a message transfer agent (MTA) or
electronic mail gateway to report the result of an attempt to deliver a
message to one or more recipients.

q RFC1985 (SMTP Service Extension for Remote Message Queue
Starting): This memo defines an extension to the SMTP service (verb:
ETRN) whereby an SMTP client and server may interact to give the server
an opportunity to start the processing of its queues for messages to go to
a given host. This extension is meant to be used in startup conditions as
well as for mail nodes that have transient connections to their service
providers.

q RFC2033 (Local Message Transmission Protocol): This rfc defines the
protocol by which a mail receiver does not manage a queue in a system
that is outside the scope of mail exchange between independent hosts on
public networks.

q RFC2034 (SMTP Service Extension for Returning Enhanced Error
Codes): This memo defines an extension to the SMTP service whereby an
SMTP server augments its responses with the enhanced mail system
status codes that provide more informative explanations for error
conditions (defined in RFC 1893).

q RFC2476 (Message Submission) This document specifies the various
headers used to describe the structure of MIME messages.

q RFC2487 (SMTP Service Extension for Secure SMTP over TLS) This
RFC describes an extension to the SMTP service that allows an SMTP
server and client to use transport-layer security [TLS], also known as SSL,
to provide private (through use of encryption), authenticated
communication over the Internet.

q RFC2554 (SMTP Service Extension for Authentication) This document
defines an SMTP service extension [ESMTP] by which an SMTP client
may indicate an authentication mechanism to the server, perform an
authentication protocol exchange, and optionally negotiate a security layer
for subsequent protocol interactions. This extension is a profile of the
Simple Authentication and Security Layer [SASL] and added the verb
AUTH to the SMTP protocol.

q RFC2821 (Simple Mail Transport Protocol) This RFC consolidates,
updates and clarifies, but doesn't add new or change existing functionality
of the following RFC’s - 821, 974, 1035, 1123, 1869.

q RFC2822 (Internet Message Format) This standard supersedes RFC 822,
updating it to reflect current practice and incorporating incremental
changes that were specified in other RFCs.

q RFC2852 (Deliver By SMTP Service Extension) This RFC defines a
mechanism which allows an SMTP client to request that the server deliver
the message within a prescribed period of time. Usually there are server
defined parameters for queue, delivery, and retry times.

q RFC2920 (SMTP Service Extension for Command Pipelining) This rfc
defines an extension to the SMTP service whereby a server can indicate

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Steve Mancini Page 9 2/21/2003

the extent of its ability to accept multiple commands in a single
Transmission Control Protocol (TCP) send operation.

Protocols

“NO! Layers! Onions have layers. Ogres have layers. Onions have layers.
You get it? We both have layers.” -Shrek

The complexity of this vulnerability is demonstrated by the number of protocols it
would rely upon to be successfully exploited. At the application layer there is
SMTP – the mail protocol that the Sendmail application relies upon to send and
receive mail via the ASCII character set. Back at its inception, SMTP was
designed to work on the intranet level. However, its potential was soon realized
and as a result standards (RFC 1123) were created to address the
communication between systems. This in turn requires the abil ity to look up host
names and ip addresses. Sendmail does not have to provide its own routines for
looking up a hosts and IP-addresses. Instead, it relies upon Doman Name
Service (DNS), a session layer protocol that includes a number of library
functions that do this transparently, called gethostbyname(3) and
gethostbyaddr(3). These and other related procedures, including getanswer()
and getnetanswer(), are grouped in a separate DNS resolver library. It thus
depends upon the DNS name server, and complimentary resolver library, to
provide it with a mapping of an IP address for a given email address/domain.
DNS in turn, relies upon the transport protocols, TCP and UDP. DARPA (the
Defense Advance Research Projects Agency) originally developed Transmission
Control Protocol/Internet Protocol (TCP/IP) to interconnect networked computers.
Since then it has spread in usage throughout the internet. The TCP/IP suite
includes the following relevant suites; Transmission Control Protocol (TCP), User
Datagram Protocol (UDP), and the network layer protocol, Internet Protocol (IP).
Consequently, this vulnerability is like an ogre (who is like an onion) – it has
layers (of complexity). Hopefully we can get to the core of the issue without
shedding too many tears. ☺

Layer Protocol
Application SMTP
Session DNS
Transport TCP, UDP
Network IP

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Steve Mancini Page 10 2/21/2003

Network Layer Protocols (IP)
The internet protocol (IP) is the routing layer datagram service used by all other
protocols within the TCP/IP suite, with the exceptions of ARP and RARP. This
protocol routes frames from host to host. Included in the appendices is a
depiction of the header structure for IP. While the length of this datagram is
traditionally 576 byte, it can be up to 65535 bytes in length. It can be
fragmented, and includes a label to identify the next level protocol that is used in
the data component of the datagram. For more information on this protocol I
would refer the reader to RFC 791 and RFC 1853.

Transport Layer Protocols (TCP/UDP)

The User Datagram Protocol was established to provide a simple protocol with
low overhead with regard to time to deliver and bandwidth. It has on occasion
been referred to by the military moniker, ‘fire and forget’ because it does not
perform and acknowledgment or retransmissions. UDP headers are extremely
simplistic where compared to TCP (see appendix for diagrams of protocols for
comparison) – it provides a source and destination, length, a checksum, and the
data that is carries in a small packet. For some application communications, it is
considered a lower overhead to send multiple UDP messages than a single TCP
exchange.

Where as UDP is smaller and faster, TCP provides a reliable stream delivery and
virtual connection service for applications through the use of sequenced packets
that are sent, acknowledged, and retransmitted in cases where packets are not
received. TCP is used by DNS when responding to a non-zone transfer. For
more information on TCP, I would encourage the reader to review the following
RFC’s: 793, 1072, 1693, 1146, and 1323.

Session Layer Procotols (DNS)
The DNS protocol requirement is defined in section 6 of RFC 1123: “Every host
MUST implement a resolver for the Domain Name System (DNS), and it MUST
implement a mechanism using this DNS resolver to convert host names to IP
addresses and vice-versa.” During its infancy, the internet was sufficiently small
that looking up an ip address could be accomplished by referencing a local copy
of the table containing a list of all hosts. DNS was created to address the
unwieldy swelling of this table. It consists of a distributed database that allows for
the (relatively) fast translation between host names and host ip addresses. The
resolver component of DNS is used to query the authorative name servers for
information about a host name or address. In effect DNS is a “map” of systems
on the internet. No single name server has complete information – it is distributed
and replicated so that queries by the resolvers can be addressed in a timely
fashion.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Steve Mancini Page 11 2/21/2003

This is important to keep in mind when considering this vulnerability because it
means that most computers will query numerous different name servers by
design. It is thus possible for a DNS query to be made against a name server
controlled, or spoofed, by an attacker. DNS spoofing is the process of faking a
response from a DNS server in order to provide the wrong address mapping to
the querying system While the identity of name servers comes from a file at
system boot, subsequent queries against these name servers is cached for a
period of time. Given this situation, if ‘tainted’ information is provided by an
attacker controlled DNS server, it could be cached and reused by more than one
system in your network. In the scope of this vulnerability, the caching is only
important if you are running the sendmail application on more than one host such
that the service would be performing a name resolution.

Given the requirement for fast name resolution, DNS was designed to not only
use TCP, but also to optimize its query/responses by using UDP. While it
supports TCP for sending non-zone-transfer queries (and because the authors of
the RFC recognized that over time responses may at some point exceed the 512
byte limit of UDP), UDP is preferred because of the low network overhead
incurred by it. This allows a resolver to send queries to multiple name servers for
about the same cost of a single tcp query.

Application Layer Protocols (SMTP)
In keeping with the simplicity upon which SMTP was based, it is probably no
surprise that SMTP relies upon the ASCII protocol for exchanges between
systems. The use of ASCII to relay a set of very common commands (referred
to as Verbs in RFC 821), allows SMTP to communicate between systems and
even platforms. SMTP commands are character strings terminated by <CRLF>.
The command codes themselves (Verbs) are alphabetic characters terminated
by <SP> if parameters follow and <CRLF> otherwise. When the transport service
provides an 8-bit byte (octet) transmission channel, each 7-bit character is
transmitted right justified in an octet with the high order bit cleared to zero.

All electronic e-mail consists of 3 components: the envelope, the headers, and
the body. The envelope consists of the identities of the sender and recipient of
the e-mail. These are identified in the SMTP protocols which are defined in RFC
821. The headers are used by the e-mail applications to provide further definition
of the message in question – these 9+ attributes are not requirements for SMTP
to function, they merely augment the transaction from a human perspective.
According to RFC 822, these 9 headers (Received, Message-Id, From, Date,
Reply-To, X-Phone, X-Mailer, To, and Subject) follow the format of header-colon-
value. The body is the content of the message that is exchanged using the
DATA command and is sent in 1000 byte groupings per DATA command issued.
The whole process starts with the user’s mail application relaying the body along
with the relevant header information to the MTA. The MTA then wraps the
message with the envelope and sends it to another MTA via SMTP.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Steve Mancini Page 12 2/21/2003

From the “10,000 foot view”, the delivery of electronic mail is an exchange across
port 25 using the ASCII protocol. This collection of functions are therefore
referred to as “the resolver''. The mail program calls upon the resolver libraries
to find the address to which it is to delivery mail for a given client. The resolver
library either provides an ip address from its locally cached data or queries a
name server for the address. The source machine establishes a TCP connection
to port 25 of the destination machine. Listening to this port is an e-mail daemon
that "speaks" SMTP. After establishing the TCP connection to port 25, the
sending machine, operating as the client, waits for the receiving machine,
operating as the server, to talk first. The server starts by sending a line of text
giving its identity and telling whether or not it is prepared to receive mail. This is
the 220 reply code you can see in the details of an e-mail exchange. If it is not
able to connect to the target machine, the client releases the connection and tries
again later. It will make repeated attempts (for up to 5 days according to the rfc)
then it will give up and abandon the connection attempts and notify the sender of
the failure to deliver the message. If the server is willing to accept e-mail, the
client announces whom the e-mail is coming from and whom it is going to. If
such a recipient exists at the destination, the server gives the client the go-ahead
message. Then the client sends the message and the server acknowledges it.
No checksums are generally needed because TCP provides a reliable byte
stream. If there is more e-mail, that is now sent. When all the e-mail has been
exchanged in both directions, the connection is released.

This is a rather simplistic view of the exchange that takes place. If all systems
were merely connected point to point then the story might end here. But given
the vast presence on the internet, this is not the case. As a result, most
organizations with multiple users establish a mail server of some sort. The
purpose of this system is to relay outbound mail. This simplifies the
configurations in their environment because all systems in their environment
relay to this central mail server, which in turn can route e-mail accordingly. The
local clients all require a vastly simplified configuration as well as reducing the
overhead on the systems resources. Second, this strategy also allows the
organization to obfuscate their systems from the outside world. The sending and
receiving of mail is to user@mailhost.some-group.com rather than to a specified
system. This also makes it easier for those sending/receiving e-mails; one need
only know the DNS name for the company to send a friend e-mail, you don’t
need to know his localhost. This also provides the advantage that should that
localhost be offline for whatever reason, mail will still be delivered to the mail
server. Two things are important to keep in mind as you continue through this
examination – (1) that setting up a mail relay must be done carefully or else your
mail server could be used to relay mail for others, and (2) that DNS is used to
route mail through the MTA relays and as such, is an ‘essential service’ for
successful operations through port 25. When mail is sent, more often than not it
needs to be relayed through several relay agents as it travels from sender to
recipient. To do this, it has to have an address to send to.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Steve Mancini Page 13 2/21/2003

Diagram of Email Delivery across the Internet

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Steve Mancini Page 14 2/21/2003

Vulnerabilities

The SMTP protocol has had a number of published vulnerabilities. A search of
the Common Vulnerabilities and Exposures (CVE), Bugtraq, or the Computer
Emergency Response Team (CERT) vulnerability lists will yield a number of
results. The vulnerabilities of the smtp protocol range from Denial of Service
attacks to exploits allowing the arbitrary execution of code on the remote system.
The following chart contains exploits known to be targeted against services run
on port 25 – they are included for completeness of this report.

This initial list for non-sendmail SMTP exploits reveals a noteworthy trend. First
off you can see that Sendmail is not a black sheep of the mail program family –
exploiting SMTP applications occurs on all platforms and for most popular
software. Also, as you look through the list it becomes apparent that in the
majority of the cases presented that the issue is in the implementation of the
interfaces to the SMTP protocols. Many of these exploits involve sending
additional data as part of an SMTP command to a receiving client/server
application that is not protected from writing out of the memory buffer resulting in
either an attack upon the availability or integrity of the application and/or system
running the software.

Reference Summary/Description
CVE-1999-0404 Buffer overflow in the Mail-Max SMTP server for Windows

systems allows remote command execution.
CVE-1999-0682 Microsoft Exchange 5.5 allows a remote attacker to relay

email (i.e. spam) using encapsulated SMTP addresses,
even if the anti-relaying features are enabled

CVE-1999-0759 Buffer overflow in FuseMAIL POP service via long USER
and PASS commands. BID 634

CAN-1999-0250 Denial of service in Qmail through long SMTP commands.
CAN-1999-0261 Netmanager Chameleon SMTPd has several buffer

overflows that cause a crash. buffer overflow with 'HELO
hostname' and hostname over 471 chars.

CAN-1999-0284 Denial of service to NT mail servers including Ipswitch,
Mdaemon, and Exchange through a buffer overflow in the
SMTP HELO command.

CAN-1999-0419 When the Microsoft SMTP service attempts to send a
message to a server and receives a 4xx error code, it
quickly and repeatedly attempts to redeliver the message,
causing a denial of service.

CAN-1999-0512 A mail server is explicitly configured to allow SMTP mail
relay, which allows abuse by spammers – this is if they
allow relaying

CAN-1999-1012 SMTP component of Lotus Domino 4.6.1 on AS/400, and

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Steve Mancini Page 15 2/21/2003

possibly other operating systems, allows a remote attacker
to crash the mail server via a long string. If an attacker
connects to the SMTP port (25) and sends about 200-300
bytes the server will die.

CAN-1999-1043 Microsoft Exchange Server 5.5 and 5.0 does not properly
handle (1) malformed NNTP data, or (2) malformed SMTP
data, which allows remote attackers to cause a denial of
service (application error).

CAN-1999-1200 Vintra SMTP MailServer allows remote attackers to cause
a denial of service via a malformed "EXPN *@" command.

CAN-1999-1265 SMTP server in SLmail 3.1 and earlier al lows remote
attackers to cause a denial of service via malformed
commands whose arguments begin with a "("
(parenthesis) character, such as (1) SEND, (2) VRFY, (3)
EXPN, (4) MAIL FROM, (5) RCPT TO.

CAN-1999-1511 Buffer overflows in Xtramail 1.11 allow attackers to cause
a denial of service (crash) and possibly execute arbitrary
commands via (1) a long PASS command in the POP3
service, (2) a long HELO command in the SMTP service,
or (3) a long user name in the Control Service.

CAN-1999-1516 A buffer overflow in TenFour TFS Gateway SMTP mail
server 3.2 allows an attacker to crash the mail server and
possibly execute arbitrary code by offering more than 128
bytes in a MAIL FROM string.

CAN-1999-1521 Computalynx CMail 2.4 and CMail 2.3 SP2 SMTP servers
are vulnerable to a buffer overflow attack in the MAIL
FROM command that may allow a remote attacker to
execute arbitrary code on the server.

CAN-1999-1529 A buffer overflow exists in the HELO command in Trend
Micro Interscan VirusWall SMTP gateway 3.23/3.3 for NT,
which may allow an attacker to execute arbitrary code.

CVE-2000-0033 InterScan VirusWall SMTP scanner does not properly scan

messages with malformed attachments.
CVE-2000-0075 Super Mail Transfer Package (SMTP), later called

MsgCore, has a memory leak which allows remote
attackers to cause a denial of service by repeating multiple
HELO, MAIL FROM, RCPT TO, and DATA commands in
the same session.

CVE-2000-0428 InterScan VirusWall includes the ability to scan for virii in
uuencoded files. Due to an unchecked buffer in the code, if
a uuencoded file is sent that includes an embedded final
filename of more than 128 characters, arbitrary remote
code can be executed at the privilege level of the
VirusWall software

CVE-2000-0447 Buffer overflow in WebShield SMTP 4.5.44 allows remote

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Steve Mancini Page 16 2/21/2003

attackers to execute arbitrary commands via a long
configuration parameter to the WebShield remote
management service. Network Associates WebShield
SMTP is susceptible to a buffer overflow attack if 208 or
more bytes of data accompanying a configuration
parameter is transmitted to the remote management
service listening at port 9999. It is possible to force the
program to execute arbitrary code at the privelege level of
the service's account (default SYSTEM).

CVE-2000-0448 By default, Network Associates WebShield SMTP runs the
management agent on port 9999. A remote user may gain
access to this agent and modify the configuration of
WebShield SMTP simply by connecting to this particular
port. Issuing the command "GET_CONFIG<CR>" will
return the current configuration. The management agent
grants access based on a list of authorized hostnames, but
will grant access to any IP adress which cannot be
resolved to a hostname (WINS, DNS, netbios) even if
'MailCfg' is set to only allow configuration from localhost.

CVE-2000-0582 Check Point FireWall-1 4.0 and 4.1 allows remote
attackers to cause a denial of service by sending a stream
of invalid commands (such as binary zeros) to the SMTP
Security Server proxy. Sending a stream of binary zeros
(or other invalid SMTP commands) to the SMTP port on
the firewall raises the target system's load to 100% while
the load on the attacker's machine remains relatively low.

CVE-2000-0738 WebShield SMTP 4.5 allows remote attackers to cause a
denial of service by sending e-mail with a From: address
that has a . (period) at the end, which causes WebShield
to continuously send itself copies of the e-mail. this
vulnerability can be exploited by sending an email with a
dot character trailing the domain name such as
'user@companyxyz.com

CVE-2000-0932 MAILsweeper for SMTP 3.x does not properly handle
corrupt CDA documents in a ZIP file and hangs, which
allows remote attackers to cause a denial of service.

CVE-2000-0990 cmd5checkpw 0.21 and earlier allows remote attackers to
cause a denial of service via an "SMTP AUTH" command
with an unknown username.

CVE-2000-1022 Due to improper input validation and error trapping,
supplying cmd5checkpw with a non-existent username will
cause it to segfault. In turn, the qmail-smtpd-auth Qmail
patch incorrectly interprets this failure as a successful
authentication. As a result, an attacker providing invalid
input to cmd5checkpw can create a falsely-authenticated
session, leaving the victim host open to receiving and

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Steve Mancini Page 17 2/21/2003

forwarding mail from unauthenticated systems.
CVE-2000-1047 Buffer overflow in SMTP service of Lotus Domino 5.0.4

and earlier allows remote attackers to cause a denial of
service and possibly execute arbitrary commands via a
long ENVID keyword in the "MAIL FROM" command. The
problem exists in the ENVID variable, as specified in RFC
1891. The SMTP server does not conduct adequate
bounds checking on the ENVID keyword of the "MAIL
FROM:" field. This makes it possible for a malicious user
to custom craft an ENVID that could result in remote
execution of code as the UID the SMTP server is operating
as.

CAN-2000-0158 Buffer overflow in MMDF server allows remote attackers to
gain privileges via a long MAIL FROM command to the
SMTP daemon. By sending long, well crafted buffers to the
smtpd mail daemon, as part of a "MAIL FROM:" command,
it may be possible for an attacker to gain access to the
machine under the user running the smtpd program.

CAN-2000-0657 Buffer overflow in AnalogX proxy server 4.04 and earlier
allows remote attackers to cause a denial of service via a
long HELO command in the SMTP protocol.

CAN-2000-1129 McAfee WebShield SMTP 4.5 allows remote attackers to
cause a denial of service via a malformed recipient field In
the event that WebShield SMTP receives an outgoing
email containing six "%20" followed by any character
within the recipient field, the application will crash,
resulting in an access violation error upon processing of
the email

CAN-2000-1203 Lotus Domino SMTP server 4.63 through 5.08 allows
remote attackers to cause a denial of service (CPU
consumption) by forging an email message with the
sender as bounce@[127.0.0.1] (localhost), which causes
Domino to enter a mail loop. If this occurs, the server will
attempt to bounce the message and will go into a bounce
loop and consume all of the system's CPU, requiring that
the server be restarted and the message be manually
removed from the queue.

CVE-2001-0039 IMail server SMTP service is subject to a denial of service.

By specifying a base 64encoded SMTP AUTH password
containing 80 to 136 bytes, the IMail server will stop
responding and refuse any new connections.

CVE-2001-0280 Buffer overflow in MERCUR SMTP server 3.30 allows
remote attackers to execute arbitrary commands via a long
EXPN command.

CVE-2001-0494 Buffer overflow in IPSwitch IMail SMTP server 6.06 and

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Steve Mancini Page 18 2/21/2003

possibly prior versions allows remote attackers to execute
arbitrary code via a long From: header.

CVE-2001-0504 Vulnerability in authentication process for SMTP service in
Microsoft Windows 2000 allows remote attackers to use
incorrect credentials to gain privileges and conduct
activites such as mail relaying.

CVE-2001-0690 Format string vulnerability in exim (3.22-10 in Red Hat,
3.12 in Debian and 3.16 in Conectiva) in batched SMTP
mode allows a remote attacker to execute arbitrary code
via format strings in SMTP mail headers. The vulnerability
has to do with handling of the hostname string in an email
address argumenting the 'From:' field.

CVE-2002-0055 SMTP service in Microsoft Windows 2000, Windows XP

Professional, and Exchange 2000 to cause a denial of
service via a command with a malformed data transfer
(BDAT) request.

CAN-2002-0054 SMTP service in (1) Microsoft Windows 2000 and (2)
Internet Mail Connector (IMC) in Exchange Server 5.5
does not properly handle responses to NTLM
authentication, which allows remote attackers to perform
mail relaying via the server. By design, the Windows 2000
SMTP service and the Exchange Server 5.5 IMC, upon
receiving notification from the NTLM authentication layer
that a user has been authenticated, should perform
additional checks before granting the user access to the
service. The vulnerability results because the affected
services don't perform this additional checking correctly. In
some cases, this could result in the SMTP service granting
access to a user solely on the basis of their ability to
successfully authenticate to the server.

CAN-2002-0416 Buffer overflow in SH39 MailServer 1.21 and earlier allows
remote attackers to cause a denial of service, and possibly
execute arbitrary code, via a long command to the SMTP
port.

CAN-2002-0432 A vulnerability has been reported in the SMTP support
included in some versions of Citadel/UX. When intially
connecting to the SMTP server, including an oversized
parameter with the HELO command will cause a buffer
overflow condition. Stack memory will be corrupted,
leading to a denial of service attack. It may be possible to
exploit this vulnerability to execute arbitrary code. This has
not been confirmed

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Steve Mancini Page 19 2/21/2003

CVE Description
CVE-1999-0057 The Vacation program (used to notify people who send you

mail that you may not be reading it right away) allows
command execution by remote users through a sendmail
command.

CVE-1999-0095 When the debug command (-d) in Sendmail is enabled, it
may allow attackers to execute commands as root.

CVE-1999-0096
The Sendmail decode alias can be used to overwrite
sensitive files, which allows an attacker to gain control of a
system.

CVE-1999-0129 Sendmail allows local users to write to a file and gain group
permissions via a . forward or :include: file.

CVE-1999-0130 Local users can start Sendmail in daemon mode and gain
root privileges.

CVE-1999-0131 Buffer overflow and denial of service in Sendmail 8.7.5 and
earlier through GECOS field gives root access to local users.

CVE-1999-0145 Sendmail WIZ command enabled, allowing root access.
CVE-1999-0204 Sendmail 8.6.9 allows remote attackers to execute root

commands using ident
CVE-1999-0203 In Sendmail, attackers can gain root privileges via SMTP by

specifying an improper address in either the MAIL or RCPT
verbs that would cause the mail to bounce to a program.

CVE-1999-0204 Sendmail 8. 6. 9 allows remote attackers to execute root
commands using ident

CVE-1999-0206 A MIME buffer overflow in Sendmail 8.8.0 and 8.8.1 gives
root access.

CVE-1999-0393 Remote attackers can cause a denial of service in Sendmail
8.8.x and 8.9.2 by sending messages with a large number of
headers.

CVE-1999-0404 Buffer overflow in the Mail-Max SMTP server for Windows
systems allows remote command execution.

CVE-1999-0478 Denial of service in HP-UX sendmail 8.8.6 related to
accepting connections

CVE-1999-0976 Sendmail allows local users to reinitialize the aliases
database via the newaliases command, then cause a denial
of service by interrupting Sendmail.

CVE-1999-1109 Sendmail before 8.10.0 allows remote attackers to cause a
denial of service by sending a series of ETRN commands
then disconnecting from the server, while Sendmail continues
to process the commands after the connection has been
terminated.

CVE-1999-1309 Sendmail before 8.6.7 allows local users to gain root access
via a large value in the debug (-d) command line option.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Steve Mancini Page 20 2/21/2003

CVE Description
CVE-2000-0042 Buffer overflow in CSM mail server allows remote attackers to

cause a denial of service or execute commands via a long
HELO command.

CVE-2000-0319 mail. local in Sendmail 8.10.x does not properly identify the .
\n string which identifies the end of message text, which
allows a remote attacker to cause a denial of service or
corrupt mailboxes via a message line that is 2047 characters
long and ends in \n.

CVE-2000-0348 A vulnerability in the Sendmail configuration file sendmail. cf
as installed in SCO UnixWare 7.1.0 and earlier allows an
attacker to gain root privileges.

CVE-2000-0506 The "capabilities" feature in Linux before 2.2.16 allows local
users to cause a denial of service or gain privileges by setting
the capabilities to prevent a setuid program from dropping
privileges, aka the "Linux kernel setuid/setcap vulnerability. "

CVE-2001-0653 Sendmail 8.10.0 through 8.11.5, and 8.12.0 beta, allows local
users to modify process memory and possibly gain privileges
via a large value in the 'category' part of debugger (-d)
command line arguments, which is interpreted as a negative
number.

CVE-2001-1075 poprelayd script before 2.0 in Cobalt RaQ3 servers allows
remote attackers to bypass authentication for relaying by
causing a "POP login by user" string that includes the
attacker's IP address to be injected into the maillog log file.

CVE-2002-0906 Buffer overflow in Sendmail before 8.12.5, when configured
to use a custom DNS map to query TXT records, allows
remote attackers to cause a denial of service and possibly
execute arbitrary code via a malicious DNS server.

CAN Description

CAN-1999-0098 Buffer overflow in SMTP HELO command in Sendmail allows
a remote attacker to hide activities.

CAN-1999-0163 In older versions of Sendmail, an attacker could use a pipe
character to execute root commands.

CAN-1999-0205 Denial of service in Sendmail 8.6.11 and 8.6.12.

CAN-1999-0418
Denial of service in SMTP applications such as Sendmail,
when a remote attacker (spammer) uses many "RCPT TO"
commands in the same connection.

CAN-1999-1468 rdist in various UNIX systems uses popen to execute
sendmail, which allows local users to gain root privileges by
modifying the IFS (Internal Field Separator) variable.

CAN-2001-1349 Sendmail before 8.11.4, and 8.12.0 before 8.12.0.Beta10,
allows local users to cause a denial of service and possibly
corrupt the heap and gain privileges via race conditions in

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Steve Mancini Page 21 2/21/2003

signal handlers.
CAN-2001-0713 Sendmail before 8.12.1 does not properly drop privileges

when the -C option is used to load custom configuration files,
which allows local users to gain privileges via malformed
arguments in the configuration file whose names contain
characters with the high bit set, such as (1) macro names that
are one character long, (2) a variable setting which is
processed by the setoption function, or (3) a Modifiers setting
which is processed by the getmodifiers function.

CAN-2001-0714 Sendmail before 8.12.1, without the RestrictQueueRun option
enabled, allows local users to cause a denial of service (data
loss) by (1) setting a high initial message hop count option (-
h), which causes Sendmail to drop queue entries, (2) via the -
qR option, or (3) via the -qS option.

CAN-2001-0715 Sendmail before 8.12.1, without the RestrictQueueRun option
enabled, allows local users to obtain potentially sensitive
information about the mail queue by setting debugging flags
to enable debug mode.

CAN-2001-0789 Format string vulnerability in avpkeeper in Kaspersky KAV 3.
5.135.2 for Sendmail allows remote attacker to cause a
denial of service or possibly execute arbitrary code via a
malformed mail message.

CAN-2001-1349 Sendmail before 8.11.4, and 8.12.0 before 8.12.0.Beta10,
allows local users to cause a denial of service and possibly
corrupt the heap and gain privileges via race conditions in
signal handlers

CAN-2002-0651 Buffer Overflow in Multiple DNS Resolver Libraries

Looking at the above alerts one thing becomes clear – the same simplicity that
has made SMTP the defacto protocol for e-mail, has also left numerous
opportunities for an attacker to gain escalated privileges on a variety of email
applications remotely because port 25 needs to be open and listening to
receive/relay e-mail. For most e-mail tools, this service needs to run with
escalated privileges so that it can deliver (write) information into a variety of user
folders and files.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Steve Mancini Page 22 2/21/2003

Part 2: Specific Exploit

Exploit Details
Name:
Buffer Overflow in DNS resolver libraries

CVE:
CERT Advisory CA-2002-19 Buffer Overflows in Multiple DNS Resolver Libraries
CAN-2002-0651
BID 5100: Multiple Vendor libc DNS Resolver Buffer Overflow
CERT/CC Vulnerability Note VU#803539

Operating Systems/Applications:
 Cray UNICOS 9.2.4
 Cray UNICOS 9.2
 Cray UNICOS 9.0.2.5
 Cray UNICOS 9.0
 Cray UNICOS 8.3
 Cray UNICOS 8.0
 FreeBSD FreeBSD 4.6-RELEASE
 FreeBSD FreeBSD 4.6
 FreeBSD FreeBSD 4.5-STABLE
 FreeBSD FreeBSD 4.5-RELEASE
 FreeBSD FreeBSD 4.5
 FreeBSD FreeBSD 4.4-STABLE
 FreeBSD FreeBSD 4.4-RELENG
 FreeBSD FreeBSD 4.4
 FreeBSD FreeBSD 4.3-STABLE
 FreeBSD FreeBSD 4.3-RELENG
 FreeBSD FreeBSD 4.3-RELEASE
 FreeBSD FreeBSD 4.3
 ISC BIND 9.2.1
 + Caldera OpenUnix 8.0
 ISC BIND 9.2
 + Conectiva Linux 8.0
 + MandrakeSoft Linux Mandrake 8.2
 + MandrakeSoft Linux Mandrake 8.1 ia64
 + MandrakeSoft Linux Mandrake 8.1
 + RedHat Linux 7.3 i386
 + RedHat Linux 7.3
 ISC BIND 9.1.3
 + RedHat Linux 7.2 ia64
 + RedHat Linux 7.2 i686
 + RedHat Linux 7.2 i586

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Steve Mancini Page 23 2/21/2003

 + RedHat Linux 7.2 i386
 + RedHat Linux 7.2
 + S.u.S.E. Linux 8.0i386
 + S.u.S.E. Linux 8.0
 + S.u.S.E. Linux 7.3sparc
 + S.u.S.E. Linux 7.3ppc
 + S.u.S.E. Linux 7.3i386
 + S.u.S.E. Linux 7.3
 ISC BIND 9.1.2
 + Conectiva Linux 7.0
 + S.u.S.E. Linux 7.2i386
 + S.u.S.E. Linux 7.2
 ISC BIND 9.1.1 + MandrakeSoft Linux Mandrake 8.0 ppc
 + MandrakeSoft Linux Mandrake 8.0
 ISC BIND 9.1
 + Caldera OpenUnix 8.0
 + HP Secure OS software for Linux 1.0
 + RedHat Linux 7.1 ia64
 + RedHat Linux 7.1 i386
 + RedHat Linux 7.1 alpha
 + RedHat Linux 7.1
 + S.u.S.E. Linux 7.1x86
 + S.u.S.E. Linux 7.1sparc
 + S.u.S.E. Linux 7.1ppc
 + S.u.S.E. Linux 7.1alpha
 + S.u.S.E. Linux 7.1
 ISC BIND 9.0
 + S.u.S.E. Linux 7.0sparc
 + S.u.S.E. Linux 7.0ppc
 + S.u.S.E. Linux 7.0i386
 + S.u.S.E. Linux 7.0alpha
 + S.u.S.E. Linux 7.0
 ISC BIND 8.2.5
 ISC BIND 8.2.4
 ISC BIND 8.2.3
 ISC BIND 8.2.2
 ISC BIND 8.2.1
 ISC BIND 8.2
 ISC BIND 8.1.2
 ISC BIND 8.1.1
 ISC BIND 8.1
 ISC BIND 4.9.8
 ISC BIND 4.9.7
 ISC BIND 4.9.6
 ISC BIND 4.9.5
 ISC BIND 4.9.4

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Steve Mancini Page 24 2/21/2003

 ISC BIND 4.9.3
 ISC BIND 4.9
 NetBSD NetBSD 1.5.2
 NetBSD NetBSD 1.5.1
 NetBSD NetBSD 1.5 x86
 NetBSD NetBSD 1.5 sh3
 NetBSD NetBSD 1.5
 NetBSD NetBSD 1.4.3
 NetBSD NetBSD 1.4.2 x86
 NetBSD NetBSD 1.4.2 SPARC
 NetBSD NetBSD 1.4.2 arm32
 NetBSD NetBSD 1.4.2 Alpha
 NetBSD NetBSD 1.4.2
 NetBSD NetBSD 1.4.1 x86
 NetBSD NetBSD 1.4.1 SPARC
 NetBSD NetBSD 1.4.1 sh3
 NetBSD NetBSD 1.4.1 arm32
 NetBSD NetBSD 1.4.1 Alpha
 NetBSD NetBSD 1.4.1
 NetBSD NetBSD 1.4 x86
 NetBSD NetBSD 1.4 SPARC
 NetBSD NetBSD 1.4 arm32
 NetBSD NetBSD 1.4 Alpha
 NetBSD NetBSD 1.4
 OpenBSD OpenBSD 3.1
 OpenBSD OpenBSD 3.0
 OpenBSD OpenBSD 2.9
 OpenBSD OpenBSD 2.8
 OpenBSD OpenBSD 2.7

Protocols/Services:
Libbind resolver libraries which are used in sendmail to resolve SMTP MX
records

Description:

“The Domain Name System (DNS) provides name, address, and other
information about Internet Protocol (IP) networks and devices. By issuing
queries to and interpreting responses from DNS servers, IP-enabled network
operating systems can access DNS information. When an IP network application
needs to access or process DNS information, it calls functions in the stub
resolver library, which may be part of the underlying network operating system.
On BSD-based systems, DNS stub resolver functions are implemented in the
system library libc. In ISC BIND, they are implemented in libbind, and on
GNU/Linux-based systems, they are implemented in glibc. ” (VU#803539)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Steve Mancini Page 25 2/21/2003

Sendmail uses the BIND resolver API, and is compiled with the BIND resolver
library (libbind) so that it can resolve domains in the email addresses to which it
sends email. Sendmail relies on two library functions that do this transparently,
called gethostbyname() and gethostbyaddr(). These and other related
procedures, including getanswer() and getnetanswer(), are grouped in a separate
DNS resolver library. It is the reply to these functions that allows the attacker to
write and execute code on the mail server as the userid running the application
that is querying DNS through the resolver library. As a result, the sendmail
application, which is often run from an account with escalated privileges (root)
could be leveraged from its queries for host ip/address pairs from the vulnerable
resolver library. A buffer overflow returned to the sendmail process via the
response could either crash the sendmail application or potentially execute
commands crafted by the attacker.

Variants:

While not a true variant, a subsequent exploit was released that was quickly
confused with this one. This vulnerability involves a buffer overflow in which
sendmail is configured to use a custom DNS map to query TXT records that
allows remote attackers to cause a denial of service and possibly execute
arbitrary code via a malicious DNS server. Whereas the exploit in question is
dependent upon libbind, this exploit requires the use of a customized dns map
definition to query unsafe DNS TXT records. For more information, see CAN-
2002-0906

Another denial of service attack was reported that is also similar to this exploit.
In CAN-2002-1146 an exploit has been reported with the stub resolver library
[res_search() and res_query()] in BIND. A stub resolver relies on the services of
a recursive name server on the connected network or a "nearby" network. This
scheme allows the host to pass on the burden of the resolver function to a name
server on another host because it allows all of the workstations to share the
cache of the recursive name server and hence reduce the number of domain
requests exported by the local network. BIND 4, BIND 8.2.x stub resolver
libraries, glibc 2.2.5 and earlier, libc, and libresolv libraries use the maximum
buffer size instead of the actual size when processing a DNS response
[getanswer()], which causes the stub resolvers to read past the actual boundary,
allowing remote attackers to cause a denial of service.

Protocol Description

In an early section we began our discussion of the manner in which sendmail
communicated via the SMTP protocol. This preliminary examination served as
an introduction and was application independent – all mail transfer agents speak

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Steve Mancini Page 26 2/21/2003

SMTP. The simplicity of this protocol results in a need to rely upon other more
complex programs for some of its data – in particular, the addresses to which the
mail will be delivered.

A mail transaction involves several data objects which are communicated as
arguments to different commands which are referred to as verbs in the RFC.
Once these arguments are transmitted, they are held pending the confirmation
communicated by the end of mail data indication, which finalizes the transaction.
The model for this is that distinct buffers are provided to hold the types of data
objects, that is, there is a reverse-path buffer, a forward-path buffer, and a mail
data buffer. Specific commands cause information to be appended to a specific
buffer, or cause one or more buffers to be cleared.

To demonstrate the simplicity of smtp, one need only examine the minimal set of
commands, referred to as verbs, needed to send email across a network:

Verb Description
HELO Command used by the SMTP-sender to identify itself to an SMTP-

reciever that has responded with a 220 reply code to an initial
inquiry on port 25. The argument field contains the host name of
the sender-SMTP. The receiver-SMTP identifies itself to the
sender-SMTP in the connection greeting reply, and in the
response to this command.

MAIL This command is used to initiate a mail transaction in which the
mail data is delivered to one or more recipient “mailboxes”. The
argument field contains a reverse-path that consists of an optional
list of hosts and the sender mailbox. When the list of hosts is
present, it is a "reverse" source route and indicates that the mail
was relayed through each host on the list (the first host in the list
was the most recent relay). This list is used as a source route to
return non-delivery notices to the sender. As each relay host adds
itself to the beginning of the list, it must use its name as known in
the IPCE to which it is relaying the mail rather than the IPCE from
which the mail came so as to assure a viable return path.

RCPT Identifies the intended recipient of the message. There is 1 RCPT
command per intended recipient. The forward-path consists of an
optional list of hosts and a required destination mailbox. When the
list of hosts is present, it is a source route and indicates that the
mail must be relayed to the next host on the list.

DATA Command used to transmit the mail messages. The receiver
treats the lines following the command as mail data from the
sender. This command causes the mail data from this command
to be appended to the mail data buffer. The mail data may contain
any of the 128 ASCII character codes.

QUIT Terminates the connection between the systems
RSET Aborts the current transaction and causes both systems to reset-

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Steve Mancini Page 27 2/21/2003

this deletes any information about the sender, recipient, and
message.

VRFY This command asks the server receiving mail to verify the
recipients address without sending e-mail.

NOOP Command that causes the receiving MTA to send a reply code
(220).

EXPN Used to expand a mailing list established on the target MTA.
TURN This command reverses the roles of the MTA’s involved in an

exchange without having to re-establish a connection.

The following is a sample of a simple SMTP exchange between 2 servers, host1
and host2. It provides an example of the exchange that is made between the
systems. Note the mail program has already executed its routines for querying
DNS for the IP addresses of the MAIL FROM and RCPT TO designations (in
red). It is for these commands that the DNS resolver library is called so that
SMTP knows where to route it’s connection request (HELO):

220 postoffice.host1.com ESMTP Sendmail 8.12.5/8.12.5; Mon, 11 Oct 2002
04:22:25 GMT
HELO host2.com
250 postoffice.host1.com Hello mailserver.host2.com [10.1.0.1], pleased to
meet you
MAIL FROM: marco@postoffice.host1.com
250 marco@postoffice.host1.com... Sender ok
RCPT TO: polo@host2.com
250 polo@host2.com... Recipient ok
DATA
354 Enter mail, end with "." on a line by itself
Message-ID: <20021011184815.33912@postoffice.host1.com>
From: Marco <marco@host1.com>
To: Polo <polo@host2.com>
Subject: Just saying hi
Date: 11 Oct 2002
I just wanted to say Hi.
.
250 EAA88467 Message accepted for delivery
QUIT
221 postoffice.host1.com closing connection

Mail is addressed in the format, username@some.domain.com, and that SMTP
on its own does not possess the ability to resolve this address. This is where
SMTP and sendmail, become dependent upon the dns resolver. When referring

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Steve Mancini Page 28 2/21/2003

to “the resolver'', we do not mean any specific application, but rather refer to the
resolver library, a collection of functions [gethostbyname(), gethostbyaddr(),
getanswer() and getnetanswer()] that can be found in the standard C library
(netdb.h). The central routines are gethostbyname() and gethostbyaddr() which
look up all IP addresses belonging to a host, and vice versa via querying DNS.
This library is included when sendmail is compiled. As a result, the vulnerability
within the resolver library is incorporated into the sendmail program and if
exploited will run with the privileges of the sendmail program (typicallly root).

The problem is that sendmail is conforming to the SMTP standard (RFC 974)
which requires that the application provides the record for any host prior to
sending mail to it. For sendmail to send a message via SMTP, it needs to know
the IP address of the machine which it will open a connection to on port 25. It
requires the IP address be returned by the name server in any of 3 possible
formats:

q An MX (Mail Exchanger) record list one or more machines that will receive
mail from the site (multiple machines will receive it in a pre-defined order
of preference)

q An A (address) record provides the IP address directly.
q A CNAME (alias) record that will refer sendmail to the real name which

sendmail will use to try to retrieve an A or MX record

Referring to the diagram below, Step 1 below occurs when a local mail server
queries the local DNS server for an address/ip pair. Once sendmail has the name
of the destination (ex: user@somecorp.com), it calls gethostbyname() to get the
needed network address(es). Presuming that the DNS server does not have that
information cached, it proceeds through an iterative search seeking the address.
From our previous brief discussion on the DNS protocol, we know that the
IP/address pairs comprise an enormous amount of data that cannot efficiently be
stored on a single server – thus the servers will either provide the needed
address, or “point the server in the right direction” as it traverses through the
hierarchical tree structure of DNS where the server can issue another query. In
step 2 it begins its query at the root DNS server – which will reply with several
com DNS servers who can help find the address. In step 3, the local DNS server
repeats its query. Again, if the information is not found, the local DNS server is
directed toward another server who can provide information on somecorp.com
(Step 3). Finally in Step 4, somecorp.com will provide the local DNS server with
the address where mail is to be directed. In step 5, the local DNS server will pass
this pack to sendmail on the mail server. It then opens a network connection and
attempts to deliver the mail.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Steve Mancini Page 29 2/21/2003

DNS Query

How the exploit works

The key to exploiting this vulnerability lies utilizing the potential for a buffer
overflow attack encapsulated in the format of the response a DNS server can
provide to an address query. A buffer overflow occurs when a program or
process tries to store more data in a buffer than it was designed to hold. Since
buffers are created to contain a finite amount of data, the extra information -
which has to go somewhere - can overflow into unprotected adjacent buffers,
corrupting or overwriting the valid data held in them.

DNS messages have specific byte alignment requirements, resulting in padding
in messages. In a few instances in the resolver code, this padding is not taken
into account when computing available buffer space. The resolver is compiled as
part of the sendmail program – so that when the sendmail binary needs to look
up an ip address to delivery mail to, it calls upon the subroutines included in the
resolver library. These extra bytes are then passed (unchecked) back to the
sendmail program where they are used to exploit the server attacking availability
and potentially the integrity of the system.

In the resolver library, two variables, gethnamaddr.c [getanswer()] and
getnetnamadr.c [getnetanswer()], manage packet buffer parsing - a pointer to the
byte we are looking at, and the remaining length on the buffer. As a result of the

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Steve Mancini Page 30 2/21/2003

remaining length pointer not being updated consistently, it is possible for an
attacker to write a few bytes (for each record) outside the buffer in a malicious
DNS response. When sendmail queries for an address to provide to SMTP it
does so using these subroutines. By crafting the response records correctly, we
can then write outside the memory on the mail server with an escalated privilege
since sendmai is traditionally run as root – the buffer overflow is thus written as
root into memory and (potentially) executed with root privileges. Unlike the more
common buffer overflows in network daemons, any outgoing DNS query made to
a hostile server could expose the vulnerability. The threat posed by this exploit is
magnified when one realizes that in many environments, clients are permitted to
make DNS queries directly against the name servers outside their DMZ. Since
this is an outbound query, this exploit could affect a system that is behind a
firewall. Most firewalls allow for:

• outbound UDP/53
• inbound UDP/53
• outbound TCP/53
• inbound TCP/53

The diagram below provides a top level process flow for implementing the
exploitation scenario (external attacker) of this vulnerable and hopefully stresses
the danger this exploit poses since it could be executed through a firewall. The
workstation attempts to send mail outside the organization through whatever
email reader the user employs and this mail is relayed to the organization’s Mail
Server. Presuming there is no cached information, the mail server, calling upon
the resolver library functions it is compiled with, than attempts to make a query
outside the organization’s firewall to an external name server. The attacker
reroutes the query from the intended destination DNS server to a server that they
control (Evil DNS Server) through a tactic such as DNS spoofing. DNS spoofing
involves faking a response from the client/target’s DNS server in order to provide
the wrong address/IP mapping to the targeted system. This is done by sending a
spoofed response directly to the target system (in this case, the local DNS server
which is queried by the mail server). The result is that the local DNS server
initiates (or continues, depending on when the spoofing is executed) a lookup
against an attacker controlled system rather than the trusted system it presumes
it is communicating with. The query is then processed and sent back to the Mail
Server through a firewall that would presumably be configured with a ruleset that
accepts inbound responses to DNS queries. The response contains the extra
bytes that are used to attack the availability and/or integrity of the mail server.
These extra bytes could in theory do something as simple as crash the server, to
the execution of code on the mail server, or worse, allow the attacker to install
binaries on the system (such as netcat) to allow them access even through the
firewall.

Diagram

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Steve Mancini Page 31 2/21/2003

Workstation
FirewallMail Server

Evil DNS Server

Destination
Server

Exploited Mail Server

How to use the exploit

At this time, no known exploit exists for this vulnerability. As such, we are left
with the exercise of proposing a scenario how this vulnerability would be used.
Some steps involve groundwork to set up services and employ deceptive tactics
to direct queries to a controlled system which can respond with a malicious
response:

1. The first requirement for the successful exploitation of this vulnerability is
the establishment of a machine to respond to DNS queries with the
response and the exploit code invoking the desired results.

2. The attacker is counting on the local sendmail process executing a DNS

query against a DNS server they wish to spoof/intercept. At this point the
sendmail program needs to query for an address it does not already know
or have cached.

3. The attacker must force (or wait for) the vulnerable process to make DNS
queries against the attacker-controlled DNS server. This would most
easily be accomplished through DNS spoofing. For an external attacker,
this step could prove the most daunting since they need to be able to
monitor traffic so that they may inject their malicious responses.

4. When sendmail references the vulnerable resolver library, this library

queries the malicious DNS server.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Steve Mancini Page 32 2/21/2003

5. The attacker crafts their desired effect (denial of service, opening a remote
shell, etc) which is returned to the sendmail server as part of the record
request.

6. When the DNS response is processed [getanswer() or getnetanswer()],

the response will include the expected answer plus the additional bytes
that will allow for the buffer overflow condition will be exploited. The
attacker’s code may execute as the vulnerable process, which in this case
means it runs as root since sendmail usually is setuid 0, providing local
access to the attacker.

Signature of the attack

At this point, there is no know exploit which we can distill a signature from.
Should an exploit become available, we would need to focus our attention on the
packets returned from the (potentially) malicious DNS server to uncover the
malicious code within the server’s response. Given we have no signature for an
attacker, we should at least begin by understanding what “normal” traffic would
look like. Let’s assume that mail.yousite.com is your mail server, your local DNS
server is dns.yoursite.com, and destination is some address that your sendmail
server wishes to send email to. A reply would resemble the following:

13:45:13.947300 dns.yoursite.com.53 > mail.yoursite.com.3163: 1 q: destination.
3/4/6 destination. CNAME destination, destination. CNAME destination.
destination. A destination.xx.yy.zz (283)

Recall that smtp requires an A record – this is what we have at the end of the
above captured network traffic. Abnormal traffic would include formats dissimilar
from the above. Abnormal may also be defined as different answers – recall that
DNS will send multiple queries to different servers in hopes of improving the
response ability of UDP.

While we have no signatures for the response, there may be clues about the
execution of such an attack located in syslog. Presuming that the response may
take more than 1 attempt to execute cleanly, if you notice a sudden rise in the
following syslog message types (there are several with a variety of messages
appended to the error), it may be worth further scrutiny:

Malformed response from [xxx.xxx.xxx.xxx].53 <MESSAGE>

If the attacker fails to correctly spoof a DNS server, you may suddenly see
entries in your syslog file indicating that your name server received a response
from a remote name server but that it hadn't queried that name server, and
therefore didn't expect (and dropped) the response:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Steve Mancini Page 33 2/21/2003

Response from unexpected source ([XXX.XXX.XXX.XXX].53)

How to protect against it

“The best defense for sendmail attacks is to disable sendmail if you
are not using it to receive mail over a network. If you must run
sendmail, ensure that you are using the latest version with all
relevant security patches. ” – Scambray, McClure and Kurtz

The Quick Fix

1. If you are running your MTA on a GNU/linux system, you can change the
default options used in the name service. You can reduce your risk by
making sure the “networks” line in /etc/nsswitch.conf does not refer to
DNS – it should instead refer to ‘files’. This will mitigate the risk as you no
longer will be routing your inquiries to the potentially malicious DNS
servers.

2. Don’t allow mail forwarding – removing this ability will reduce the ability of
an attacker to force your mail server to make queries which could increase
the likelihood their server will be queried.

Use of a local caching DNS server is not an effective workaround!

When this advisory was initially published, it was thought that a caching DNS
server that reconstructs DNS responses would prevent malicious code from
reaching systems with vulnerable resolver libraries. This workaround is not
sufficient. It does not prevent some DNS responses that contain malicious code
from reaching clients, whether or not the responses are reconstructed by a local
caching DNS server. DNS responses containing code that is capable of
exploiting the vulnerabilities described in VU#803539 and VU#542971 can be
cached and reconstructed before being transmitted to clients. Since the server
may cache the responses, the malicious code could persist until the server's
cache is purged or the entries expire.

Don’t Run Sendmail as Root:

To reduce the risk associated with integrity based attacks, you can change the
userid which sendmail runs as. In the case of a buffer overflow, the code that is
written into memory is run with the same user privileges as the user who
performs the write. For sendmail, that is often root. To reduce the immediate risk,
you can engineer sendmail such that it does not run as root. Keep in mind this
does not reduce any risk from the vulnerability itself, only the potential

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Steve Mancini Page 34 2/21/2003

consequences as a result of an integrity-based attack. If sendmail is run as a
non-root user with limited privileges, the overflow code will also only be able to
do what this non-root account can do. The authors of sendmail provide a very
good write up on how to accomplish this. It can be found at:
http://www.sendmail.org/secure-install.html

Elevate the difficulty for successful DNS Spoofing:

DNSSEC (DNS Security) is a technique for securing the Domain Name System.
It is a set of extensions to DNS, which provide end-to-end authenticity and
integrity and was designed to protect the Internet from certain attacks. By
accepting signed records only from trusted sources which are validated locally,
you can decrease your chances of accepting records from a malicious source.

I don’t know that a snort rule could catch this sort of attack. However, one of the
IDS products that track state and monitor protocol behavior should be able notice
this sort of pattern, especially one that can track outbound DNS requests on a
per-host basis and then match it to incoming replies and check the MAC
addresses of the request vs. response. A rule that matched an outbound DNS
request’s destination MAC address with the source MAC address coming back
would provide a moderate confidence rule but could be fooled. A rule that looked
for multiple responses to a request and looked for different IP addresses being
provided as the answers in the different responses would also provide moderate
or better confidence but again could potentially be fooled (though maybe not as
easily).

Root Cause Resolution:

To remove this vulnerability, the vendors will need to correct the remaining length
pointer to remove the ability to write outside the buffer allocated. This can be
carried out by making sure a max length is not exceeded in the response. Most
of the vendors have issued this repair as of this writing.

Sendmail uses the BIND resolver API, and is commonly linked with the BIND
resolver library (libbind). As a result, it is necessary to either upgrade BIND
(recommended) or patch your current version. ISC has reported that versions 9.
2+ are not vulnerable. You then need to rebuild sendmail which relies upon the
resolver libraries and restart your sendmail processes. The upgrades can be
acquired at the isc.org site (provided in the references section of this paper).

Source code/ Pseudo code

There is currently no released exploit code for this vulnerability. Pseudo-code
for this exploit would include:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Steve Mancini Page 35 2/21/2003

struct netent
{

This is a data structure for information from network database

 char *n_name; # Points to the official name of the network
 char **n_aliases; # Points to the first element in a list of pointers to

 # alternate names (aliases) for the network
 int n_addrtype; # type of the network number returned
 unsigned long n_net; # the network number (in host order).
 };

QueryResponse(){
 netent EvilResponse; #DNS query expects a netent struct returned

Evil Actions is your choice – DoS, Remote Shell Command, etc

ValidResponse = GetValidResponse();

Add the evil code in the buffer

EvilResponse = append(ValidResponse, EvilActions)

 return (Evil_Reponse);
}

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Steve Mancini Page 36 2/21/2003

References/Additional Information

http://www.kb.cert.org/vuls/id/542971
http://www.cert.org/advisories/CA-2002-19.html
http://online.securityfocus.com/bid/5100
http://www.cert.org/advisories/CA-2002-19.html
http://www.ietf.org/rfc/rfc0821.txt

http://www.isc.org/products/BIND/bind-security.html

http://online.securityfocus.com/infocus/1221

http://www.ietf.org/internet-drafts/draft-ietf-dnsext-dns-threats-02.txt

Costales, Bryan, Eric Allman. Sendmail 2nd Edition. O’Reilly & Associates, Inc,
1997

Garfinkle, Simson, Gene Spafford. Practical UNIX and Internet Security, 2nd
Edition. O’Reilly & Associates, Inc, 1996. 811

Scambray, Joel, Stuart McClure, George Kurtz. Hacking Exposed, Network
Security Secrets & Solutions 2nd Edition. The McGraw Hill Companies, 2001.
324,325.

Postel, J., ed., "Transmission Control Protocol - DARPA Internet
 Program Protocol Specification", RFC 793, USC/Information Sciences
 Institute, NTIS AD Number A111091, September 1981.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Steve Mancini Page 37 2/21/2003

Appendix A: Protocol diagrams

IP header structure

TCP Header Structure

UDP Header Structure

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Steve Mancini Page 38 2/21/2003

Appendix B: Unix Man Page for netdb.h

Unix Man Page

NAME
 gethostbyname, gethostbyaddr, sethostent, endhostent, herror, hstrerror -
get network host entry

SYNOPSIS
 #include <netdb. h>
 extern int h_errno;

 struct hostent *gethostbyname(const char *name);

 #include <sys/socket. h> /* for AF_INET */
 struct hostent *gethostbyaddr(const char *addr, int len, int type);

 void sethostent(int stayopen);

 void endhostent(void);

 void herror(const char *s);

 const char * hstrerror(int err);

DESCRIPTION
 The gethostbyname() function returns a structure of type
 hostent for the given host name. Here name is either a
 host name, or an IPv4 address in standard dot notation, or
 an IPv6 address in colon (and possibly dot) notation. (See
 RFC 1884 for the description of IPv6 addresses.) If name
 is an IPv4 or IPv6 address, no lookup is performed and
 gethostbyname() simply copies name into the h_name field
 and its struct in_addr equivalent into the h_addr_list[0]
 field of the returned hostent structure. If name doesn't
 end in a dot and the environment variable HOSTALIASES is
 set, the alias file pointed to by HOSTALIASES will first
 be searched for name. (See hostname(7) for the file for-
 mat.) The current domain and its parents are searched
 unless name ends in a dot.

 The gethostbyaddr() function returns a structure of type
 hostent for the given host address addr of length len and
 address type type. The only valid address type is cur-
 rently AF_INET.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Steve Mancini Page 39 2/21/2003

 The sethostent() function specifies, if stayopen is true
 (1), that a connected TCP socket should be used for the
 name server queries and that the connection should remain
 open during successive queries. Otherwise, name server
 queries will use UDP datagrams.
 The endhostent() function ends the use of a TCP connection
 for name server queries.

 The (obsolete) herror() function prints the error message
 associated with the current value of h_errno on stderr.

 The (obsolete) hstrerror() function takes an error number
 (typically h_errno) and returns the corresponding message
 string.

 The domain name queries carried out by gethostbyname() and
 gethostbyaddr() use a combination of any or all of the
 name server named(8), a broken out line from /etc/hosts,
 and the Network Information Service (NIS or YP), depending
 upon the contents of the order line in /etc/host. conf.
 (See resolv+(8)). The default action is to query
 named(8), followed by /etc/hosts.

 The hostent structure is defined in <netdb. h> as follows:

 struct hostent {
 char *h_name; /* official name of host */
 char **h_aliases; /* alias list */
 int h_addrtype; /* host address type */
 int h_length; /* length of address */
 char **h_addr_list; /* list of addresses */
 }
 #define h_addr h_addr_list[0] /* for backward compatibility */

 The members of the hostent structure are:

 h_name The official name of the host.

 h_aliases
 A zero-terminated array of alternative names for
 the host.

 h_addrtype
 The type of address; always AF_INET at present.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Steve Mancini Page 40 2/21/2003

 h_length
 The length of the address in bytes.

 h_addr_list
 A zero-terminated array of network addresses for
 the host in network byte order.

 h_addr The first address in h_addr_list for backward com-
 patibility.

RETURN VALUE
 The gethostbyname() and gethostbyaddr() functions return
 the hostent structure or a NULL pointer if an error
 occurs. On error, the h_errno variable holds an error
 number.

ERRORS
 The variable h_errno can have the following values:

 HOST_NOT_FOUND
 The specified host is unknown.

 NO_ADDRESS or NO_DATA
 The requested name is valid but does not have an IP
 address.

 NO_RECOVERY
 A non-recoverable name server error occurred.

 TRY_AGAIN
 A temporary error occurred on an authoritative name
 server. Try again later.

FILES
 /etc/host. conf
 resolver configuration file

 /etc/hosts
 host database file

SEE ALSO
 resolver(3), hosts(5), hostname(7), resolv+(8), named(8)

